Hilbert-Kunz function of monomial ideals and binomial hypersurfaces

Aldo Conca
FB 6 Mathematik und Informatik, Universität-Gesamthochschule Essen, D-45117 Essen, Germany
Received July 17, 1995;
in revised form February 12, 1996

The aim of this note is to determine the Hilbert-Kunz functions of rings defined by monomial ideals and of rings defined by a single binomial equation $X^{a}-X^{b}$ with $\operatorname{gcd}\left(X^{a}, X^{b}\right)=1$.

Introduction

The Hilbert-Kunz function HK_{R} of a local ring R of prime characteristic p with maximal ideal m is defined by the assignment:

$$
\mathrm{HK}_{R}(q)=\ell\left(R / m^{[q]}\right)
$$

where ℓ denotes the length, $q=p^{e}$ is a power of p and $m^{[q]}$ denotes the q-th Frobenius power of m, that is, $m^{[q]}=\left(\left\{x^{q}: x \in\right.\right.$ $m\}$).

The function HK_{R} was introduced by Kunz [5]. He showed [5,3.2,3.3] that $\mathrm{HK}_{R}(q) \geq q^{d}$ for all $q, d=\operatorname{dim} R$, and that the following conditions are equivalent:
(i) R is regular
(ii) $\mathrm{HK}_{R}(q)=q^{d}$ for all q,
(iii) $\mathrm{HK}_{R}(q)=q^{d}$ for some $q \geq p$.

Hence the difference between $\mathrm{HK}_{R}(q)$ and q^{d} can be taken as a measure of the singularity of R. By a result of Monsky [7,1.8] it is known that there exist a real constant $c(R) \geq 1$ and a function $f(q)$ such that

$$
\mathrm{HK}_{R}(q)=c(R) q^{d}+f(q)
$$

and there exists a constant α such that $|f(q)| \leq \alpha q^{d-1}$ for $q \gg$ 0 , (see [9] for a generalization of this result). Monsky [7,3.10] has also shown that if the dimension of R is one then $c(R)$ is equal to the multiplicity $e(R)$ of R and that $f(q)=f\left(p^{e}\right)$ is a periodic function in e for large e. It also known that $c(R) \leq e(R)$ for Cohen-Macaulay rings, see $[5,3.2$. But in general it is not clear how the constant $c(R)$ is related to the other invariants of R, and it is not even known whether $c(R)$ is a rational number. The nature of the remainder term $f(q)$ is also quite mysterious, see [4] for example.

Hilbert-Kunz functions of some classes of hypersurface rings were determined by Kunz, Han and Monsky, Chang, and Pardue [$2,3,4,5,6,8]$. The first Hilbert-Kunz function of a ring which is not an hypersurface is determined by Buchweitz and Pardue [1]. They succeeded in computing the Hilbert-Kunz function of the coordinate ring of a rational normal curve.

We introduce a more general Hilbert-Kunz function. Given a Noetherian ring R of arbitrary characteristic which is local or a standard graded K-algebra and a system of generators x of its maximal ideal, we define the Hilbert-Kunz function $\mathrm{HK}_{R, x}(q)$ of R with respect to x to be the length of $R / x^{[q]}$ where $x^{[q]}$ is the ideal generated by the q-powers of the elements of the set x and $q \in \mathbf{N}$. We concentrate our attention on the Hilbert-Kunz function of rings of the form $R=K\left[X_{1}, \ldots, X_{n}\right] / I$ where I is a monomial ideal or a principal ideal generated by a homogeneous binomial form $X^{a}-X^{b}$ with $\operatorname{gcd}\left(X^{a}, X^{b}\right)=1$.

If I is a monomial ideal, then we show that $\mathrm{HK}_{R, x}(q)$ agrees with a polynomial with integral coefficients for large q, see 2.1. The leading coefficient of this polynomial is exactly the multiplicity of R. As a corollary it follows the inequality

$$
c(R) \leq e(R)
$$

holds for any local ring or standard graded K-algebra R of prime characteristic.

When R is a binomial hypersurface of the type mentioned above, we show that there exists a polynomial $P(y, z) \in \mathbf{Q}[y, z]$ such that $\mathrm{HK}_{R, x}(q)=P(q, \varepsilon)$ for large q, where ε is the residue class of q modulo the highest exponent in X^{a} and X^{b}, see 3.1. The polynomial $P(y, z)$ is explicitly determined and its leading coefficient with respect to y is a rational number $c(R)$ which is expressed in terms of the exponent vectors a and b.

1 Notation

Let (R, m) denote a Noetherian local ring with maximal ideal m or a standard graded K-algebra with maximal homogeneous ideal m. Given a set of generators $x=x_{1}, \ldots, x_{n}$ of m (not necessarily minimal) and a positive integer q we denote by $x^{[q]}$ the ideal $\left(x_{1}^{q}, \ldots, x_{n}^{q}\right)$. We define the Hilbert-Kunz function of R with respect to x to be

$$
\mathrm{HK}_{R, x}(q)=\ell\left(R / x^{[q]}\right) .
$$

Of course if the characteristic of R is prime and q is a power of the characteristic, then $\mathrm{HK}_{R, x}(q)$ coincides with the ordinary Hilbert-Kunz function $\mathrm{HK}_{R}(q)$ and it is independent of x. But in general $\mathrm{HK}_{R, x}(q)$ depends on x.

Denote by $H^{1}(R, q)$ the first iterated sum of the Hilbert function $H(R, q)=\operatorname{dim}_{K}\left(m^{q} / m^{q+1}\right)$ of R, that is, $H^{1}(R, q)=$ $\ell\left(R / m^{q+1}\right)$. Since $m^{q} \supseteq x^{[q]} \supseteq m^{n q}$, one has

$$
\begin{equation*}
H^{1}(R, q-1) \leq \mathrm{HK}_{R, x}(q) \leq H^{1}(R, n q-1) \tag{1}
\end{equation*}
$$

Denote by d the dimension and by $e(R)$ the multiplicity of R. The function $H^{1}(R, q)$ agrees with a polynomial of degree d and leading coefficient $e(R) / d$! for $q \gg 0$. From inequality (1) it follows that $\mathrm{HK}_{R, x}(q)$ grows as a polynomial of degree d. For ordinary Hilbert-Kunz functions inequality (1) implies

$$
\begin{equation*}
e(R) / d!\leq c(R) \leq e(R) n^{d} / d! \tag{2}
\end{equation*}
$$

It was shown by Kunz $[5,3.2]$ that if (R, m) is a CohenMacaulay local ring of prime characteristic p, then

$$
\mathrm{HK}_{R}(q) \leq e(R) q^{d}
$$

for all powers q of p. It follows from this result that the constant $c(R)$ is bounded by the multiplicity for Cohen-Macaulay rings. Note that one cannot expect $\mathrm{HK}_{R}(q) \leq e(R) q^{d}$ to be true in general. For instance if R has multiplicity 1 and it is not regular (take for example $R=K[X, Y] /\left(X^{2}, X Y\right)$), then by [5,3.3] one has $\mathrm{HK}_{R}(q)>q^{d}=e(R) q^{d}$ for all $q \geq p$.

2 The monomial case

Let S be a polynomial ring $K\left[X_{1}, \ldots, X_{n}\right]$ over an arbitrary field K. One has:
Theorem 2.1. Let I be a monomial ideal of S and set $R=$ S / I. Denote by x_{i} the residue class of X_{i} in R, and by x the sequence x_{1}, \ldots, x_{n}. Then there exists a polynomial $P_{R}(y) \in$ $\mathbf{Z}[y]$ of degree the dimension $\operatorname{dim} R$ of R and leading coefficient the multiplicity $e(R)$ of R, such that $\mathrm{HK}_{R, x}(q)=P_{R}(q)$ for all integers q greater than or equal to the highest exponent which appear in the generators of I.
Proof. We argue by induction on n. The case $n=1$ is trivial. Hence assume $n>1$. Set $a=\max \left\{j: X_{i}^{j}\right.$ divides a generator of I, for some $i, 1 \leq i \leq n\}$ and $b=\max \left\{j: X_{n}^{j}\right.$ divides a generator of $I\}$. Fix an integer $q \geq a$ and for $0 \leq i \leq q$ set

$$
J_{i}=\left(I: X_{n}^{i}\right)+\left(X_{1}^{q}, \ldots, X_{n-1}^{q}, X_{n}^{q-i}\right) .
$$

Set $S_{1}=K\left[X_{1}, \ldots, X_{n-1}\right]$. For $i \geq 0$ denote by K_{i} the monomial ideal of S_{1} with the property $K_{i}+\left(X_{n}\right)=\left(I: X_{n}^{i}\right)+\left(X_{n}\right)$. Set $R_{i}=S_{1} / K_{i}$. Since $J_{i}: X_{n}=J_{i+1}$, one has an exact sequence:
(3) $0 \longrightarrow S / J_{i+1} \xrightarrow{X_{n}} S / J_{i} \longrightarrow S_{1} / K_{i}+\left(X_{1}^{q}, \ldots, X_{n-1}^{q}\right) \longrightarrow 0$
and then

$$
\operatorname{dim}_{K} S / J_{i}=\operatorname{dim}_{K} S / J_{i+1}+\operatorname{HK}_{R_{t}, x^{\prime}}(q)
$$

where $x^{\prime}=x_{1}, \ldots, x_{n-1}$ are the residue classes of X_{1}, \ldots, X_{n-1}. By construction $J_{0}=I+X^{[q]}$ and $J_{q}=S$. It follows that

$$
\mathrm{HK}_{R, x}(q)=\sum_{i=0}^{q-1} \mathrm{HK}_{R_{i}, x^{\prime}}(q) .
$$

But $K_{i}=K_{b}$ for all $i \geq b$, and then

$$
\mathrm{HK}_{R, x}(q)=(q-b) \mathrm{HK}_{R_{b, x^{\prime}}}(q)+\sum_{i=0}^{b-1} \mathrm{HK}_{R_{i}, x^{\prime}}(q) .
$$

One notes that the exponents in the generators of the monomial ideals K_{i} are less than or equal to a. By induction $\mathrm{HK}_{R_{i}, x^{\prime}}(q)$ agrees with a polynomial $P_{R_{i}}(y) \in \mathbf{Z}[y]$ for $q \geq a$. Hence $\mathrm{HK}_{R, x}(q)$ agrees with the polynomial

$$
\begin{equation*}
P_{R}(y)=(y-b) P_{R_{b}}(y)+\sum_{i=0}^{b-1} P_{R_{i}}(y) \tag{4}
\end{equation*}
$$

for $q \geq a$. Since $H^{1}(R, q)$ agrees with a polynomial of degree $\operatorname{dim} R$ for large q, from (1) it follows that the degree of $P_{R}(y)$ is $\operatorname{dim} R$. We show now that the leading coefficient of $P_{R}(y)$ is $e(R)$. Denote by $c(R), c\left(R_{0}\right), \ldots, c\left(R_{b}\right)$ the leading coefficients of $P_{R}(y), P_{R_{0}}(y), \ldots, P_{R_{b}}(y)$ and by d, d_{0}, \ldots, d_{b} the dimensions of R, R_{0}, \ldots, R_{b}. By (4) one has

$$
\begin{equation*}
c(R)=\delta\left(d, d_{b}+1\right) c\left(R_{b}\right)+\sum_{i=0}^{b-1} \delta\left(d, d_{i}\right) c\left(R_{i}\right) \tag{5}
\end{equation*}
$$

where $\delta(i, j)=0$ if $i \neq j$ and $\delta(i, i)=1$. Consider now the exact sequence

$$
\begin{equation*}
0 \longrightarrow S / I: X_{n}^{i+1}[-1] \xrightarrow{X_{n}} S / I: X_{n}^{i} \longrightarrow R_{i} \longrightarrow 0 \tag{6}
\end{equation*}
$$

Denote by $H_{A}(\lambda)$ the Hilbert series $\sum_{j \geq 0} \operatorname{dim} A_{i} \lambda^{j}$ of a \mathbf{N}-graded K-algebra $A=\oplus_{j \geq 0} A_{j}$. By virtue of (6) one has
(7) $H_{R}(\lambda)=\sum_{i \geq 0} \lambda^{i} H_{R_{i}}(\lambda)=\lambda^{b}(1-\lambda)^{-1} H_{R_{b}}(\lambda)+\sum_{i=0}^{b-1} \lambda^{i} H_{R_{i}}(\lambda)$.

It follows from (7) that:

$$
\begin{equation*}
e(R)=\delta\left(d, d_{b}+1\right) e\left(R_{b}\right)+\sum_{i=0}^{b-1} \delta\left(d, d_{i}\right) e\left(R_{i}\right) \tag{8}
\end{equation*}
$$

By induction one has $c\left(R_{i}\right)=e\left(R_{i}\right)$ for all $i=0, \ldots, b$. From (5) and (8) it follows that $c(R)=e(R)$.

Note that the polynomial $P_{R}(q)$ does not depend on the characteristic of the field K. We do not know in general how to relate the coefficients of $P_{R}(q)$ to other combinatorial or algebraic invariants of the ring R except that for the square free case. In the square free case the polynomial $P_{R}(y)$ has the following combinatorial interpretation:

Remark 2.2. Let $I \subset\left(X_{1}, \ldots, X_{n}\right)^{2}$ be a square free monomial ideal with associated simplicial complex Δ. Denote by $f=\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$ the f-vector of $\Delta, \operatorname{dim} \Delta=d-1$. The number $\mathrm{HK}_{K[\Delta], x}(q)$ is the cardinality of the set

$$
B=\left\{b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{N}^{n}: 0 \leq b_{i}<q \text { and } \operatorname{supp} b \in \Delta\right\} .
$$

It follows that:

$$
\begin{aligned}
\mathrm{HK}_{K[\Delta], x}(q)= & \sum_{F \in \Delta} \mid\{b \in B: \operatorname{supp} b=F\}= \\
& \sum_{F \in \Delta}(q-1)^{|F|}=\sum_{i=0}^{d} f_{i-1}(q-1)^{i}
\end{aligned}
$$

Using the known relation between the f-vector and the h-vector of a simplicial complex one has also:

$$
\mathrm{HK}_{K[\Delta], x}(q)=\sum_{i=0}^{d} h_{i}(q-1)^{i} q^{d-i}
$$

For another interpretation of the Hilbert-Kunz function of a square free monomial ideal see also [1]. It follows from the remark that the Hilbert-Kunz function of a the ring defined by a square free monomial ideal depends only on the Hilbert function. This is not true for general monomial ideals. For instance if I is generated by a single monomial, say $I=\left(\prod_{i=1}^{n} X_{i}^{a_{i}}\right)$, then the Hilbert function of the ring R defined by I depends only on the degree of the generator of I while its Hilbert-Kunz function $\mathrm{HK}_{R, x}(q)$ is equal to

$$
q^{n}-\prod_{i=1}^{n}\left(q-a_{i}\right)=\sum_{i=0}^{n-1}(-1)^{n-1-i} s_{n-i, n}(a) q^{i}
$$

for $q \geq \max \left\{a_{i}\right\}$ where $s_{j, n}$ denotes the elementary symmetric function of degree j in n indeterminates. Hence two monomials define rings with the same Hilbert-Kunz function if and only if they are the same up to a permutation of the indeterminates.

Fix now a term order τ on $S=K\left[X_{1}, \ldots, X_{n}\right]$. Let I be a homogeneous ideal of S. Denote by in (I) the initial ideal of I, and set $R=S / I$. Since

$$
\mathrm{HK}_{R, x}(q)=\operatorname{dim}_{K} S /\left(I, X^{[q]}\right)=\operatorname{dim}_{K} S / \operatorname{in}\left(I, X^{[q]}\right),
$$

and $\operatorname{in}\left(I, X^{[q]}\right) \supseteq \operatorname{in}(I)+X^{[q]}$, one has:

$$
\begin{equation*}
\mathrm{HK}_{R, x}(q) \leq \mathrm{HK}_{S / \mathrm{in}(I), x}(q) \tag{9}
\end{equation*}
$$

It follows:
Proposition 2.3. Let R be a local ring or a standard graded K-algebra. Let $x=x_{1}, \ldots, x_{n}$ be a system of generators of the maximal (homogeneous) ideal of R. Then there exists a polynomial $P(y) \in \mathbf{Z}[y]$ depending on R and x with degree $\operatorname{dim} R$ and leading coefficient $e(R)$ such that $\mathrm{HK}_{R, x}(q) \leq P(q)$ for all $q \in \mathbf{N}$.

Proof. Assume first that R is local with maximal ideal m. Denote by G its associated graded ring $\bigoplus_{i \geq 0} m^{i} / m^{i+1}$, by f^{*} the initial form in G of an element $f \in R$ and by x^{*} the sequence $x_{1}^{*}, \ldots, x_{n}^{*}$. The associated graded ring G_{q} of $R / x^{[q]}$ is isomorphic to G / J, where J is generated by the initial forms of the elements of the ideal $x^{[q]}$. Note that if $\left(x_{i}^{*}\right)^{q} \neq 0$, then $\left(x_{i}^{*}\right)^{q}=\left(x_{i}^{q}\right)^{*}$. It follows that $\left(x_{i}^{*}\right)^{q} \in J$ and hence

$$
\mathrm{HK}_{R, x}(q)=\ell\left(G_{q}\right) \leq \mathrm{HK}_{G, x^{*}}(q) .
$$

The rings R and G have the same dimension and multiplicity. Hence we may assume that R is standard graded K-algebra. Then we take a presentation $R \simeq K\left[X_{1}, \ldots, X_{n}\right] / I$, such that the residue class of X_{i} corresponds to x_{i}, and fix a term order τ on $K\left[X_{1}, \ldots, X_{n}\right]$. Since the dimension and multeplicity of R and $K\left[X_{1}, \ldots, X_{n}\right] / \operatorname{in}(I)$ are equal, it follows now from (9) and from 2.1 that there exists a polynomial $P_{1}(y) \in \mathbf{Z}[y]$ of degree $\operatorname{dim} R$ and leading coefficient $e(R)$ such that $\mathrm{HK}_{R, x}(q) \leq P_{1}(q)$ for all $q \gg 0$. Then $P(y)$ is obtained from $P_{1}(y)$ by adding a suitable positive integer.

The proposition has two corollaries. The first is the generalization of Kunz's result $[5,3.2]$ to the non Cohen-Macaulay case:

Corollary 2.4. Let R be a local ring or a standard graded K algebra and assume that the characteristic of R is prime. Then $c(R) \leq e(R)$.

The second is a partial extension of Monsky's result [7,3.10] to generalized Hilbert-Kunz functions:

Corollary 2.5. Let R be a local ring or a standard graded K algebra of dimension one and arbitrary characteristic. Let $x=$ x_{1}, \ldots, x_{n} be a system of generators of the maximal (homogeneous) ideal of R. Then there exists a constant α such that $\left|\mathrm{HK}_{R, x}(q)-e(R) q\right| \leq \alpha$ for all $q \in \mathbf{N}$.
Proof. By 2.3 there exists a constant β such that $H_{R, x}(q) \leq$ $e(R) q+\beta$ for all $q \in \mathbf{N}$. On the other hand, by (1), $H_{R, x}(q) \geq$ $H^{1}(R, q-1)$ and there exists a constant γ such that $H^{1}(R, q)=$ $e(R) q+\gamma$ for $q \gg 0$. Hence the claim follows.

It follows from the corollary that for a one dimensional ring R the limit $\lim _{q \rightarrow \infty} \mathrm{HK}_{R, x}(q) / q$ exists and it is equal to the multiplicity $e(R)$ of R. We do not know whether $\lim _{q \rightarrow \infty} \mathrm{HK}_{R, x}(q) / q^{\operatorname{dim} R}$ exists in general, that is, if $\operatorname{dim} R>1$. For one dimensional ring we do not know whether the difference $\mathrm{HK}_{R, x}(q)-e(R) q$ is periodic for large q.

3 Binomial hypersurfaces

Given a homogeneous ideal I of $S=K\left[X_{1}, \ldots, X_{n}\right]$, in order to study the Hilbert-Kunz function of S / I one may try to understand the initial ideal of the ideal $I+X^{[q]}$. The information that one has on the behaviour of $\operatorname{in}\left(I+X^{[q]}\right)$ with respect to q can be used to have some control on the Hilbert-Kunz function of S / I. As we already noticed $\operatorname{in}\left(I+X^{[q]}\right) \supseteq \operatorname{in}(I)+X^{[q]}$, and one cannot expect equality unless I is a monomial ideal. For a general I it is difficult to understand which monomials one has to add to fill the gap between in $\left(I+X^{[q]}\right)$ and in $(I)+X^{[q]}$. If I happens to be a binomial ideals, then the situation is slightly simpler because the S-reductions $S(f, n)$ of a binomial f with monomial n with respect to a set of binomials produce only monomials. We are able to determine in $\left(I+X^{[q]}\right)$ explicitly when $I=\left(X^{a}-X^{b}\right)$ where X^{a} and X^{b} are monomials of the same degree and with $\operatorname{gcd}\left(X^{a}, X^{b}\right)=1$. This allows us to determine the Hilbert-Kunz function for the hypersurface defined by $X^{a}-X^{b}$.

One has:
Theorem 3.1. Let $S=K\left[X_{1}, \ldots, X_{m+n}\right]$ be a polynomial ring over an arbitrary field K. Let F be the binomial equation

$$
F=X_{1}^{a_{1}} \cdots X_{m}^{a_{m}}-X_{m+1}^{b_{m+1}} \cdots X_{m+n}^{b_{m+n}}
$$

Assume that F is homogeneous and denote by R the ring S / F and by x the set of the residue classes in R of the X_{i} 's. Let u be the maximum of the integers $a_{1}, \ldots, a_{m}, b_{m+1}, \ldots, b_{m+n}$.

There exist a polynomial $P(y, z) \in \mathbf{Q}[y, z]$ of the form

$$
P(y, z)=c(R) y^{m+n-1}+c_{1}(z) y^{m+n-2}+\ldots+c_{m+n-1}(z)
$$

and an integer α such that

$$
\mathrm{HK}_{R, x}(q)=P(q, \varepsilon) \quad \text { for all } \quad q \geq \alpha, \quad q \in \mathbf{N}
$$

where $\varepsilon=q \bmod u$ and $0 \leq \varepsilon<u$. Furthermore

$$
c(R)=\sum_{h, k=1}^{m, n}(-1)^{h+k} s_{h m}(a) s_{k n}(b) \frac{h k}{(h+k-1) u^{h+k-1}}
$$

where $s_{j i}$ denotes the elementary symmetric polynomial of degree j in i indeterminates.
Proof. It is not restrictive to assume that $a_{1} \geq a_{i}>0$ for $i=$ $1, \ldots, m, b_{m+1} \geq b_{m+i}>0$ for $i=1, \ldots, n$ and that $a_{1} \geq b_{m+1}$, so that $u=a_{1}$. Set $X^{a}=X_{1}^{a_{1}} \cdots X_{m}^{a_{m}}$ and $X^{b}=X_{m+1}^{b_{m+1}} \cdots X_{m+n}^{b_{m+n}}$. We fix a term order on S such that X^{a} is bigger than X^{b}. Let q be a positive integer. We determine a Gröbner basis of the ideal

$$
I_{q}=\left(F, X_{1}^{q}, \ldots X_{m+n}^{q}\right)
$$

by means of Buchberger algorithm. The first S-pair to be considered is $S\left(F, X_{i}^{q}\right), 1 \leq i \leq m$, and it produces the element $X_{i}^{\left(q-a_{i}\right)+} X^{b}$, where

$$
(v)_{+}=\max \{0, v\} .
$$

If $q \geq a_{i}$, then $S\left(F, X_{i}^{q-a_{i}} X^{b}\right)$ produces $X_{i}^{\left(q-2 a_{i}\right)_{+}} X^{2 b}$, and so on. In this way we obtain the elements $X_{i}^{q-j a_{i}} X^{j b}$ for $j=0, \ldots, j_{i}$, where

$$
j_{i}=\left[q / a_{i}\right] .
$$

The S-reduction $S\left(F, X_{i}^{q-j_{i} a_{i}} X^{j_{i} b}\right)$ produces the element $X^{\left(j_{i}+1\right) b}$ which is prime to X^{a} and hence the procedure stops. From this it follows that the elements

$$
F, X_{m+1}^{q}, \ldots, X_{m+n}^{q}, X^{\left(j_{1}+1\right) b}, \text { and } X_{i}^{q-j a_{i}} X^{j b}
$$

with $1 \leq i \leq m$ and $0 \leq j \leq j_{i}$ form a Gröbner basis of I_{q}. Then $\operatorname{in}\left(I_{q}\right)$ is generated by $X^{a}, X_{m+1}^{q}, \ldots, X_{m+n}^{q}, X^{\left(j_{1}+1\right) b}$, and $X_{i}^{q-j a_{i}} X^{j b}$ with $1 \leq i \leq m$, and $0 \leq j \leq j_{i}$.

Now we have to compute the dimension of $S / \operatorname{in}\left(I_{q}\right)$. In order to do this we consider the ideals $K_{r}=\operatorname{in}\left(I_{q}\right): X^{r b}$ for $r=$ $0, \ldots, j_{1}+1$. Since $K_{r}: X^{b}=K_{r+1}$ we have the exact sequence:

$$
0 \rightarrow S / K_{r+1} \xrightarrow{X^{b}} S / K_{r} \rightarrow \rightarrow S /\left(K_{r}, X^{b}\right) \rightarrow 0
$$

Note that $K_{0}=\operatorname{in}\left(I_{q}\right)$ and that $K_{j_{1}+1}=S$. It follows that

$$
\operatorname{dim}_{K} S / \operatorname{in}\left(I_{q}\right)=\sum_{r=0}^{j_{1}} \operatorname{dim}_{K} S /\left(K_{r}, X^{b}\right)
$$

But the ideal (K_{r}, X^{b}) is equal to

$$
\left(X^{a}, X^{b}, X_{i}^{q-r a_{i}}, 1 \leq i \leq m, \quad X_{m+i}^{q-r b_{m+i}}, 1 \leq i \leq n\right)
$$

and hence $\operatorname{dim}_{K} S /\left(\operatorname{in}\left(I_{q}\right): X^{r b}, X^{b}\right)$ is equal to the product
$\left[\operatorname{dim}_{K} K\left[X_{1}, \ldots, X_{m}\right] /\left(X^{a}, X_{i}^{q-r a_{i}}, \quad 1 \leq i \leq m\right)\right] \times$
$\left[\operatorname{dim}_{K} K\left[X_{m+1}, \ldots, X_{m+n}\right] /\left(X^{b}, X_{m+i}^{q-r b_{m+i}}, \quad 1 \leq i \leq n\right)\right]$.
It is easy to see that in general one has
$\operatorname{dim}_{K} K\left[Y_{1}, \ldots, Y_{n}\right] /\left(Y^{\gamma}, Y_{1}^{\delta_{1}}, \ldots, Y_{n}^{\delta_{n}}\right)=\prod_{i=1}^{n} \delta_{i}-\prod_{i=1}^{n}\left(\delta_{i}-\gamma_{i}\right)_{+}$.
It follows that $\operatorname{dim}_{K} S / \operatorname{in}\left(I_{q}\right)$ can be written as the sum of the two terms

$$
\begin{equation*}
\sum_{r=0}^{j_{1}-1}\left[\prod_{i=1}^{m}\left(q-r a_{i}\right)-\prod_{i=1}^{m}\left(q-(r+1) a_{i}\right)\right] \times \tag{i}
\end{equation*}
$$

$$
\left[\prod_{i=1}^{n}\left(q-r b_{m+i}\right)-\prod_{i=1}^{n}\left(q-(r+1) b_{m+i}\right)\right]
$$

and
(ii) $\left[\prod_{i=1}^{m}\left(q-j_{1} a_{i}\right)\right]\left[\prod_{i=1}^{n}\left(q-j_{1} b_{m+i}\right)-\prod_{i=1}^{n}\left(q-\left(j_{1}+1\right) b_{m+i}\right)_{+}\right]$

Using the elementary symmetric polynomials, the term (i) can be written as follows:

$$
\sum_{h, k=1}^{m, n}\left[(-1)^{h+k} s_{h m}(a) s_{k n}(b) q^{m+n-h-k} \sum_{r=0}^{j_{1}-1} W_{h k}(r)\right]
$$

where $W_{h k}(r)=\left(r^{h}-(r+1)^{h}\right)\left(r^{k}-(r+1)^{k}\right)$. Note that $W_{h k}(r)$ is a polynomial in $\mathbf{Q}[r]$ of degree $h+k-2$, and leading coefficient $h k$. Hence $\sum_{r=0}^{j_{1}-1} W_{h k}(r)$ is a polynomial in $\mathbf{Q}\left[j_{1}\right]$ of degree $h+k-1$, and leading coefficient $h k /(h+k-1)$. Since $j_{1}=(q-\varepsilon) / a_{1}$, where $\varepsilon=q \bmod a_{1}$ and $0 \leq \varepsilon<a_{1}$, we obtain that there exists a polynomial $P_{1}(y, z) \in \mathbf{Q}[y, z]$ of the form

$$
P_{1}(y, z)=c y^{m+n-1}+d_{1}(z) y^{m+n-2}+\ldots+d_{m+n-1}(z)
$$

with

$$
c=\sum_{h, k=1}^{m, n}(-1)^{h+k} s_{h m}(a) s_{k n}(b) \frac{h k}{(h+k-1) a_{1}^{h+k-1}}
$$

such that $P_{1}(q, \varepsilon)$ is equal to (i) for all $q \in \mathbf{N}$.
We analyze now the second term (ii). We have to distinguish two cases. If $a_{1}=b_{m+1}$ then (ii) is equal to

$$
\prod_{i=1}^{m}\left(q-j_{1} a_{i}\right) \prod_{i=1}^{n}\left(q-j_{1} b_{m+i}\right)
$$

and replacing j_{1} with $(q-\varepsilon) / a_{1}$ one obtains the following expression for (ii):

$$
a_{1}^{2-m-n} \varepsilon^{2} \prod_{i=2}^{m}\left(q\left(a_{1}-a_{i}\right)+\varepsilon a_{i}\right) \prod_{i=2}^{n}\left(q\left(a_{1}-b_{m+i}\right)+\varepsilon b_{m+i}\right)
$$

If $a_{1}>b_{m+1}$, then one has $q-\left(j_{1}+1\right) b_{m+i} \geq 0$ for $q \geq$ $a_{1} b_{m+1} /\left(a_{1}-b_{m+1}\right)$. Hence for $q \geq a_{1} b_{m+1} /\left(a_{1}-b_{m+1}\right)$ the term (ii) is equal to:

$$
\left[\prod_{i=1}^{m}\left(q-j_{1} a_{i}\right)\right]\left[\prod_{i=1}^{n}\left(q-j_{1} b_{m+i}\right)-\prod_{i=1}^{n}\left(q-\left(j_{1}+1\right) b_{m+i}\right)\right]
$$

and again replacing j_{1} with $(q-\varepsilon) / a_{1}$ one obtains the following expression for (ii):

$$
\begin{aligned}
a_{1}^{1-m-n} \varepsilon \prod_{i=2}^{m}\left(q\left(a_{1}-a_{i}\right)+\varepsilon a_{i}\right) & {\left[\prod_{i=1}^{n}\left(q\left(a_{1}-b_{m+i}\right)+\varepsilon b_{m+i}\right)-\right.} \\
& \left.\prod_{i=1}^{n}\left(q\left(a_{1}-b_{m+i}\right)+\left(\varepsilon-a_{1}\right) b_{m+i}\right)\right]
\end{aligned}
$$

In both cases we have seen that there exists a polynomial $P_{2}(y, z)$ $\in \mathbf{Q}[y, z]$ such that $P_{2}(y, z)$ has degree less than $m+n-1$ in y and $P_{2}(q, \varepsilon)$ is equal to the second term for all q or for all $q>a_{1} b_{m+1} /\left(a_{1}-b_{m+1}\right)$ according to whether $a_{1}=b_{m+1}$ or $a_{1}>b_{m+1}$. Then we set $P(y, z)=P_{1}(y, z)+P_{2}(y, z)$ and $P(y, z)$ has the desired properties.

The theorem has the following
Corollary 3.2. Let K be a field of prime characteristic and let F be any homogeneous binomial form of $S=K\left[X_{1}, \ldots, X_{n}\right]$. Then $c(S / F)$ is a rational number which is independent of the characteristic of K.
Proof. The binomial F can be written as $F=X^{d}\left(X^{a}-X^{b}\right)$ where $\operatorname{gcd}\left(X^{a}, X^{b}\right)=1$. Since $\left(X^{d}\right) \cap\left(X^{a}-X^{b}\right)=(F)$, one has the short exact sequence

$$
0 \rightarrow S / F \rightarrow S / X^{a}-X^{b} \oplus S / X^{d} \rightarrow S /\left(X^{d}, X^{a}-X^{b}\right) \rightarrow 0
$$

Since height $\left(X^{d}, X^{a}-X^{b}\right)=2$, it follows from [9] that $c(S / F)=$ $c\left(S / X^{a}-X^{b}\right)+c\left(S / X^{d}\right)$. By virtue of 2.1 and 3.1 we know that both $c\left(S / X^{a}-X^{b}\right)$ and $c\left(S / X^{d}\right)$ are rational and independent of the characteristic of K, and this completes the proof.

References

[1] Buchweitz R., Pardue K.: Hilbert-Kunz functions. Provisory title of a paper in preparation (1995)
[2] Chang S.T.: The asymptotic behaviour of Hilbert-Kunz functions and their generalizations. Doctoral Thesis, University of Michigan (1992)
[3] Han C.: The Hilbert-Kunz function of a diagonal hypersurface. Doctoral Thesis, Brandeis University (1992)
[4] Han C., Monsky P.: Some surprising Hilbert-Kunz functions. Math. Z. 214, 119-135 (1993)
[5] Kunz K.: Characterizations of regular rings of characteristic p. Am. J. Math. 41, 772-784 (1969)
[6] Kunz K.: On Noetherian rings of characteristic p. Am. J. Math. 98, 999-1013 (1976)
[7] Monsky P.: The Hilbert-Kunz function. Math. Ann. 263, 43-49 (1983)
[8] Pardue K.: Non standard Borel fixed ideals. Doctoral Thesis, Brandeis University (1994)
[9] Seibert G.:Complexes with homology of finite length and Frobenius functors. J. Alg. 125, 278-287 (1989)

