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INTRODUCTION

In this paper we use tight closure and Gro� bner basis theory to prove
that ladder determinantal rings have rational singularities.

We show that the ladder determinantal rings of a certain class of ladders,
which we call wide ladders, are F-rational. Though F-rationality is only
defined in positive characteristic, recent results of Smith [26] imply that
these ladder determinantal rings are pseudorational in the sense of Lipman
and Tessier [20], and in characteristic 0 are of F-rational type which in
turn implies that they have rational singularities.

We will further show that an arbitrary ladder determinantal ring is an
algebra retract of the determinantal ring of a wide ladder. Thus we may
apply Boutot's theorem [3] to conclude that all ladder determinantal rings
defined over an algebraically closed field of characteristic 0 have rational
singularities. With some more effort one probably could avoid Boutot's
theorem and prove instead that all ladder determinantal rings are F-rational;
see Remark 4.5. For this we have to check that certain simplicial complexes
which arise from the ladder are shellable. Assuming the ladders are wide
simplifies the arguments considerably, and, as we hoped, makes the proof
more readable.

Ladder determinantal rings were introduced by Abhyankar [1] in his
studies of singularities of Schubert varieties of flag manifolds. An important
subclass of general ladders are the one-sided ladders. In [22] Mulay
showed that one-sided ladder determinantal rings occur as coordinate rings
of certain affine sets in Schubert varieties, and Ramanathan [24] showed
that all Schubert varieties have rational singularities. So their results cover
a special case of our Theorem 1.7. Another special case, namely that of
ladder determinantal rings which are complete intersections, has been
treated by Glassbrenner and Smith [12].
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Let X be a matrix of indeterminates. A ladder Y is a subset of X with the
property that Xij $ and Xi $j belong to Y whenever Xij , Xi $j $ # Y for i�i $ and
j� j $. The ideal It(Y) of all minors of size t which belong to Y defines the
ladder determinantal ring Rt(Y). These large classes of rings provide
new and interesting examples of Cohen�Macaulay normal domains.
Narasimhan [23] showed that they are domains, Cohen�Macaulayness
was proved by Herzog and Trung [13] (for even more general ladders),
and normality by Conca [5], who also determined their divisor class
group [7] and used this information to characterize the Gorenstein lad-
ders. All these results were proved using Gro� bner bases, a technique which
in this paper will be an essential tool as well. As mentioned in Mulay's
paper [22], normality, Cohen�Macaulayness, and other properties also
follow, at least for one-sided ladders, from his approach through Schubert
varieties.

The other cornerstone for our proof are characteristic p-methods. Fedder
and Watanabe [11] call a ring of prime characteristic F-rational if all
its parameter ideals are tightly closed. The notion of tight closure was
introduced by Huneke and Hochster. The reader is referred to their papers
[14�16] in which the theory of tight closure is developed and applied to
solve various outstanding problems or to give new and strikingly simple
proofs of some of the homological conjectures. The contributions of this
paper will show that the concepts related to tight closure are equally useful
for solving very concrete problems.

We now outline the contents of each section. In Section 1 we describe the
general strategy of our proof. It is based on a slightly modified criterion
for F-rationality due to Fedder and Watanabe [11, Proposition 2.13].
Roughly, the criterion (Theorem 1.2) says that if the localization of a ring
R with respect to a suitable element c is F-rational, then R itself is
F-rational. In this criterion it is required that R�cR is F-injective.

We show in Section 2 that F-injectivity can be checked in many cases by
considering Gro� bner bases. Suppose R=K[X1 , ..., Xn]�I is a finitely
generated positively graded K-algebra, K a field, I�(X), and let us denote
by m the maximal ideal of R which is generated by the residues of the
variables Xi . Suppose further that for a suitable monomial order the ideal
of initial terms in(I ) is square-free and is the defining ideal of the Stanley�
Reisner ring of a shellable simplicial complex. Then the main result 2.2 of
this section asserts that Rm is an F-injective Cohen�Macaulay ring.

We introduce the basic concepts concerning ladders in Section 3. We
also show that if we are given two ladders Y and Z where Z is obtained
from Y by adding a row or column, then Rt(Y) is an algebra retract of
Rt(Z).

In Section 4 we verify the hypotheses of the Fedder�Watanabe criterion
for determinantal rings of wide ladders. In order to do so we pick a suitable
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(t&1)-minor c # Rt(Y), compute the ideal in(I ) of initial terms of
I=c+It(Y), and show that it defines a shellable simplicial complex. The
proof depends heavily on the analysis of the minimal prime ideals of I
which have been studied by the first author in [5]. Indeed, it will be shown
that the ideal of initial terms of any minimal prime ideal of I defines a
shellable simplicial complex, and then it will be shown that these shellings
glue together to yield a shelling of the simplicial complex defined by in(I ).

We close our paper with Section 5 where we apply the results of
Section 2 to show that all ladder determinantal rings are F-injective. We
also observe that the determinantal rings of the wide Gorenstein and the
so-called chain ladders are F-pure and F-regular. The class of chain ladders
includes all one-sided ladders. Metha and Ramanathan [21] showed
already that all Schubert varieties have Frobenius splitting which in our
terminology is F-purity. Thus their theorem implies that determinantal
rings of one-sided ladders are F-pure which is a special case of our result.
It is still open whether all ladders determinantal rings are F-pure and
F-regular.

The first author was partially supported by a grant of Consiglio
Nazionale delle Ricerche, Italy. Part of this work was done while the
authors were supported by Purdue University, whose hospitality they
acknowledge. They also thank Craig Huneke and Karen Smith for helpful
discussions, and especially Karen Smith who made her thesis available to
them.

1. AN OUTLINE OF THE PROOF THE MAIN THEOREM

We first recall a few notions and results from tight closure theory. Let R
be a commutative Noetherian ring of prime characteristic p. The comple-
ment of all minimal prime ideals of R will be denoted by R0.

Let I be an ideal in R. Hochster and Huneke [14] define the tight
closure I* of I to be the set of elements z # R for which there exists c # R0

such that cz pe
# I [ pe] for all er0. Here I [ pe] denotes as usual the ideal

generated by all elements a pe
, a # I. It is immediate from the definition that

I* is an ideal containing I. If I*=I, then I is called tightly closed.
The ring R is called F-regular if every ideal in every localization of R is

tightly closed, and R is called F-rational if every parameter ideal is tightly
closed. Here we call an ideal a parameter ideal if it is generated by
parameters, that is, a sequence of elements x1 , ..., xn whose images generate
an ideal of height n in any localization RP of R such that the prime ideal
P contains them.

We shall need the following results about F-rationality:
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Theorem 1.1. (a) [17; 27, Proposition 1.4.3]. Suppose (R, m) is an
excellent local ring. Then R is F-rational if and only if its m-adic completion
R� is F-rational.

(b) [16, Theorem 1.4]. Suppose K is a perfect field, and R is a
positively graded K-algebra with graded maximal ideal m. Then R is
F-rational if and only if Rm is F-rational.

(c) [11, Proposition 2.2; 16, Theorem 1.4]. Assuming (a) or (b), if
a single (homogeneous) system of parameters is tightly closed, then R is
F-rational.

Thus if we want to check F-rationality for a graded ring as in 1.1(b), we
only have to show that Rm@ is F-rational. For complete local Cohen�
Macaulay rings we have the following modified Fedder�Watanabe
criterion:

Theorem 1.2. Suppose R is a complete local Cohen�Macaulay ring for
which there exists a non-zero divisor c # R such that (a) Rc is F-rational, and
(b) R�cR is F-injective. Then R is F-rational.

Recall that R is F-injective, if the natural action F : H i
m (R) � H i

m (R) on
the local cohomology modules induced by the Frobenius endomorphism of
R is injective for all i. In case R is Cohen�Macaulay there is only one non-
vanishing local cohomology module, namely H d

m (R), d=dim R, and
F-injectivity can be characterized by the property that some (all) system(s)
of parameters y1 , ..., yd of R is (are) F-contracted, that is, a p # ( y p

1 , ..., y p
d )

implies a # ( y1 , ..., yd) for all a # R; see [10, Proposition 1.4].
There is an obvious graded version of F-injectivity: In the definition we

replace R by a positively graded K-algebra, where K is a field of positive
characteristic, and m by the unique graded maximal ideal. Note that R is
F-injective if and only if the local ring Rm is F-injective. Furthermore, if R
is Cohen�Macaulay then R is F-injective if and only if some (all)
homogeneous system(s) of parameters is (are) F-contracted.

The proof of 1.2 is exactly the same as that of the original Fedder�
Watanabe criterion. Since Theorem 1.2 is so central to our arguments we
repeat here its simple proof for which we only need one extra new
ingredient: Smith in [28] (see also [25]) calls an element c # R0 a
parameter test element if cI*/I for all parameter ideals, and proves the
following:

Theorem 1.3. Let R be complete local Cohen�Macaulay ring, and let c
be a non-zero divisor of R such that Rc is F-rational. Then some power of c
is a parameter test element.
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Proof of 1.2. We complete c to a system of parameters c, y2 , ..., yd . It
suffices to show (see 1.1(c)) that I=(c, y2 , ..., yd) is tightly closed. So let
z # I*. By 1.3 there exists a power of c, say cn, such that cn is a parameter
test element. Hence for q= per0 we have cnzq # (cq, yq

2 , ..., yq
d). Since

c, y2 , ..., yd is a regular sequence we conclude that zq # (cq&n, yq
2 , ..., yq

d) for
q>n. If & denotes reduction modulo c, then z� q # ( y� q

2 , ..., y� q
d). Thus, since

R�cR is F-injective, it follows that z� # ( y� 2 , ..., y� d). In other words, z # I. K

We apply 1.2 to get

Theorem 1.4. Let K be a perfect field of positive characteristic, and let
Y be a wide ladder. Then the ladder determinantal ring Rt(Y)=K[Y]�It(Y)
defined over K is F-rational.

Proof. It will be shown in Section 4 that there exists a suitable (t&1)-
minor c such that Rt(Y)c $(K[Y$]�It(Y"))c where Y"�Y$�Y are sub-
ladders of each other, and Y" is a wide ladder which is strictly smaller lad-
der than Y. Inducting on the size of the ladder, we may assume that Rt(Y")
is F-rational.

A polynomial extension S[T] of a positively graded F-rational ring S is
again F-rational. (Complete a homogeneous system of parameters y of S by
T. Then show that (y, T) is tightly closed if y is so, and apply 1.1(c).) Thus
we see that Rt(Y")[Y$"Y"] is F-rational and hence, by 1.1(a),

Rt(Y)"@[[Y$"Y"]] is F-rational. Since Rt(Y)c@$(Rt(Y)"@[[Y$"Y"]])c , and
since any localization of an F-rational ring is again F-rational (see [27,

Proposition 1.4.3]), we conclude that Rt(Y)c@ is F-rational.
For our choice of c, Rt(Y)�cRt(Y) is F-injective, as will be shown in Sec-

tion 4. This is the combinatorial part of our paper. Since F-injectivity

passes to the completion, all hypotheses of 1.2 are satisfied. Hence Rt(Y)@ ,
and so Rt(Y), are F-rational. K

The next corollaries and our main theorem now all follows from the
results of Smith [26] and from 1.4.

A d-dimensional local ring (R, m) is pseudo-rational if it is normal,
Cohen�Macaulay, analytically unramified, and if for any proper, birational
map ? : W � X=Spec R with closed fibre E=?&1(m), the canonical map

H d
m (?

*
OW)=H d

m (R) � H d
E (OW)

is injective. Observing that F-rationality localizes, Theorem 3.1 of [26]
yields.
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Corollary 1.5. Let K be a perfect field of positive characteristic, Y a
wide ladder, and Rt(Y) the ladder determinantal ring defined over K. Then
Rt(Y)P is pseudo-rational for all P # Spec Rt(Y).

Let K be a field of characteristic 0. According to Smith [26, Defini-
tion 4.1], a K-algebra R is of F-rational type, if there exist a finitely
generated Z-algebra A contained in K, a finitely generated A-algebra RA ,
and a flat map A/�RA such that:

(i) (A/�R)� A K is isomorphic to K/�R;

(ii) the ring RA � A A�m is F-rational for all maximal ideals m in a
dense open subset of Spec A.

The ideal It(Y) describing a ladder determinantal ring is defined over the
integers, and Z[Y]�It(Y) is a free Z-module; see [5, Lemma 1.1]. Thus we
get

Corollary 1.6. Let Y be a wide ladder, and Rt(Y) the ladder deter-
minantal ring defined over a field of characteristic 0. Then Rt(Y) is of F-rational
type.

Two important classes of ladders, the one-sided ladders and the chain
ladders, are wide; see Section 3. Therefore Corollaries 1.5 and 1.6 are valid
for these classes of ladders as well.

Now we apply the result [26, Theorem 4.3] of Smith which says that
singularities of F-rational type are rational; Boutot's theorem [3], accord-
ing to which a direct summand of a finitely generated K-algebra (K an
algebraically closed field of characteristic 0) with rational singularities has
again rational singularities; and the fact, shown in Section 3, that an
arbitrary ladder determinantal ring is an algebra retract (and hence a direct
summand) of a ladder determinantal ring defined by a wide ladder. Thus
we finally obtain

Theorem 1.7. Let Rt(Y) be a latter determinantal ring defined over an
algebraically closed field of characteristic 0. Then Rt(Y) has rational
singularities.

2. F-INJECTIVITY AND GRO� BNER BASES

In this section we develop a technique to check F-injectivity which will
applied in subsequent sections to ladder determinantal ideals.

Let R=K[X1 , ..., Xn]�I be an affine K-algebra, where K is a field of
characteristic p>0 and I/(X1 , ..., Xn). We denote by xi the residue class
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of Xi for i=1, ..., n, and set m=(x1 , ..., xn). Our concern is to find condi-
tions based on Gro� bner bases guaranteeing that Rm is F-injective. So let <
be an order of the monomials in X1 , ..., Xn . We denote by in( f ) the initial
monomial of a polynomial f # K[X1 , ..., Xn], and by in(I ) the ideal
generated by all in( f ), f # I. We further set in(R)=K[X1 , ..., Xn]�in(I ).
Note that in(R) can be given the structure of a positively graded K-algebra
by assigning arbitrary positive degrees to the variables.

Theorem 2.1. With the notation and hypotheses just introduced we have
that Rm is Cohen�Macaulay and F-injective, if in(R) is so.

For the proof of the theorem we will use deformation theoretic
arguments as explained in [8, Chapter 15]: In a first step one interprets
in(I )) as the ideal in*(I ) of initial forms of a certain weight function *, that
is, a linear function * : Zn � Z. Indeed, suppose g1 , ..., gm is a Gro� bner basis
for I. According to [8, Proposition 15.26], there is a finite set
[(m1 , n1), ..., (ms , ns)] of pairs of monomials with mi>ni for all i, and such
that if * is a weight function with mi> * ni for all i, then g1 , ..., gm is a
Gro� bner basis for I with respect to > * ; in particular, in*(I )=in(I ).

Note that for any finite set [(ui , vi) : i=1, ..., r] of pairs of monomials
with ui>vi for all i, one always finds a weight function * such that the
induced weight order >* satisfies ui> * vi for all i. Thus we may choose *
such that Proposition 15.26 of [8] is satisfied and such that Xi> * 1 for
i=1, ..., n.

Choosing a weight function is equivalent to assigning to each variable Xi

a degree ai # Z. Our choice of * implies that the ai are positive integers.
This gives K[X1 , ..., Xn] the structure of positively graded K-algebra. We
denote the degree of a polynomial f with respect to this grading by deg* f.

If f =�i }imi is a monomial expansion of an element in K[X1 , ..., Xn]
with all }i {0 and deg* m1�deg* mi for all i, we denote by f� the polyno-
mial

:
i

}i tdeg* m1&deg* mi mi

in K[X1 , ..., Xn , t].
We assign to t the degree 1; then f� is a homogeneous polynomial.
Let I� be the ideal in K[X1 , ..., Xn , t] generated by f� , f # I, and set

R� =K[X1 , ..., Xn , t]�I� . Then R� is a positively graded K-algebra with the
following properties (see [8, Theorem 15.27]):

(i) R� is a free K[t]-algebra, and thus K[t]-flat;

(ii) R� �tR� =in(R) and R� �(t&1) R� =R.
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In other words, we have a flat one-parameter family with a special fibre
in(R) and a general fibre R.

Proof of 2.1. Property (i) of R� implies that t is a (homogeneous) non-
zero divisor of R� . As we assume that in(R) is Cohen�Macaulay, say of
dimension d, we see that R� is Cohen�Macaulay (of dimension d+1). But
then (i) and (ii) imply that Rm is Cohen�Macaulay of dimension d.

We choose homogeneous elements u1 , ..., ud # K[X1 , ..., Xn] (homo-
geneous with respect to the *-grading) such that their images in Rm form
a system of parameters, and simultaneously form a homogeneous system of
parameters of in(R). Such elements exist. In fact, let P1 , ..., Pm be the mini-
mal prime ideals of in(I ) and Pm+1 , ..., Pr the minimal prime ideals of I
contained in M=(X1 , ..., Xn). Since in(R) and Rm are Cohen�Macaulay of
the same dimension, all Pi have the same height. We may assume d>0,
then M{Pi for all i, and thus, since the *-grading is positive, there exists
a homogeneous element u1 # M such that u1 � Pi for all i; see for instance
[2, Lemma 1.5.10]. One constructs u2 by applying the same arguments to
the ideals (in(I ), u1) and (I, u1) which now define Cohen�Macaulay rings
of dimension d&1. Therefore, the assertion follows by induction on d.

In order to complete the proof of the theorem it remains to show
that (u1 , ..., ud) Rm is F-contracted. So let f�g # Rm such that ( f�g) p #
(u p

1 , ..., u p
d ) Rm . Then there exists h # R"m such that h pf p # (u p

1 , ..., u p
d )R. It

follows that tqh� pf� p # (u~ p
1 , ..., u~ p

d ) R� for some positive integer q. Of course, we
may assume that q= pe for some e�0. Since the ui are homogeneous
we have u~ i=ui for all i, so that for all l # N we get t peh� pf� p #
(u p

1 , ..., u p
d , (tl) p) R� .

Since we assume that in(R) is F-injective and Cohen�Macaulay, and
since t is a homogeneous non-zero divisor of R� with R� �tR� $in(R) we may
apply the graded version of [9, Theorem 3.4] to conclude that R� is F-injec-
tive. Hence since u1 , ..., ud , tl is a homogeneous system of parameters, we
get t pe&1h� f� # (u1 , ..., ud , tl) R� for all l, and therefore t pe&1h� f� # (u1 , ..., ud) R� .
Substituting t by 1 we see that hf # (u1 , ..., ud) R, and so f�g # (u1 , ..., ud) Rm ,
as desired. K

Observe that in(R) is a ring with monomial relations. In the case all the
generating monomial relations are square-free, in(R) is the Stanley�Reisner
ring of a certain simplicial complex 2, see [29] or [2], and there exist
geometric or combinatorial conditions on 2 to make sure that in(R) is
Cohen�Macaulay. One of these conditions is the shellability of 2; see [2,
Theorem 5.1.13]. On the other hand, any Stanley�Reisner ring is F-pure.
Indeed, suppose J/K[X1 , ..., Xn] is an ideal generated by square-free
monomials. Then it is easy to see that J[ p] : J/3 (X p

1 , ..., X p
n ). This implies

F-purity of K[X1 , ..., Xn]�J by Fedder [9, Theorem 1.12]; see also [19,
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Proposition 5.38]. As F-purity implies F-injectivity [19, Lemma 2.2], we
obtain

Corollary 2.2. If in(R) is the Stanley�Reisner ring of a shellable sim-
plicial complex, then Rm is an F-injective Cohen�Macaulay ring.

3. GENERALITIES ABOUT LADDERS

Let X=(Xij) be an m_n matrix of distinct indeterminates over a field K,
and denote by K[X] the polynomial ring K[Xij : 1�i�m, 1� j�n].
Given sequences of integers 1�a1< } } } <at�m and 1�b1< } } } <bt�n
we denote by [a1 , ..., at | b1 , ..., bt] the t-minor det(Xai bj

) of X.
The main diagonal of [a1 , ..., at | b1 , ..., bt] is defined to be the set

of indeterminates [Xa1b1
, ..., Xatbt

]. The main diagonal of a t-minor or
the product of its elements is called a t-diagonal of X. The minor
[i, i+1, ..., i+t&1 | j, j+1, ..., j+t&1] is said to be the t-minor based on
the indeterminate Xij or on the point (i, j).

A subset of indeterminates Y of X is called a ladder if whenever
Xij , Xhk # Y and i�h, j�k, then Xik , Xhj # Y. In other words, a subset Y
of X is a ladder if whenever the main diagonal of a minor is contained in
Y then all the entries of the minor are in Y.

Let Y be a ladder, and let K[Y] be the polynomial ring K[Xij : Xij # Y].
Throughout we fix a positive integer t bigger than 1. Denote by Rt(Y) the
ring K[Y]�It(Y), where It(Y) is the ideal generated by all the t-minors of
X which only involve indeterminates of Y. The ideal It(Y) is called a ladder
determinantal ideal and the ring Rt(Y) a ladder determinantal ring.

Throughout we identify the indeterminates of X with the points of the set
[(i, j) # N2 : 1�i�m, 1� j�n]. This identification motivates us to define
the i th row (resp. column) of X to be the set of points (a, b) of X with b=i
(resp., a=i). Here a confusion is possible because by the i th row of a
matrix one usually understands the set of the entries of this matrix with
first index equal to i.

The set X is equipped with the partial order P :

(i, j)P (h, k) � i�h and j�k.

X is clearly a distributive lattice, and a ladder Y is just a sublattice of X.
A ladder Y is said to be t-disconnected if there exist two ladders %{Y1 ,

Y2 /Y such that Y1 & Y2=<, Y1 _ Y2=Y, and every t-minor of Y is
contained in Y1 or in Y2 . If Y is t-disconnected we get It(Y)=
It(Y1)+It(Y2) and then Rt(Y)=Rt(Y1)� K Rt(Y2). A ladder is t-connected

128 CONCA AND HERZOG



File: 607J 167910 . By:XX . Date:26:11:97 . Time:12:59 LOP8M. V8.0. Page 01:01
Codes: 2504 Signs: 2027 . Length: 45 pic 0 pts, 190 mm

if it is not t-disconnected. Any ladder is the disjoint union of its maximal
t-connected components.

Deleting from X the rows and columns which do not intersect a t-con-
nected ladder Y, one may assume that Y is the set of the points enclosed
between two maximal chains of X as illustrated in Fig. 1.

It is clear that a t-connected ladder Y is uniquely determined by the
points Si , Ti (Fig. 2). The points S1 , ..., Sh are called inside lower corners of
the ladder Y, while the points T1 , ..., Tl are called inside upper corners.
A t-connected ladder Y is called a chain ladder if the inside corners of Y
form a chain with respect to P, and no column or row of Y contains two
of them.

A t-connected ladder is said to be a one-sided ladder if it has no inside
lower corners (Fig. 3).

The set of the t-minors of Y is a Gro� bner basis of the ideal It(Y) with
respect to a diagonal monomial order (i.e., a monomial order such that the
leading monomial of any minor of Y is the product of the elements of its
main diagonal); see [23, Corollary 3.4]. Hence the ideal in(It(Y)) of the
leading monomial of It(Y) is the square-free monomial ideal generated by
the t-diagonals in Y. Herzog and Trung [13, Section 4] described the
facets of the simplicial complex 2t(Y) associated with in(It(Y)) in terms of
families of non intersecting paths in the poset Y and they show that 2t(Y)
is shellable. The dimension of Rt(Y) is equal to the dimension of the ring
defined by in(It(Y)) and is the number of elements of any facet of 2t(Y)
[13, Corollary 4.7]. It turns out that the dimension of Rt(Y) is the
cardinality of the lower border of Y with thickness (t&1).

Fix two consecutive columns of a maximal t-connected component of the
ladder Y, say the r th and the (r+1)th column. Let (r, a) and (r, b) be the
bottom and top points of the r th column and (r+1, c) and (r+1, d ) those
of the (r+1)th column. One has c�a�d�b. Let a$ and b$ be integers
such that c�a$�a and d�b$�b. Let W be the ladder with the same

Fig. 1. A t-connected ladder.
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Fig. 2. A chain ladder.

shape as Y, except that we have added a new column between the r th and
(r+1)th columns of Y. This new column has bottom point (r+1, a$) and
top point (r+1, b$).

We define a K-algebra homomorphism 8 : K[Y] � K[W] by setting
8(Yij)=Wij if i�r and 8(Yij)=Wi+1j if i�r+1. It is clear that 8 induces
a K-algebra homomorphism . : Rt(Y) � Rt(W). Let J be the ideal in Rt(W)
generated by the elements of the (r+1)th column of W. Then . composed
with the canonical epimorphism Rt(W) � Rt(W)�J is an isomorphism.
Therefore . : Rt(Y) � Rt(W) is an algebra retract. The addition of a row is
defined alike.

Proposition 3.1. Whenever a ladder Z is obtained from Y by a sequence
of row and column additions, then Rt(Y) is an algebra retract of Rt(Z).
Hence if we study properties of Rt(Y) which behave well with respect to the
algebra retract we may add to Y rows and columns as we like.

Let Y be a t-connected ladder. The ladder Y is said to be a wide ladder
if for all inside lower corners Si=(ai , bi) of Y and for all j=1, ..., t&1, the
set [(x, y) # Y : y=bi+ j&1] contains no point of the horizontal part of
the upper border of Y.

Fig. 3. A one-sided ladder.
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Figure 4

A general ladder (i.e. not necessarily t-connected) is said to be a chain
ladder (resp. a one-sided ladder or a wide ladder) if its maximal t-connected
components enjoy this property.

Note that a one-sided ladder is a chain ladder, and that a chain ladder
is a wide ladder.

The reader may find the definition of wide ladders somewhat artificial.
However, it turns out that this class of ladders is combinatorially simple
enough to be treated without the need of many case-by-case discussions,
but general enough for our purposes. Indeed, one has

Proposition 3.2. Let Y be a ladder. Then there exists a wide ladder Z
such that Rt(Y) is an algebra retract of Rt(Z).

It suffices to construct the wide ladder Z from Y by a sequence of row
additions. It is clear that it is enough to do this for each maximal t-connected
component, and so we may assume from the very beginning that Y is
t-connected. If Y is not wide, proceed as follows: For all i for which the
wide condition is violated, take j minimal such that [(x, y) # Y : y=
bi+ j&1] contains points of the horizontal part of the upper border of Y.
Then add between the (bi+ j&1)th row and the (bi+ j) th row of Y a set
of t& j copies of the (bi+ j&1)th row of Y. The resulting ladder is the
desired Z.

Figure 4 illustrates this construction in one example where t is 4. The
line with bold points has been added to Y to get Z.

4. F-RATIONALITY OF WIDE LADDER DETERMINANTAL RINGS

The goal of this section is to complete the proof of 1.4. We show that for
any wide ladder determinantal ring Rt(Y) there exists a (t&1)-minor c of
Y such that:

(a) Rt(Y)c is isomorphic to a localization of a polynomial extension
of Rt(Y"), where Y" is a proper wide subladder of Y.

(b) Rt(Y)�cRt(Y) is F-injective.
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For simplicity of notation we will assume that the ladder Y is t-connected.
The reader may easily check that this is not a restriction, since all the
constructions and proofs we are going to present only involve points of a
maximal t-connected component of Y.

Let Y be a t-connected wide ladder. We refer the reader to the notation
in Fig. 1. If a point p of Y is not involved in some t-minor of Y, then [ p]
is a t-connected component of Y, and then Y=[ p]. So it is not a restric-
tion to assume that all indeterminates of Y appear in some t-minor of Y.
Hence the points (1, n), ..., (t, n) and (m, 1), ..., (m, t) belong to Y.

For all i=1, ..., l, let (ci , di) be the coordinates of the point Ti and for
all i=1, ..., h, let (ai , bi) be the coordinates of the point Si .

Throughout this section we denote by { the lexicographic monomial order
induced by the variable order X11>X12> } } } >X1n>X21> } } } >Xmn and
by in(I ) the ideal of the leading monomials with respect to { of an ideal I
of the ring K[Y].

First of all we have to define c. Let c be the residue class in Rt(Y) of the
(t&1)-minor based on the point (1, b1), that is, [1, ..., t&1 | b1 , ...,
b1+t&2]. In the case Y is a one-sided ladder, c is just the residue class
of [1, ..., t&1 | 1, ..., t&1].

Proposition 4.1. If Y is a one-sided ladder, then the ring Rt(Y)c is
isomorphic to a localization of a polynomial ring. Otherwise, the ring Rt(Y)c

is isomorphic to a localization of a polynomial extension of Rt(Y") where Y"
is the wide ladder which is the intersection of Y with the set [(i, j) # X : i�a1 ,
j�b1+t&2].

Proof. Suppose Y is not a one-sided ladder. It is easy to see that Y" is
wide since Y is. Consider the set B=[(i, j) # Y : i�t&1, j�b1+t&1] _
[(i, j) # Y : 1�i�a1 , b1� j�b1+t&2]. Denote by K[B _ Y"] the K-sub-
algebra of Rt(Y) generated by the residue classes of the elements of B _ Y",
and by Rt(Y")[B] the polynomial extension of the ring Rt(Y") with the
indeterminates in B. The lower border with thickness (t&1) of Y is the
union of lower border with thickness (t&1) of Y" with B, and therefore by
virtue of [13, Corollary 4.7], dim Rt(Y")[B]=dim Rt(Y).

For all (i, j) # Y"(Y" _ B) the minor [1, ..., t&1, i | b1 , ..., b1+t&2, j] is
in Y and it involves only entries of Y" _ B _ [(i, j)]. Since [1, ..., t&1,
i | b1 , ..., b1+t&2, j]=0 in Rt(Y), xijc belongs to K[B _ Y"]. In other
words, Rt(Y)c=K[B _ Y"]c . Since Rt(Y) and K[B _ Y"] have the same
field of fraction, they have the same dimension.

The canonical map � : Rt(Y")[B] � K[B _ Y"] is a surjection between
domains of the same dimension. Hence � has to be an isomorphism. This
concludes the proof for a general ladder. The proof for a one-sided ladder
is similar. K

132 CONCA AND HERZOG



File: 607J 167914 . By:XX . Date:26:11:97 . Time:13:00 LOP8M. V8.0. Page 01:01
Codes: 2561 Signs: 1785 . Length: 45 pic 0 pts, 190 mm

It remains to show that Rt(Y)�cRt(Y) is F-injective. By virtue of 2.2 it is
enough to prove that the ideal in(It(Y)+(c)) is generated by square-free
monomials and that the associated simplicial complex is shellable.

Square-freeness. The ideal It(Y)+(c) is radical and its minimal prime
ideals are described in [7, Proposition 3.4.7]. Let us introduce some more
notation to explain the results we need. Let k be the maximum integer such
that b1+t&2�dk or k=0 if b1+t&2>d1 . Note that in the one-sided
case k=l, and that in general T1 , ..., Tk are exactly the inside upper corners
lying northeast of c. For i=1, ..., k, let Ai denote the set [( p, q) # Y : p�ci

and q�di], and further set A0=[( p, q) # Y : p�t&1] and Ak+1=
[( p, q) # Y : b1�q�b1+t&2], (Fig. 5).

For i=0, ..., k+1 let It&1(Ai) be the ideal generated all the (t&1)-
minors of the region Ai and set Pi=It(Y)+It&1(Ai). The ideals
P0 , P1 , ..., Pk+1 are the minimal prime ideals of It(Y)+(c), and therefore
It(Y)+(c)=P0 & P1 & } } } & Pk+1, see [7, Proposition 3.4.7]. Note that
the ideal P0 is the ideal P$(Y) cogenerated by the minor $=[1, ..., t&2,
t | 1, ..., t&1] in Y as it is defined by Herzog and Trung in [13, Section 4].
It is proved in [13, Theorem 4.2] (for i=0) and in [7, Propositions 3.3.4
and 3.3.5] (for i=1, ..., k+1) that the union Ji of set of the t-minors of Y
with the set of the (t&1)-minors of Ai is a Gro� bner basis of the ideal Pi

with respect to {. Hence in(Pi) is generated by the t-diagonals of Y and by
the (t&1)-diagonals of Ai . In particular, in(Pi) is a square-free monomial
ideal. From

It(Y)+(c)=P0 & P1 & } } } & Pk+1

we would like to deduce that

in(It(Y)+(c))=in(P0) & in(P1) & } } } & in(Pk+1). (1)

This will be a consequence of the following general criterion:

Fig. 5. (left) The set A0 , (middle) the set Ai , and (right) the set Ak+1.
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Lemma 4.2. Let S be a polynomial ring over an arbitrary field K and let
_ be a monomial order on the monomials of S.

(a) Let I and J be homogeneous ideals of S, then in_(I+J)=
in_(I )+in_(J) if and only if in_(I & J)=in_(I ) & in_(J).

(b) Let I1 , ..., Ip be homogeneous ideals of S and assume that
in_(Ii+Ij)=in_(Ii)+in_(Ii) for all 1�I� j�n. Then in_(I1 & } } } & Ip)=
in_(I1) & } } } & in_(Ip).

Proof. (a) Denote by dim[I]i the K-dimension of the homogeneous
component of degree i of a homogeneous ideal I of S. It is well-known that
dim[I] i=dim[in_(I )] i for all i. It follows easily from the definition that
in_(I )+in_(J)�in_(I+J) and that in_(I & J)�in_(I ) & in_(J). Further,

dim[in_(I ) & in_(J)] i&dim[in_(I & J)] i

=dim[in_(I ) & in_(J)] i&dim[I & J]i

=dim[in_(I )] i+dim[in_(J)] i&dim[in_(I )

+in_(J)] i&dim[I] i&dim[J] i+dim[I+J] i

=dim[in_(I+J)] i&dim[in_(I )+in_(J)]i ,

which implies the desired conclusion.

(b) We argue by induction on p. The case p=2 is treated in (a). So
we may assume p>2, and set J=Ip&1 & Ip . First we show that the ideals
I1 , ..., Ip&2 , J, satisfy the assumption of (b). It is enough to show that
in_(Ii+J)=in_(Ii)+in_(J). Indeed,

in_(Ii+J)$in_(Ii)+in_(J)

=in_(Ii)+[in_(Ip&1) & in_(Ip)]

=[in_(Ii)+in_(Ip&1)] & [in_(Ii)+in_(Ip)]

=in_(Ii+Ip&1) & in_(Ii+Ip)$in_([Ii+Ip&1] & [Ii+Ip])

$in_(Ii+[Ip&1 & Ip])

=in_(Ii+J).

The three inclusions $ are trivially true. The first equation holds by induc-
tion, the second holds because the ideals involved are generated by
monomials, and the last holds by assumption. Thus in_(Ii+J)=
in_(Ii)+in_(J). Then by induction,
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in_(I1 & } } } & Ip)=in_(I1 & } } } & Ip&2 & J)

=in_(I1) & } } } & in_(Ip&2) & in_(J)

=in_(I1) & } } } & in_(Ip)

and the proof is complete. K

Now equality (1) will follow from 4.2 and

Lemma 4.3. For all i, j, 0�i< j�k+1, one has in(Pi+Pj)=in(Pi)+
in(Pj).

Proof. Let us treat first the cases 0�i< j�k and i=0, j=k+1. We
show that Ji _ Jj is a Gro� bner basis of Pi+Pj with respect to {. By virtue
of Buchberger's criterion [4], it suffices to show that for each pair of
elements h, g in Ji _ Jj there exists a subset J of Ji _ Jj which is a Gro� bner
basis with respect to { and it contains h and g. Since Ji and Jj are Gro� bner
bases we may assume that h is a (t&1)-minor of Ai and g is a (t&1)-
minor of Aj . The union of the set of the (t&1)-minors of Ai with the set
of the (t&1)-minors of Aj is the set of the (t&1)-minors of the ladder
Ai _ Aj . Since the set of the (t&1)-minors of a ladder form a Gro� bner
basis with respect to a diagonal order, we may take as J the set of the
(t&1)-minors of Ai _ Aj .

In case 0<i�k and j=k+1, we cannot use the argument above
because Ai _ Ak+1 is no longer a ladder (unless Y is a one-sided ladder).
By virtue of 4.2(a), it suffices to show that in(Pi & Pk+1)=in(Pi) &
in(Pk+1). The inclusion in(Pi & Pk+1)�in(Pi) & in(Pk+1) holds always.
Further,

in(Pi) & in(Pk+1)

=[in(It(Y))+in(It&1(Ai))] & [in(It(Y))+in(It&1(Ak+1))]

=in(It(Y))+[in(It&1(Ai)) & in(It&1(Ak+1))].

Clearly, in(It(Y))/in(Pi & Pk+1). So it remains to show that for every pair
g=[:1 , ..., :t&1 | ;1 , ..., ;t&1], h=[#1 , ..., #t&1 | $1 , ..., $t&1], with g a
(t&1)-minor of Ai and h a (t&1)-minor of Ak+1, there exists an element
m # Pi & Pk+1 such that in(m) divides the least common multiple of in(g)
and in(h).

If g is contained in the region Bi=[( p, q) # Ai : q�b1], then g and h
are contained in the ladder Bi _ Ak+1. Since Bi _ Ak+1 is a ladder,
in(It&1(Bi))+in(It&1(Ak+1))=in(It&1(Bi)+It&1(Ak+1)), and by 4.2(a)
one has in(It&1(Bi)) & in(It&1(Ak+1))=in(It&1(Bi) & It&1(Ak+1)). So we
may find the element m with the desired property already in It&1(Bi) &
It&1(Ak+1).
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In the general case we note that if in(g) and in(h) do not share common
indeterminates we may take m= gh. So we may assume that in(g) and
in(h) share a common indeterminate, say (:v , ;v)=(#u , $u). Now consider
the set M of the first u points of the main diagonal of h and the last
t&1&v of that of g. M is a (u+t&1&v)-diagonal in Y. Hence if
u+t&1&v�t, then M contains a t-diagonal of Y and the corresponding
t-minor is the element m we are looking for. However, if u+t&1&v<t,
then the set N of the first v points of the main diagonal of g and the last
t&1&u of that of g is a diagonal in Bi with at least t&1 points. Then we
may pick a (t&1)-minor g1 of B1 whose main diagonal divides N. For the
pair g1 , h we know already that there exists m # Pi & Pk+1 such that in(m)
divides the least common multiple of in(g1) and in(h). But the least com-
mon multiple of in(g1) and in(h) divides that of in(g) and in(h). K

Now since each in(Pi) is generated by square-free monomials, the same
holds true for in(It(Y)+(c)) by equality (1).

In order to prove that the simplicial complex associated with the ideal
in(It(Y)+(c)) is shellable we recall some more facts from [13] and [7].

Families of Non Intersecting Paths. A path from a point (v1 , v2) # N2 to
a point (s1 , s2) # N2 is a sequence of points (v1 , v2)=( p1 , q1), ..., ( pr , qr)=
(s1 , s2) such that ( pi+1& pi , qi+1&qi) is equal to (0, 1) or to (&1, 0). A
family of non intersecting paths from a set of starting points V1 , ..., Vc , to
a set of ending points S1 , ..., Sc , is just a collection of paths from Vi to Si ,
i=1, ..., c, with no common points. We will say that a path is in Y if its
points are in Y. By definition a point (a, b) of a path is a right turn (resp.,
left turn) of the path if the points (a+1, b) and (a, b+1) (resp., (a, b&1)
and (a&1, b)) belong to the path as well.

We now define a procedure to modify a family of non-intersection paths.

Definition 4.4. Let E=E1 , ..., Ec be a family of non intersecting paths
and let P be a right turn of Ei . Denote by xi and yi the coordinates of P
and set h=max[ j : i� j�c, (xi+ j&i, yi+ j&i) # Ej] and Pj=(xi+ j&i,
yi+ j&i) for all j=i, ..., h+1. Then we define a new family of non inter-
secting paths H=H1 , ..., Hc , setting

Hj={Ej

Ej"[Pj] _ [Pj+1]
if 1� j�i&1 or h+1� j�c
if i� j�h.

The family of non intersecting paths H has the following properties:

(i) Hj starts and ends where Ej does, unless i� j�h and Pj is an
extreme (starting or ending) point of Ej .
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(ii) Hj is on the northeast side of Ej , for all j.
(iii) H differs from E only in the point P, that is, (�c

j=1 Ej)"
(�c

j=1 Hj)=[P].

We will say that H is obtained from E by switching the right turn P. One
defines similarly the procedure to switch a left turn of a family of non inter-
secting paths.

The families of non intersecting paths are ordered in a natural way.
Given two paths G1 and F1 with the same extreme points we say that G1

is smaller than F1 in the northeast order (denotes by G1�F1) if G1 is on
the northeast side of F1 . Given two families of non intersecting paths
G=[G1 , ..., Gc] and F=[F1 , ..., Fc] with the same extreme points we say
that G is smaller than F in the northeast order (denoted by G�F ) if
Gi�Fi for i=1, ..., c. This is a partial order on the set of families of non
intersecting paths with given extreme points.

Shellability. Let us denote by F(2) the set of the facets (i.e., the maxi-
mal elements under inclusion) of a simplicial complex 2. Recall that a sim-
plicial complex 2 is said to be shellable if it is pure (i.e., its facets all have
the same number of elements) and its facets can be given a linear order,
called a shelling, in such a way that if Z<Z1 are facets of 2, then there
exists a facet Z1<Z1 of 2, then there exists a facet Z2<Z1 of 2 and an
element x # Z1 such that Z & Z1 �Z2 & Z1=Z1 "[x].

Since in(Pi) is the square-free monomial ideal generated by the
t-diagonals of Y and the (t&1)-diagonals of Ai , K[Y]�in(Pi) is the
Stanley�Reisner ring associated with the simplicial complex 2i of the sub-
sets of Y which do not contain t-diagonals of Y and (t&1)-diagonals of Ai .
It is clear that the simplicial complex associated with in(It(Y)+(c)) is just
20 _ 21 _ } } } _ 2k+1. Our goal is to show that the simplicial complex
20 _ 21 _ } } } _ 2k+1 is shellable. We will see that each 2i is a shellable
simplicial complex whose facets can be described in terms of families of non
intersecting paths. Then we will glue together these shellings to get a shell-
ing of 20 _ 21 _ } } } _ 2k+1.

The facets of 20 are described in [13, Theorem 4.6] as families of non
intersecting paths in Y. They are the families of non intersecting paths in
Y from the points (m, 1), ..., (m, t&1) to the points (1, n), ..., (t&2, n),
(t, n). Figure 6 illustrates a typical example of a facet of 20 .

The facets of 2i , i=1, ..., k, can be described as families of non intersect-
ing paths as well. Let us consider the ladder Yi which is obtained from Y
by adding the point Ki=(ci+1, di+1) and let 2t(Yi) be the simplicial
complex of the subsets of Yi which do not contain t-diagonals of Yi . The
link of Ki in 2t(Yi) is, by definition, the simplicial complex of all the sub-
sets G of Yi"[Ki] such that G _ [Ki] # 2t(Yi). It is easy to see that the link
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Fig. 6. A facet of 20 .

of Ki in 2t(Yi) is exactly 2i . If we consider a facet F of 2t(Yi) which con-
tains Ki , then F"[Ki] is a facet of 2i and all the facets of 2i arise in this
way. The facets of 2t(Yi) are the families of non intersecting paths in Yi

with starting points (m, 1), ..., (m, t&1) and ending points (1, n), ...,
(t&1, n); see [13, Theorem 4.6]. Therefore a facet of 2i is a family of non
intersecting paths in Y with starting points (m, 1), ..., (m, t&1), (ci , di+1)
and ending points (1, n), ..., (t&2, n), (ci+1, di), (t&1, n). Figure 7 illus-
trates a facet of 2i , 1�i�k.

The simplicial complex 20 is shellable [13, Theorem 4.9]. Also, the sim-
plicial complex 2i , i=1, ..., k, is shellable since it is a link of the shellable
simplicial complex 2t(Yi), so that any shelling on 2t(Yi) induces canoni-
cally a shelling on 2i .

Let us recall how one defines the shelling of these simplicial complexes.
The northeast order is a partial order on the facets of 20 and 2t(Yi). As
slight modification of the argument in [13, Theorem 4.9] shows that by
extending this partial order to a total order (it does not matter how) one
gets shellings on 20 and 2t(Yi). Since any shelling on 2t(Yi) induces a
shelling on 2i , a shelling on 2i arises by extension of the northeast order.

We prefer to use these shellings instead of the original ones of [13]
because they are more appropriate to our needs.

We still have to determine the facets of the simplicial complex 2k+1 and
to describe a shelling on it.

Fig. 7. A facet of 2i .
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If Y is a on-sided ladder, then Pk+1 is the ideal cogenerated by the minor
#=[1, ..., t&1 | 1, ..., t&2, t] in Y [13, Section 4]. In this case the facets
and the shelling of 2k+1 are described in [13, Section 4]. A facet of
2k+1 is a family of non intersecting paths in Y from the points
(m, 1), ..., (m, t&2), (m, t) to the points (1, n), ..., (&1, n), and a shelling is
given extending the northeast order.

Now we treat the case of a ladder which is not one-sided.

Remark 4.5. So far we did not use the fact that we are dealing with a
wide ladder. It turns out that the description of the facets and of the shell-
ing of 2k+1 is easier for a wide ladder than for general ones. That is the
reason why we have restricted our attention to wide ladders. In order to
show that any ladder determinantal ring is F-rational one should extend
4.6, 4.7, and 4.8 to general (i.e., not necessarily wide) ladders.

For j=1, ..., t&1, denote by Wj the (b1&1+ j) th row of Y, that is, the
set [(i, b1&1+ j) : (i, b1&1+ j) # Y]. Note that the set Ak+1 is just the
union of W1 , ..., Wt&1.

Since in(Pk+1)#in(It(Y)), the simplicial complex 2k+1 is contained in
2t(Y). Any facet of 2k+1 is contained in a facet of 2t(Y). A facet F of 2t(Y)
is a family of non intersecting paths F1 , ..., Ft&1 in Y from the points
(m, 1), ..., (m, t&1) to (1, n), ..., (t&1, n). The sets Fi & Wi are all not
empty, and the only (t&1)-diagonals of the region Ak+1 which are con-
tained in F are of the form e1 , ..., et&1 , with ei # Fi & Wi .

In case |Fi & Wi |=1 for some i, the set F"(Fi & Wi) does not contain
(t&1)-diagonals of Ak+1. Therefore F"(Fi & Wi) is a face of 2k+1 and
since it has maximal dimension it is actually a facet. We want to show that
all the facets of 2k+1 arise in this way.

Proposition 4.6. Let G be a subset of Y. Then G is a facet of 2k+1 if
and only if there exist a facet F=F1 , ..., Ft&1 of 2t(Y) and an integer
i, 1�i�t&1, such that |Fi & Wi |=1 and G=F"(Fi & Wi). Furthermore,
the pair (F, i) is uniquely determined by G.

Proof. We show first that there exist F # F(2t(Y)) and i, 1�i�t&1,
such that |Fi & Wi |=1 and G�F"(Fi & Wi). Then equality follows since G
and F"(Fi & Wi) are facets of 2k+1 .

Take H # F(2t(Y)) such that G/H. We argue by induction on
n(H)=�t&1

j=1 |Hj & Wj |. If n(H)=t&1, then |Hj & Wj |=1, for all j, say
Hj & Wj=[wj]. Since w1 , ..., wt&1 is a (t&1)-diagonal of Ak+1 ,
[w1 , ..., wt&1]/3 G. So wj � G for some j, and we may take F=H and i= j.
Now let n(H)>t&1. Let wj be the element of Hj & Wj with smallest x-
coordinate. Again w1 , ..., wt&1 is a (t&1)-diagonal of Ak+1 , and so wj � G
for some j. If |Hj & Wj |=1, we argue as before. If |Hj & Wj |>1, then wj
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is a right turn of Hi . We switch the right turn wj of H and get a family of
non intersecting paths H$. Since Y is a wide ladder, H$ is still a family of
non intersecting paths in Y. Furthermore, n(H$)=n(H)&h, where h is the
integer defined by the switching procedure. Since G�H"[wj]/H$ and
n(H$)<n(H), the conclusion follows by induction.

For the uniqueness, assume that there exist F, F $ # F(2t(Y)), and i, j
such that |Fi & Wi |=|F $j & Wj |=1 and F"(Fi & Wi)=F $"(F $j & Wj). One
has to show that F=F $ and i= j. Clearly it suffices to show F=F $. By
contradiction, if F{F $ we may assume that F precedes F $ in the shelling
of 2t(Y). Let w$ be the unique point of F $j & Wj . As F $ & F=F $"[w$], w$
has to be a right turn of F $; see [13, Theorems 4.6, 4.9]. Therefore
the point of F $j that precedes wj is in Wj too, a contradiction to
|F $j & Wj |=1. K

Figure 8 illustrates a facet of 2k+1. By 4.6, an element of G # F(2k+1) is
represented in a unique way by a pair (F, i) with F # F(2t(Y)),
|Fi & Wi |=1. In particular, 2k+1 is pure since 2t(Y) is. We consider the
shelling on 2t(Y) which arises as extension of the northeast order. This
shelling induces a shelling on 2k+1.

Proposition 4.7. The simplicial complex 2k+1 is shellable, and a shell-
ing is given by the following total order: Given two facets G, H of 2k+1

represented by (F, i) and (E, j), we set G<H if F<E in the shelling of
2t(Y), or F=E and i< j.

Proof. Let G and H be facets of 2k+1 , and assume G<H. We have to
find a facet L of 2k+1 and a point x of H, such that L<H and
G & H�L & H=H"[x]. Let (F, i) and (E, j) be the pairs that represent G
and H, and denote by w the point of the set Fi & Wi and by z that of
Ej & Wj . If F=E, then it suffices to take L=G and x to be w. If F{E,
then F<E in the shelling of 2t(Y). Thus there exist a facet D of 2t(Y) and
a point y of E, such that D<E and F & E�D & E=E"[ y]. It appears in
the proof of [13, Theorem 4.9] that y has to be a right turn of E and D

Fig. 8. A facet of 2k+1 .
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is obtained by switching the right turn y of E. If Dj & Wj=[z], then we
take L to be the facet represented by the pair (D, j), and x to be y.

The case Dj & Wj {[z] arises only if the point which precedes z in the
path Ej is a right turn and it is involved in the switching procedure. If this
is the case, let Ei be the path which contains y, and let h the integer which
is defined by the switching procedure. Then i� j�h.

Figure 9 illustrates this situation in an example where i= j&2 and
h= j+2.

By the definition of the switching procedure, it follows immediately that
D & E=D"[u], where u belongs to Dh . Since z is the unique point of
Ej & Wj and the switching procedure involves the point which precedes it,
z becomes a right turn of Dj . So we may switch the right turn z of D and
we get a family of non intersecting paths C. Note that our assumption on
the shape of the ladder Y guarantees that C is contained in Y, that is, it
is a facet of 2t(Y). By construction u is the only point of Ch & Wh , so that
C"[u] is a facet of 2k+1 represented by the pair (C, h). The next picture
shows the facet C which is obtained from the facet D of Fig. 10 (here
h= j+2).

Now we take L to be the facet (C, h) and x= y, and we show that they
have the desired properties. Indeed L<H, since C<D<E, and further by
construction E & C=E"[z, y]. It follows that G & H=F"[w] & E"[z]=
F&E"[z, w] � D&E"[z] = E"[z, y] = E&C = E"[z]&C"[u] = H&
L=H"[ y]. K

In order to avoid unnecessary distinctions we always write a facet F of
Di , i=0, ..., k+1, as a disjoint union of sets F1 , ..., Ft&1 . Here Fj is a path
from (m, j) to ( j, n), except in the following cases: If i=0, then the path Ft&1

ends in (t, n). If 0<i<k+1, then Ft&1 is the union of a path F"t&1 from
(ci , di+1) to (t&1, n) and a path F $t&1 from (m, t&1) to (ci+1, di). If
i=k+1 and Y is a one-sided ladder, then the path Ft&1 starts in (m, t). If
i=k+1 and Y is not a one-sided ladder, then one of the Fj is of the form
F $j "[x] where F $j is a path from (m, j) to ( j, n), and [x]=F $j & Wj .

For convenience we call Fi a path even in the cases in which it is just a
union of two paths, or a path with a point deleted. Moreover, in the case Fi

Fig. 9. (left) The facet E, and (right) the facet D.
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Fig. 10. The facet C.

is not really a path, we say that a point x is a right-(or left-) turn of Fi if it
is a right-(or left-) turn of one of the path components of Fi .

We are ready to prove

Theorem 4.8. The simplicial complex 2 associated with the square-free
monomial ideal in(It(Y)+(c)) is shellable.

Proof. The simplicial complex 2 associated with in(It(Y)+(c)) is
20 _ 21 _ } } } _ 2k+1. One has F(2)=F(20) _ F(21) _ } } } _ F(2k+1), and
hence 2 is pure since the 2i 's are pure and they have all the same dimension.
We need the following:

Lemma 4.9. For all 0�i< j�k+1 and for all F=[F1 , ..., Ft&1] # F(2j)
there exist Q1 # F1 , ..., Qt&1 # Ft&1 such that Q1 , ..., Qt&1 form a
(t&1)-diagonal of Ai . The point Qh can be chosen to be a right turn of Fh for
h=1, ..., t&2. Further, the point Qt&1 can be chosen to be a right turn of Ft&1

unless i=0 and Ft&1 & A0=[(t&1, n)], in which case Qt&1=(t&1, n).

Proof. We treat first the case i=0. In this case the path Fh ends in (h, n).
We define Qh to be the point of Fh & [(h, l ) : (h, l ) # Y] with smallest y-coor-
dinate. It is clear that the points Q1 , ..., Qt&1 have the desired properties.

If 0<i<k+1, note that the path Ft&1 contains a point of the region Ai .
Then we take Qt&1 to be the point with smallest x-coordinate among the
points with smallest y-coordinate of Ft&1 & Ai . Denote by Lt&1 the set of the
points of Y lying strictly to the southwest side of Qt&1. The path Ft&2 con-
tains a point Lt&1. We take Qt&2 to be the point with smallest x-coordinate
among the points with smallest y-coordinate of Ft&2 & Lt&1 . The points
Qt&3 , ..., Q1 are defined iterating the previous procedure. By construction Qh

is a right turn of Fh , and Q1 , ..., Qt&1 form a (t&1)-diagonal of Ai . This con-
cludes the proof. K
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Now we continue with the proof of 4.8. Since a facet of 2i does not contain
(t&1)-diagonals of the region Ai , it follows from 4.9 that the sets F(2k+1) are
pairwise disjoint. Recall that we have fixed on 2i a shelling which arises from
the extension of the northeast order. In order to have a shelling on 2 we glue
together the shellings of the 2i 's in the following manner:

Let G, G # F(2); we define a total order on F(2) setting G�F if G # F(2i)
and F # F(2j), with i< j, or if i= j and G�F with respect to the shelling on
2i . This definition makes sense because the sets F(2i) are pairwise disjoint.

We claim that the given total order is a shelling on 2. The claim is a
straightforward consequence of 4.9 and of the following statement:

(V) Let 0�i< j�k+1 and let F=[F1 , ..., Ft&1] # F(2j). Let Q # Ai

be a right turn of Fs for some s=1, ..., t&1, or assume i=0 and
Ft&1 & A0=[(t&1, n)] and let Q=(t&1, n). Then there exists
H # F(2i) _ F(2j) such that H<F and H & F=F"[Q].

In order to prove (V) we have to distinguish several cases.

Case 1: 0=i< j�k+1. Assume first:

Subcase 1.1.: Ft&1 & A0 {[(t&1, n)]. Then Q has to be a right turn of
Fs . We may switch the right turn Q of F and we get the desired H. Since
Ft&1 & A0 {[(t&1, n)], the family of non intersecting paths H is in Y, and
so it belongs to F(2j). Further, H<F because H is on the northeast side of
F and by construction F & H=F"[Q].

Subcase 1.2.: Ft&1 & A0=[(t&1, n)]. If Q is a right turn of F and the
family of non intersecting paths which is obtained by switching it is contained
in Y, then one proceeds as in Subcase 1.1

The case in which the point Q has coordinate (s, n+s&t+1) is left. We
construct H # F(20) such that F & H=F"[Q]. Note that the condition
H<F is automatically satisfied. The facet H is defined by the following
operations:

(1) Let L be the family of non intersecting paths of F(2j) which is
determined as follows. If j<k+1 and Tj belongs to F, then Tj has to be a left
turn of Ft&2, and L is the facet which is obtained from F by switching Tj . If
j=k+1, Y is an one-sided ladder, and (m, t&1) belongs to F; then (m, t) has
to be a left turn of Ft&2 , and L is the facet which is obtained from F by switch-
ing Tj . In the other cases L is defined to be F.

(2) Let H$ be the family of non intersecting paths of F(20) which is
determined as follows: If j<k+1 or if j=k+1 and Y is an one-sided ladder
set H$h=Lh for h=1, ..., t&2. Note that by construction the point Tj does
not belong to L if j<k+1. The set Lt&1 is the union of two paths L$t&1 and
L"t&1 , where L$t&1 starts from (m, t&1) and ends in (cj+1, dj), and L"t&1 by
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means of the point Tj and we get a path from (m, t&1) to (t&1, n). Omitting
from this path the point (t&1, n), we get a path H$t&1 from (m, t&1) to
(t, m). (Recall that we are working under the assumption Ft&1 & A0=
[(t&1, n].)

If j=k+1 and Y is a one-sided ladder, then Lt&1 is a path from (m, t)
to (t&1, n), and the point (m, t&1) is not in L. So we set H$t&1=
Lt&1"[(t&1, n)] _ [(m, t&1)].

Finally, if Y is not a one-sided ladder and j=k+1, then L is of the form
C"[x], where C is a family of non intersecting paths with starting points
(m, 1), ..., (m, t&1) and ending points (1, n), ..., (t&1, n), and [x]=
Cr & Wr for some r. The facet H is obtained from L by adding the point x to
Lr and omitting (t&1, n) from Lt&1 .

(3) If s=t&1, that is, Q=(t&1, n), then H=H$. If s<t&1, that is
Q{(t&1, n), then Q is a right turn of F, and this property is not destroyed
passing from F to H$ (note that c1>t&1). Then H is obtained from H$ by
switching Q. Note that, since (t&1, n) does not belong to H$, H is contained
in Y and therefore it is an element of 20 as desired.

It is easy now to check that F"H=[Q] in all the cases. The following
picture illustrates the construction of H in a case in which s is supposed to
be 2, and j<k+1.

Case 2: 0<i< j�k+1. One may essentially mimic the constructions
given in Case 1. So let us just sketch the argument. Let first j<k+1. The
point Q is a right turn of Fs . If the family of non intersection paths is obtained
from F by switching Q we are done. If not, this means that Ft&1 has a right
turn in Ti and that Q has coordinate (ci+s&t+1, di+s&t+1). In this case
we construct H # F(2i). One defines L, H$, and H as in (1), (2), and (3) except
for H$t&1 which is now defined to be Lt&1"Ti _ [Tj].

Now let j=k+1. If Y is one-sided ladder, one proceeds as before, the only
difference being that H$t&1 is now defined to be Lt&1"[Ti] _ [(m, t&1)].

Finally, assume that Y is not a one-sided ladder. If the family of non inter-
secting paths which is obtained from F by switching Q is in Y, then we may
switch twice (if it is needed) as we did in the proof of 4.7 to get H with

Figure 11
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the desired properties. Otherwise, we proceed as in (2) and (3) but define
H$=L"[Ti] _ [x].

This concludes the proof of ( V ) and of the theorem. K

5. F-PURE AND F-REGULAR LADDER DETERMINANTAL RINGS

Let Rt(Y) be a ladder determinantal ring. In [13, Theorem 4.9] it is shown
that in(Rt(Y)) is the Stanley�Reisner ring of a shellable simplicial complex.
Hence our Corollary 2.2 in conjunction with 1.1(c) implies

Theorem 5.1. Any ladder determinantal ring which is defined over a per-
fect field of positive characteristic is F-injective.

For a Gorenstein ring, F-rationality and F-regularity ([17, Corollary 4.7])
and F-injectivity and F-purity ([10, Corollary 1.5]) are the same. On the
other hand, any subring of an F-regular (resp., F-pure) ring which is a direct
summand is again F-regular (resp., F-pure); see [18, Theorem 3.4] and [19,
Corollary 4.13]. Thus 1.4 and 5.2 imply

Corollary 5.2. Let Y be a wide Gorenstein ladder, and let Rt(Y) be the
ladder determinantal ring of Y which is defined over a perfect field of positive
characteristic. Let R�Rt(Y) be a subring such that R is a direct summand of
Rt(Y) as an R-module. Then R is F-regular and F-pure.

An explicit situation where 5.2 applies is described in

Corollary 5.3; Let Y be a chain ladder, and let Rt(Y) be the ladder
determinantal ring of Y which is defined over a perfect field of positive charac-
teristic. Then Rt(Y) is F-regular and F-pure.

As a consequence of 5.3 we also have that the ladder determinantal ring of
any one-sided ladder is F-regular and F-pure, since one-sided ladders are spe-
cial chain ladders.

For the proof of 5.3 we may assume that Y is t-connected, and we only
have to note that any chain ladder Y is a subladder of a wide Gorenstein lad-
der W such that the natural inclusion map Rt(Y)�Rt(W) is an algebra
retract. Indeed, one constructs W from Y by adding suitable rows and
columns to Y as described in Section 3. Then 3.1 implies that Rt(Y) is an
algebra retract of R(W). Of course, we have to add the rows and columns in
a such way that the resulting W is wide and Gorenstein. In [6] Conca
describes all Gorenstein ladders. He shows that W is Gorenstein if m=n (see
Fig. 1) and if the inside upper corners of W lie on the line with equation
x+ y=n+t&1, while the inside lower corners lie on the line with
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equation x+ y=n&t+3. Such a ladder is also wide. Now it is easy to see
that one can move the first inside corner of Y to the right position by adding
suitable rows or columns to Y which, referring to Fig. 1, lie north and west
of this corner. By assumption the inside corners form a chain, and hence are
naturally ordered. The next inside corner can again be moved to the right
position by adding suitable rows and columns which now are east and south
of the first corner (and thus do not affect the position of the first corner).
Proceeding in this manner we finally obtain a wide Gorenstein ladder.
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