## TRADURRE IN ITALIANO IL TESTO SEGUENTE:

## The story of $\pi$

The number $\pi$, which is the ratio of the circumference of a circle to its diameter, has a long story. Even nowadays supercomputers are used to compute its decimal expansion to as many places as possible.

The hunt for $\pi(=3.1415926535 .$.$) began about two thousand years before Christ.$ The Egyptians obtained the value $(4 / 3)^{4}(=3.1604 .$.$) and the Babylonians the value$ $3+1 / 8(=3.125)$. At about the same time, the Indians used the square root of 10 ( $=3.1622$..).

About 250 BC Archimedes developed a method (using inscribed and circumscribed 6 -, 12 -, 48-, 96 -gons) for calculating better and better approximations to the value of $\pi$, and found that $3+10 / 71<\pi<3+10 / 70$. Today we often use the latter value $22 / 7$ ( $=3.1428$..) for work which does not require great accuracy.

As time went on, other people were able come up with better approximations for $\pi$. About 150 AD, Ptolemy of Alexandria gave its value as $377 / 120$ ( $=3.14166$..) and in about 500 AD the Chinese Tsu Ch'ung-Chi gave the value as $355 / 113$ ( $=3.1415929$..).

It took a long time to prove that it was futile to search for an exact value of $\pi$, i.e. to show that it was irrational. This was proved by Lambert in 1761. In 1882, Lindemann proved that $\pi$ was transcendental, that is, it is not the solution of any polynomial equation with integral coefficients. This has a number of consequences:

- It is not possible to square a circle. In other words, it is not possible to draw, with ruler and compass only, a square exactly equal in area to a given circle. This problem was set by the Greeks two thousand years ago and was only put to rest with Lindemann's discovery.
- It is not possible to represent $\pi$ as an exact expression in roots, like $\sqrt{2}, \sqrt{7}$ or $\sqrt{5}+\sqrt{3} / \sqrt{7}$, etc.
From that time on interest in the value of $\pi$ has centered on finding the value to as many places as possible and on finding expressions for $\pi$ and its approximations, such as this found by the Indian mathematician Ramanujan:

$$
\frac{63(17+15 \sqrt{5})}{25(7+15 \sqrt{5})}=3.141592654 \ldots
$$

This approximation is so good that my "ancient" Casio calculator tells me it's the same as $\pi$ !

## TRADURRE IN INGLESE LE FRASI SEGUENTI:

1. Non si possono calcolare tutte le cifre decimali di $\pi$.
2. 355/133 è una approssimazione a $\pi$ migliore di $377 / 120$.
3. Ramanujan ha trovato una approssimazione di $\pi$ molto elegante.
4. Quante cifre decimali di $\pi$ sono ora conosciute?
5. Quante cifre decimali di $\pi$ calcolò Archimede?
