
GORENSTEIN LADDER DETERMINANTAL RINGS

ALDO CONCA

ABSTRACT

Ladder determinantal rings are rings associated with ideals of minors of certain subsets of a generic
matrix of indeterminates. By results of Abhyankar, Narasimhan, Herzog and Trung, and Conca, they are
known to be Cohen-Macaulay normal domains. In this paper we characterize the Gorenstein property of
ladder determinantal rings in terms of the shape of the ladder.

Introduction

Let K be a field, and let X = (Xtj) be a matrix of indeterminates over K. A subset
Y of X is called a ladder if whenever the main diagonal of a minor of A' is in Y then
the minor is in Y. Given a ladder Yone defines It(Y) to be the ideal of K[Y] generated
by all the ^-minors of A'which involve only indeterminates of Y. Here K[Y] denotes
the polynomial ring over K whose indeterminates are the elements of Y. The ring
Rt{Y) = K[Y]/It(Y) is called a ladder determinantal ring. Ladder determinantal rings
have been introduced and studied by Abhyankar [1], and subsequently by Abhyankar
and Kulkarni [2], Narasimhan [14], Mulay [13], Herzog and Trung [10], and Conca
[7]. They are known to be Cohen-Macaulay normal domains, see [14,10, 7]. The aim
of this paper is to give a characterization of the Gorenstein property of ladder
determinantal rings in terms of the shape of the ladder and to determine the divisor
class group. This has already been done for a ring defined by the 2-minors of a ladder
by Hibi [11] and by Hashimoto, Hibi and Noma [9] and for the determinantal rings
associated with one-sided ladders by the present author [7].

We now describe the content of each section. In the first section we recall the
notions of Grobner basis and initial ideal of an ideal of polynomials.

In the second section we recall the definition of ladder determinantal ring and
some results from the above mentioned papers. Then we explain how, for our
purposes, one may always assume that the ladder satisfies certain conditions. In order
to determine the divisor class group of a ladder determinantal ring Rt( Y), it suffices
to treat the case of a ladder Y which is f-connected and satisfies Assumptions (a), (b),
(c). To determine whether Rt(Y) is Gorenstein or not, one may further assume that
Y satisfies Assumption (d).

Section 3 is devoted to the study of some classes of ideals of Rt(Y) generated by
minors. These ideals play a role in the investigation of the divisor class group and
canonical class of Rt(Y).

In Section 4 we determine the divisor class group Cl (Rt(Y)) ofRt(Y). For technical
reasons we consider first ladders which satisfy Assumption (d). At the end of the
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section we indicate briefly how to determine the divisor class group for ladders which
do not satisfy Assumption (d). In order to determine the divisor class group, we show
that after inversion of certain (/— l)-minors, say/a, ...,/A+1, the ring Rt(Y) becomes
factorial. By Nagata's theorem it follows that Cl(Rt(Y)) is generated by the classes of
the minimal prime ideals of the elements/^. It turns out that the ideals (ft) are radical,
and we are able to describe their minimal prime ideals. Then one shows that the only
relations between the classes of the minimal primes of the elements ft are those which
arise from the primary decomposition of (ft). It follows immediately that C\(Rt(Y))
is free. Further, we are able to determine a basis for C\(Rt(Y)). It appears that this
basis is somehow the natural one, and for this reason we call it 'the basis' of
C\(Rt(Y)).

A normal Cohen-Macaulay positively graded A -̂algebra R has a unique canonical
module coR. The module ooR can be identified with a divisorial ideal. The class cl(cofi)
of a>R in Cl (R) is called the canonical class of R. Recall that the ring R is Gorenstein
if and only if its canonical module coR is principal, that is, the canonical class cl (coR)
vanishes in C\(R).

To decide whether Rt(Y) is Gorenstein or not we restrict our attention to a ladder
which satisfies Assumption (d) and determine in Section 5 the canonical class of Rt(Y)
in terms of the basis of C\(Rt(Y)). The coefficients of the canonical class with respect
to the basis of Cl (Rt( Y)) depend only on the position of the so-called inside corners
of Y. The Gorenstein property of Rt(Y) is equivalent to the vanishing of these
coefficients. It turns out that the ring Rt(Y) is Gorenstein if and only if the minimal
submatrix which contains Y is square and the inside corners of Y lie on certain
diagonals.

To determine the canonical class of Rt(Y) we use a 'divide and conquer method'.
We pick an element of Rt(Y), say h, such that the ring Rt(Y) [h~l] can be represented
as a localization of a polynomial extension of a ladder determinantal ring R^YJ
associated with a one-sided ladder Yv This yields an epimorphism </>: C\(Rt(Y)) -*
Cl(/?,(};)) which behaves well with respect to the bases ofC\(Rt(Y)) and C\(Rt(Yx)).
The expression of the canonical class of i?t( *i) in terms of the basis of Cl(/^(*i)) *s

known [7,4.9]. By means of 0 we may determine the coefficients of the canonical class
of Rt(Y) which correspond to the basis elements which do not vanish under </>. But
one needs to know that 0 maps the canonical class to the canonical class. This
problem is solved in Section 6 by showing that Rt( Y) [h~x] has a trivial Picard group.
From this follows the fact that Rt{ Y) [h~l] has a unique canonical module which in
turn implies that (/> maps the canonical class to the canonical class. In Section 7 we
present some examples.

1. Grobner bases

In this section we recall the definition and some properties of Grobner bases and
initial ideals. For more information on this theory we refer the reader to [15]. Let A
be a polynomial ring over a field K and let r be a monomial order on A, that is, a total
order on the set of monomials of A which is compatible with the semigroup structure.
Let geA and let / be an ideal of A. The initial monomial inx(g) of the polynomial g
is the biggest monomial which appears in the representation of g as a linear
combination of monomials. The initial ideal inT(/) of / is the ideal generated by the
initial monomials of the elements of /. Whenever there is no danger of confusion we
shall use the shorter notation in(g) and in(/). Assume that / is a homogeneous ideal
of A. Denote by It the /th homogeneous component of / and by dim/( its dimension
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as .K-vector space. It is well known that dim/4 = dimin(/)i for all /. Further the set
of the residue classes in A/1 of the monomials not in in(/) is a AT-basis of A/1. A
Grobner basis of the ideal /, with respect to x, is a finite subset F of I such that the
initial monomials of the elements in F generate in(/). If F is a Grobner basis of/, then
F generates /, but unfortunately a system of generators need not to be a Grobner
basis. The following three lemmas are well-known.

LEMMA 1.1. Let K[Z] be a polynomial ring over afield K, and let x, a be monomial
orders. Let F be a finite subset of a homogeneous ideal I of K[Z]. Suppose that for all
fin F one has inT(/) = inff(/). Then F is a Grobner basis of I with respect to x if and only
if it is a Grobner basis of I with respect to a.

Proof Let J be the ideal generated by the monomials inT(/) = ina(f) with/e/7.
We have J £ inT(/) and J ^ inff(/). One has J = inT(/) if and only if J and / have the
same Hilbert function if and only if / = inCT(/).

LEMMA 1.2. Let K[Z] be the polynomial ring in the set of indeterminates Z, let Zx

be a subset ofZ, let I be an ideal ofK[Z], and let F be a Grobner basis of I with respect
to a monomial order x. Assume that feK[Z^\ for all feF such that in(/)eK[Z^\. It
follows that F f| K[Z^\ is a Grobner basis of the ideal 10 K[Z^\ with respect to the
monomial order x restricted to K\Z^. In particular F(] K[Z^\ generates I

Proof Let gel0 K\Z^. Then in(g)ein(/) n K[ZX\. Since Fis a Grobner basis of
/, there exists feFsuch that in(g) = Min(/), where Mis a monomial of K[Z]. Since
in(g) is in J£[ZJ, then M and in(/) are in K[ZX]. By assumption, feF(\K[Z^\.
Therefore the initial monomials of the elements in F n K[Z^\ generate the ideal
in(7 (1 K[Z$. In other words, F n ^ Z J is a Grobner basis of the ideal / f l /^ZJ
with respect to the monomial order x restricted to K[Z^\. A Grobner basis of an ideal
is a set of generators.

LEMMA 1.3. Let K[Z] be apolynormal ring over afield K, and let xbea term order.
Let I and J be homogeneous ideals of K[Z]. Then

(a) in(/) + in(/) ^ in(/+/) and in(/n / ) ^ in(/) n in(/),
(b) in(/) + in(7) = in(/+/) if and only if'm(lOJ) = in(7) n in(7),
(c) let F be a Grobner basis of I and let G be a Grobner basis ofJ, then F[)G is a

Grobner basis ofl+J if and only if, for allfe F and geG, there exists helftJ such that

Proof, (a) is trivial. One has

dim in(/+ J\ - dim [in(/) + in(/)]i

= dim [/+J\ - dim [in(/) + in(7)](

= dim / (+ dim Jt — dim [/ D J]t — dim in(/)4 — dim in(7)f + dim [in(/) n in(/)](

= dim [in(/) n in(7)]( - dim in(/ n / ) ( .

Then (b) follows from (a). Finally (c) is just (b) rewritten in terms of the generators
of the ideals in(/) + in(7) and in(7) n in(/).
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2. Ladder determinantal rings, notation and preliminaries

Let K be a field and X = (Xtj) a n m x « matrix of indeterminates. Let K[X] be the
polynomial ring K[Xtj: 1 ̂  i ^ m, 1 ^j ^ n]. Given sequences of integers

1 ^ flj < ... < at ^ m and 1 ̂  br < ... < bt ^ n,

we shall denote by[al,...,at\bli...,bt] the /-minor det (Xa,b) of X. The main diagonal
of [au . . . , a t \ b x , . . . , b ^ \ is the set {Xa b,...,Xa b <}. A subset Y of X is called a ladder if
whenever A^, XAfc e y and z ̂  h,j ^ fc, then A^, Xhj e Y.

Let y be a ladder, and let K[Y] be the polynomial ring K[Xtj: Xt]e Y]. Denote
by Rt(Y) the quotient ring K[Y]/It(Y), where It(Y) is the ideal generated by all the
/-minors of X which involve only indeterminates of Y. The ideal It(Y) is called a
footer determinantal ideal and the ring Rt(Y) a /Wder determinantal ring.

We recall now a few facts from [5, 7,10,14,16]. Let T be the lexicographical
monomial order on K[X] induced by the total order

- * 1 1 > ^ 1 2 > ••• > %in > ^ 2 1 > •••> X2n > ... > Xm_ln > Xml > ... > Xmn.

The initial monomial with respect to T of a minor of X is the corresponding main
diagonal. The following theorem was first proved by Narasimhan [14]. Subsequently
Sturmfels, and Caniglia, Guccione and Guccione gave different proofs, see [16, 5].

THEOREM 2.1. The set of all the t-minors of X is a Grobner basis of It{X) with
respect to z.

As a consequence of this theorem Narasimhan proved that It(Y) = It{X) n K[Y].
The last equality implies that Rt(Y) c Rt(X), and therefore that the ring Rt(Y) is a
domain since Rt(X) is, see [14, 4.1]. Furthermore she deduced that the set off-minors
of y is a Grobner basis of It(Y) with respect to z, [14, 3.4]. Note that the ideal
in(/t(y)) of the initial monomials of It(Y) is generated by the /-diagonals in Y.
Hence in(/((y)) is a square free monomial ideal. The ring ^[y]/in(/ ,(y)) is the
Stanley-Reisner ring associated with the simplicial complex At( Y) of all the subsets
of y which do not contain /-diagonals. Studying this simplicial complex Herzog and
Trung gave a characterization of the dimension and multiplicity of Rt(Y) in terms of
y, and they proved that Rt(Y) is Cohen-Macaulay, [10, 4.7, 4.8,4.10]. Grobner bases
are also used in [7] to show that ladder determinantal rings are normal.

Throughout we identify the indeterminates of X with the points of the set
{(/,/) e M2: 1 ̂  / ^ m, 1 ^j ^n}. Similarly we identify ladders with subsets of points.
In X we introduce two partial orders ^ and =<. We define:

(/,;) ^(h,k)oi^h and j ^ k, (ij) < (h,k)oi ^ h and j ^ k.

It is clear that X is a distributive lattice with respect to both partial orders. Note that
a subset Y of X is a ladder if and only if it is a sublattice of X with respect to = .̂ Since
we are interested in the study of the ring Rt(Y), without loss of generality we may
assume that the following hold.

ASSUMPTION (a): max^ Y = (1,«) and min^ Y = (m, 1). Otherwise we replace X

with its smallest submatrix which contains Y.
ASSUMPTION (b): for all a with 1 ̂  a ^ m, there exists b with 1 ̂  b ^ n, such

that (a, b) € Y, and for all b with 1 ̂  b ^ n, there exists a with 1 ̂  a ^ m, such that
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(a, b) e Y. Otherwise we delete from X the rows and the columns which have an empty
intersection with Y.

ASSUMPTION (C) : all the entries of Y are involved in some Mninor of Y. Otherwise
we get rid of the superfluous entries. It is easy to check that the resulting set is still a
ladder.

Of course Assumptions (a) and (b) do not affect the ring Rt(Y) at all. Assumption
(c) does not affect the divisor class group and Gorensteinness since the old ring is just
a polynomial extension of the new one.

We say that a ladder Y is /-disconnected if there exist two ladders Yx, Y2 such that
0 # 715 Y2 a Y, Yx D Y2 = 0, Yx U Y2 = Y and every Mninor of Y is contained in Yx

or in Y2. If Y is /-disconnected we have It(Y) = It(Y^) + It(Y^ and then

Rt(Y) = Rt(Y1)®KRt(Y2).

The Cohen-Macaulay type of Rt( Y) is equal to the Cohen-Macaulay type of Rt( YJ
times that of Rt(Y2). Thus, in order to characterize the Gorensteinness of Rt(Y), it is
not a restriction to consider only /-connected ladders Y. Also in the computation of
the divisor class group of Rt(Y), we may assume Yis /-connected. This is because the
exact sequence that we shall use to compute the divisor class group splits when K is
replaced by a normal domain.

So from now on we shall consider only /-connected ladders which satisfy
Assumptions (a), (b) and (c). Furthermore, just to avoid trivial cases, we shall always
assume that / > 1. It is easy to see that such ladders have the shape of the ladder in
Figure 1.

ft

77
M

Y

n [k+\

FIG. 1

We call the points S[, .-^S^ inside lower corners, T[,..., T'k inside upper corners,
Sv ..., Sh+1 outside lower corners, and Tx,..., Tk+1 outside upper corners of Y. For the
following applications we fix the coordinates of these points:

Si = (ai_l,bi) fori=l,...,h+\, Ti = {ci1di_1) for i = 1, ...,k

For systematic reasons that will become apparent in Section 4, we set

flo=l, ah+1 = rn- bh+l =

= t-2,
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and introduce the points S'0 = (a0,b0), S'h+l = (ah+1,bh+1), T'0 = (c0,d0), T'k+1 =

We say that a ladder is a one-sided ladder if it has no inside lower corners (or no
inside upper corners).

We define the lower border of Y to be the unique maximal chain with respect to
=̂  of Y which contains the points St for / = 1, ...,h+ 1. Similarly one defines the
upper border of Y.

The maximal elements under inclusion (facets) of the simplicial complex At(7)
associated with m(It(Y)) are characterized in the following way. Set Yx = Y, and for
all / = 2, ...,t— 1, define Yt to be the ladder which is obtained from Yi_1 by deleting
the lower border. The facets of At(Y) are of the form Gl U G2 U ... U G(_l5 where Gt is
a maximal chain with respect to =̂  of Yt, and Gi n Gj = 0 if / ¥"j, [10, 4.6].

The union of the lower borders of Yt for / = 1, ...,t— 1, is said to be the lower
border with thickness (t-\) of Y. The dimension of Rt(Y) is the cardinality of the
lower border with thickness (/— 1) of Y.

The minor [a,a+ 1, ...,a + r— 1 \b,b+ 1, ...,b + r— 1] is said to be the r-minor

based on (a, b), while [a —r+\, a —r+ 2,... ,a\b — r+I, b — r +2,... ,b] is said to be the

r-minor based under (a, b).

For / = 1,...,/?, consider the (t — 1 )-minor

based on the inside lower corner S\ of Y. Assume that either

is not in Y or it contains a point of the upper border of Y. Then, because of
Assumption (c) and since Y is r-connected, there exists a unique inside upper corner
T\ = {cpd^ such that S\ ^ T\ ^ (<af + / —2,6f + / —2). Consider the ladders Fx =
{(/>, ?) e Y: (c,, bt) < (^, <?)}, K = {(/?, 9) e r : (/>, 9) < (at, d,)}, see Figure 2.

S';

FIG. 2

The ring Rt(Y) is (isomorphic to) Rt(Y1)®KRt(Y2)/I, where / is generated by
(cj-ai+ l)(^-/?f+ 1) linear forms. Comparing the dimensions of Rt(Y), R^), and
/?t(^2X one has that height/ = {c^-a^ \)(dj-bi+ 1). The ring R£Y1)®KRt(YJ is
Cohen-Macaulay, so that / is generated by a regular sequence. Therefore the ring
Rt(Y) is Gorenstein if and only if both R^), and ^(^2) a r e Gorenstein. Since we are
interested on the Gorenstein property of Rt(Y), without loss of generality we may
assume the following.

ASSUMPTION (d). The (/— l)-minors based the inside lower corners of Y are in Y
and do not contain points of the upper border of Y.
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But in general one can not control the behaviour of the divisor class group under
specialization.

3. Some ideals of minors of Rt{Y)

In this section we introduce and study certain ideals of the ring Rt{Y) which are
generated by residue classes of (t— l)-minors of certain subregions of Y. These ideals
will play a fundamental role in the description of the divisor class group and of the
canonical class of Rt(Y).

From now on we fix T to be the lexicographic monomial order induced by the total
order Xxx > X12 > ... > Xln > X21 > ... > X2n > ... > Xm_ln > Xml > ... > Xmn. We
consider a ladder Y and refer to the notation of Figure 1.

For a subset Z of the matrix X, we denote by Fr(Z) the set of all the /--minors of
X which involve only indeterminates of Z, and by /r(Z) the ideal generated by the
elements of Fr(Z).

The first class of ideal that we consider is the following. For all the inside upper
corners T[ of Y we define At to be the set {(a,b)e Y: (a,b) ^ T't}.

FIG. 3

Then we denote by Pt{Y) the ideal It{Y) + It_x{Ad of K[Y]. Further set p^Y) =
Pt{Y)/It{Y). Whenever there is no danger of confusion we shall use the shorter
notation P{ and pt.

PROPOSITION 3.1. For all the inside upper corners T\ of Y, one has
(a) Ft(Y) U Ft_x(At) is a Grobner basis of Pi with respect to z;

(b) the ideal Pt is prime, and height i> = height/((Y) + 1 if Pt # It{Y).

Proof. Let Yx be the one-sided ladder with just one inside corner in T[ = (ct, dt).
Let us denote by A the subset {(p, q) e Yx: (p, q) ^ (c(, dt)} of Yv It is clear that
Y £ Yy, and At<= A, see Figure 4.

A

T;

FIG. 4

Let us denote by P the ideal Pl(Y1) = l ^ + I^A). By [7,4.3], the set
[) F^iA) is a Grobner basis of P. Further if MeFt{Yx)\) Ft_x{A), and

in(M)eK[Y], then MeK[Y]. By 1.2, (iftyj U Ft^(A)) n K[Y] is a Grobner basis and



460 ALDO CONCA

a set of generators of P n K[Y]. But (Ft(Yx) U / u ( ^ ) ) n K[Y] = Ft(Y) U ^ K ) , hence
Pt = P n £[X]. Therefore i^T) U /?_XU,) is a Grobner basis of P{. Further i> is prime,
since P is [7, 4.6].

In order to compute the height of Pt, one considers the ladder which is obtained
from Y by adding the point (ct+ l,dt + 1). Arguing as in the proof of [7, 4.4] one
obtains the desired result.

Now we consider another class of ideals of Rt(Y). Given a set Z of consecutive
rows or columns of X, consider the ideal It{Y) + It_l(Y(\Z) generated by the set
Ft(Y) U Ft_x(Y (] Z). We are mainly interested in the case when Z is a set of (t—l)
consecutive rows or columns. It is known that the ideal It(X) + It_x(Z) is prime, see
[4, 6.3]. We want to use 1.2 again in order to deduce that It(Y) + It_i(Y(] Z) is prime.
But first we need to have a Grobner basis of It(X) + It_1(Z) with respect to T.

PROPOSITION 3.2. Let Z be a set of consecutive rows or columns ofX. Then the set
Ft{X) U Ft_x(Z) is a Grobner basis of It(X) 4- It_x{X) with respect to x.

Proof. Because of 1.1, it is enough to consider only the case in which Z is a set
of consecutive rows. Let Z = {Xtj: a ^ i < b), and set Xx — {Xtj: a ^ i ^ m), and
X2 = {Xij:l^i^b). By [10,2.4], the sets Ft{X), Ft_x{Z), Ft{Xx) U Ft_x{Z) are
Grobner bases with respect to T. Because of 1.1 the same holds for Ft{X2) U Ft_x{Z).
We apply 1.3(c), with F = Ft{X) and G = Ft_x{Z). Take / = [a19..., a j ft,..., 0t] e F,
and g = [yx,...,yt_1\S1,...,St_1]eG. lffeFt(Xx), since FJiXJ U Ft_x(Z) is a Grobner
basis, there exists heIt(Xx) ft It_x{Z), such that in(/i) = lcm(in(/),in(^)). But

and therefore heIt(X)(]It_x(Z) as desired. One argues similarly iffeFt(X2). So we
may assume f$Ft{Xx) U Ft(X2), that is, ax < a, and ixt > b. If gcd(in(/),in(g)) = 1,
then lcm(in(/),in(g)) = in(/)in(g), and we may take h =fg. Hence we may also
assume that gcd ( in(/) , in(g)) # 1. In other words, the main diagonals of/and g share
some element. Let V be one of these elements. Then there exist integers / andy, with
\ <i < t, and 1 <y < t—l, such that V = ( a ^ ) = (fy,^). If i <j, then the first j
points of the main diagonal of/, and the last t— 1 — / of the main diagonal of g form
a diagonal in X2 with at least t elements, see Figure 5.

Therefore there exists a t-minov fxeFt(X2), such that lcm(in(/i),in(g)) divides
lcm (in(/) , in(g)), say lcm(in(/),in(g)) = \cm(in(fx),'m(g))v. We know already that
there exists hxeIt(X) ft It_x(Z), such that in(hx) = \cm(in(fx),in(g)). Hence in(vhx) =
lcm(in(/),in(g)), and vhxeIt(X) n It_x{Z\

If / ^ j , then the first / points of the main diagonal of g and the last t —j of the main
diagonal of / form a diagonal of X2 with at least / points, and we may proceed as
before. This concludes the proof.

Now repeating the argument of 3.1 one obtains the following proposition.

PROPOSITION 3.3. Let Y be a ladder and let Z be a set of consecutive rows or
columns of Z. Then

h(Y) + IUY0Z) = [lt{X) + lt_x{Z)] (\K[Y],

and Ft(Y) [j Ft_x(Y[] Z) is a Grobner basis of It(Y) + It_x(Yf]Z). In particular
It_x(Y()Z) is prime, since It(X) + It_x(Z) is.
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We want to evaluate the height of It(Y) + It_1(Y(] Z). For our purpose we may
restrict our attention to the case in which Z is a set of (7—1) consecutive rows or
columns.

PROPOSITION 3.4. Let Y be a ladder, and let Z be a set of(t-l) consecutive rows
(respectively, columns) of X, say Z = {Xi}: a < i < a + t}, with 0 ̂  a ^m+\—t
(respectively, Z = {Xt}: b <j < b + t}, with O^b^n+l—t). One has the following.

(a) If a = 0, or a = m+l—t, (respectively 6 = 0 or b — n+l—t) then
height [/,(Y) + It_x( Y(]Z)] = height /,(Y)+l.

(b) IfO < a < m+ l-t, and there exists a', such that (a,a'),(a + t,a' + t-2)e Y
(respectively ifO < b < n + 1 - 1 , and there exists b', such that (b', b), (b' +1 - 2, b +1) e Y),
then height[It(Y) + It_,(Yf] Z)] = heightIt(Y)+1.

Proof. Assume that Z is the set of the first or last (/—I) rows or columns. Then
It(Y) + It_1(Y(]Z) can be interpreted as an ideal cogenerated by a minor in a ladder,
as introduced by Herzog and Trung in [10]. So (a) is a consequence of [10, 4.2], and
1.1.

Under the hypothesis (b), the shape of the ladder locally looks like Figure 6.

(a, a')

1
(a + t, a' + t-2)

I I I I I I
I I I I I I

FIG. 6

Since 7 t_1(rnZ)#0> then height[It(Y) + It_x(Y0 Z)] ^ heightIt(Y) + \. In
order to show that height[It(Y)+ It_1(Yf]Z)]^ heightIt(Y)+\, we show that
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(a, a')

1
1

I I I I I I
i i i i i i

t,a' + t-2)

FIG. 7

height in(It(Y) + It_x(FnZ))^ height in(It(Y))+l. Because of 3.3, the ideal
in(/f( Y) + It_x( Y D Z)) is associated with the simplicial complex A of the subsets of Y
which do not contain /-diagonals of Y and (t— l)-diagonals of YftZ. Note that
A c: \(Y), and \{Y) is pure. So it is enough to show that A has a facet which differs
from a facet of At(Y) in exactly one point. This facet is constructed in the following
way. Take a facet G of At(Y) which contains the points marked in Figure 7. The
unique (t— l)-diagonal of points in Z n G is

Then consider G' = G\{(a + t—\,a' + t — 2)}. By construction G'eA.
In the case in which Z is a set of consecutive columns one argues similarly.

4. The divisor class group of Rt( Y)

We deal first with ladders which satisfy Assumption (d). At the end of this section
we shall briefly indicate how to determine the divisor class group of Rt( Y) when Y
does not satisfy Assumption (d).

One of the simplifications that we get from Assumption (d) is that the height of
the ideals It(Y) + It_l(Y(]Z), with Z a set of (t— 1) consecutive rows or columns of
X, and the height of the ideals Pt, is always one more than that of It(Y).

For all / = 1 , . . . , h+1 , denote by Ft the (t— l)-minor based on the outside lower
corner St of Y. Similarly, denote by Gt the (/— l)-minor based under the outside upper
corner T{ of Y. Further denote b y / t and gi the residue classes of Ft and Gt in Rt(Y).
S e t / = / 1 / 2 .../ft+1, and F = FxF2... Fh+V We begin with the following lemma.

LEMMA 4.1. Let B be the set of points of the lower border with thickness (t— 1) of
Y, and let C be the set of the points of the upper border with thickness (t-l)ofY. Let
Yx = {PeY:P^(ax,bx + t-2)}, let Y2 = {PeY: P^(cx-t + 2,dx)}, let BX = B\YX,
and let Cx = C\Y2. Then Yx and Y2 are subladders of Y, and one has

n1]. (1)

ii1], (2)

I, ( 3 )

where K[B] is the polynomial ring over the field K in the set of indeterminates B. The
rings Rt{Yx) [Bx] and Rt(Y2) [Cx] are the polynomial extensions of Rt{Yx) and Rt(Y2) with
the indeterminates in the sets Bx and Cx. Further fxx is the residue class in Rt(Yx)[Bx] of
the minor Fx, and gxx is the residue class in Rt(Y2)[Cx] of the minor Gx.
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Proof. Clearly Yx and Y2 are ladders. Consider K[BX U Yx], the A^-subalgebra
of Rt(Y) generated by the residue classes of the elements in the set Bx\) Yx. For
all {a,b)e Y\BX U Yx, the /-minor which is obtained from Fx by adding the row with
index a and the column with index b is in Y. Expanding this minor with respect
to the last row we get XabF1 = HmodIt(Y), where H is a polynomial which
involves only indeterminates in B1 U Yx. It follows that fx xab e K[BX U Yx]. Therefore
K[B1{jY1][f-1] = Rt(Y)[f-1]. By the dimension formula of Herzog and Trung
[10,4.7], one has dim Rt(Yx)+ \BX\ = dim Rt(Y). Therefore the only relations in
K[BX U Yx] are the Mninors of the ladder Yx. One concludes that K[BX U Yx] [f^1] =*
Rt(Yx)[Bx][f-l]. Similarly one proves (2).

Since R^Y)]/'1] = Rt(Y)\fi~l J~*\ •••Jllil (3) follows from (1) by induction on
h. One has only to note that the outside lower corners of Yx are S2,..., Sh+1, and that
ft, as an element of K[B], is the determinant of the corresponding matrix of
indeterminates, that is, Fv

We have seen that, after inversion of/i , . . . ,fh+x, the ring Rt{Y) becomes a factorial
ring. Hence, by Nagata's theorem [8,7.2], the divisor class group of Rt(Y) is
generated by the classes of the minimal prime ideals of/15... ,/ft+1.

We know already some minimal prime ideals of ft. Denote by Z4 the set of the
rows, and by Z\ the set of columns of the minor Ft. Consider the ideals

Ql Y) = It( Y) + It_x{ Y 0 Z() and &'( 7) = /,(7) + /,_,(Y 0 Z{).

Denote by qt(Y) and q't(Y) the ideals Qt(Y)/It(Y) and Q't{Y)/It(Y) of Rt{Y). Further
set Jt = {j: (at +1 — 2, bt +1 — 2) ^ T,}. By definition, Jt = {j:ftEpy}, and it is clear that
Jt is a set of consecutive indices.

Because of 3.1, 3.3 and 3.4, the ideals q(, qt', and p̂  for jeJt, are height 1 prime ideals
of Rt(Y), and they contain/(. We want to show that they are the only minimal prime
ideals of fv

In order to be more flexible, and to use inductive arguments, we enlarge the class
of ideals under consideration. Let S be a point of the lower border of Y which has first
coordinate 1, say S = (l,b). Assume that bx^b < n-t + 2. Let W be the 0 - 1 ) -
minor based on S, and denote by w its residue class in Rt(Y). Define Js to be set
{j: we?,}. For all jeJs, let A] = {Pe Y:SX^P^ T]}, and let I, = I ^ + I^A;).
Then denote by Ĵ  the ideal IJIt{Y) of Rt(Y). Further denote by Zs the set of rows,
and by Z^ the set of columns of W. Let QS{Y) = It(Y) + It_x(Y<\Zs) and Q'S{Y) =
It(Y) + IUYHZ's). Finally set qs(Y) = Qs(Y)/It{Y), and q's{Y) = Q's{Y)/It{Y).

Whenever there is no danger of confusion we shall use the shorter notation Q0 qf,
Qs,<*s, 6;, etc. . . .

We show that the ideals qt, q[, p; behave well with respect to the isomorphisms (1)
and (2) of 4.1.

LEMMA 4.2. (a) Let Yx = {Pe Y: P < (ax,bx + t-2)}, and let j ' be the integer such
that JX = {\,...J'}. Consider the isomorphism R^Y)]/'1] ~ i?t(71)[£1][/;;1

1]. Then we
have the following.

(i) For alii = 2,... ,/J + 1, the ideals qt(Y) R^if'1), and qfflRtWlK1] are
mapped to the extensions of the ideals q^TO, and q^^^).

(ii) For allj > / , the ideal p}(Y) Rt(Y) [fi1] is mapped to the extension of the ideal
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(b) Let Y2 = {Pe Y: P < ( q - f + 2,^)}, and let ix = min{i: ai > c^ + t-2). Con-
sider the isomorphism Rt(Y)\g\l\ ^ ^ ( ^ [ Q l t ^ i i ] - Then we have the following.

(i) For all i = 1,..., ix, the ideal qi(Y)Rt(Y)[g1~
1] is mapped to the extension of the

principal ideal generated by the (t— \)-minor of Cx based under {at_x + t — 2, n), and the
ideal c\'i(Y)Rt(Y)[g1~

1] is mapped to the extension of the ideal q'̂ CK,), where Ut is the
point of the lower border of Y2 with coordinates (cl — t + 2,bi).

(ii) For all i = ix + 1,..., h + 1, the ideals qt( Y) Rt( Y) \g~l] and qt'( Y) Rt( Y) fa1] are
mapped to the extensions of the ideals qi+1_t (Y2), and qt'+1_fi(JQ.

(iii) The ideal px( Y) Rt{ Y) fa1] is mapped to the extension of the ideal qx( Y2), and for
all i — 2,...,k, the ideal p,(Y)Rt(Y)fax] is mapped to the extension ofp

Proof. For all / = 2, . . . , / i+ 1, the image of the ideal qi(Y)Rt(Y)[fl1] contains
the ideal q^C^) RfiYJ [Bx] [/u1]- Both are height 1 prime ideals, and so equality holds.
The same argument works in all the other cases of (a) and (b), except one. In the
statement (i) of (b), if at_x = ct-t + 2, then g1ec\i(Y) and therefore

On the other hand, the minor of Cx based under (at _1 + t — 2,n) = (cx,n) = Tx is gu,
so that the assertion holds in this special case, too.

For later applications we need the following.

LEMMA 4.3. Let A be a commutative ring with 1, and let U be a pxq matrix
with entries in A and rank U < t. Then for all 1 ^ y u < ... < ylt_1 ^ p, 1 < y21 < ...
< y2t-i </>, 1 < <5n < ••• < <5U_! ^ q, 1 ^ S21 < ... < d2t_! ^ q, one has:

Proof We may assume A is Z[X]/It(X) with X a generic p x q matrix and U is
the residue class of X in A. After rows and columns permutations, we may also
assume that yu = S2i = i for all / = 1,...,/— 1. Then the desired equality is obtained
applying the straightening law, [4, 4]. Alternatively, one may note that the equation
says that the 2-minors of /Y"1 U vanish, and that holds since rank /Y"1 U ^ 1.

LEMMA 4.4. Let S = (\,b) be a point of the lower border of Y with b1^b ^
n — t + 2 and let w be the residue class in Rt(Y) of the (t— \)-minor based on S. Then

Proof If Js = 0 , then by 4.3, qsq5 e (w). If Js # 0 , then there exists / such
that Js = {j: 1 ̂ y < / } . The sets Zs f) Y and A[ are contained in the submatrix
{PE Y: SX ^ P ^ T\) of Y. Furthermore for ally = 1,... J ' - 1 , the sets Zs n ^ ' and
^'+ 1 are contained in {Pe Y: Sx ^ P ^ r?'+1} which is a submatrix of Y, too.

By induction on j for y = 1,...,_/', and using 4.3, one shows that q s ^ - - - J^
c: It_x{Zs n ^ ) + / t (^) / / t (y) . Finally, since the set of the points of Z's n X which are
involved in some (t— l)-minor of Z's n F, and the set Z s n ^ , are both contained in
{Pe Y: S1^ P ^ rj.}, one may again use 4.3, and one obtains

Of course the lemma holds also if we consider (t— l)-minors based under the
upper border of Y. As a consequence we have the following corollary.
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COROLLARY 4.5. Let S = (1,6) be a point of the lower border of Y with bx^b <
n — t+l, and let w be the residue class in Rt(Y) of the (t— \)-minor based on S. Then
height(w,#1) = 2.

Proof Let p = P/It( Y) be a prime ideal of Rt( Y) which contains w and gv Then,
by 4.4, p contains one of the ideals qs, q ,̂ Ĵ  for jeJs. Suppose that p contains qs or
q .̂ Then height p ^ 2, since qs and q̂  are prime ideals and do not contain gv

Therefore we may assume that Js ¥" 0 and Ja <= p for some <xeJs. We may argue in
the same way also with respect to gl5 and hence we may assume that P contains the
ideal It( Y) + /^CD^), where the region Z)a/? is contained in Y and has shape as in
Figure 8.

L

T'a

i

FIG. 8

It suffices to show that heightIt(Y) + 7^(2)^) > heightIt(Y)+\. To this end
let us consider the ideal L generated by the leading monomials of the elements
in /ftJOu/uCAtf)- Then L^'m{It{Y)\jIt_x{D^), and it is enough to show that
height L > height in(/(( Y)) + 1. Let A be the simplicial complex associated with L, and
let G be a facet of A. Since A is a subcomplex of the simplicial complex At(Y)
associated with 'm(It(Y)), there exists a facet H of A,(7) which contains G. We claim
that \H\G\ > 1. The claim implies that height L > heightin(/(( Y)) + 1.

Now we prove the claim. We know that / / has a unique decomposition as
Hx U H2 U ... U //(_!, where Ht is a maximal chain of Yi and i/4 fl i/^ = 0 if i #y.
Set Pi = min{p: (p,da + i+l — t)€Hi}, and Et = (p0da + i+\-t) for all / = 1 , . . . ,
t— 1. Note that pt is well defined since every maximal chain in Yt contains at least
one point in every row and column of Yt. Further p1 <p2 < ... <pt-1, and Et =
(Pi> da + i+\ — t)eDap. The points E^...,Et_x form a (/ — l)-diagonal in Dap. Therefore
{Elf...,£t_x} cj: G. Then there exists / such that E^G. Note that the point Et in the
chain Hi precedes the point (pi,da + i + 2 — t). Repeating this argument with respect
to 5 ,̂ and exchanging the role between rows and columns, we find a point
E'} = (a^+y,^)e/^\G and such that E\ in the chain Hj precedes (ap+j— 1,^). Hence
£t # E] and \H\G\ > 1.

Then we obtain the following proposition.

PROPOSITION 4.6. Let S = (\,b) be a point of the lower border of Y with b1^b ^

n — t + 2, and let w be the residue class in Rt(Y) of the (t— \)-minor based on S. Then

the ideal (w) is radical and its minimal prime ideals are qs, q^, and p} withjeJs.
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Proof. First assume that Js = 0. By virtue of 4.4, qsq's <= (w) and the desired
conclusion follows from the normality of Rt(Y).

Now assume that Js ^ 0, say Js = {j: 1 ̂ y ^ y ' } . In this case b < n — t + 2, and
w,g1 is a regular sequence. To simplify the notation, set A = R^Y)^1]. So it is
enough to show that (w)A is radical and that its minimal prime ideals are c\sA, q'sA
and PjA with ye Js.

Because of 4.1(2), we have A ~ /?((JQ [CJ [gnL where

C is the upper border with thickness (t — 1), and C1 = C\}^. By 4.3, we have wg1 =
w'u, where w' is the (/— l)-minor based on the point 5" = (c1 + 2 — t, b) of the lower
border of Y2, and v is the (t— l)-minor of 7 based on (\,n + 2 — t), see Figure 9.

Si

w'

FIG. 9

In the ring A, we have w = g~1vw'. The element o is a prime element in
Rt( Y2) [CJ \g\l\ since it is the determinant of a matrix of indeterminates. By induc-
tion on the number of the inside upper corners, we may assume that (w') is radical
in /^(X,)' and that its minimal prime ideals are qS'(K>), q's(Y2) and p'i(Y2) with ye Js, =
{y: 1 ̂ y < / — 1}. Since (w')A and (v)A are radical ideals with no common minimal
primes, it follows that (w) A is radical, and its minimal prime ideals are (v) A and those
of (w')A. As in the proof of 4.2 one shows that the ideals (v)A, qs,(Y2)A, q's,{Y2)A,
Pj(y2)v4, ...,pr_1(Y2)A coincide with the ideals qsA, q'sA, plA, ...,pyA, respectively.

PROPOSITION 4.7. For all i= \,...,h + \, the ideal ( / ) of Rt( Y) is radical and its
minimal prime ideals are q(, q- and p} withjeJv

Proof. We argue by induction on the number of inside lower corners h. If
h = 0, the statement is a particular case of 4.6. Let h > 0, and let 1 ^ / ̂  h +1.
For / = 1, the statement is again a particular case of 4.6. So we may assume that
/ > 1. First of all we determine the minimal prime ideals of/. The minimal prime
ideals of/ in Rt(Y) are the minimal prime ideals of/ in R^Y)^1], together with
the minimal prime ideals of / which contain / . We know the minimal prime
ideals o f / ; to determine those of fR^Y)^1] , we use the isomorphism 4.1(1).
By induction and using 4.2, we obtain the desired result.

Since Rt( Y) is normal, the ring Rt( Y)v is a DVR for all height 1 prime ideal p of
Rt{Y). Let us denote by vp the discrete valuation on - In order to show that
(ft) is radical, it is enough to show that vv{f^) = 1 for all the minimal prime ideals p
of/,. By induction, (ft) is radical in Rt(Y){f^] and in R^Y)^-1]. But height(f^gj
= 2, and then vv(fy = 1, for all the minimal prime ideals p of/..

We are ready to determine the divisor class group of Rt{Y).
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THEOREM 4.8. Assume that Ysatisfies Assumption (d). Then the divisor class group
C\(Rt(Y)) ofRt(Y) is free of rank h + k+l. Furthermore

cl (q x ) , . . . , cl (qA+1), cl ( p x ) , . . . , cl (pfc)

form a basis ofC\(Rt(Y)).

Proof. By virtue of Nagata's theorem [8, 7.2] and 4.1(3), Cl (Rt( Y)) is generated
by the classes of the minimal prime ideals of f=f1...fh+1. We know already the
minimal prime ideals of/: they are {ql5...,qA+1,q[,...,q'h+1,p15...,pfc}. Since (ft) is
radical in Rt(Y), we have

(0
jeJ(

Repeating the argument of [4, pp. 94] one shows that the relations between the classes
of the minimal prime ideals of/are linear combinations of the relations (/)• Then using
the relation (/), we get rid of cl (q(') and the desired result follows.

The basis of C\(Rt(Y)) which is given in 4.8 is in some sense the most natural.
We will call it 'the basis' of C\(Rt(Y)).

Now we want to indicate briefly how to determine the divisor class group of Rt( Y)
in the general case, that is, when Assumption (d) need not to be satisfied. We classify
the inside corners of the ladder Y in two types.

We say that the inside lower corner S't = (at,bt) is of type 1 if the (t— l)-minor
based on S't is contained in the ladder Y and contains at most one point of the upper
border (note that, if this is the case, this point must be (at + t — 2,bt + t — 2)).

Moreover we say an inside lower corner is of type 2 if it is not of type 1. Similarly
one defines inside upper corners of type 1, and 2. Because of Assumption (c) and since
Y is /-connected, the inside lower corners of type 2 are in one-to-one correspondence
with the inside upper corners of type 2.

Figure 10 illustrates two examples of corners of type 1, and two examples of
corners of type 2.

Typel Typel Type 2 Type 2

F I G . 10

Let h* be the number of inside lower corners of type 1, and let k* be the number of
inside upper corners of type 1, of Y.

The isomorphisms of 4.1 do not depend on Assumption (d). One can determine
the minimal prime ideals of ft, and prove that (ft) is radical using the same sort of
arguments as in 4.4,4.5,4.6, and 4.7. It turns out that each inside upper corner of type
1 determines one minimal prime ideal off=f1...fh+v while each inside lower corner
of type 1 determines two minimal prime ideals off. Further each pair of corresponding
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inside lower corner and inside upper corner of type 2 determines two minimal prime
ideals of/ The set of the minimal prime ideals of/ is complete if one considers also
the ideal generated by the (t— l)-minors of the first (t — 1) rows, and the ideal
generated by the (t— l)-minors of the first (/—I) columns. So / has
2h* + k* + 2(h — h*) + 2 minimal prime ideals. Since ( / ) is radical, one has h+\
relations between the classes of these ideals in the divisor class group. Again these
relations generate all the relations. Therefore the divisor class group is free of rank

5. Canonical class and Gorenstein property of Rt(Y)

Let Y be a ladder which satisfies Assumption (d). Let cl (co) be the canonical class
of Rt( Y) and let cl (co) = £*+J Xt cl (qt) + £*=1 d} cl (p3) be the unique representation of
cl(co) with respect to the basis of C\{Rt{Y)). Our goal is to express the coefficients Xt

and di in terms of the shape of the ladder. This has already been done by the present
author if Y is a one-sided ladder or if t = 2 [7, 2.4, 4.9]. As we shall see, the general
case can be reduced to the case of a one-sided ladder by means of suitable
localizations.

THEOREM 5.1. Let cl(co) be the canonical class of Rt(Y), and let

be the unique representation ofc\(co) with respect to the basis ofC\(Rt(Y)). Set ij =
min{/: 1 ̂  / ^ h+\,at > c}-t + 2}. Then:

Proof. We first determine kt. Denote by B the lower border with thickness {t — 1)
of Y. Consider the set Yr = {peY:{ai + t-2,bi)^p=$(ai_vbi_1 + t-2)}, and put
Z = B\J Yv Note that YY is a one-side ladder and its outside lower corner is Sf.
Figure 11 illustrates these sets by one example; here / is taken to be 2 and the shaded
region represents Z\YV

A
A
A

FIG. 11

Denote by K[Z] the A -̂subalgebra of Rt(Y) generated by the elements of Z. As in
the proof of 4.1 one shows that Rt(Y)[fj1:j^i\ = K[Z][fj1\j^i\. Again by
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dimension considerations, the only relations among the elements of Z are the
/-minors of Y^. Therefore we have an isomorphism

a: Rt{ Y) [fj1:7 # i] > Rt( YJ [Z\ yj [zj1: j * i\

where the elements zi are the images of the fr For simplicity of notation we set A =
RtiYj) [Z\ 7J [zj1: j 7̂  /]. The element z} does not belong to any of the minimal prime
ideals of/( in Rt(Y^) [Z\7J, so that/i5zi is a regular sequence in R^YJ[Z\ Y^. Since zi

is a matrix of indeterminates (hence a prime element) in i?t(^)[/71,Z\3^], it follows
that zj is prime in Rt{Y^)\Z\Y^. By Nagata's theorem [8, 7.2 and 8.1] the canonical
map

is an isomorphism. Composing the natural surjection

Cl (*,( Y)) > Cl (Rt( Y) [/71: j # ,

with yr1, we obtain a surjection

</>:C\(Rt(Y))

It is easy to control the behaviour of the elements of the basis of Cl (Rt(Y)) under 0.
(1) If y#* then (\jRt(Y)[fj1:j^i\ = Rt(Y)[fj1:j^i\ and the class cl(q,) is

mapped to 0.
(2) The (image under a of the) ideal ^R^Y)^1,] #= /] contains q^Y^A. Hence

they coincide because both are prime ideals of height 1. It follows that <fi maps cl (q4)
tocl(q0(71)).

(3) If ps contains one of the^ fory # /, then cl (ps) is mapped 0. The other classes
cl(ps) are mapped bijectively to the cl(pg(I^)).

We claim that 0 maps the canonical class of Rt(Y) to the canonical class of R^Yj).
From the claim it follows that Xi is the coefficient of cl (qo( YJ) in the expression of the
canonical class of -Kf(̂ i) ^vith respect to the basis of Cl(i?((}^)). Then, by virtue of
[7, 4.9], kt is equal to the difference between the number of rows and the number of
columns of Y^, that is, Xt = (ai + bi) — (ai_1 + bi_1).

Now we prove the claim. Canonical modules behave well with respect to
localizations and polynomial extensions. So y/ maps the canonical class of Rt{Y^) to
a canonical class of A. Further the canonical class of Rt{Y) is mapped under the
natural surjection to a canonical class of A. Therefore the claim follows if we show
that the ring A has a unique canonical class. By [3, 3.3.17], it suffices to show that
the Picard group of A is trivial. Note that the element zt of the ring /?t(*i) [Z\ 7J is a
(t— l)-minor of a matrix which has (at least) a row or a column whose entries
are indeterminates of the set Z\YX. If the z} involve only elements of Z\YX, then
it follows from 6.2 that Pic (,4) = 0. Otherwise denote by / the set {j: zt involves
elements of 7J. For jeJ, consider the expression of zi as a polynomial in the indeter-
minates Z\ Yx with coefficients in Rt{Y^). These coefficients are minors of size less than
(/-1) of the lower border with thickness (f — 1) of Yv For all je J, we pick c}, one
of the coefficients of zp and set c = \[jeJ c}. Since the cj are prime elements of Rt{Y^),
see 6.3, they are prime elements of A. Hence, by 6.1, the canonical map Pic(^4) -*•
Pic(A[c~1]) is injective. Now note that A[c-i] = (Rt(Y1)[c-1])[Z\Y1][zj1:j*il It
follows from 6.2 that Pic^c"1]) = Pic (^(^[c"1]), and further, by virtue of 6.4, one
has Pic(RtiYJlc-1]) = 0. This shows that Pic(,4) = 0.
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Finally we determine d}. The argument is similar to the one we used in the previous
case, so we shall just indicate the main steps. Let Yx be the set

Denote by B (respectively, C) the lower (respectively, upper) border with thickness
(f-1) of r. Then set

Z = Yx U {peB:p = (x,y),x> at) \}{peC:p = {x,y),x ^ c,}.

The set Yx is a one-sided ladder with its outside lower corner in (cj — t + 2, bi). Figure
12 illustrates these sets by one example; here j is taken to be 2, i2 is 3, and the shaded
region represents Z\YV

t
i
i
i
i
i
i

'A

///// //
FIG. 12

One shows that

RMlg;1,/;1, l ^ r <./,/, < ̂  /> +1] = K[Z)\g;\f;\ l ^ r ̂ j,it < s ̂  h +1],

where K[Z] is the #-subalgebra of Rt(Y) generated by the element of 2. It follows that

\w:\ 1 ^ r ^j,i, < s ̂  h+\],

where the zr are the images of the gr and the ws are the images of the/s. The elements
ir and ws are prime in ifyTiM-A^J- On e obtains a surjective map 0: C\(Rt(Y))-^>
CliRtiYJ). The Picard group of ^ ( y j ^ r j ^ . w ; 1 , 1 ^ r^j,i, < s ^ h+\) is
trivial. Hence $ maps the canonical class to the canonical class. Furthermore
fld (qj) = 0 for all i = 0,... ,h + 1, 0(cl (Pi)) = 0 if i < y, 0(cl (p,)) = cl (qo( 7,)), and
the other classes cl (p() which do not vanish under (j> are mapped bijectively to the
elements cl (p(( YJ). Then, by [7, 4.9], S} is equal to the difference between the number
of rows and columns of Yv that is, 5i = (at +bt +t — 2) — (cj + d} — t + 2).

The following theorem is immediate.

THEOREM 5.2. Let Y be a ladder which satisfies Assumption (d). Then the ring
Rt(Y) is Gorenstein if and only ifm = n, the lower inside corners ofY lie on the diagonal
{(i,j)eX: i+j = (m+ 1) — (t — 2)}, and the upper inside corners of Y lie on the diagonal
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6. The Picard group of localizations of one-sided ladder determinantal rings

The purpose of this section is to show that the Picard group of certain
localizations of ladder determinantal rings associated with one-sided ladders is trivial.
We need this fact to complete the proof of 5.1.

The Picard group Pic(i?) of a normal domain R can be identified with the
subgroup of Cl (R) of all the classes of invertible (that is, projective) fractionary
ideals. It is well known that Pic (R) = 0 if R is a local ring or if R is a finitely generated
positively graded A>algebra, say R = © i > o i ? ( with Ro — K a field, see [8, 10.3].

We start with some preliminary results.

LEMMA 6.1. Let Rbe a normal domain and S be a multiplicative subset of R. If the
ideals of the set {P: P is prime of height 1 ofR and Pft S ^ 0} are principal, then the
natural map Pic (R) —• Pic (Rs) is injective.

Proof. By Nagata's theorem [8, 7.2] the map Cl (R) -> Cl (Rs) is injective. It
follows that the map Pic(i?) -• Pic(/?s) is injective too.

PROPOSITION 6.2. Let Rbe a normal domain. Let R[X^ ..., Xn] be a polynomial
extension of R and let z15 ...,zp be prime elements of R[XV ...,Xn]. Assume that the
coefficients of the polynomial Zj generate the unit ideal for all j = 1,...,p. Then the
natural map Pic(R) -> Pic(R[XV ...,Xn][z\x,...,z"1]) is an isomorphism.

Proof. Denote by A the ring R[Xlt ...,Xn] [z~\ ..., z"1]. By [8, 7.2, 8.1] the natural
map C\(R) -> C\(A) is an isomorphism. Then the map Pic(i?) -> Pic (̂ 4) is injective
and it remains to show that it is surjective. We claim that A is a faithfully flat J^-algebra.
Flatness is clear. By virtue of [12, 7.2] it suffices to show that any maximal ideal m of
R extends to a proper ideal of A. By contradiction, if mA = A, then mi?[A\,...,Xn]
contains one of the zr But this is impossible because of our assumption.

Now let J be a projective ,4-module of rank one. Since Cl (R) -* Cl (A) is an
isomorphism, there exists a divisorial ideal / o f R such that I®RA ~ / , and we have
to show that / is projective. For any /^-module iV and any integer i > 0, one
has ExtpC/,N)®RA ~ Exti

A(J,N®RA) = 0. Since the extension is faithfully flat,
Ext(

R(/, N) = 0. It follows that / is projective.

LEMMA 6.3. Let Ybea one-sided ladder and let B be its lower border with thickness
(t— 1). Let z be a minor of B of size less than (t— 1). Then z is a prime element in Rt(Y).

Proof. L e t / b e the (t— l)-minor based on the outside lower corner of Y. The
element z does not belong to the union of the minimal prime ideals of/, see 4.7.
It follows t h a t / z is a regular sequence in Rt(Y). By virtue of 4.1, z is a prime in

. It follows that z is a prime element in Rt(Y).

Now we are ready to prove the following.

THEOREM 6.4. Let Y be a one-sided ladder, and let B be its lower border
with thickness (t— 1). Let w1,...,wv be minors of B of size less than (t—\). Then
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Proof. We argue by induction on /. For t = 2 there is nothing to prove. So we may
assume that t > 2. Let w0 be the 1-minor xlv By virtue of 6.3, w0 is a prime element
in Rt(Y). Therefore, by 6.1, it suffices to show that Pic(Rt(Y)[\Vo\ ..., w'1]) = 0. We
have an isomorphism [7, 4.1]

Rt(Y)[x-J] ~ RUZ)[*„, • • •,Xln,X2l, . . . ,Xml)[X-\l

where Z is the one-sided ladder which is obtained from Y by deleting the lower border
with thickness 1. So that

Rt{Y)K\ ..., < ] = RUZ)[Xu,...,Xln,X21,...,Xml][X;l W~\ ..., W~v\

where the Wt are the images of wi for / > 0. The element Wi is a polynomial in
Xn,..., Xln, X21,..., Xml, Xi\, and among its coefficients there is always a minor ci of
the lower border with thickness (t — 2) of Z with size one less than the size of vt̂  (c^ is taken
to be 1 if the size of wt is 1), see the proof of [7, 4.1]. By virtue of 6.3, c( is a prime
element of Rt_x(Z). By 6.1, it suffices to show that the Picard group of

Rt_,{Z)[c~\ ...,c-1][Xu,...,Xln,X21,...,Xml][X~l, W2\ ..., W-1]

is trivial. By induction we know that Pic(i?t_1(Z)[c71,...,c^1]) = 0. Then the desired
conclusion follows from 6.2.

7. Some examples

We conclude the paper with some examples.

EXAMPLE 7.1. Consider the following ladders:

Y
-^1

— Y
1 — A n

-*25 "*35
Y Y

A2i ^34

2 3 3 3 4S

y/" r/" y
A21 ^31 A41

xu
Y ^13

1 J 2 ~ y
A12

I

^ 2 4

^ 2 3

^ 2 2

X2l

^ 3 4

^ 3 3

^ 3 2

^ 3 1

^ 4 3

Xi2

The rings R3( Yx), R3( Y2) are both complete intersection, hence Gorenstein. The point
(3,3) is an inside upper corner of type 2 of Yv while (3,3) is an inside upper corner
of type 1 of Y2. Therefore C l ^ T O ) = Z2, and C\(R3(Y2)) = Z3.

EXAMPLE 7.2. Consider the following ladder:

Y Y
^26 ^36

Y = X2i X34 XAi Xbi Xu X1X

Y Y Y Y Y Y
^23 ^ 3 3 "^43 ^ 5 3 "^63 "^73

Y Y Y Y Y Y
^22 "^32 ^42 ^52 "^62 -^72

X$i X6l X71

The ladder satisfies Assumption (d) with respect to t = 3. Then C\(R3(Y)) = Z4. The
ring R3(Y) is not Gorenstein because the inside corner (4,4) does not lie on the
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diagonal {(x,y): x+y = 9}. By 5.1, the canonical class is clfaj. Thus px is the
canonical module of R3(Y). In this case px is generated by the residue classes of the
2-minors of the matrix

Y Y Y
A2i ^34 A 44
^ 2 3 ^ 3 3 ^ 4 3

X X X
22 32 42

Hence R3(Y) has Cohen-Macaulay type equal to 9.

EXAMPLE 7.3. Consider the following ladder:

Y=Xl

X2»

^ 2 7

^ 2 6

^ 2 5

^ 3 8

^ 3 7

^ 3 6

"*35

^ 3 4

xi7
^ 4 6

^ 4 5

^ 4 4

X43

%12

X57

^ 5 6

^ 5 5

^ 5 4

^ 5 3

X52

^ 6 4

^ 6 3

^ 6 2

^ 7 3

^ 7 2

The inside upper corner (5,4) is of type 2 with respect to t = 3, while (3,7) and
(6,3) are of type 1. Then C\(R3(Y)) = Z5. If we want to decide whether R3(Y) is
Gorenstein, we cannot apply 5.2 to Y directly since Assumption (d) is not satisfied.
We have first to split Y in accordance with Figure 2 of Section 1:

y y
^28 ^38 Y Y Y
Y Y Y Y 44 54 64

A21 A31 Ai7 Ab7
4 3 5 3 6 3 7

V 4 3 53 63 73

55
y Y Y Y

Y 42 52 62 72

y Y Y Y
Y Y Y 41 51 61 71

^34 A 4 4 ^54

Then by 5.2, R^Y^ and i?3(l^) are Gorenstein. Therefore R3(Y) is Gorenstein.
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