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Divisor class group and canonical class of determinantal rings
defined by ideals of minors of a symmetric matrix

By

ALpo CONCA *)

In this paper we study the rings defined by ideals of minors, not necessarily of fixed size,
of a symmetric matrix of indeterminates. We prove that they are normal, compute the
divisor class group and the canonical class. We determine the Gorenstein rings among the
rings under consideration.

Introduction. Let X be a field and let X = (X;;) be an nxn symmetric matrix of
indeterminates over K. Denote by K[X] the polynomial ring K[X;;:1 <i<j£n]

Let o = {a,..., %} be a non-empty subset of {1,...,n}, with o; < o, ;. We define
I(X) to be the ideal geperated by all the i-minors of the first o, — 1 rows of X, for
i=1,...,t, and by all the (¢ + 1)-minors of X.

Denote by R,(X) the ring K [X}/I (X). In particular, if « = {1,..., ¢ — 1}, then I (X)
is the ideal generated by all the t-minors of X; in this case we denote by R, (X) the
quotient ring.

This class of ideals and rings was investigated by Kutz in his paper [12]. In Kutz’s
notation the ideal Iy o, H = (5, ..., 5,,), defined in [12, 1], corresponds to the ideal I, (X)
with oo = {1, 8, + 1,...,5,-; + 1}. Kutz showed that R (X} is a Cohen-Macaulay do-

t
main of dimension (n + 1)t — ¥ a;.
i=1

By results of Goto [10], [11], the ring R, (X} is known to be normal with divisor class
group Z,, and is Gorenstein if and only if n = t mod (2).

The aim of this paper is to prove that the ring R,{X) is a normal domain, to compute
its divisor class group and its canonical class, and to decide whether it is Gorenstein or
not.

Our approach is based on the knowlewdge of the combinatorial structure of R, {X), [7]
and [6], and on the methods developed by Bruns and Vetter to study generic determinan-
tal rings, {1], [2] and [4].

1. Normality and divisor class group. Let us recall the combinatorial structure of R, {X}. Let H
be the set of the non-empty subsets of {1, ..., n}. Given ae H, we will always write its clements
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in ascending order 1 < g, <... < 4, < n. On H we define the following partial order:
a={ay,..,a}Sb={b,...b}er<t and x,<b fori=1,..,r.

As usual, wedenote by [a,, ..., a,|b,, ..., b,] the minor det Xy, )of X. Aminor{a,, ..., a, by, ..., b,]
of X is called a doset minor if {a,,...,a} <{b,,...,b,} in H. Let us denote by D the set of
all the doset minors. Let ay={ay;,...qnf by={biy, by fonag=1{ay,...,a,}
by={by,..., by} be clements of H and suppose that [a,15,],...,[a,| b, e D. We say that the
product [a,|b,] -~ [a,]b,] is a standard monomial fb; < a, ,in Hforalli=1,...,s — 1. Given a
standard monomial M = [a,}b,] - [a,]b.], min (M) denotes the “minimum” {a, | b,] of its factors.
The combinatorial structure of K {X ] with respect to products of minors is clarified by the following
results due to De Concini and Procesi, {6, pp. 82], [7, 5.1] and {7, 5.2].

Theorem L1, (a) The standard monomials form a K-basis for K[X].

(b) Let My,.... M eD, M;=[ayy,...,a | by, ... by ]. Let N={eyy, ... cq, [dyy,.ondy, ]
15000 €5 gy o os d, Y e one of the standard monomials which appear in the (unique) representation
of the product My---M, as linear combination of standard monomials. Set ¢;={cy;, ..., cy },
di={dy,...dy}.a;={an,...,a, ) and b= {by, ..., b, }. Then, in lexicographic order of the se-
guences of elements of H, the sequence ¢, d,,..., ¢, d, is less than or equal to every sequence which
is obtained permuting the elements a,, b, ..., a,, b,

{¢) Every t-minor M =|ay,...,a,\b,,..., b is alinear combination of doset t-minors. Moreaver if
[ey, ..., ¢ ldy, .., d] is a doset t-minor which appears in the representation of M, then ¢, < a; for all
i=1,...,L

Givena = {a,,..., %} € H, we define I_{X) to be the ideal generated by all the i-minors of the first
2 —1 rows of X, for i=1,...,1, and by all the {t + {)-minors of X. Denote by R (X) the ring
K [XV/1,(X).

From 1.1(c), one deduces that I,(X) is generated by the set Q, = {[a|b]e D:a % o). Using the
straightening laws one shows immediately:

Corollary 1.2. (a) The set of all the standard monomials M such that win (M) € Q, forms a K-basis
af I{X)

(b} Set D, = {la|bl e D:a = a}. Then set S, of {the vesidue classes of} all the standard monomials
M such that min (M) e D, forms a K-basis of the ring R, (X).

Let us denote by f the residue class in R,(X) of the minor [x|a]. If M §,, then
[xle] M € §,. Therefore f is a non zero divisor of R,(X). We want to describe the
localization of R, (X) with respect to f. Let ¥ be the set of the residue classes in R, (X)
of the elements of the set {{o;] o;]: 1 < i < j <t} v {[o] B] € D, B differs from « in exactly
one index}. Denote by K [¥] the K-subalgebra of R, (X) generated by the elements in the
set ¥. In order to prove the following lemma one has just to imitate the argument of
[4, 6.4].

Lemma 1.3. The set ¥ is algebraically independent over K and R (X)[f '1=
K{¥f.

Now we describe the minimal prime ideals of f. Let J be the set of the minimal
elements of the set {y e H:y > o}, that is, J is the set of the upper neighbours of «
in H. For systematic reason it is convenient to set J = {¢} if «= {n}, and
Iy(Xy=(X;;, 1 £i2j<n). Given B e J, one has I5(X) > I,(X). Let us denote by I;(x)
the prime ideal I;(X)/I,(X) of R (X). Then:

Lemma 1.4. The ideals 1;(x), B € J, are the minimal prime ideals of (f).
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Proof. First we show that ﬂ 5 (X} = ({z|8le D} + 1,{X). The inclusion = is clear.
LetFe ()1 s{X), we have to show that F e([x|d] e D} + 1 (X ). We may assume that F

et
isa stangard monomial, and let min (F) = [y|8]. Sincey & f for all § € J, we deduce that
y=aory %« therefore F e (fo|6le D) + I {(X).
Note thatif §, f, € J, f + f;, then[f1 B e I (x)\I;(x). Thus theideals I,(x), B € J, are
distinct. Applying the straightening relations 1.1(b), one has ([z |yl e D,)* < I (X} + (f),
and the desired conclusion follows. [ ‘

We want to describe more precisely the set J. We decompose a into a sequence
B,,..., B,, where B;= {ocki_lﬂ,...,oc,‘i} is a block of consecutive integers, (ko =0,
k, = t). Let us denote by x;,..., %, the “gaps sequence” associated with o, that is, for
i=1. . ,r—Ly={n +1... 0 —1andy ={o +1,... 0,5 =@ife, =n For
everyi=1,...,r, we get f§; an upper neighbour of x in the foliowmg way. I i<rori=r
and o, <mn, then f; is obtained from « by replacing o, with o, + 1. If o, = n; {hen B, is
obtained from o by deleting «,. It is not difficult to show that J = {Bir-- B

In order to carry further our investigation we adapt the usual inversion trick [4, 2.4] to
our situation. Let X be a symmetric matrix of indeterminates of size (n — 1) x{(n — 1).
Consider the isomorphism of K-algebras '

Y KIXIIX G - KIXHX 0 X XY

defined by the assignment ¥ (X,;) = X,; for all j=1,...,n, and Y (X;) = X“,-ﬂ,ljwl +
XXXl foralll<igjsn

Suppose a; = 1. Then X ;¢ I,(X). As in the generic case one shows that ¥ (1, (X Y is
the extension of the ideal I (X yto the ring K{X1[X, ..., X, ]IX;7], where
= {a,—1,. ~ 1}. Thus we get an isomorphism

(1) ‘;: R,(X) [x1_11] - R&(X) (X115 Xyl [Xﬁl] =5

where x,; denotes the residue class of X'y, in R, (X). Let us denote by 1 the residue class
in R3(X) of the minor [&|&], by §; the upper neighbours of & and by Iy (X) the corre-
sponding minimal prime ideals of f. One has ¥ (f) = X,, f. Furthermore,

@

Ig_l(y‘c)S ifa,>2 andforall i=2,...,r.

I/;i(ic)S foa,=2andforall i=1,...,r
¥ (I, (x) {
S foa,>2and i=1.

Lemma 1.5, Set R = R, (X), and P; = I (x). Then:
(@) Foralli=1,...,r, Rp isaregular ring. Let v; denote the valuation one the DVR Rp .
(b) Ifi<r, orzflu-randoc <n, then v,(f) =2 If o, =n, then v, (f) = 1.

Proof. By induction on n. In the case n = 2 the assertions are trivial. Now suppose
n> 2. 1fa, >1,then R,(X) = R (Y), where Yis an (n +1—a)x{m+ 1 —¢,)symmet-
ric matrix of indeterminates and y = {L, &, + 1 — Bpseens Oy + 1 — ay}. By induction, we
may assume a; = 1. Suppose «, =2, then Rp is a locahzatmn of R[x7{] for all
i =1,...,r. Denote R the ring R (X ), and by P, the ideal I 3 (%). By (1) and (2), we get that
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Rp, is isomorphic to a localization of R5 X1, X, ] [X17]. The last is regular by
mductlon hence R, is regular. Since X, , is a unit, we have v;(f) = 1; .(f), where 7, denotes
the valuation on RP Again by induction #,(f) = 1ifa, — 1 = n — 1,and 5,(f) = 2 in the
other cases.

Suppose ®, > 2. As above, for all i > 1, by (1) and (2), and by induction, we get the
desired results. It remains the case i = 1 and o, > 2. By definition P, = (x,,, ..., X;,). The
2-minors of the first two row of X vanish in R. Hence x;; = x,,X;; x5, in Rp , and
Py Rp, =(xy3)Rp . Therefore Rp is regular. In Rp , we have:

1.2 ce. oyl
X11 X1q, X22 Xip X35 X123 %24, ]

f=i- o = =[,81|ﬁ1]x2"22x122.

N -1 ce
X1a, Xy, X2z X12Xog, Xo,a,

But [$,] f;]1x55 is a unit in Rp , and we are done.  [J

We are ready to prove that R, (X)) is normal and to compute its divisor class group. For
the theory of the divisor class group we refer the reader to {8). Let us denote by CI{A4)
the divisor class group of a normal domain A4, and by cl(I) the class in Cl(4) of a
divisorial ideal I of A.

Theorem 1.6. The ring R, (X)) is a normal domain, and its divisor class group is generated
by cl (I g, (X)), ..., €l (g (x)). Furthermore, the only relation between the given generators

is Zv(f)cl(l,,i(x))z(), and we have CI{R,(X)=Z""'®Z, if o <n and
CARX) =2 if o0, =n,

Proof. By 1.3, the localization of R,(X) to a prime which does not contain f is a
localization of a polynomial ring, and therefore it is regular. By 1.5 (a), every localization
of R,(X) to a minimal prime ideal of f is regular. Therefore R,(X) satisfies Serre’s
condition (R;). Since R, (X) is Cohen-Macaulay, by Serre’s normality criterion [8, 4.1], it
is normal. From Nagata’s theorem [8, 7.2], and 1.3, we deduce that Cl (R, (X)) is generat-
ed by the classes of the minimal prime ideals of f, cl(I; (x)),...,cl(I; (x)). By 13,
R, (X)[f ~11is (isomorphic to) a polynomial ring after inversion of the determinant of a
symmetric matrix of indeterminates. The last is a prime element, hence the units of
R, (X)[f '] are elements of the form k f*, with k e K\{0} and s € Z. Then we may argue
as in the generic case, see [4, pp. 94], to show that the only relation between

cl(Iy (X)), ...,cl(I, (x) is i v;(f) cl(Is,(x)) = 0. The rest follows immediately from
1.5(b). O =1

2. The canonical class of R, (X). Given a normal Cohen-Macaulay domain A with a
canonical module w,, it is known that w, is a rank 1 reflexive module. Therefore w, is
isomorphic to a divisorial ideal, and its class in Cl (4) is called a canonical class. Further-
more, if 4 is a positively graded K-algebra, then its canonical module is unique up to
isomorphism, so that there exists a unique canonical class, the canonical class of 4. The
ring A is Gorenstein if and only if its canonical module is principal, that is, if its
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canonical class vanishes in Cl (4). We want to determine the canonical class w of R, (X),
and decide whether R, (X) is Gorenstein or not. We compute the canonical class of R, (X)),
by induction, using the isomorphism (1) and the following result due to Brumns |3, 4.2]:

Lemma 2.1. Let A be a normal Cohen-Macaulay domain, and I a prime ideal of height 1
in A such that A/I is again a normal Cohen-Macaulay domain. Let Q, ..., §, be prime
ideals of height 1 in A and suppose that the class of I and the class of a canonical module

w, have representations cl(I) = 3 s,¢l(Q;) and cl(w,) = Z r; cl(Q;). Assume further
i=1
that:
i r—s5,20fori=1,.
(i) Ann (Q"* QT ¢ Q + Ifori=1,.
(iiiy The ideals Q; = (Q; + I)/I are distinct przme zdeals af height 1 in A/l

Then A/I has a canonical module with class ¥ (r, — s;) c1(Q,).
=1

With the notation introduced in the first section, we get:

Theorem 2.2. Let cl (w) be the canonical class of R, (X), and let ¢l (w) = Z Aieldg ()}
i=1

be a representation of cl(w) with respect to the system of generators of Cl(R_ (X)) given
in 1.6, Then, if o, <n:

A‘i—l_iizlxi~ll_lBi! fOr all i=2,...,r,
LA =1+ 1 mod(2)

and if o, = n:

{}_i_l — A=y — Bl foral i=2..,r—1
}Lr—l—Z}“r=IXr—1|—|Br'_1 ’

Proof. The proof is by induction on n. In the case n = 2 everything is trivial. ff ¢, = n
and r = 1, then R, (X) is a polynomial ring. Hence we may assume that » > 1 if o, = n.
As in the proof of 1.5, we may also assume o, = 1. The isomorphism (1} induces an
isomorphism of divisor class groups ¥*: Cl(R (X)[x{{]) > Cl (Ra()? ). Since the
extension R;(X) —» Ry(X)[ X5, X (] [X ('] is faithfully flat, * maps the canoni-
cal class to the canonical class. The compositon of the canonical epimorphism
CI(R, (X)) = Cl(R,(X) [x{{]) with y* gives an epimorphism

h: CL(R, (X)) = CL{Rz(X)).

The localization of a canonical module is a canonical module. Hence & maps the canon-
ical class to the canonical class.

If «, = 2, then by (2) we get h(cl (I, (x)) = cl (g (x)) forall i =1,...,r. By induction
we get the desired result. If o, > 2, then by (2) we get hiel (I 8, x)) = cl 153 (x)) for all
i=2,...,r,and h(cl(I 8, (x))) = 0. Again by induction, it is enough to prove only the
relatlon Wthh involves /;. We have to distinguish 3 cases:
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Case 1. o, <nandr = 1. Then « = {1}, and R,(X) = R, (X) is the second Veronese
subring of K[X,,...,X,]. It is known that R,(X) is Gorenstein if and only if
n = 0 mod (2), see [9, pp. 54]. Therefore A, = n = |y;] + 1 mod {2).

Case 2. q,=nandr=2.Sety, =m—1,withn>m > 1, thena={I,m+1,...,n}
We have to show that A, —2l,=m—1—-m—-—m—1=2m—n—2, that is,
cl(w)=@2m—n—2)cl(ly (x))

Let X * be the submatrlx 'of X of the first m rows. Denote by S the ring K [ X *]/I,(X*),
where I, (X*) is the ideal generated by all the 2-minors of X*. One has I, (X *) K[X]
=], (X), and then S[X\X*] = R,(X), see [5,2.5(c)]. Hence § is a normal Cohen-
Macaulay domain, and we have an isomorphism of divisor class groups Cl(S)
= C1 (R, (X)), which maps the canonical class to the canonical class. The extension of the
ideal P = (xy4,..., %;,) of § to R (X) is I (x). Therefore it is enough to show that the
canonical class of § is cl (wg) = (2m — n — 2) cl (P).

In order to apply 2.1, we need a more flexible system of generators of CI(S). Let
0 = (x;;, 1 £i £ j < m); it is not difficult to see that Q is a prime ideal of height 1 in S
that ¢l (P), cl (Q) are generators of Cl(S), and the only relation is 2 cl(P) + ¢l (Q) =

First let m = 2, and we argue by induction on n. Suppose n = 3; since 2m — n — 2)
cd(P)= —cl(P)=cl(P)+cl(Q), we have to show that J=PnQ = (x,4,%,,) I8
the canonical module of S. In this case dim(S)=3, and we note that S/J =
K[X 3, X35, X53]/(X 5, X,3). Thus J is a maximal Cohen-Macaulay S-module. Since S
is a domain and it has a canonical module, J is the canonical module of § if its Cohen-
Macaulay type r(J) is 1. The sequence X = X, X3, X135 — X33, 1S & system of parameters
of S. Hence x is a maximal regular S and J sequence. Comparing the Hilbert series of S
and S/J, one shows that the Hilbert series of J is 2¢ + t2/(1 — ). Then the Hilbert series
of J/%J is 2t + t*. The homogeneous component of degree 2 of J/XJ is generated by
X1y %13 = X1 X25 = x2,. Clearly no 1-forms of J/xJ annihilate the irrelevant maximal
ideal of S. Therefore r(J) = 1.

Now suppose n > 3. We apply 2.1 with respect to the ideal I = (x,,, x,,). It is clear that
I=(xy, x5 =PnQ, so that cl(I}) = cl(P) + cl(Q). We may write cl{wg) = acl(P)
+ b cl (Q), and we may assume a, b > 0. The ideals P, Q are principal after inversion of
X,3. Then a power of x,; annihilates P“~Y/P*~! and Q®~V/Q°~ . Since P + I, and
Q + I are prime ideals and do not contain x,;, the assumption (ii) of 2.1 is satisfied. By
inductionwe geta —1—-2(b—-1)=4—m—1)— 2, thatis,a—2b=4—n—2.

When m > 2, the desired result is obtained by induction using 2.1 with respect to the
ideal I = (X1, Xoms + - s Xoms Xmm+ 15 - -» Xmn)» ONeE has to note that ¢l (I) = ¢l (P), and that
P, Q are principal after inversion of x,,. This concludes the Case 2.

Case 3. g, <nand r>1, or ¢, =n and r > 2. Just to simplify the notation set R
= R,(X). We have to show that A, — 1, = |x,| — |B,|.Seth = [B,|,and C = B,, ..., B,.
Then o = {1,a,,2, + 1,..., 000 + B — 1, C}. Let o be the sequence obtained from « by
replacing 1 with a, + & (note that o, + h < n), that is, 6 = {ep, 0, + 1, ..., 2, + b, C},
and denote by ¢4, ..., 0, the indices of ¢. Denote by g the residue class of the minor [¢] o]
in R. By construction, g ¢ I, (x) if and only if ¢ = §;, that is, if and only if i = 1 or i = 2.
We may invert g to isolate 4, and 1, from the expression of cl (w). The class 4, cl (I, (x))
+ 4, ¢l (I, (x)) is a canonical class of R [g~!]. Following [4, 8.11], we may interpret
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R[g~ ' as a polynomial extension of a determinantal ring associated with the ideal of the
2-minors of a generic matrix of indeterminantes. In order to do this we consider the set
¥, of the residue classes in R of the elements of {[o;|a;]: 1 Si<j<t}u{lo|dleD,:d
differs from o in exactly one index}, and the set ¥, of the residue classes in R of the
elements of {[3|s] e D,: ¢ differs from ¢ in exactly one index}.

Denote by &, the sequence {j, #,, ..., @ T h+ LK)y + b C}, and let M be
the residue classin R of [0, |6]inR. Onehas ¥, = {M; 11 Sj<ay, 1 £k < h+1} Let
K{¥, v ¥,] be the K-subalgebra of R generated by the clements in the set ¥, U ¥,: As
in [4, 6.4], one shows that R[g~ '] = K[¥, U ¥,1[g*]. We have to determine the rela-
tions between the. elements of ¥, U ¥,. We claim that for all 1 <j,j, <o, and
1<k<k,Sh+1 '

Mp M, = 10;05,11 0 ) ol0l = My M;,

where j A j, =min {j,j,} and jvj, =max{j,j;}. To prove the claim noté that
My M;,, =10, t0][o19; 4 ), since the matrix is symmetric. Then we consider the “gener-
ic straightening relauon” of [6410][e]6;,, ). Each standard monomial in the generic
standard representation of [0 |6] [a|J; ; ] contains at most two factors. There are only
two such standard monomials obtained from the indices of the minors under consider-
ation, namely [3,16; . 1[o|o] and [}, olji, ol lo\{oy +h+1—k}lo\{o, + o+ 1 — k1]
The first appears in the representation with coefficient 1 (to see this one can specialize
j = k in the generic expression) while the second vanishes in R. Therefore [ ] o] [o]§; i8]

= [0419;,x,] [o] o] and it remains to prove that [8, | ;= [6;4 1,41 9;v ), ]. But since the
matrix is symmetric, the last equality is straightforward from the fact that the 2-minors
of the first {&, — 1)-rows vanish in R.

Now we take an (&, — 1) x (h + 1) matrix of indeterminates T =(T};}, and a set of
distinct indeterminates 4 = {4,: ¥ € ¥,}. Denote by a the determinant of the ¢ x ¢ sym-
metric matrix (A, o . Consider the following surjective ring homomorphism
K[T Alla™ '] - Rlg~ } by the assignment T; -~ M;;, and A, —y. The kernel
of this homomorphism contains the ideal I,(T) of the 2-minors of T. Therefore we get
a surjective homomorphism L: K[TV/1,(T)[4dl{a"*] = R[g~']. We claim that L is an
isomorphism. Since K[T/I,(T)[4] and R are domains, the claim follows if we show
that they have same dimension. Note that dim K[TYI,(T){4] =¥, +{x;, + A — 1). An
element & = o, which differs from o exactly in one index and has £ entries, is obtained from
o by replacing an index o, with an index k> o, and k=g, for j>i We have

t t
[P+l +h—-D=tt+D2+ T -0 —t++{+h—-D=th+ 1 — ¥ &
i=1 i=1

= dim R. Therefore L is an isomorphism.

Let P be the prime ideal of K [T/I,(T) generated by the elements of the first row of
T, and Q be the prime ideal generated by the eleraents of the first column. By construction
L(Ty) el (x ) [g™"1, and L(T;;) € I, (x) R[g™*]. Then the extension of P is contained
in Iy (x) R[g~ 11, but since both are prime ideals of height 1, they coincide. The same
argument works as well for @ and I; (x) Rig™ 1. Since a is a prime element in

K|[TV1,(T)[A4], one has an isomorphism Cl{X {T}/I 2(T)} — CH{R[g™ 1. It is not diffi-
cult to see that the ring R[g ] = K[TVI,(T) [4] [a~ '] has a unique canonical class: We
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deduce that 4, cl (P} + 4, ¢l (Q) is the canonical class of CH{K [T/, (T)). By [4, 8.8], we
conclude that 4, — A, =a, —1 —(A+ 1) =(0, —2) —h =y, | —|B;}. O

Taking into account the relations between the given generators of Cl(R,{X)), the
canonical class is completely determined by the theorem. In particular:

Corollary 2.3. If o, < n, then R (X} is Gorensteinif and only if |y,_ | — | B,| = 0 for all
i=2,..,rand |yl +1=0mod(2).

If o, = n, then R, (X)is Gorensteinif andonlyif {3, | — Byl =0 foralli=2,...,r—1,
and |1,_,| —|B,l =1 =0,

We single out the most important cases:

Theorem 2.4. (a) (S. Goto). Let 1 <t = n The ring R,(X) is a normal domain and its
divisor class group is Z,. It is Gorenstein if and only if n =t mod (2). Furthermore, if
n % t mod (2), its canonical module is the ideal P generated by the (t — 1)-minors of the
first (t — 1) rows of X, and its Cohen-Macaulay type is (,7,).

(b) Let X* be an mx n, m < n, partially symmetric matrix of indeterminates, that is,
X5=X% forall1 2i,j<m Let 1 <t < m. Thering R,(X*) is a normal domain and its
divisor class group is Z. Furthermore it is Gorenstein if and only if 2m=n + t.

Proof. (a) One observes that P is minimally generated by the set of all (doset)
(t — 1)-minors of the first (t — 1) rows. The rest is a particular case of 1.6 and 2.3.

{b) Consider « = {1,...,t — 1,m + 1,..., n}, then a minimal system of generators of
I,(X) is the set of the doset t-minors of the first m rows. In other words, R, {(X) is a
polynomial extension of R, (X*). Therefore we obtain the desired results as an application
of 1.6 and 23. [7
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