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Abstract 

We determine Grijbner bases of powers of ideals of maximal minors of generic matrices. Then 
we derive a formula for the Hilbert series of the rings defined by these ideals. @ 1997 Elsevier 
Science B.V. 

1991 Math. Subj. Cluss.: 13P10, 13C40 

0. Introduction 

Let K be a field, let X = (XQ) be an m x it, m 5 n, matrix of indeterminates over 

K, and let I,,, be the ideal generated by the m-minors of X. The aim of this paper is to 

show that the set of the elements of the form Ml . . ’ A4i, where the Mj are m-minors of 

X, is a GrGbner basis of the ideal Zi for all i E N with respect to a diagonal monomial 

order. 

The proof of this result is given in Section 2 and it is based on the fact that 

the powers of the ideal of maximal minors have a K-basis of standard monomials. 

Following the approach of Sturmfels [ 111, we employ the Knuth-Robinson-Schensted 

correspondence to compare the Hilbert function of Zk with the Hilbert function of the 

monomial ideal which is our candidate to be the initial ideal of ZA. 

In Section 3 we present two applications of our result. First we determine a sequence 

of indeterminates which is regular over K[X]/ZA for all i. Next we compute the Hilbert 

series of K[X]/Ii in the case in which X has size m x m + 1. 
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1. Notation and generalities 

Let R be a polynomial ring over the field K in the set of indeterminates X. A 

monomial of R is just a product of indeterminates. The set of all monomials of R 
form a semigroup which is isomorphic to NX. A monomial order z on R is a total 

order in the set of monomials of R which is compatible with the semigroup struc- 

ture. Given a polynomial f E R, consider the unique expression of f as linear 

combination of monomials, say f = 3.1 T1 + . . + i,T, where the Ti are monomials, 

E # Tj if i # j, and ij E K \ { 0). Th e initial monomial of f with respect to r, 

denoted by in&f), is the biggest monomial in the set {T,, . . . , T,}. Let now I be 

an ideal of R. One denotes by in*(Z) the ideal generated by the monomials in(f) 

with f E I. The ideal in(Z) is called the initial ideal of Z with respect to r. If 

the ideal Z is generated by the polynomials fi,. . . , fr, then the ideal in,(Z) need 

not to be generated by ini(f,) ,in,(fr). A set of polynomials f,, . . . , fr of Z is 

called a Grobner basis of I with respect to z if in.,( fi ), , in,( fr) generate in,(Z). 

Let Z and J be ideals of R. It follows immediately from the definition of initial ideal 

that in(Z C in,(ZJ). In particular one has in,(Z)’ C in,(Z’). In general the ideal 

in,(Z)’ is smaller than in(Z’). For example if R = K[X, Y], T is any monomial or- 

der such that X > Y, Z = (X2 + Y2,XY), then in,(Z) = (X2,XY, Y3), Y5 E Z2, and 

Y5 E im(Z*) \ in?(Z)*. 

It is an interesting problem to find classes of ideals Z for which the equality 

(*) in7(Z)’ = in,(Z’) 

holds for all i E N. 

Let F = fi,. . . , fr be a sequence of polynomials. Given a vector a = (al,. . , a,.) E N 

we denote by F” the polynomial ff’ . . . f?. Further we denote by F’, i E N, the set 

of the power products of degree i of the elements of F, that is, {F’ : al f. . . +a, = i}. 
Let F = fi,..., fr be a Grobner basis of an ideal Z. Then equality (*) holds if and only 

if F’ is a Griibner basis. Here is an example of a class of ideals for which equality 

(*) holds: 

Proposition 1.1. Let F = fi, . . . , fr be a set of polynomials of R and z a monomial 
order such that gcd(in,(h)),in,(fj)) = 1 f or all i # j. Then F’ is a Grdbner basis for 
all i > 1. In particular, ifZ denotes the ideal generated by F, then in(Z)’ = in.,(Z’). 

Proof. We may assume that f,, . . . , fr are manic polynomials. Denoted by in,(F) the 

sequence in(fi), . . ,in,(fi). Let F” and Fb be elements of F’, and consider the 

S-polynomial S(F’, Fb) = [in,(F)bFa - in,(F)“Fb]/ gcd(in,(F)a, in,(F)b). By Buch- 

berger’s criterion [3, 6.21, it is enough to show that S(Fa,Fb) can be expressed as 

c pdFd, where Fd E F’, pd E R, and in,(pdFd) < inr(S(F”,Fb)) for all d such that 

pd # 0. Let us denote by c the vector (min{ai, bl }, . . . , min{a,, b,}). We may write 

S(F”, Fb) = (in,(F)b-c - FbPC)Fa + (-in,(F)“-” + FaPC)Fb 
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and we have to check that this expression satisfies the above mentioned condition. 

To this end one has just to note that from gcd(in,(F>“-c,in,(P’)b-C) = 1 it follows 

in,(inT(F)b-” - P”)in@)” # in,(in,(F)a-’ - Fa-C)in,(F)b. q 

Remark 1.2. The proof of the proposition shows something more, namely, any 

subsets of F’ is a Grijbner basis. Sets with this property are called super G-bases, 

see [5]. 

2. Maximal minors 

Let K be a field, and let X = (Xij) be an m x n matrix of indeterminates, with 

m < II. We denote by K[X] the polynomial ring over K in the indeterminates Xi,, and 

by Il the ideal of K[X] generated by the t-minors of X. A monomial order r on K[X] 

is said to be a diagonal monomial order if the initial monomial of any minor of X is 

the product of the elements of its main diagonal. 

Narasimhan showed in [9] that the t-minors of X form a Grobner basis of It with 

respect to a diagonal monomial order. Other proofs of this result can be found in [4, 

7, 111. Our goal is to show: 

Theorem 2.1. The set {Ml . ’ .Mi: A41 , . . . ,A4i are m-minors of X} is a Griibner basis 

of I; for all i E N with respect to a diagonal monomial order z. In particular in(IA) = 

inr(Im)i for all i E N. 

We denote by [al,. . . , a, 1 bl, . . ..&I. 1 <al <... < a, 5 m, 1 < bl < . < b, < n, 

the minor det(Xa,b, ), i,j = 1,. . . , r, of X. Further, we define [al,. . . , a, 1 bl, , b,.] 5 

[Cl,. ..,Csldl ,..., d,]ifr>sandai<ci,bi<difori=l,..., s.Aproductofminors 

M, . . . MS is called a standard monomial if MI < M2 L: . . . < A&. 

The powers of the ideal I,,, of maximal minors of X have a K-basis of standard 

monomials. The set of all standard monomials A41 . . . A4, such that s > i and Mt , . . . , Mi 

are m-minors is a K-basis of IL, see [2, 9.31. 

This fact gives us the possibility to use the Knuth-Robinson-Schensted correspon- 

dence to determine a Grijbner basis of IA. The original Knuth-Robinson-Schensted 

correspondence is a one-to-one correspondence between standard bitableaux and matri- 

ces of non-negative integers, see [8, 111. Different versions of this correspondence were 

used by Sturmfels [ 111, Herzog and Trung [7], and Conca [6] to determine Griibner 

bases of classes of determinantal rings. 

We will employ the correspondence described in [7, Section 11. We denote this 

correspondence by KRS. Recall that KRS is a degree preserving bijection between 

the set of standard monomials of the matrix X and the set of ordinary monomi- 

als of the polynomial ring K[X]. Let J be the ideal generated by the initial mono- 

mials with respect to a diagonal monomial order r of the m-minors of X. One 

has 
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Lemma 2.2. Let A4 = M, . . .A4, be a standard monomial of X, and assume that 

Ml,. . . ,A4i are m-minors. Then KRS(M) belongs to J’. 

First we indicate how Theorem 2.1 follows from Lemma 2.2. 

Proof of Theorem 2.1. From Lemma 2.2 it follows that the standard monomial K-basis 

of Zk is mapped by KRS injectively to the monomial K-basis of J’. The dimension 

argument of [ll, Lemma 61 or [7, 2.41 implies immediately that J’ coincides with the 

initial ideal of Zk. 0 

Before starting the proof of Lemma 2.2, let us introduce a piece of notation. An m- 

diagonal of X is a monomial of the form Xi,, . . .X,,,,m such that al < a2 < . . . < a,,,. The 

m-diagonals are exactly the initial monomials of the m-minors of X. The partial order 

on the set of minors induces a partial order on the set of m-diagonals: Xi,, . . . Xma, < 

Xlb, ’ ’ .X,,,b, if ai 5 bi for all i = 1,. . . , m. Let T be monomial of K[X]. Set Tt = 7’. If 

TI is divisible by an m-diagonal, then there is a unique m-diagonal D1 which divides T, 

and it is minimal with respect to this property. In this case one may write Tl = DI T2. 

If T2 is divisible by an m-diagonal, then let D2 be the minimal m-diagonal with this 

property, and so on. Therefore T has a unique decomposition T = D1 . . . D, T,+, , where 

Dj is the unique minimal diagonal which divides T/D* . . . Dj-1, j = 1,. . . , r, and T,+l 

is not divisible by m-diagonals. In this case we say that T has m-diagonal type equal 

to r. Note that T has m-diagonal type at least Y if and only if T is divisible by the 

product of Y m-diagonals. Now we are ready to prove the lemma. 

Proof of Lemma 2.2. Let A4 = A41 . . . MS be a standard monomial such that Ml,. . . , Mi 

are m-minors. We have to show that the m-diagonal type of KRS(M) is at least i. We 

may assume A4i+i is not an m-minor. We argue by induction on m and i. The case 

m = 1 is trivial and the case i = 1 is covered by [7, 1.21. So let m > 1 and i > 1. 

Let us denote by A and B respectively the standard tableaux associated with the row 

and column indices of the standard monomial A4. Let Ai and B1 be respectively the 

standard tableaux associated with the row indices and column indices of the standard 

monomial A4i+t . .A4,. Denote by uj, 1 < j < i, the element of B which is in the 

position (j,m), that is, Uj is the mth column index of the minor Mj. 

1 2...rn 

1 2...rn 
. . . . . . . . . . . 

A = .;. .;. ::: ‘,. 

. . . . . . . . . 
I 

. . . . . . . . . Ul 

. . . . . . . . . u2 

i rows 
. . . . 

. . . 

. . . 

. . . . . . . . . . . . B = 

... ... ..’ ui 

. . . . . . . . . 
1 

1 i rows 
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If the tableau Ai contains the index m, then the first output of the algorithm which 

defines KRS is an indeterminate Xmj and a pair of standard tableaux that correspond 

to a standard monomial M’ = A4{ . . . M,! such that M,‘, . . . ,M: are m-minors. Note that, 

by definition, KRS(M) = KRS(M’wmj. So we may assume from the very beginning 

that Al does not contain the index m. 

We want now to show that we may assume that B1 does not contain an index greater 

than or equal to Ui. Suppose the contrary is true, and consider w the largest index of 

B1. By virtue of [7, 1.11, one has 

mS(M) = KRS(A, B) = [KRS(B, A)lT = [KRS(B’, A’)XwhlT = KRS(A’, B’)&,. 

By the definition of KRS follows that the tableau A{ does not contain m, the tableau 

B’ differs from B exactly in w. Therefore it is not a restriction to assume that B1 does 

not contain an index greater than or equal to ui. Under these assumptions, again by 

[7, 1 .l], one has 

Km(M) = mS(M’)&u, = KRS(M”)&,, . . xmur, 

where M’ is the standard monomial associated with the tableaux: 

1 ...... m ......... Ul 
1.. .... m ......... u2 

.... 

.... 

1 1 

i rows : : : : i rows ........ 

1 ...... m ......... ui- I 
1 ... m- 1 ......... 

. . . . . . . . 

. 1 Bl . . 

. . 

and M” is the standard monomial associated with the tableaux A”,B” which are ob- 

tained from the tableaux A and B by deleting the column with index m. 

By induction on m, KRS(M”) has (m - 1)-diagonal type greater than or equal to i. 

Let D 1,. . . , Di denote the first i (m - I)-diagonals which appear in the decomposi- 

tion of KRS(M”). By induction on i, KRS(M’) has m-diagonal type equal i - 1. 

Since KRS(M’) = KRS(M”)&,,, . . .X,,_, , the m-diagonals of the decomposition of 

KRS(M’) are 0,X,,, , . , Di_IXmu,_, . Finally note that Di&, is an m-diagonal since 

the elements of B” are all smaller than u;. It follows that the m-diagonal type of 

KRS(M) is at least i. 0 

Remark 2.3. One can easily see that inr(Zt)2 is a proper subset of inr(Z:) if 1 < t < m. 

This shows that Theorem 2.1 cannot be true for non-maximal minors. We believe that 

the ideal in,(Z:) should be somehow related with the primary decomposition of Z: [2, 

Section lo], but we do not know exactly how. 
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Remark 2.4. Let R be a polynomial ring over a field K, and r be a monomial order. 

Let .fi ,..., fr E R, and let S = K[fi , . . ., f,.] be the K-subalgebra of R generated by 

f,, . . , fr. One defines the initial algebra in,(S) of S to be the K-subalgebra of R 
generated by inr(f ), f E S. The set f, , . . . , fr is said to be a Sagbi basis of S if 

in,(S) is generated as K-algebra by in,( fi), . . , inr(fr). For the theory of Sagbi bases 

we refer the reader to the paper of Robbiano and Sweedler [lo]. In the case in which 

the fi are all homogeneous of the same degree d, it is easy to see that fi, , fr are a 

Sagbi basis if and only if the components of degree id of the ideals in,((fr, . . . , fr )‘) 

and Wfl ), . . . ,ir~,(f~))’ coincide for all i E N. 
Therefore from Theorem 2.1, it follows that the maximal minors form a Sagbi basis 

with respect to a diagonal monomial order, a result which was first proved by Sturmfels, 

see [12, 3.2.91. 

By a result of Bernstein and Zelevinsky [ 1, Theorem l] the maximal minors are 

known to be a universal Grobner basis, that is, they form a Grobner basis with respect 

to all monomial orders. The following question arises naturally: 

Question. Is the set {Ml . . . Mi : Ml , . . . ,Mi are m-minors of X} a universal Grijbner 

basis of ZA ? In other words: Does the equation in,(Z,)’ = in,(ZA) hold for all the 

monomial orders r? 

3. Applications 

This section is devoted to present two applications of Theorem 2.1 to the study of 

the ring K[X]/Zk. We start with a general fact: 

Lemma 3.1. Let Z be an ideal of a polynomial ring R = K[Xl,. .,X,1. Let z be a 

monomial order, and assume that the indeterminates XI,. . .,X3 do not appear in the 

generators of in,(Z). Then the residue classes of Xl ,. . .,X, form a regular sequence 
of the ring R/Z. 

Proof. Since in,(Z +Xi) = in,(Z) + (Xi), it is enough to prove the assertion for s = 1. 

Suppose that the contention is false. Let f be an element of R \ Z such that Xi f E I, 
and we may assume that f has the smallest initial monomial among all the elements 

with these properties. From Xi in,(f) E in,(Z), it follows in,(f) E in.,(Z). Let g E Z 

such that in,(g) = in7(f ), and set f’ = f - g. One has f’ E R \ I, Xl f’ E I, and 

in?(f ‘) < in.,( f ). This is a contradiction. 0 

From Theorem 2.1 and Lemma 3.1, it follows immediately: 

Proposition 3.2. Let X be an m x n matrix of indeterminates over a field K. Then 
the residue classes of the indeterminates X21,X31, XQ,. . . ,Xml . . . ,Xmm_l, Xln_,,,+2, 
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Xh--m+3,. . . ,&n7X2n--m+3, . . . ,x2,, . . . ,Xm-ln form a 

K[X]/ZL for all i E N. 

regular sequence of the ring 

It is known that miniEN depthK[X]/ZA = m2 - 1, see [2, 9.271. The regular sequence 

given in Proposition 3.2 has m(m - 1) elements. So it is not a maximal regular sequence 

even for i >> 0. 

The second application we present is the computation of the Hilbert series ofK[X]/ZA. 

We restrict our attention to the case of an m x m + 1 matrix. Our result is 

Theorem 3.3. Let X be an m x m+ 1 matrix of indeterminates over a field K. Denoted 

by Hmi(A) the Hilbert series of the ring K[X]/I&. Then 

Hmi(n) = 

c;;’ (j + l)Aj + cjzO (-l)‘+’ [Ck>j+2 (L)(Y) (1112)] A’“+j 

(1 - J)m(m+t)--2 

Proof. It is well-known that the Hilbert series of K[X]/ZA coincides with that of 

K[X]/in,(ZA). Hence, by virtue of Theorem 2.1, ZZmi is the Hilbert series of K[X]/ 

inr(Zm)i, where r is a diagonal monomial order. 

The proof of the theorem is based on the following simple observation. Suppose 

we may find a class of homogeneous ideals, say ZY with y E I’, such that the ideals 

in,&)’ belong to this class, and for all y E r there exists an homogeneous element j;, 

of degree dN such that Z, + (f,) and I? : f, are again elements of our class and they 

are somehow better than Iy. Then the exact sequence 

0 - K[X]/(Z, : f,)[-d,] L K[X]/I, - K[X]/I, + (f,) - 0 (1) 

together with some sort of induction gives the possibility to determine the Hilbert 

series of the rings defined by the ideals of the class. Of course one cannot expect to 

be able to do this if the class ZY is improperly chosen. For instance, the class of all 

homogeneous ideals, or the class of the monomial ideals are certainly too big. 

In order to define the right class of ideals, we need to introduce a piece of notation. 

We Set xi = Xii and x = Xii+, for i = l,...,m, lklk = Xt...XkYk+t . ..y.,, for k = 

0 ,...,m, J = (MO , . . . ,A&). Further set d = m(m + 1) = dim K[X]. Note that the initial 

monomial of the minor [l,..., ml l,..., k,k+2 ,..., m + I] is &, and that the ideal J 

is equal to in,(I,,,). We define a class of ideals Zn,k,i with 0 5 n 5 m, n - 1 < k 5 m, 

and i E N, setting 

In,k,i=(Mn,...,Mk)+(Mk+l,...,Mm)i. 

Denote by Hn,k,i(n) the Hilbert series of K[X]/Zn,,i In particular one has 

In,n-1,i = (Mn,. . . , Mm)i, Zs,_I,i = (MO ,..., Mm)’ = J’, 

I n,m,i = (Mn,...,Mrn) =In,m,l. 
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As element associated with the ideal I,,k,i, with k < m, we consider k&+1. Note that 

In,k,i f Mk+l = In,k+l,i, 

In,k,i : Mk+l = (yk+l> + Ik+l,k,2--l if k > Iz, 

In,n-1,i : Mn = In,n-l,i-1 ifk=n-1. 

For the ideal Zn,m,~, n 2 0, we choose the element M,_I. One has 

I n,m,l +M-1 = Ll,m,l, hI,m,l : M-1 = (XI>. 

The ideal (yk+t )f&+l,k,i-1 is not exactly one element of the class under consideration, 

but the indeterminate Yk+l does not appear in the generators of Ik+l,k,i__l. Hence the 

Hilbert series of the ring defined by (yk+l) + I k+l,k,i-1 is (1 - A)ffk+l,k,i-l(A). 

Now from the exact sequence (l), with 1, = In,&, and f, = k’!&+l, it follows: For all 

O<n<k<m-1, 

ffn,k,i(A) = fb,k+l,r(i) + (1 - ~)~mffk+l,k,i-l(~) if k 2 4 

ffn,o-l,i(i> = ffn,n,i(l> + ~mffn,n-l,i-l(~) 

Summing up one obtains: 

if k = n - 1. 

Hn,,-l,i(L) = Hn,,,l(i) + (1 - J.)im 2 Hj,j-l,i-l(A> + AmHn,n-l,i-l(A). (2) 

j=n+l 

Using the exact sequence (1) with IY = Zn,m,l and ft = W-1, IZ > 0, 

KI-l,m,l(~) = fL,m,l(~) - Am/(1 - w-l. (3) 

Since H,,,,J (A) = [C,“” ILj]/(l - i)d-l, Eq. (3) yields 

It-1 

H,,,,,(A) = c A’ - (m - n>n” 

I/ 

(1 -L)% 
i=o 

L” A 

By substituting this expression in (2), one obtains 

Hn,,_,,i(A)= Eh-(m-.,A”‘] /(lLi)*P1 

+( 1 - n)Ivm 2 Hj,j-l,i-l(A) + AmHn,,-l,i-l(A). 
j=n+l 

(4) 

Eq. (4) involves only Hilbert series associated with triplets of the type (j,j - 1, i). By 

induction on i and using (4), one shows that 

H,,,_l i(n> = CEi’ ij + C,zo C-l>‘+’ [Ckzj+l CL> (“in> (ill)] ““‘j 

(1 - i)d-l 
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In particular, 

One obtains the desired expression just by dividing the numerator and the denominator 

by (1 - n). 0 
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