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The aim of this note is to determine the Hilbert-Kunz functions
of rings defined by monomial ideals and of rings defined by a
single binomial equation X — X® with ged(X®, X°) = 1.

Introduction

The Hilbert-Kunz function HKg of a local ring R of prime char-
acteristic p with maximal ideal m is defined by the assignment:

HKr(q) = £(R/m!")

where ¢ denotes the length, ¢ = p°® is a power of p and mld
denotes the g-th Frobenius power of m, that is, mld = ({27 : z €
m}).

The function HKg was introduced by Kunz [5]. He showed
[5,3.2,3.3) that HKgr(q) > ¢¢ for all ¢, d = dim R, and that the

following conditions are equivalent:
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(i) R is regular
(i) HKg(q) = ¢* for all g,
(iii) HKg(q) = ¢? for some q > p.

Hence the difference between HKg(q) and ¢% can be taken as
a measure of the singularity of R. By a result of Monsky [7,1.8] it
is known that there exist a real constant ¢(R) > 1 and a function

f(g) such that
HKr(g) = c(R)¢" + f(q)

and there exists a constant a such that |f(q)| < ag?™! for ¢ >>
0, (see [9] for a generalization of this result). Monsky [7,3.10]
has also shown that if the dimension of R is one then ¢(R) is
equal to the multiplicity e(R) of R and that f(q) = f(p°) is a
periodic function in e for large e. It also known that ¢(R) < e(R)
for Cohen-Macaulay rings, see [5,3.2]. But in general it is not
clear how the constant ¢(R) is related to the other invariants of
R, and it is not even known whether ¢(R) is a rational number.
The nature of the remainder term f(q) is also quite mysterious,
see [4] for example.

Hilbert-Kunz functions of some classes of hypersurface rings
were determined by Kunz, Han and Monsky, Chang, and Pardue
[2,3,4,5,6,8]. The first Hilbert-Kunz function of a ring which is
not an hypersurface is determined by Buchweitz and Pardue [1].
They succeeded in computing the Hilbert-Kunz function of the
coordinate ring of a rational normal curve.

We introduce a more general Hilbert-Kunz function. Given
a Noetherian ring R of arbitrary characteristic which is local or
a standard graded K-algebra and a system of generators z of
its maximal ideal, we define the Hilbert-Kunz function HKp .(q)
of R with respect to = to be the length of R/zl4 where z[¥ is
the ideal generated by the g-powers of the elements of the set z
and ¢ € N. We concentrate our attention on the Hilbert-Kunz
function of rings of the form R = K[X,,...,X,,]/I where I is a
monomial ideal or a principal ideal generated by a homogeneous
binomial form X® — X® with ged(X?, X?) = 1.
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If I is a monomial ideal, then we show that HKp .(q) agrees
with a polynomial with integral coefficients for large g, see 2.1.
The leading coeflicient of this polynomial is exactly the multi-
plicity of R. As a corollary it follows the inequality

(R) < e(R)

holds for any local ring or standard graded K-algebra R of prime
characteristic.

When R is a binomial hypersurface of the type mentioned
above, we show that there exists a polynomial P(y,z) € Qly, 2]
such that HKg.(q) = P(q,¢) for large ¢, where € is the residue
class of ¢ modulo the highest exponent in X* and X°, see 3.1.
The polynomial P(y, z) is explicitly determined and its leading
coefficient with respect to y is a rational number ¢(R) which is
expressed in terms of the exponent vectors a and b&.

1 Notation

Let (R,m) denote a Noetherian local ring with maximal ideal
m or a standard graded K-algebra with maximal homogeneous
ideal m. Given a set of generators z = zj,...,z, of m (not
necessarily minimal) and a positive integer ¢ we denote by ¥
the ideal (z,...,2%). We define the Hilbert-Kunz function of R
with respect to = to be

HKR.(q) = £(R/2!7).

Of course if the characteristic of R is prime and ¢ is a power
of the characteristic, then HKg .(q) coincides with the ordinary
Hilbert-Kunz function HKg(¢) and it is independent of z. But
in general HKg ,(q) depends on z.

Denote by H!(R,q) the first iterated sum of the Hilbert
function H(R,q) = dimg(m?/mt!) of R, that is, H}(R,q) =
¢(R/m?*'). Since m? D zl¥ D m™, one has

(1) Hl(qu - 1) < HKR,::(q) < Hl(R’ ng — 1)
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Denote by d the dimension and by e(R) the multiplicity of R.
The function H'(R, q) agrees with a polynomial of degree d and
leading coefficient e(R)/d! for ¢ >> 0. From inequality (1) it
follows that HKg (gq) grows as a polynomial of degree d. For
ordinary Hilbert-Kunz functions inequality (1) implies

(2) e(R)/d! < ¢(R) < e(R)n%/d!

It was shown by Kunz [5,3.2] that if (R,m) is a Cohen-
Macaulay local ring of prime characteristic p, then

HKr(q) < e(R)q"

for all powers ¢ of p. It follows from this result that the constant
c(R) is bounded by the multiplicity for Cohen-Macaulay rings.
Note that one cannot expect HKg(q) < e(R)g* to be true in
general. For instance if R has multiplicity 1 and it is not regular
(take for example R = K[X,Y]/(X? XY)), then by [5,3.3] one
has HKg(q) > ¢ = e(R)q® for all ¢ > p.

2 The monomial case

Let S be a polynomial ring K[X;,..., X,] over an arbitrary field
K. One has:

Theorem 2.1. Let I be a monomial ideal of S and set R =
S/I. Denote by x; the residue class of X; in R, and by z the
sequence Ty,...,T,. Then there exists a polynomial Pr(y) €
Zly] of degree the dimension dim R of R and leading coefficient
the multiplicity e(R) of R, such that HKr.(q) = Pr(q) for all
integers g greater than or equal to the highest exponent which
appear in the generators of I.

PROOF. We argue by induction on n. The case n = 1 is trivial.
Hence assume n > 1. Set a = max{j : X] divides a generator of
I, for some i, 1 <i < n}and b= max{j : X! divides a generator
of I}. Fix an integer ¢ > a and for 0 < i < ¢ set

Jo=(I: X))+ (XE,..., X7, XT).

n—1»
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Set §; = K[X4,...,X,_1]. Fori > 0 denote by K; the monomial
ideal of S; with the property K; + (X,) = (I : X}) + (X,). Set

R, = 5,/ K;. Since J; : X,, = Ji11, one has an exact sequence:
(3) 0——+S/J,+1—+S/J — Si/K;+ (X{,..., X2 ) —0
and then

dimg S/J; = dimg S/J;41 + HKRg, »(q)

where ¢’ = z,...,x,_, are the residue classes of Xy,..., X, _;.
By construction JO =1+ Xl and J, = S. It follows that

HKR,z(Q) = g:HKR;,z’(q)

But K; = K, for all « > b, and then

b—1

HK g4 (q) = (¢ — b) HKg, ,(q) + > HKp, »/(q).

1=0

One notes that the exponents in the generators of the monomial
ideals K; are less than or equal to a. By induction HKg, ./(q)
agrees with a polynomial Pg,(y) € Z[y] for ¢ > a. Hence
HK R (q) agrees with the polynomial

(4) Pr(y) = (y — b)Pr,(y +ZPR

for ¢ > a. Since H'(R,q) agrees with a polynomial of degree
dim R for large ¢, from (1) it follows that the degree of Pgr(y)
is dim B. We show now that the leading coefficient of Pr(y) 1s
e(R). Denote by c(R),c(Ry),...,c(R;) the leading coefficients
of Pr(y), Pro(¥),..., Pr,(y) and by d,dy,...,d, the dimensions
of R, Ry, ..., Ry. By (4) one has

(3) c(R) = 6(d,dy + 1)c(Ry) + bi:l 6(d,d;)e(R;)

=0



202 Conca, Hilbert-Kunz function

where 6(¢,7) = 0if ¢ # j and 6(3,7) = 1. Consider now the exact
sequence

6) 00— S/I: Xt —1]2X8/I: X} — R — 0

Denote by H 4()) the Hilbert series 3;50 dim A; X’ of a N-graded
K-algebra A = @;>¢ A4;. By virtue of (6) one has

b—-1

= Y N Hp (V) = M1 =X Hi (A) + 3 N Ha ().
It follows from (7) that:
(8) e(R) = é(d,dy + 1)e(Ry) + bz_i 6(d, d;)e( R;)

By induction one has ¢(R;) = e(R;) for all: = 0,...,b. From (5)
and (8) it follows that ¢(R) = e(R). O

Note that the polynomial Pr(q) does not depend on the char-
acteristic of the field K. We do not know in general how to relate
the coefficients of Pr(q) to other combinatorial or algebraic in-
variants of the ring R except that for the square free case. In the
square free case the polynomial Pg(y) has the following combi-
natorial interpretation:

Remark 2.2. Let I C (Xj,...,X»)? be a square free mono-
mial ideal with associated simplicial complex A. Denote by

= (f-1, fo,- -, fa—1) the f-vector of A, dimA = d —1. The
number HK k(4),2(¢) is the cardinality of the set

B={b=(b,...,b,) e N":0<¥b; <qand suppb e A}.
It follows that:

HK k(a),2(9) FX;} [{b € B:suppb=F} =
€

Z |F|._Eft q—-l

Fea
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Using the known relation between the f-vector and the h-vector
of a simplicial complex one has also:

d
HK k(a10(9) = D hi(g — 1)'¢% .

1=0

For another interpretation of the Hilbert-Kunz function of
a square free monomial ideal see also [1]. It follows from the
remark that the Hilbert-Kunz function of a the ring defined by a
square free monomial ideal depends only on the Hilbert function.
This is not true for general monomial ideals. For instance if
is generated by a single monomial, say I = ([Ti.; X;"*), then
the Hilbert function of the ring R defined by I depends only on
the degree of the generator of I while its Hilbert-Kunz function
HK g .(q) is equal to

n n—1 . ]
¢" = [I(g—a) = 2 (=1)"""su_in(a)g’
i=1 1=0

for ¢ > max{a;} where s;, denotes the elementary symmetric
function of degree j in n indeterminates. Hence two monomials
define rings with the same Hilbert-Kunz function if and only if
they are the same up to a permutation of the indeterminates.

Fix now a term order 7 on S = K[X3,...,X,]. Let [ be a
homogeneous ideal of S. Denote by in(I) the initial ideal of I,
and set R = S/I. Since

HKRg.(q) = dimg S/(1, X[q]) = dimg S/ in({, X[q]),
and in(I, X!4) D in(1) + X!, one has:

(9) HK g () < BKg/in(),2(q)-
It follows:

Proposition 2.3. Let R be a local ring or a standard graded
K-algebra. Let x = xy,...,x, be a system of generators of the
mazimal (homogeneous) ideal of R. Then there ezists a polyno-
mial P(y) € Z[y| depending on R and z with degree dim R and
leading cocefficient e(R) such that HKg .(q) < P(q) for allq € N.
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PROOF. Assume first that R is local with maximal ideal m. De-
note by G its associated graded ring @,5qm'/m't!, by f* the
initial form in G of an element f € R and by z* the sequence
z3,..., 2. The associated graded ring G, of R/z!% is isomorphic
to G/J, where J is generated by the initial forms of the elements
of the ideal z!¥. Note that if (zX)? # 0, then (z})? = (z!)*. It
follows that (z})? € J and hence

HKpz(q) = U(Gq) < HKg e (q)-

The rings R and G have the same dimension and multiplicity.
Hence we may assume that R is standard graded K-algebra.
Then we take a presentation R ~ K[X;,...,X,]/I, such that
the residue class of X, corresponds to z;, and fix a term order
7 on K[Xi,...,X,]. Since the dimension and multeplicity of R
and K[Xy,...,X,]/in(l) are equal, it follows now from (9) and
from 2.1 that there exists a polynomial Pi(y) € Z[y] of degree
dim R and leading coeflicient e(R) such that HKr.(¢) < Pi(q)
for all ¢ >> 0. Then P(y) is obtained from P;(y) by adding a
suitable positive integer. O

The proposition has two corollaries. The first is the general-
ization of Kunz’s result [5,3.2] to the non Cohen-Macaulay case:

Corollary 2.4. Let R be a local ring or a standard graded K-
algebra and assume that the characteristic of R is prime. Then

¢(R) < e(R).

The second is a partial extension of Monsky’s result [7,3.10]
to generalized Hilbert-Kunz functions:

Corollary 2.5. Let R be a local ring or a standard graded K -
algebra of dimension one and arbitrary characteristic. Let z =
T1,...,Tn be a system of generators of the mazimal (homoge-
neous) ideal of R. Then there ezxists a constant o such that

| HKg o(q) — e(R)q| < o for all ¢ € N.

PROOF. By 2.3 there exists a constant § such that Hp.(q)
e(R)q + B for all ¢ € N. On the other hand, by (1), Hr.(q)
H'(R,q—1) and there exists a constant 7 such that H*(R, q)
e(R)q + v for ¢ >> 0. Hence the claim follows.

O niviIA
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It follows from the corollary that for a one dimensional ring R
the limit lim HKRg (¢)/g exists and it is equal to the multiplicity
g—0o0

e(R) of R. We do not know whether qlirgo HKR - (q)/q¢*™® exists

in general, that is, if dim R > 1. For one dimensional ring we do
not know whether the difference HKg . (¢) — e(R)q is periodic for
large q.

3 Binomial hypersurfaces

Given a homogeneous ideal [ of S = K[X},...,X,], in order to
study the Hilbert-Kunz function of S/I one may try to under-
stand the initial ideal of the ideal I+ X 4. The information that
one has on the behaviour of in(I + X) with respect to ¢ can be
used to have some control on the Hilbert-Kunz function of S/I.
As we already noticed in(I+ X)) D in(I)+ X4, and one cannot
expect equality unless [/ is a monomial ideal. For a general [ it
is difficult to understand which monomials one has to add to fill
the gap between in(I + X)) and in(I)+ XU, If I happens to be
a binomial ideals, then the situation is slightly simpler because
the S-reductions S(f,n) of a binomial f with monomial n with
respect to a set of binomials produce only monomials. We are
able to determine in(7 4+ X4) explicitly when I = (X* — X?)
where X® and X® are monomials of the same degree and with
ged(X?, X%) = 1. This allows us to determine the Hilbert-Kunz
function for the hypersurface defined by X* — X°.
One has:

Theorem 3.1. Let S = K[X;,..., X4n] be a polynomial ring
over an arbitrary field K. Let F' be the binomial equation

— Yo a bm41 bm+
F=X@#...Xom _ Ximat . xhmin

m+n *

Assume that F is homogeneous and denote by R the ring S|F
and by = the set of the residue classes in R of the X;’s. Let u be
the mazimum of the integers ay,...,am, bmt1,- ., bmin-

There exist a polynomial P(y,z) € Qly, 2| of the form

Py,z) = c(R)y™" "+ a(2)y™" 7 + .. 4 myn-1(2)
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and an integer « such that
HKp.(q) = P(g,e) forall q=o, q€N

where € = g mod u and 0 < e < u. Furthermore

fidi hk
c(R) = hél(_l)h+kshm(a)5kn(b)(h F k — 1)uhtk-1

where s;; denotes the elementary symmetric polynomial of degree
J in t indeterminates.

PROOF. It is not restrictive to assume that a; > a; > 0 for 7 =
1,...,mybpyr 2 by > 0fori =1,...,n and that a; > b,,44, s0
that u = a;. Set X® = X% ... X% and Xb = X'm#1 ... X mi»,
We fix a term order on S such that X¢ is bigger than X°. Let ¢
be a positive integer. We determine a Grobner basis of the ideal

I =(F X!, . XL,

by means of Buchberger algorithm. The first S-pair to be con-
sidered is S(F,X}), 1 < i < m, and it produces the element
X%+ Xt where

(v)4 = max{0,v}.

If ¢ > a;, then S(F, X!~" X?®) produces Xz-(q_za‘)JrX?b, and so on.
In this way we obtain the elements X7 77* X for j = 0,..., 7,
where

Ji = lg/ail.
The S-reduction S(F, X7 %% X4) produces the element X Git1)
which is prime to X® and hence the procedure stops. From this
it follows that the elements

q q 11+1)b g—jai y b
FoXE ey Xy, XD and X779% X9

with 1 <7 < m and 0 < j < j; form a Grobner basis of 1.
Then in(l,) is generated by X, X7 .\, ..., X% ., X0+0¢ and
X9 X9 with 1 <i<m,and 0 < j < j;.
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Now we have to compute the dimension of S/in(I;). In order
to do this we consider the ideals K, = in(l,) : X™ for r =
0,...,51+1. Since K, : X* = K, we have the exact sequence:

0— S/Krpy 5 S/K, »— S/(K.,X*) =0
Note that Ky = in(/,) and that K, 1 = S. It follows that

dimg S/ in(I, Zdlmx S/(K,,X").
r=0
But the ideal (K, X®) is equal to
(X%, X0, X7 1<i<m, XL, 1<i<n)

and hence dimg S/(in(Z,) : X™, X?) is equal to the product

[dimg K[Xy,..., X ]/ (X, XF™, 1<i <m)] x

[dimg K[Xmp1, .o, Xl /(X0 XE™, 1 <0 <))

It is easy to see that in general one has

dimg K[Y1,..., Ya]/(¥7, ¥, Y0) = [T6: = TT(6: = %)+

It follows that dimg S/in(I;) can be written as the sum of
the two terms

jf[n (¢ — ra)) lf[q— (r+1)a )]

r=0 Li=1

@) M (8= )] | Lt = b = T - G+ Db

i=1
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Using the elementary symmetric polynomials, the term (z) can
be written as follows:

m,n Ji—1
Yo (=D Fspm(a)ska(b)g™ DT Wik(r)
h,k=1 r=0

where Wi (r) = (r* — (r+1)")(r* — (r+1)*). Note that Wy (r) is
a polynormal in Q[r] of degree h+k—2, and leading coefficient hk.
Hence o' Wix(r) is a polynomial in Q[j,] of degree b+ k —1,
and leadmg coefficient hk/(h + k —1). Since j; = (¢ — €)/a4,
where € = ¢ mod ¢; and 0 < € < a;, we obtain that there exists
a polynomial Pi(y, z) € Qly, z] of the form

Pi(y,z) = cy™"H H di(2)y™ " 4+ dign-a(2)

with

3

i hk
— -1 htk m n b
c 5 1( ) Sh (a)Sk ( )(h ]C l)aiH-k_l

ES
i

such that Pi(q,¢€) is equal to (¢) for all ¢ € N.
We analyze now the second term (iz). We have to distinguish
two cases. If a1 = by,41 then (i) is equal to

m

H q — J14;) H (g — J1bmyi)

i=1
and replacing j; with (¢ — €)/a; one obtains the following ex-
pression for (z2):

a7 [(a(ar — a9 + ea) [(a(er = bruws) + ebrns)

If a3 > bp41, then one has ¢ — (j1 + )by > 0 for ¢ >
a1byy1/(ar — byyr). Hence for ¢ > aybyy1/(ay — byyq) the term
(i7) is equal to:

[ﬁ(q - jlai)} [ﬁ(q — J1bmyi) — ﬁ(q — (1 + 1)bms)

1=1 1=1 1=1
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and again replacing j, with (¢ —€)/a; one obtains the following
expression for (22):

m

a;”™ e [1(q(ar — a;) + ea;) |[](g(ar = bmys) + €bmys)—

1=2 i=1

n

H(q(al — byi) + (6 — a1)bmt)
=1
In both cases we have seen that there exists a polynomial P,(y, 2)
€ Qly, z] such that P,(y,z) has degree less than m + n — 1 in
y and Py(q,¢) is equal to the second term for all ¢ or for all

q > a1byi1/(ar — bpyr) according to whether a; = b4y or
ai > bmy1. Then we set P(y, z) = Py(y,z)+ Py(y, z) and P(y, 2)
has the desired properties. a

The theorem has the following

Corollary 3.2. Let K be a field of prime characteristic and let
F be any homogeneous binomial form of S = K[Xy,...,X,].
Then ¢(S/F) is a rational number which is independent of the
characteristic of K.

PROOF. The binomial F' can be written as £ = X4(X® — X?)
where ged(X®, X?) = 1. Since (X4)N (X — X?) = (F), one has

the short exact sequence
0 S/F—S5/X*-X"®S5/X? = S/(X,X* - X" -0

Since height(X%, X® — X*) = 2, it follows from [9] that ¢(S/F) =
c(S/X*—X*)+¢(S/X?). By virtue of 2.1 and 3.1 we know that
both ¢(S/X* — X*) and ¢(S/X?) are rational and independent
of the characteristic of K, and this completes the proof. O
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