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S Y M M E T R I C L A D D E R S

A L D O C O N C A

In this paper we define and study ladder determinantal rings of a symmetric

matrix of indeterminates. We show that they are Cohen-Macaulay domains. We

give a combinatorial characterization of their /z-vectors and we compute the

^-invariant of the classical determinantal rings of a symmetric matrix of indeter-

minates.

Introduction

Let us recall the definition of ladder determinantal rings of a generic matrix

of indeterminates. Let X be a generic matrix of indeterminates, K be a field and

denote by K[X] the polynomial ring in the set of indeterminates X{j. A subset Y oί

X is called a ladder if whenever Xijf Xhk e Y and i < h, j < k, then Xik, Xhj e Y,

Given a ladder Y, one defines 7,(10 to be the ideal generated by all the ^-minors

of X which involve only indeterminates of Y. The ideal It(Y) is called a ladder

determinantal ideal and the quotient Rt(Y) — K[Y] /It(Y) is called a ladder

determinantal ring. This class of ideals is investigated in [1], [2], [9], [15], [17]. It

turns out that the main tool in the investigation of the ladder determinantal rings

is the knowledge of Grόbner bases of the classical determinantal ideals. In [8] we

determined Grόbner bases of ideals generated by minors of a symmetric matrix of

indeterminates. This allows us to study the ladder determinantal rings of a

symmetric matrix.

Now let X be an n x n symmetric matrix of indeterminates, K be a field. Let

us denote by A the set {(&', j) ^ N : 1 < i, j < n). A subset L of A is called a

symmetric ladder if satisfies the following condition: if (i, j) €• L then (/, i) ^

L, and whenever (i, j), (h, k) ^ L and i < h, j < k, then (i, /c), (h, j) ^ L.

The set Y= {Xtj : i <j, (i, j) e Ω is called the support of L We say that

a minor is in L if it involves only indeterminates of Y. Given a sequence of

integers a = 1 ^ aγ < < at <i n, we define Ia(L) to be the ideals generated
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by all the i-minors of the first a{ — 1 rows of X which are in L, i = 1 , . . . , t, and

by all the t + 1 minors of L. Denote by Ra(L) the ring K\Y\ /Ia(L). In particular

if a — 1 , . . . , t — 1, then /α(Z,) is the ideal generated by the ί-minors in L.

Following the approach of Narasimhan [17], we use Grόbner bases to show

that Ia(L) = Ia(X) Π K[Y\. Since Ia(X) is known to be a prime ideal, see [16], it

follows that Ia(L) is prime too. Furthermore we determine a Grόbner basis of the

ideal Ia{L). It turns out that the ideal in(/ α (D) of the leading forms of Ia(L) is

generated by square free monomials. Therefore the ring Ra(L) = K[Yl /

in(/α(D) is the Stanley-Reisner ring associated with a simplicial complex Δa(L).

By a result of Stanley, the Hubert function of Ra(L) is determinated by the

/-vector of Δa(L). We describe the facets of Δa(L) in terms of families of

non-intersecting chains in a poset, and we get a combinatorial characterization of

the dimension and multiplicity of Ra(L). As in the case of ladders of a generic

matrix, it is possible to show that Δa(L) is shellable. Actually, we deduce this

result from the analogous of [15]. The shellability is a combinatorial property of

simplicial complexes which implies the Cohen-Macaulayness of the associated

Stanley-Reisner rings. But it is well known that if Ra(L) is Cohen-Macaulay,

then Ra(L) is.

In the second section we apply these results to give a combinatorial charac-

terization of the h-vector of the rings Ra{X) in terms of number of families of

non-intersecting paths in a poset with a fixed number of certain corners. Then we

compute the ^-invariant of the ring Rt(X) defined by the ideal of minors of fixed

size in the matrix X in the homogeneous and weighted case. The same result was

obtained by Barile [3] independently and using different methods. As last applica-

tion we study the determinantal ring Rt(Z) associated with an m X n matrix of

indeterminates Z in which an 5 X 5 submatrix is symmetric. It turns out that

Rt(Z) is a symmetric ladder determinantal ring. In particular Rt(Z) is a

Cohen-Macaulay domain, and we compute its dimension and multiplicity. If s < m

< n, we prove that Rt{Z) is normal and that is Gorenstein if and only if t > s

and m = n. In [10] we deal with the case s = m < n, and we show that Rt(Z) is

normal, and is Gorenstein if and only if 2m — n + t The results of this paper are

part of the author's Ph. D. thesis.

1. Ladders of a symmetric matrix

Let X be an n X n symmetric matrix of indeterminates, K be a field, and de-

note by K[X] the polynomial ring in the set of indeterminates Xijf 1 < i < j < n.

Let r be the term order induced by the variable order Xn > > Xln > X22 >
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• > x2n > • • • > xn_ιn > xnn.

Let us recall the combinatorial structure of K[X\ with respect to the product of

minors of X. Denote by H the set of the non-empty subsets of {l,...,w}.

Given an element a of H we will always write its elements in ascending order

1 < aγ < < as < n. On H we define the following partial order:

a = {alf..., as) < b = {bv..., br} <=> r < s and a{ < b{ for i = 1 , . . . , r.

As usual, we denote by [av..., α51 &!,..., bs] the s-minor det(Xα.δ.) of X, and

assume that 1 < <2X < < as < n and 1 < ^ < < bs ^ n. The minor

[ # ! , . . . , tfs I bv..., δ j is called a dosgf minor if a < b in H. We denote by D the

set of all the doset minors of X. Let M1 — [an,..., a1Si | 6 n , . . . , 6 l 5 i ] , . . . , Mp =

[«/,!,..., tf^ I ft/,!,..., bPSp] be doset minors; the product Mx ''' Mp is called a

standard monomial if {bn,..., bjs) < {aj+n,..., β ; +iSj+1} for j = 1,..., p — 1.

The ring i£[X| is a doset algebra on D, that is, the standard monomials form a

if-basis of K[X] and one has a certain control on the miltiplicative table of the

products of the standard monomials, see [12]. If one considers suitable ideals of

minors, the same combinatorial structure is inherited by the quotient rings. Given

a— {#! , . . . , at} ^ H one defines Ia(X) to be the ideal generated by all the

minors [av..., as \ blf..., bs] with iav..., as} 2 a in H. If a — {1, . . . , t — 1},

then the ideal Ia(X) is the ideal It(X) generated by all the /-minors of X. The

class of ideals Ia(X) is essentially the same the class of ideals defined and studied

by Kutz [16].

In order to define ladders and ladder determinantal ideals of the symmetric

matrix X we introduce some notations. Let A— {(i, j) £= N : 1 < i < n and

1 < j < n} and B= {(i, j) e A:i < j}. We consider A a distributive lattice

with the following partial order: (i, j) < (A:, h) <̂> i> k and j < h.

In the generic case there is a one-to-one correspondence between minors and

monomials which are product of elements of main diagonals of minors. When we

deal with minors of a symmetric matrix we lose this correspondence. The mono-

mial Xa b ... Xa b, with a{ < ai+1 and b{ < bi+1, is the product of the elements on

the main diagonal of all the minors M— [cl1..., cs \ dv..., ds] such that {c{,

d) = {aif b) and c{ < ci+1, dt < di+1. But if we require that the minor is a doset

minor then it is unique.

Therefore the natural choice for the definition of a ladder of the symmetric

matrix X is the following:

DEFINITION 1.1. A subset L of A is a symmetric ladder if:

(a) L is a sublattice of A;
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(b) L is symmetric, that is (i, j) G L if and only if (j, i) e L.

We represent ladders as subsets of points of N . An example of symmetric

ladder is the following:

(5,5)

//
s/

s/s

•
/

/

s
/

s
/

(1,1)
Fig. 1

Let L be a symmetric ladder, we put L = L Π B and Y = {X^ : (i, j) e

L, i < j}. The set F i s called the support of L. We say that a minor M = [alf...,

as I blf..., i s ] is in L if the following equivalent conditions are satisfied:

(1) For all 1 < i, j < s, then (aif bj) e L

(2) For all 1 < i < s, then (aif b) e L.

(3) The entries of M belong to Y.

(4) The entries of the main diagonal of M belong to Y.

Let a— {<%!,..., at} ^ H. For systematic reasons it is convenient to set

at+1 = n + 1. Following [15], we define the ideal cogenerated by a in L.

DEFINITION 1.2. Let L be a symmetric ladder and Fi t s support. We denote by

Ia(L) the ideal generated by all the minors M = [alt..., as | bv . . . , fts] of L such

that {av ...,as} 2 α and set 7?α(L) = K[Y\ /Ia(L).

In particular, if a = {1, . . . , / — 1}, then /α(L) is the ideal generated by all

the /-minors of L.

Let Ja(L) be the set of all the doset minors [alf..., ar | blt..., br] of L such

that 1 < r < t + 1, a{ > a{ for i = 1 , . . . , r — 1 and ar < ar. The main result of

[8] is the determination of a Grόbner basis of the ideal Ia(X) with respect to r :

the set Ja(X) is a minimal system of generators and a Grόbner basis with respect

to τ of the ideal Ia(X), see [8, 2.7, 2.8]. From this we deduce the following:

THEOREM 1.3. (a) The ideal Ia(L) is prime.

(b) The set Ja(L) is a Grobner basis of Ia(L) with respect to τ.

(c) The set Ja (L) is a minimal system of generators of la (L).
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Proof, (a) Since Ia(X) is a prime ideal, see [16, Th. 1], it is sufficient to

show that Ia(L) = Ia(X) Π K[Y\. We have Ia(L) c Ia(X) Π K[Y\ since, by

definition, Ia(L) c Ia(X). L e t / ^ /αCX) Π iΓ[K] be an homogeneous polynomial

and denote by in(/) its initial term with respect to r. The se t/ α GO is a Grόbner

basis of Ia(X). Therefore in(/) is divisible by the initial term of a doset minor M

of Ja(X), that is, in(/) = in(Λf)A. Of course in(/) e K[Y\, and therefore the

minor M is in L. Note that M^ Ja(L). Set g — f~ hM then we have # e

/αCX) Π K[Y] and £ = 0 or in(g) < in(/) in the term ordering. Therefore, by in-

duction, we may suppose g €= Ia(L) a n d / = g + hM €= Ia(L).

(b) L e t / e /α(L), since in(/) e in(/αCX)) Π if[Y] we may argue as in the proof

of part (a) and show that in(/) is divisible by the initial term of a minor of Ja(L).

(c) Since Ja(L) is a Grόbner basis of Ia(L), it is also a system of generators. But

Ja(X) is a minimal system of generators of Ia(X) and Ja(L) c Ja(X). Therefore

/α(L) is a minimal system of generators of Ia(L). Π

Now we see how we may interpret the ideal Ia(L) as an ideal of minors

associated with more general subsets of A.

DEFINITION 1.4. A subset Vof A is a semi-symmetric ladder if:

(a) V is a sublattice of A.

(b) If (z, ) e Fand i > j , then (/, i) e K

Given a semi-symmetric ladder V, we say that a minor [# x , . . . , as\bv..., bs]

is in Vif (a{, bj) ^ V for all 1 < i, j < s. We define Ia(V) to be the ideal gener-

ated of all minors in V whose sequence of row indices is not greater than or equal

to a.

Remark 1.5. Let Vbe a semi-symmetric ladder and set L(V) = {(i, j) ^ A:

(if j) e V or (/, i) ^ V). It is easy to see that L{V) is a symmetric ladder and

that L(V)+ c V. If we consider a doset minor M in L(V), then its main diagonal

is in L(V)+, and therefore M is in V. Hence /α(V) = /α(L(V)). In other words, to

study ideals of minors of symmetric ladders is the same as to study ideals of

minors of semi-symmetric ladders.

In the picture V is a semi-symmetric ladder and L(V) is its associated sym-

metric ladder.
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V =

s
/

/

/
/

L(V) =

y
y

y

y
/

y

y
/

y
/

y
y

y
y

Fig. 2

The ideal in(Ia(U) of the leading forms of Ia(L) is generated by the leading

terms of the minors in Ja(L), and hence it is a square-free monomial ideal. There-

fore Ra{L) — K[Y\ /in(Ia(L)) is the Stanley-Reisner ring associated with a sim-

plicial. complex. For the theory of the Stanley-Reisner ring associated with a sim-

plicial complex we refer the reader to [18].

In order to describe this simplicial complex and its facets we introduce some

notation and terminology. Given a simplicial complex Δ, its elements are called

faces and facets its maximal elements under inclusion. A face of dimension i is a

face with i + 1 elements, the dimension of Δ is the maximum of the dimensions of

its faces and f{ is the number of the faces of dimension i. The sequence / 0 , . . . , fd,

d— dim(zl), is called the /-vector of Δ. The Hubert function of the Stanley-

Reisner ring k[Δ] is determined by its /-vector [18]. In particular,

dim k[Δ] = d + 1 and e(k[Δ]) = fd.

Let P be a finite poset and x €= P. We define the rank of x in P to be the

maximum of the integers i such that there exists a chain xx< * < xi — x and

the rank of P to be the maximum of the ranks of its elements. A set of incompara-

ble elements of P is called an antichain. An antichain of B is a set {(vlf uλ),...,

( v p , Up)} w i t h Vj < u { f o r i = 1 , . . . , p s u c h t h a t v x < — < v p a n d u 1 <

< up and therefore it corresponds to the main diagonal of a doset minor.

F o r k = 1 , . . . , t + 1, le t S k = {(i,j) e A:i< ak or j < ak}, Gk = B Π

Sk, S'k = A\Sk a n d Gk = B\Gk.

We define Δ'a(L) to be the simplicial complex of all the subsets of L which,

for k = 1 , . . . , / + 1, do not contain A:-antichains (antichains with k elements) of

Sk Π L, and let Δa(L) be the restriction of Δ'a(L) to U. By construction Δa(L) is

the simplicial complex of all the subsets of L+ which, for k — 1 , . . . , t + 1, do not

contain /c-antichains of Gk Π U. Furthermore the simplicial complex Δf

a(L)

coincides with the simplicial complex ΔM(L) defined in [15], where M= [alf...,

at\alf..., at].
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We know that in(/α(L)) is generated by the λ -antichains of Gk Π L+ for

k = 1 , . . . , t+ 1. Therefore the Stanley-Reisner ring K[Δa(L)] associated with

Δa(L)isRa(L)*.

It is well known that Ra(L) and Ra(L) have the same Hubert series, there-

fore their dimensions and multiplicities coincide. Thus the Hubert function, the

multiplicity, and the dimension of Ra(L) may be characterized in terms of

/-vector of Δa(L).

Let p = (a, b) be an element of L, we define Rp = {(i, j) ^ L: a < i, b

< /}, and for Z c: L we set Rz — U P(=ZRP. It is easy to see that Rz is a sublattice

of L which is symmetric if Z is. We set Lx = L Π Sx and recursively for

z = 2 , . . . , t, we set L{ = Sf Π -ffL . Finally we put L{ = L f Π 5. Since Sx and L

are symmetric sublattices of A, Lγ is also a symmetric sublattice of A. By recur-

sion it follows that Lt is the intersection of symmetric sublattices, and therefore it

is also a symmetric sublattice.

By [15, Th. 4.6] a subset Z of L is a facet of 4«(Z,) if and only if Z is the

union of disjoint maximal chains of Lif i— 1 , . . . , t.

LEMMA 1.6. Let Z be a facet of Δr

a(L), then \ Z Π L+ | = Σ = 1 rk(L\) where

rk(L^) is the rank of the poset L+

t.

Proof Let p e Z,., we claim: /> e L\ <̂> rk(/>) > [rk(L ί ) / 2 ] , where rk(/>) is

the rank of p in the lattice Lt, and [x] = m a x ί n ^ Z:n < x} denote the integer

part of a real number .r.

=> : Let />! < * * < ps be a maximal chain of L^ which contains p, say ̂  =

^Λ. If we consider the sequence Qv..., qs of the symmetric points (# ; is obtained

from pj by exchanging the coordinates), then qs < < q2 < qλ < pγ < p2 <

< ps is a maximal chain of L{. Since L? is a distributive lattice and all the maxim-

al chains of a distributive lattice have the same number of elements, we have

r k ( L , ) = 2s if pγ Φ qv and rk(L f) = 2 5 — 1 if pλ = qv In any case rk(p) >

rkfo) > [rkαί)/2].
<=: Suppose p £L* and let ^ < * * < qk = p be a chain with k = rk(p)

elements. If we consider the sequence of the symmetric points Pιf...,Pk then

qx < - - < qk < pk < . . . < pγ is a chain of L{ with 2rk(/)) elements Therefore

rk(Z,,) > 2rk(^) > 2[rk(L f)/2], a contradiction.

From the previous claim it follows that every maximal chain of L{ contains

exactly rk(L,) - [rk(L,)/2] elements of L+

t and rk(lt) = rk(Z,,) ~ [rkα, )/2].

Hence the assertion of the lemma follows from the description of the facets of

Δ'a(L) and the claim. D
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As immediate consequence we get:

PROPOSITION 1.7. Let Z be a face of Δa(L). Then Z is a facet of Δa(L) if and

only if there exists a facet Z of Δ'a(L) such that Z = Z Π L .

Proof. => : The simplicial complex Δa(L) is the restriction of the simplicial

complex Δ'a(L) to L . Therefore there exists a facet Z of Δr

a(L) such that Z' c Z

Π L . Since Z is a facet, Z = Z Π L .

<=: Of course Z is contained in a facet Zx of ^αCL). By 1.6 it follows that \ Z\ =

I Zγ I, and hence Z—Zx. D

We get the following characterization of the facets of Δa(L):

PROPOSITION 1.8. The set Z is a facet of Δa(L) if and only if Z is the union of

disjoint sets Zly..., Zt, where Z{ is a maximal chain of L{. Furthermore the decom-

position of Z as union of disjoint maximal chains of L{ is unique.

Proof The set Z is a facet of Δa(L) if and only if there exists a facet Z of

Δf

a{L) such that Z — Z Π L . But Z is the union of disjoint sets Zv..., Zt, where

Z{ is a maximal chain of L{. If we set Z{ — Z{ Π L f then Z{ is a maximal chain of

LJ and Z is the union of Zv..., Z,. The uniqueness of the decomposition of Z is a

consequence of the construction of the decomposition of Z as union of disjoint

maximal chains, see [15, pp. 20]. •

COROLLARY 1.9. The dimension of Ra(L) is Σ/ = 1 rk(Z, | ) , and its multiplicity is

the number of the families of disjoint sets Z19..., Zt, where Z{ is a maximal chain of

Using this result we computed in [8] the dimension and the multiplicity of the

ring Ra(X).

Recall that a simplicial complex Δ is said to be shellable if its facets have the

same dimension and they can be given a linear order called a shelling in such a

way that if Z < Zx are facets of Δ, then there exists a facet Z2 < Zγ of Δ and an

element x e Zγ such that Z Π Zγ Q Z2 Π Zγ = Z, \ ix).

By [15, Th. 4.9] the simplicial complex Δ'a(L) is shellable. Now we shall see

how shellability passes from a simplicial complex to a subcomplex when a condi-

tion as 1.6 is fulfilled.
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LEMMA 1.10. Let Δ be a shellable simplicial complex over a vertices set V, and

W a subset of V. Suppose that for all the facets Z of Δ the number \ Z Π W | does not

depend on Z. Then the restriction of Δ to W is a shellable simplicial complex.

Proof We denote by Δι the restriction of Δ to W, F(Δ) the set of the facets

of Δ, FiΔ,) the set of the facets of Δv n = | Z Π W\ for all Z e F{Δ).

From the hypotheses follows, as in 1.7, that Δι is a pure simplicial complex of

dimension n — 1 and that a subset Z of W is in F(ΔX) if and only if there exists

Z e F(Δ) such that Z Π W = Z. If Z e FiΔJ, we define Z ' = minίZ e F(4) :

Z Π W = Z), where the minimum is taken with respect to the total order of F(Δ).

We define a total order on F(Δλ) setting: Z < Zx <=> Zf < Z[ in FCd), and show

that this order gives the desired shelling.

Let Z,Zγ<Ξ. FiΔJ with Z < Zv By definition Zf < Z[ in F(Δ). Since the

total order on F(Δ) is a shelling, there exists iϊ" e F(^4) and J: ^ Z^ such that i/

< Z;, te} = Z ; \ ^ and Z ; Π Z ' c Z; Π # . We note that x e Zx since otherwise

£Γ Π ^ = Zx and // < Z[, a contradiction with the definition of Z[. Let Z2 = H Π

W Z 2 e FGί j) since # e F ( 4 ) , {x} = Zλ \ Z2 and ^ n Z c ^ n Z2. By

definition, Z£ ^ H < Z[ and therefore Z 2 < Zv •

Let /^(O be the Hubert series of a homogeneous iί-algabra 5 (here the

s(t) — Σ ί =
degrees of the generators are all 1). It is well-known that Hs(t) — Σ ί = 0 h{t /(I ~

t) , where d is the dimension of S, h{ e Z, and hs Φ 0. The vector (h0,..., /z5) is

called the /z-vector of S. The McMullen-Walkup formula, see [5], is a combinato-

rial interpretation of the /z-vector of the Stanley-Reisner ring associated with a

shellable simplicial complex. Given a facet Zx of a shellable simplicial complex Δ,

we set

CiZj = {χ<ΞV : there exists a facet Z oί Δ such that Z<Z1zndZ1\Z= ίr}}.

Let (h0,..., hs) be the /^-vector of the Stanley-Reisner ring associated with Δ.

The McMullen-Walkup formula is:

^ = I {Z facet of Δ : | C(Z) \ = i} .

Under the assumption the previous lemma and with the notation introduced in the

proof, we get:

LEMMA 1.11. Let Z, e FiΔJ, then CiZJ = C(Z0
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Proof. Let x G C{Zλ), and Z e F ( 4 ) such that Z < Zx and Z x \ ^ = te>.

Then Z' < Zί; there exist # G F(4) and y G V such that # < Z/, Z' Π Z c i /

Π Zi = Z/\ {#}. By definition of Z'v the restriction of H to W is not Zv There-

fore we get y = x, and C ^ ) c C(Z ).

Conversely, let y G C(Z;), and # e F(4) such that H< Z[ and Z[\H =

{y}. Again the restriction of /f to W is not Z υ and therefore y ^ W. Let Z = H Π

if Z G F ( 4 ) , and Z < Zγ since Z' < H < Z[. Furthermore Zγ\Z = {y}, and

we are done. D

PROPOSITION 1.12. The simplicial complex Δa(L) is shellable.

Proof. Straightforward by 1.6 and 1.10. D

The Stanley-Reisner ring associated with a shellable simplicial complex is

Cohen-Macaulay, [4]. It is well-known that if Ra(L) is Cohen-Macaulay, then

Ra(L) Cohen-Macaulay too, see for instance [14] or [6]. Therefore from the shella-

bility of Δa(L) we deduce the Cohen-Macaylayness of Ra(L). By 1.3, Ra(L) is a

domain, and we get the main theorem of this section:

THEOREM 1.13. The ring Ra(L) is a Cohen-Macaulay domain.

In particular the previous theorem gives an alternative proof of the

Cohen-Macaulayness of the ring Ra(X), see [16].

2. Some applications

We present some applications of the results of the first section. First, follow-

ing the approach of [5] and [11], we give a combinatorial interpretation of the

h-vector of the determinantal rings Ra(X) in terms of families of non-intersecting

paths. Secondly, we compute the a-invariant of the determinantal rings Rt(X) in

the homogeneous and weighted case. The same formula was obtained, independent-

ly and using different methods, by Barile, see [3], Finally we study, as an interest-

ing class of symmetric ladder determinantal rings, the determinantal ring associ-

ated with a matrix of indeterminates in which a submatrix is symmetric.

2.1. Characterization of the h-vector

We keep the notation of the first section. The /J-vector of Ra(X) coincides
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with that of Ra(X) = K[X] /in(Ia(X)) which is the Stanley-Reisner ring associ-

ated with the simplicial complex Δa(X). We know that Δa(X) is a shellable sim-

plicial complex. Therefore, we may give a combinatorial interpretation of the

h-vector of Ra(X) via the McMullen-Walkup formula. We need only to under-

stand the set C{Z) = {x e B : there exists a facet F of Δa(X) such that F < Z

and Z\F = {x}}. We have seen that a facet Z of the simplicial complex Δa(X) is

the union of disjoint sets Zlf..., Zt where Zk is a maximal chain of Xk =

{(/, j) ^ B : ak < i < j}. We may interpret ZΛ as a £α£/ι from a point of the set

{(ak, ak), (ak + 1, αΛ + 1 ) , . . . , (n, n)} to the point (αΛ, ^ ) . Therefore the

facets of Δa(X) are families of non-intersecting paths. The following picture rep-

resents a facet of Δa(X) where a = {1,3} and n = 5.

(5,5)

(1,1)

Fig. 3

By 1.11, we have C(Z) = C(Z0, where by definition Zf — mm{H : H is a facet

of 4^CX), H Γϊ B = Z), and the minimum is taken with respect to the shelling of

the facets of Δ'a(X). Suppose that Z is the family of non-intersecting paths Zv...,

Zt where Z{ is a path from (aif af) to (α, , n) with α̂  < α̂  . Define H{ to be the

path from (n, a{) to (aif n) obtaining from Zi by adding the set of points

{(«, α f ), te — 1, a),..., (α, , α f ) , te,-, α, + 1 ) , . . . , (α, , Λ,-)}. Then, from the de-

finition of the shelling of Δ'a(X), see [15, Th. 4.9], it is clear that Z' is the union

of Hlf..., Ht. In the following picture is represented the corresponding Z' of the

facet in Fig. 3.

(5,5)

(1,1)
Fig. 4
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Given a path P in A, a corner of P is an element (i, j) e P for which (ί — 1, y)

and (i, 7 — 1) belong to P as well. Let us denote by c(P) the set of the corners of

P. If if is a facet of Δ'a(X) and Hlt..., Ht is its decomposition as union of

non-intersecting paths, then by, [5, 2.4], C(H) = ciHJ U . . . U c(Ht). Thus, if

Z is a facet of 4 α U 0 , then C(Z) is the set of the corners of Z'. In our example of

Fig. 3 and Fig. 4 we have C(Z) = C(Z0 = {(2,5), (4,4)}.

Let P be a path from (b, b) to (α, w) in the poset 5, and let (i, ) be a point

of P. We define (i,j) to be an s-corner of P if i<j and 0'— l ,y), 0", j ~~ 1)

belong to P, or z = y (in this case i — b) and (i — 1, y) belongs to P. Let us denote

by sc(P) the set of the s-corners of the path P, and if Z is the family of

non-intersecting paths Zl9..., Zt in B, define sc(Z) = scC^) U . . . sc(Zt). It is

clear that the corners of Zr are exactly the s-corners of Z. Therefore we have:

LEMMA 2.1. Let Z be a facet of Aa(X), then C(Z) = sc(Z).

Using the McMullen-Walkup formula, we obtain the following characteriza-

tion of the h-vector of the ring Ra(X) :

PROPOSITION 2.2. Let (h0,..., hs) be the h-vector of the ring Ra(X). Then hi is

the number of families of non-intersecting paths Zv... ,Zt in B with exactly

i s-corners, where Zk is a path from a point of the set {(ak, ak),..., (n, n)} to (ak, n).

EXAMPLES 2.3. (a) Let a = 1,3 and n = 4. In this case Ia(X) is the ideal

generated by the 2-minors of the first 2 rows and by all the 3-minors of a 4 X 4

symmetric matrix of indeterminates. The non-intersecting paths are the following:

1

sc=0

sc=2

1

sc=l

sc=2

mmm J

sc=l

sc=2

Fig. 5

I

sc=l

sc=2

sc-

sc=

= 1

=3
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Hence the //-vector of Ra(X) is (1, 4, 4, 1).

(b) Consider the ring R2(X), and denote by ho(n),..., hs(ή) its h-vector, where n

is the size of the matrix X. Then h{{n) is the number of paths from one point of

the set {(1,1),..., (n, n)} to (1, n) with i s-corners.

The number of the paths with i s-corners and which contain (1, n — 1) is

h{(n — 1). The number of those which contain (3, n) is h{{n — 1) — h{(n — 2).

Finally, the number of those which contain (2, n), (2, « — 1) is h^in — 2).

Thus we get h^n) = 2hi{n — 1) — h{{n — 2) + h^^n — 2). By induction on

» . * , ( » ) = ( * • ,

(c) Now consider the ring Rn_1(X) and denote by ho(n),..., hs(n) its /z-vector.

By simple arguments as before one shows that h{(n) — 2hi_ι{n — 1)— h^γin — 2)

+ c(n), with c(n) = 1 if i < n — 2 and c(n) = 0 otherwise. Then by induction,

j if i < n — 2 and /^(?z) = 0 otherwise.

2.2. The tf-invariant of i?, QO

The α-invariant a(S) of a positively graded Cohen-Macaulay iί-algebra S is

the negative of the least degree of a generator of its graded canonical module. It

can be read off from the Hubert series Hs(f) of S more precisely a(S) is the

pole order of the rational function Hs(f) at infinity.

For the computation of the α-invariant we restrict our attention to the ring

Rt(X) = K[X] /It(X), and we consider the weighted case too. Suppose there are

given degrees to the indeterminates, say deg X{j

 = vijt such that the minors of X

are homogeneous. Then one has 2v{j = vu + υ^. Therefore essentially there are

two possible degree types:

Type (a): There exist elt..., en ^ N \ {0} such that deg Xυ = e{ + βj for all

1 < i < j < n.

Type (b): There exist elf..., en e N such that Xi} — e{ + e, + 1 for all 1 < i< j

< n.

Since the ideals under consideration are invariant under rows and columns

permutations we may always assume eι < < en.

Let us denote by Δt the simplicial complex Δa(X), with a— {1, . . . , t— 1}.

The Hubert function of Rt(X) and K[Δt] = K[X] / in(/ f U)) coincide, thus we

may as well compute the α-invariant of K[Δt]. Since Δt is a shellable simplicial

complex, Bruns-Herzog's proposition [5, 2.1] applies and we get:
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THEOREM 2.4. Let R = Rt(X). In the case of degree type (a):

a(R) = ~ (t - 1 ) (Σ e) ifn = tmod (2)

a(R) = - (t - 1)1 Σ e) - Σ et ifn * tmod (2)
\ = 1 ' ί = l

And in ί/w case of degree type (b):

a(R) = - (f - 1)(Σ ^ + f) t/n = /mod (2)

= - (t - 1) (Σ ^ + -^Φ^") - Σ et ifnm tmod (2)

Proo/. By [5, 2.1], a(R) = - min{p(Z) : Z is a facet of 4>, where

= Σ degZ 0 .

We define a facet F of Δt and prove that p(F) < p(Z) for all the facets Z of 4,.

Then the desired result will follow from the computation of p(F).

For i= 1 , . . . , / - 2, let Z), be the set {(ί, »), (ι, »— 1), . . . , (i, w — ί + ί +

2)}, and set A-i = 0

If n = t mod(2), we define Ft to be the path from (t, n) to ((w — t)/2 + i +

1, (n — t)/2 + i + 1) which is obtained from Dt by adding the points (i, n — t

+ i + l ) , ( i + l . n - ί + i + l ) , . . . , (t + ; , n - ί + i - j + 1), (i + + 1,

n - ί + i - y + 1 ) , . . . , (i+(n-t}/2, (n-t)/2 + i + l), ( (n- f t/2 + t + l,

( w - ί ) / 2 + / + 1 ) .

If w * f mod(2), we define F, to be the path from (i, w) to ((n — t + l)/2

+ x, (w — ί + l)/2 + 0 which is obtained from D{ by adding the points (i,

n - ί + t + 1), (f, Λ - ί + 1 ) , ( i + 1, « - ί + t ) , . . . , ( ι + ; , Λ - t + i-j)y

( ι + y + 1, w - ί + i - ; ) , . . . , ( i + ( « - i - l ) / 2 , ( w - / + l ) / 2 + ι), ( (w-

ί + D/2 + i, (n- t+ D/2 + t ) .

Finally we define F to be the family of non-intersecting paths F L , . . . , F,^.

The following picture illustrates F when ί = 4 and ^ = 8,9.
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Fig. 6

We start considering t — 2 and n even. In this case C(F) — {(2, n), (3, n —

1 ) , . . . , (w/2 + 1, n/2 + 1)}, and therefore F \ COO = {(1, w), (2, n - 1),

. . . , («/2, w/2 + 1)}. One has pCF) = Σti^ or pCF) = Σ*=i */ + »/2 if the

degree is of type (a) or (b), respectively. Given Z a path from (1, n) to

(p, p) we claim that for all i < p there exists j such that 0", /) G Z \ C(Z), and

that for all the i > p there exists / such that (/, 0 G Z\ C(Z). From the claim it

follows easily that p(Z) > p(F). To prove the claim observe that if i < p (resp.

i > p) then there exists j such that (i, j) e Z (resp. (/, i) G Z), and if (z, ) e

C(2), then (ί, - 1) G Z \ C(Z) (resp. if (j, i) e CCZ), then ( - 1, i) e Z \

If / = 2 and ^ is odd, we have p(F) = Σ ^ = i ^ + 01 or p(F) = Σ?=i ^ + î

+ (n + l )/2 . Let Z be a path from (1, w) to (/>, ̂ ) . Since n is odd we deduce

from the previous claim that | Z \ C ( Z ) \ > (n + l )/2, and that there exists i

which appears twice as a coordinate of some elements in Z \ C(Z). By assumption

eι < e2 < . . . < en, therefore p(F) < p(Z).

Now let t > 2 and let Z be a facet of Δt, that is a family of non-intersecting

paths Z 1 , . . . , Z ί _ 1 . Since the paths are non-intersecting, Dk<^Zk for all k —

1,. . . , t — 1. We may think of Fk and ZΛ as paths starting from (i, n — t + i: + 1),

and argue as before to show that:

Σ degZί7< Σ
(i,j)(=Fk\SC(Fk) (i,j)eZk\SC(Zk)

for all & = 1 , . . . , / — 1. Therefore we get:

p(F) = Σ Σ deg
k=1 (i,j)(=Fk\SC(Fk)

ί7 < Σ Σ deg XiS = p(Z)
/c = 1 (i,j)eZk\SC(Zk)
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and we are done. •

The homogeneous case (all the indeterminates have degree 1) arises from a

degree type (b) with e{ = 0 for all i. Therefore

a(RtUO) =
- (t- 1)~ if n = fmod(2)

- (t - 1) ^ - g — if n * /mod(2).

By a result of Goto [3], Rt(X) is Gorenstein if and only if n = £mod(2). If

n & /mod(2), the canonical module of Rt(X) is the prime ideal P generated by

all the t — 1 minors of the first t — 1 rows of X. It is not difficult to see that, up

to shift, P is also the graded canonical module of Rt(X). Hence the graded cano-

nical ωt module of Rt(X) is:

Rt(X)(- ( t - l ) ψ
ωt =

2.3. Determinantal rings associated with a matrix in which a submatrix is

symmetric

Let Z = (Zjj) be an m X n matrix, m < n, whose entries are indeterminates

such that the submatrix of the last 5 rows and of the first 5 columns is symmetric,

with s > 1. Using the blocks notation, we write:

• - (

M N
S P

where M — (M ί ; ), N — W ί ; ), P — (P ί ; ) are generic matrices of indeterminates of

size (m — s) X 5, (m — s) x (n — s), s x (n — s), respectively, and S =

(Sij) is an 5 X 5 symmetric matrix of indeterminates. Denote by K\_Z\ the polyno-

mial ring over the field K whose indeterminates are the entries of Z.

Let It{Z) be the ideal generated by all the t-minors of Z and denote by

Rt(Z) the ring K[Z\ /It(Z). If s = m, then Z is called a partially symetric matrix.

When Z is partially symmetric, Rt(Z) is essentially a ring of the class Ra(X), see

[8, 2.5].

Next we will interpret Rt(Z) as a ladder determinantal ring. To do this, we
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take two symmetric matrices of distinct indeterminates Eίf E2, of size (m — s) x

(m — s), (n — s) x (n — s). We construct an (m + n — s) x (m + n — s)

symmetric matrix of indeterminates in the following way:

ιEγ M N<

X=IM* s p

W P* E2-
Denote A = {(i, j) e N 2 : 1 < i, j < m + n - s}, and V= {(i, j) ^ A: i< m

and j y m — s). V is the semi-symmetric ladder of X corresponding to Z. The set

L — {(i, j) ^ A: i > m — s or j < n — s) is the symmetric ladder associated

with V. Let a — {1, . . . , t — 1}, then by construction and by 1.5 we have

Ia(L) = Ia(V) = It(Z) and Rt{Z) = Ra{L). Let us denote by Δt(Z) the simplicial

complex Δa(L).

Let τr be the lexicographic term order on the monomials of K[Z] induced by

the variable order which is obtained listing the entries of Z as they appear row

by row. Let / be the set of all the minors [ α l 5 . . . , at\ bv..., bt] of Z (the indices

refer to Z and not to X) such that b{ — at > — m + s. In other words / is the set

of the ί-minors of Z whose main diagonal does not lie under the main diagonal of

S. By 1.3 and 1.13, it follows immediately:

PROPOSITION 2.5. (a) The ring Rt(Z) is a Cohen-Macaulay domain.

(b) J is a minimal system of generators of It(Z) and a Gfόbner basis with respect to τ\

In order to compute the dimension and multiplicity of R,(Z), we describe the sim-

plicial complex Δt(Z). It seems more natural to use the labelling of Z instead of

that of X, so that we can identify U with the set {(?, j) e N 2 : 1 < i < m, 1 < j
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< n, j — i > s — m}, see Fig. 7. Note that, in this case, L+

t is obtained from L̂ "_1

by deleting the lower border. Thus, if i < s, then rk(L*) = (n + m — s + 1 — i),

and if i > s, then rk(L*) = (n + m — 2% + 1). Therefore, from 1.9, we get:

If t > s, then

dimRt(Z) = (n + m + l ~t)(t- 1) - s ( s ~ l ) .

The dimension of the determinantal ring Rt(Xx) associated with the ideal of the

ί-minors of an m X n generic matrix of indeterminates Xγ is (n + m + 1 — t)

(t — 1), see [7, Cor. 5.12]. Therefore Rt(Z) is nothing but a specialization of

RtiXi), that is Rt(Z) is isomorphic to Rt(X^)/I where / is the ideal generated by

the regular sequence of the s(s — l )/2 linear forms which give the symmetry re-

lations on Z. Moreover, Rt(Z) and Rt(Xι) have the same multiplicity and the same

h-vector.

If t < s, then:

dimi?,(Z) = (n + m+1 - s-^)(t~ 1).

In this case we can interpret a facet of Δt(Z) as a family of non-intersecting paths

Hlf..., Ht_1 where H{ is a path from one point of the set {(m — s + 1,1) (m — s

+ 2,2) , . . . , (m, 5)} to (i, w). Let us denote by P{ = (i, w) and Q; = (m — s +

j,j). Given 1 < j 1 < . . . , ; ί _ 1 < s, according to [19, Sect. 2.7], the number of

families of non-intersecting paths from Qjit..., Qjt χ to Plt..., Pt_ι is det(W(Ph,

Q}))ι<h,k<t-\ where FΓ(PΛ, Q; Λ) is the number of paths from Ph to Qj/c. But it is

easy to see that

Hence we get the following formula for the multiplicity of Rt(Z) :

+ rn — s — h
e(Rt(Z))= Σ d e t i v

As we did for the ring Ra(X), we may give a combinatorial interpretation of

the h-vector Rt(Z) in terms of number of non-intersecting paths with a fixed

number of certain corners. The case t > s, by the above discussion, is solved in

[51.

Suppose t < s. A facet H of Δt(Z) is a family of non-intersecting paths

Hv..., Ht_v where i/f is a path from one point of set {(m — s + i, 0, (m — s +
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i + 1, i + 1 ) , . . . , (m, s)} to (i, n). We distinguish two cases:

If s = m, then C(H) = scίi^) U . . . U scCtf,^). This follows from the fact

that when we consider Δt{Z) as a sub-complex of 4,Q0, it has the following

property: if H is a facet of 4,(2) and H1 e 4,CX) with Hι< H in the shelling of

4 0 0 and H\H,= {(a, b)}, then ^ e 4 ( Z ) . Therefore, if we denote by ht the

number of families of non-intersecting paths with exactly i s-corners, (Ao,...,

h) is the /z-vector of Rt(Z).

If 5 < m, then COT) = ( sc(^)\ {7\» U . . . U (scOΓ^Λ {Γ^}), where Γ,

is the point (m — 5 + f, /). This follows from the fact that when we consider

Δt(Z) as a subcomplex of Δt(Z), if ^ is a facet of 4 ,U0 such that H1 < H and

H\H1 = {(a, b)} then Hx is in /l^Z) unless (a, b) = T{ for some i a n d ^ be-

longs to Hj.

For instance, consider the case in which t = 4, s = 5, rn = n = 6. The two

facets H and K in the following picture have s-corners respectively in {(2,1),

(3,2), (5,6), (6,5)}, and {(2,3), (3,2), (5,4), (5,6), (6,5)}. It is clear from the

picture that it is not possible to find a family of paths which differs from H only

in (3.2) and that is earlier in the shelling. The point Tι— (2,l)(resp. T2 =

(3,2)) is not in C(H) since it is an s-corner of Hλ (resp. H2). The point (3,2) is in

C(K) since it is an s-corner but not of K2. Hence C(H) = {(5,6), (6,5)}, and

C(K) = {(2,3), (3,2), (5,4), (5,6), (6,5)}.

H =

Fig. 8

Therefore, if we denote by h{ the number of families of non-intersecting paths

H with I ( s c G ^ U Γ j ) U . . . ( s c C f f ^ Λ ί Γ ^ } ) I = i, then (hO9...,hs) is the

h-vector of Rt{Z).

EXAMPLES 2.6. From the computation of the /^-vector of R2(X) it follows

immetiately: (a) lί s = m and n — m + 1, then hi(R2(Z)) — ( ) if i Φ 1, and
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(b) If s + 1 = m = n, then h^R^Z)) = ( n ) if i Φ 1, and h^R^Z)) =

If 5 = m < n, then the ring Rt(Z) is essentially one of the class Ra(X), and

in [10] we proved that it is always normal and that is Gorenstein if and only if

2m — n + t. We now show:

THEOREM 2.7. Let s < m, then (a) Rt(Z) is a normal domain.

(b) Rt(Z) is Gorenstein if and only if t Ί> s and m—n.

Proof, (a) Let us consider the following two symmetric ladders of X : Lx —

{(i, j) e A : i > m — s or j > m — s}, L2 = {(z, j) A : i < n — s or j < n — s}.

The ladder determinantal rings Rt{L^, Rt(L2) are the determinantal rings associ-

ated with the partially symmetric matrices Zι and Z2, where:

\M* S P

Denote by Y{ the support of L{. The set of the doset ^-minors is a Grόbner basis

of It{X). Then the set B(X) of the monomials in the set of indeterminates Xijf

1 <i<j<n-\-m — s, which are not divisible by leading terms of ^-minors

form a if-basis of the ring Rt(X). For the same reason the subset B(Yt) of

B(X) of the monomials in the set Y{ not divisible by leading terms of doset

^-minors form a if-basis of the ring Rt(L^). A if-basis of Rt(L^) Π Rt(L2) is

BiYJ Π B(L2), but the last is also a if-basis of Rt{Z). Hence Rt(Z) = Rt{Lγ) Π

Rt(L2), and we conclude that Rt{Z) is normal since Rt(L^) and Rt(L2) are.

(b) If t > s and m — n, then i?,CZ) is Gorenstein since it is a specialization of

a Gorenstein ring, [7, 8.9].

To prove the converse we argue by induction on t. Let t — 2 consider the re-

sidue class x of Nln_s in R2(Z), and denote by Z) the set of the residue classes of

the indeterminates in the first row and last column of Z, that is M n , . . . , M l s ,

Nn,..., Nln_s,..., Nm.sn_s1 P l w _ 5 , . . . , P s w_ 5 . Let #[/)] be the K- sub algebra of

R2(Z) generated by D.

It is clear that K[D] [x~ ] = R2(Z) [x~ ] . Furthermore, we have the following

relations MuPjn_s = S;,iVlw_5 - Sί7iVlw_s = M ^ P ^ m o d 72(Z), for all 1 <

ί, y < s. By dimension considerations, i£lD] [x ] is isomorphic to the polynomial

ring
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n,..., Nln_s,..., Nm_sn_s] [N[nίs]

over the ring R, where

R = K[Mn,..., Mls, Pln_s,..., Psn_s] /I,

and / is the ideal generated by the 2 minors of the matrix

Mn ... Mls

P P
x In—s "*• sn-s

By assumption R2(Z) is Gorenstein. Therefore R2(Z)[x ] is Gorenstein and R is

Gorenstein too. But this is possible only if 5 = 2, [7, 8.9]. Then R2{Z) is a

specialization of the determinantal ring associated with the ideal of the 2-minors

of a generic m x n matrix. Therefore, by [7, 8.9], m = n. If t > 2, we apply the

usual inversion trick. After inversion of sn the residue class of Sn, we get an iso-

morphism between Rt(Z)[s^] and i ? ^ ^ ) [7\ , . . . , Tm+n_s] [7\~ ], where the T{

are indeterminates and Zx is an m — 1 X n — 1 matrix of indeterminates such

that the submatrix of the last s — 1 rows and first 5 — 1 columns is symmetric

(when s — 2, Zγ is generic). Since Rt{Z) is Gorenstein, Rt_λ(Z^) is Gorenstein

and, by induction, s — 1 < £ — 1 and m — 1 = n — 1. Therefore s < t and

n = m. D
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