TRADURRE IN ITALIANO IL TESTO SEGUENTE:

The story of π

The number π , which is the ratio of the circumference of a circle to its diameter, has a long story. Even nowadays supercomputers are used to compute its decimal expansion to as many places as possible.

The hunt for π (=3.1415926535..) began about two thousand years before Christ. The Egyptians obtained the value $(4/3)^4$ (=3.1604..) and the Babylonians the value 3+1/8 (=3.125). At about the same time, the Indians used the square root of 10 (=3.1622..).

About 250 BC Archimedes developed a method (using inscribed and circumscribed 6-, 12-, 48-, 96-gons) for calculating better and better approximations to the value of π , and found that $3 + 10/71 < \pi < 3 + 10/70$. Today we often use the latter value 22/7 (=3.1428..) for work which does not require great accuracy.

As time went on, other people were able come up with better approximations for π . About 150 AD, Ptolemy of Alexandria gave its value as 377/120 (=3.14166..) and in about 500 AD the Chinese Tsu Ch'ung-Chi gave the value as 355/113 (=3.1415929..).

It took a long time to prove that it was futile to search for an exact value of π , i.e. to show that it was irrational. This was proved by Lambert in 1761. In 1882, Lindemann proved that π was transcendental, that is, it is not the solution of any polynomial equation with integral coefficients. This has a number of consequences:

- It is not possible to square a circle. In other words, it is not possible to draw, with ruler and compass only, a square exactly equal in area to a given circle. This problem was set by the Greeks two thousand years ago and was only put to rest with Lindemann's discovery.
- It is not possible to represent π as an exact expression in roots, like $\sqrt{2}$, $\sqrt{7}$ or $\sqrt{5} + \sqrt{3}/\sqrt{7}$, etc.

From that time on interest in the value of π has centered on finding the value to as many places as possible and on finding expressions for π and its approximations, such as this found by the Indian mathematician Ramanujan:

$$\frac{63(17+15\sqrt{5})}{25(7+15\sqrt{5})} = 3.141592654...$$

This approximation is so good that my "ancient" Casio calculator tells me it's the same as π !

TRADURRE IN INGLESE LE FRASI SEGUENTI:

- 1. Non si possono calcolare tutte le cifre decimali di $\pi.$
- 2. 355/133 è una approssimazione a π migliore di 377/120.
- 3. Ramanujan ha trovato una approssimazione di π molto elegante.
- 4. Quante cifre decimali di π sono ora conosciute?
- 5. Quante cifre decimali di π calcolò Archimede?