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Abstract. Let V be closed subscheme of n 1 defined by a homogeneous ideal I A =
K[X1, , Xn], and let X be the (n 1)-fold obtained by blowing-up n 1 along V. If one embeds
X in some projective space, one is led to consider the subalgebra K[(Ie)c] of A for some positive
integers c and e. The aim of this paper is to study ring-theoretic properties of K[(Ie)c]; this is
achieved by developing a theory which enables us to describe the local cohomology of certain mod-
ules over generalized Segre products of bigraded algebras. These results are applied to the study of
the Cohen-Macaulay property of the homogeneous coordinate ring of the blow-up of the projective
space along a complete intersection. We also study the Koszul property of diagonal subalgebras of
bigraded standard k-algebras.

Introduction. Let V be a smooth closed subscheme of n 1 defined by a
homogeneous ideal I A = K[X1, , Xn], and let X be the (n 1)-fold obtained
by blowing-up n 1 along V .

If c is a positive integer, the c-graded part of I which we denote by Ic,
corresponds to a complete linear system on X; for large c, this linear system
is very ample and gives an embedding of X in N 1, where N = dimK Ic. The
homogeneous coordinate ring of this embedding is the subalgebra K[Ic] of A
which is generated by any set of generators of the K-vector space Ic.

More generally, we would like to embed X through more sophisticated very
ample divisors; this leads us to consider, given the positive integers c and e, the
subalgebra K[(Ie)c] of A.

The aim of this paper is to study ring-theoretic properties of K[(Ie)c], where
e and c are positive integers and I is any homogeneous ideal of the polynomial
ring A = K[X1, , Xn].

We are inspired by recent work of Geramita, et al. ([10], [11], [12]) who
treated similar problems in the case X is the blow-up of n 1 at a certain set of
points.

Our main tool is an interesting relationship between K[(Ie)c] and the Rees
algebra A[It] of I, which is defined as the subring j=0 I jt j of the polynomial
ring A[t].
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To describe this relationship we introduce the set

∆ := (cs, es) s ,

which we call the (c, e)-diagonal of 2.
For any 2-graded algebra S, we will denote by S(i,j) the (i, j)-graded part of

S. The diagonal subalgebra of S along ∆ is defined as the -graded algebra

S∆ :=
s

S(cs,es).

Similarly we can define the ∆-submodule of a 2-graded S-module L as

L∆ :=
s

L(cs,es).

By construction L∆ is an S∆-module.
The Rees algebra A[It] has the natural 2-grading A[It](i,j) = (Ij)itj. We shall

see that if Ie is generated by elements of degree c, then

K[(Ie)c] A[It]∆.

This representation of K[(Ie)c] as a diagonal subalgebra of A[It] was first dis-
covered in the case I is a complete intersection generated by forms of the same
degree d and ∆ is the (1, d + 1)-diagonal of 2 ([19]). Notice that a weaker ver-
sion for ∆ has been used there because in this case, A[It] can be made a standard

2-graded algebra.
One main problem on diagonal subalgebras is to find suitable conditions on

S such that certain algebraic properties of S are inherited by S∆. The operator
∆ can be used to study the presentation and the normality of S∆ as shown in
[19]. Our main focus in this paper are the Cohen-Macaulay property and the
Koszul property of S∆. We will mostly concentrate our interest on the diagonal
subalgebras of the Rees algebra A[It].

Assume that I is minimally generated by homogeneous polynomials f1, , fr.
Let S = A[Y1, , Yr] be a polynomial ring over A in r new indeterminates. By
mapping Yj to fjt we obtain a presentation of the Rees algebra A[It] as a factor ring
of S. In order for this map to be a homomorphism of 2-graded algebras, we give
the polynomial ring the natural 2-grading deg Xi = (1, 0) and deg Yj = (dj, 1),
where dj := deg fj. Let

0 D D1 D0 = S A[It] 0
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be a 2-graded minimal free resolution of A[It] over S. Then

0 (D )∆ (D1)∆ S∆ A[It]∆ 0

is a graded resolution of A[It]∆ over S∆. Since every free module Dp, p = 1, , l,
is a direct sum of modules of the form S(a, b), where S(a, b) denotes the twisted
module S with shifting degree (a, b), we can deduce properties of A[It]∆ from
those of S∆ and S(a, b)∆.

For this reason it is of interest to study diagonal subalgebras of 2-graded
polynomial rings with such a 2-grading and diagonal submodules of their twisted
modules. We shall see that S∆ is an affine semigroup ring for which we already
have a well-developed theory ([16], [22]). To study S(a, b)∆ we have to extend
the notion of Segre products of -graded algebras to 2-graded algebras. It turns
out that S(a, b)∆ can be considered as a Segre product of two twisted 2-graded
polynomial rings whose local cohomology modules can be described in terms of
the shift and the grading of S. Thus applying the diagonal operator to the minimal
bigraded free resolution of a bigraded S-module L, the informations on S(a, b)∆
yield results on L∆. For applications it is most important to understand the local
cohomology of L∆. We have the following result:

THEOREM 3.6. Let S be the polynomial ring with the bigrading as introduced
above, and denote by R the ring S∆. Assume that c ed + 1 where d =
max d1, , dr . For any finitely generated 2-graded S-module L, there exists
a canonical homomorphism q

L: Hq
R(L∆) Hq+1

S (L)∆ for all q 0 such that q
L

is an isomorphism for q n, and such that for q n, q
L induces an isomorphism

of K-vector spaces between Hq
R(L∆)s and (Hq+1

S (L)∆)s for almost all s.

From this theorem we deduce sufficient and necessary conditions for a 2-
graded S-module L to have a Cohen-Macaulay or Buchsbaum diagonal submodule
L∆.

One of our main results deals with the algebra K[(Ie)c] when I is a complete
intersection ideal. In this case, we can say exactly for which c, e this algebra is
a Cohen-Macaulay ring, thereby solving an open problem of [19].

THEOREM 4.6. Let I K[X1, , Xn] be a homogeneous complete intersection
ideal minimally generated by r forms of degree d1, , dr. Assume that c ed + 1,
d = max dj j = 1, , r . Then K[(Ie)c] is a Cohen-Macaulay ring if and only if
c r

j=1 dj + (e 1)d n.

As a corollary of this result we get the following interesting class of Goren-
stein algebras.
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COROLLARY 4.7. Let I A = K[X1, , Xn] be a homogeneous complete
intersection ideal minimally generated by two forms of degree d1 d2. If n d2+1
then K[In] is a Gorenstein ring with a-invariant 1.

In the last two sections of the paper we study the Koszul property of diagonal
subalgebras. Our results applied to the algebras of type K[(Ie)c] give the following

COROLLARY 6.9. Let I be a homogeneous ideal of the polynomial ring
K[X1, , Xn]. Denote by d the highest degree of a generator of I. Then there
exist integers a, b such that the K-algebra K[(Ie)ed+c] is Koszul for all c a and
e b.

Acknowledgments. This paper was written when Ngô Viêt Trung was visiting
the University of Essen supported by a grant from DFG. The cooperation with
Valla was made possible by the Vigoni exchange program from DAAD and CNR.
The authors would like to thank these institutions for their financial support.

1. Diagonal subalgebras of bigraded algebra. In this section we will col-
lect some preliminary results. We will assume that the readers are familiar with
the theory of multigraded rings (see e.g. [14]). Unless otherwise specified, ∆
always denotes the (c, e)-diagonal of 2 for a fixed pair of positive integers c, e.

A. Diagonal subalgebras of polynomial rings. Let S = K[X1, , Xm] be
a 2-graded polynomial ring with deg Xi = (ai, bi), i = 1, , m, where ai, bi are
given nonnegative integers. For convenience we assume that the matrix

a1 am

b1 bm

has rank 2. Otherwise, the 2-grading of S is actually an -grading.
For = ( 1, , m) m we write X for the monomial X 1

1 X m
m . Then

deg X = ( m
i=1 iai, m

i=1 ibi). The monomial X belongs to S∆ if and only if

m

i=1

ai i = cs and
m

i=1

bi i = es

for some integer s. Let H denote the additive monoid of the solutions m

of these systems of equations. Then S∆ = K[X H], which is isomorphic
to the affine semigroup ring K[H] of H over K. See e.g. [5] or [22] for more
information on the theory of affine semigroup rings.

PROPOSITION 1.1.

(i) dim S∆ = m 1.
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(ii) S∆ is a normal Cohen-Macaulay domain.

(iii) S∆ ( S)∆, where S∆ and S denote the canonical modules of S∆ and
S, respectively.

Proof. Let G be the set of all integral solutions of the above systems of
equations. Then G is a lattice of integral points in m with rank G = m 1 and
H = G m . Therefore dim K[H] = m 1 and K[H] is a normal Cohen-Macaulay
domain ([17]). Finally, by [14, Theorem 3.3.3 (2)] we have

S∆ = K[X G, 0] = K[X 0]∆ = ( S)∆,

where 0 means that i 0 for all i = 1, , m.

Remark. Every -graded affine semigroup ring K[H] with dim K[H] = m 1
for which the corresponding convex polyhedral cone has exactly m facets arises
as a diagonal subalgebra of an 2-graded polynomial ring.

B. Segre products of graded algebras. Let S = A K B be the tensor
product of two -graded algebras A = i Ai and B = j Bj over K. Then S
is a 2-graded algebra with S(i,j) = Ai K Bj. From this it follows that

S∆ =
s

Acs K Bes,

which is the Segre product of order (c, e) of A and B over K ([7]).
We can extend the notion of Segre products of -graded algebras to 2-graded

algebras as follows.

Definition. Let A and B be two 2-graded algebras over a field K. The tensor
product A K B is a 2-graded algebra over K with

(A K B)(i,j) :=
(a1,a2),(b1,b2) 2

(a1,a2)+(b1,b2)=(i,j)

A(a1,a2) K B(b1,b2).

We have

(A K B)∆ =
s (a1,a2),(b1,b2) 2

(a1,a1)+(b1,b2)=(cs,es)

A(a1,a2) K B(b1,b2),

which we call the Segre product of A and B along ∆. For convenience we denote
it by A ∆ B. Similarly, if M and N are 2-graded modules over A and B,
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respectively, then the tensor product M K N is a 2-graded A K B-module with

(M K N)∆ =
s (a1,a2),(b1,b2) 2

(a1,a1)+(b1,b2)=(cs,es)

M(a1,a2) K N(b1,b2).

We call (M K N)∆ the Segre product of M and N along ∆ and denote it by
M ∆ N.

C. Embeddings of blow-ups of projective spaces. Let A = K[X1, , Xn]
be a polynomial ring over a field K and I a homogeneous ideal of A. For large
c, the algebra K[(Ie)c] is isomorphic to the coordinate ring of some embedding
of the blow-up of n 1

K along the ideal sheaf Ĩ in a projective space.
Let A[It] = j 0 Ijtj be the Rees algebra of I. Since the polynomial ring A[t]

is an 2-graded algebra with A[t](i,j) = Aitj, we may consider the Rees algebra
A[It] as an 2-graded subalgebra of A[t] with A[It](i,j) = (Ij)itj. Hence A[It] has
the diagonal subalgebra

A[It]∆ =
i 0

(Iei)citei.

We note the following simple fact whose proof we leave to the reader:

LEMMA 1.2. Assume that the ideal Ie is generated by forms of degree c. Then

K[(Ie)c] A[It]∆.

We will denote by K((Ie)c) the field of quotients of K[(Ie)c]. One has:

LEMMA 1.3. Assume that Ie is generated by forms of degree c 1. Then

(i) K((Ie)c) = K
X2

X1
, ,

Xn

X1
, X1f for any nonzero element f (Ie)c 1.

(ii) dim K[(Ie)c] = n.

Proof. Since
Xi

X1
=

Xif
X1f

K((Ie)c), we have

K
X2

X1
, ,

Xn

X1
, X1f K((Ie)c).

Conversely, for every element g (Ie)c,
g

X1f
K

X2

X1
, ,

Xn

X1
because g, X1f

have the same degree. Therefore g = X1f
g

X1f
K

X2

X1
, ,

Xn

X1
, X1f . So we

obtain (i). Now it is clear that the transcendent degree of K((Ie)c) is equal to n,
which implies (ii).
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There have been some scattered results on the properties of K[(Ie)c], namely
in the case I is the defining ideal of fat points ([10], [11], [12]) or when I is a
complete intersection ideal generated by forms of the same degree ([19]).

Remark. If the ideal I is generated by forms of the same degree d, we can
define another 2-graded structure on A[It] as follows. Let R = (i,j) 2 R(i,j) be
the 2-graded algebra with

R(i,j) := (Ij)i+djtj

for all (i, j) 2 . Since Ij is generated by forms of degree jd, we have (Ij)h = 0
for h jd. Therefore R covers all elements of A[It] = j 0 Ijtj, hence R =
A[It]. We note that R is a standard 2-graded K-algebra, i.e. R(0,0) = K and
R = K[R(1,0), R(0,1)]. This 2-graded structure of A[It] has been used successfully
to study K[Id+1] in [19], and will also be used later in the paper.

Now let S be an arbitrary 2-graded K-algebra which is an integral domain.
Then its integral closure S̄ in the field of fractions inherits a natural 2-graded
structure from S.

The following result was originally proved in [19] for the (1, 1)-diagonal of
2, but the proof there also holds for arbitrary ∆ without any modification.

PROPOSITION 1.4. Let Q(S∆) denote the field of quotients of S∆. Then (S∆) =
(S)∆ Q(S∆).

Now we would like to employ this relationship to study the integral closure
of the algebra K[(Ie)c].

COROLLARY 1.5. Assume that Ie is generated by forms of degree c. Then

K[(Ie)c] = K[(Ies)cs s 0] K((Ie)c),

where Ies denotes the integral closure of Ies.

Proof. By Lemma 1.2 we have K[(Ie)c] A[It]∆. Hence

K[(Ie)c] = (A[It])∆ Q(A[It]∆).

It is known that A[It] = i 0Ijtj. Then (A[It])∆ = s 0(Ies)cstes K[(Ies)cs s
0]. Since the latter isomorphism induces the isomorphism Q(A[It]∆) K((Ie)c),
we obtain the conclusion from the above formula for K[(Ie)c].

To study the Cohen-Macaulay property of diagonal submodules we will use
local cohomology. We shall see that under certain conditions, the operator ∆
commutes with local cohomology modules. For this we assume that S is an 2-
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graded polynomial ring over K with dim S = m. Let R = S∆. We will denote by
S and R the maximal graded ideal of S and R, respectively.

For any module L over a K-algebra T we will denote by Hq (L) the qth local
cohomology module of L with support in an ideal of T ([15]), and we put
L = HomK (L, K).

PROPOSITION 1.6. Let L be a finitely generated 2-graded S-module. For all
q 0, there is a canonical graded homomorphism q

L: Hq
R(L∆) Hq+1

S (L)∆.

Proof. We have

HomS(L, S)∆ =
s

HomS (L, S(cs, es)),

and by Proposition 1.2

HomR(L∆, R) = HomR(L∆, ( S)∆)

=
s

HomR (L∆, ( S)∆(s))

=
s

HomR (L∆, S(cs, es)∆).

Here Hom denotes the “graded Hom.”
Since for each s there is a natural homomorphism from HomS (L, S(cs, es))

to HomR (L∆, S(cs, es)∆), we get an induced natural graded homomorphism from
HomS(L, S)∆ to HomR(L∆, R), and hence canonical graded homomorphisms i

L
from ExtiS(L, S)∆ to ExtiR(L∆, R) for i 0. Since S and R are Cohen-Macaulay
rings with dim S = m and dim R = m 1 (Proposition 1.1), we have

Hq+1
S

(L) = Extm q 1
S (L, S) ,

Hq
R
(L∆) = Extm q 1

R (L∆, R)

for q 0 [14, Theorem 2.2.2]. It is easy to check that

(ExtiS(L, S) )∆ = (ExtiS(L, S)∆) .

Therefore, m q 1
L yields a canonical homomorphism q

L from Hq
R(L∆) to

Hq+1
S (L)∆.

We will denote by [ q
L]s: Hq

R(L∆)s (Hq+1
S (L)∆)s the component of degree

s of the map q
L.
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LEMMA 1.7. Let L be a finitely generated 2-graded S-module. Let

0 D D1 D0 L 0

be a 2-graded minimal free resolution of L over S. Let s and i 0 be integers such
that [ m

Dp]s is an isomorphism and Hq
R((Dp)∆)s = 0 for i q m 1, p = 0, , .

Then [ q
L]s is an isomorphism for all q i.

Proof. If = 0, L = D0 is a free S-module with dim L = m. Hence Hq+1
S (L) = 0

for q = m. By the assumption, [ m
L ]s is an isomorphism and Hq

R(L∆)s = 0 for
i q m 1. Since Hq+1

S (L) = 0 for i q m 1, [ q
L]s is an isomorphism

for all q i.
For 1 we consider first the kernel C of the map D0 L. Since 0 D

D1 C is a 2-graded minimal free resolution of C, we may assume, by
induction on , that [ q

C]s is an isomorphism for q i. The short exact sequence
0 C D0 L 0 implies Hq

S(L) Hq+1
S (C) for q = m 1, m and the

exact sequence

0 Hm 1
S

(L) Hm
S
(C) Hm

S
(D0) Hm

S
(L) 0.

Applying the functor ∆ we get Hq
S(L)∆ Hq+1

S (C)∆ for q = m 1, m and the
exact sequence

0 Hm 1
S

(L)∆ Hm
S
(C)∆ Hm

S
(D0)∆ Hm

S
(L)∆ 0.

On the other hand, since Hq
R((Dp)∆)s = 0 for i q m 1, from the short

exact sequence 0 C∆ (D0)∆ L∆ 0 we get Hq 1
R (L∆)s Hq

R(C∆)s for
i + 1 q m 1 and the exact sequence

0 Hm 2
R

(L∆)s Hm 1
R

(C∆)s Hm 1
R

((D0)∆)s Hm 1
R

(L∆)s 0.

Now consider the commutative diagrams

Hq 1
R (L∆)s Hq

R(C∆)s

[ q 1
L ]s [ q

C]s

(Hq
S(L)∆)s (Hq+1

S (C)∆)s

for i + 1 q m 1 and
0 Hm 2

R (L∆)s Hm 1
R (C∆)s Hm 1

R ((D0)∆)s Hm 1
R (L∆)s 0

[ m 2
L ]s [ m 2

C ]s [ m 1
D0

]s [ m 1
L ]s

0 (Hm 1
S

(L)∆)s (Hm
S
(C)∆)s (Hm

S
(D0)∆)s (Hm

S
(L)∆)s 0.
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Since [ q
C]s is an isomorphism for q i, we can conclude that [ q

L]s is an
isomorphism for q i.

In the following we say that q
L is almost an isomorphism if there exists a

positive integer s0 such that [ q
L]s is an isomorphism for s s0. Recall that L∆

is called a generalized Cohen-Macaulay module if Hq
R(L∆) is of finite length for

q = dim L.

PROPOSITION 1.8. Let L be a finitely generated 2-graded S-module and

0 D D1 D0 L 0

a 2-graded minimal free resolution of L over S. Assume that m 1
Dp

is an isomor-
phism for p = 0, , . Then

(i) q
L is an almost isomorphism for all q 0 if (Dp)∆ is a generalized Cohen-

Macaulay module with dim (Dp)∆ = m 1 for p = 0, , .
(ii) q

L is an isomorphism for all q 0 if (Dp)∆ is a Cohen-Macaulay module
with dim (Dp)∆ = m 1 for p = 0, , .

Proof. If (Dp)∆ is a generalized Cohen-Macaulay module with dim (Dp)∆ =
m 1, p = 0, , , there exists an integer s0 0 such that Hq

R((Dp)∆)s = 0 for
s s0, q = m 1. Therefore, the assumptions of Proposition 1.7 are satisfied for

i = 0 and s s0, hence [ q
L]s is an isomorphism for s s0 and q 0. Similarly,

if (Dp)∆ is a Cohen-Macaulay module with dim (Dp)∆ = m 1, p = 0, , r 1,
then Hq

R((Dp)∆) = 0 for q = m 1. Therefore, the assumptions of Proposition
1.7 are satisfied for i = 0 all all integers s, hence q

L is an isomorphism for
q 0.

Note that every 2-graded free S-module is a direct sum of free summands of
the form S(a, b). In studying A[It]∆ we may put S = K[X1, , Xn, Y1, , Yr] with
deg Xi = (1, 0), i = 1, , n, and deg Yj = (dj, 1), j = 1, , r, where d1, , dr

are the degree of the elements of a homogeneous basis of I. In this case we can
compute the local cohomology modules of S(a, b)∆ using the theory of Segre
products of 2-graded algebras. This will be done in the next sections.

2. Segre products of bigraded algebras. Let A = K[X1, , Xn] and B =
K[Y1, , Yr] be two 2-graded polynomial rings with deg Xi = (1, 0), i = 1, , n,
and deg Yj = (dj, 1), j = 1, , r, where d1, , dr are fixed nonnegative integers.
Then A and B have only one maximal graded ideal which we denote by A and

B, respectively. Let

R = A ∆ B.

Then R is an -graded algebra with R0 = k. Hence R has only a maximal graded
ideal which we denote by R.
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The reason for choosing the above 2-graded polynomial rings is that the
tensor product A K B = K[X1, , Xn, Y1, , Yn] appears in the presentation of
the Rees algebra of a homogeneous ideal or of a standard 2-graded K-algebra
(d1 = = dr = 0). We shall prove the following lemma which will play a
crucial role in the computation of local cohomology modules of Segre products
of 2-graded modules over A and B.

LEMMA 2.1. Assume that c ed + 1, d = max d1, , dr . For any pair of
homogeneous elements f A and g B, there exist positive integers and m
such that f K gm

R.

Proof. Let deg f = ( , 0) and deg g = ( , ). Put l = c e and m = e , and
note that l 0, m 0 and further that f l

K gm S(cs,es) with s = .

First we will study the left derived functors of the R-transform on Segre
products of 2-graded modules. Recall that for any ideal of a Noetherian
commutative ring T and any T-module L, the left derived functors of the -
transform on L ([4]) are defined as

Dq (L) := lim Homq
T ( n, L),

q 0. Note that the relationship between Dq (L) and the local homology modules
Hq (L) is described by the exact sequence

0 H0 (L) L D0 (L) H1 (L) 0

and the isomorphisms Hq (L) Dq 1(L), q 2.
Let M and N be two finitely generated bigraded modules over A and B,

respectively.

THEOREM 2.2. For any q 0,

Dq
R
(M ∆ N) =

i+j=q

Di
A
(M) ∆ Dj

B
(N).

For Segre products of -graded modules, this formula was already proved
by Stückrad and Vogel [20, Lemma 1] and implicitly also by Goto and Watanabe
[13, Theorem (4.1.5) and Remark (4.1.6)].

We consider first the case of graded injective modules.

LEMMA 2.3. Let E and F be graded injective modules over A and B, respectively.
Then

D0
R
(E ∆ F) = D0

A
(E) ∆ D0

B
(F),

Dq
R
(E ∆ F) = 0, q 1.
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Proof. By the structure theorem for injective modules (see e.g. [13, Theo-
rem (1.2.1)]) we may write E = E1 E2 with AssA (E1) = A and A AssA (E2),
and F = F1 F2 with AssB (F1) = B and B AssA (F2).

We have Dq
A(E1) = 0 for q 0. Hence Dq

A(E) = Dq
A(E2) for q 0.

Moreover, there exists a homogeneous element f A such that the multi-

plication map E2
f

E2 is bijective [13, Lemma (2.2.3)]. The induced map

Hq
A(E2)

f
Hq

A(E2) must be bijective. Hence Hq
A(E2) = 0 for q 0 be-

cause every element of Hq
A(E2) is annihilated by a large power of x. From this

it follows that D0
A
(E2) = E2. Hence

D0
A
(E) = E2.

Similarly, there exists a homogeneous element g A such that the multiplication
map F2

g
F2 is bijective, and it follows that

D0
B
(F) = F2.

Put C1 := (E1 ∆ F1) (E1 ∆ F2) (E2 ∆ F1) and C2 := E2 ∆ F2. Then
E ∆ F = C1 C2. It is easy to check that AssS (C1) = R. From this it follows
that Dq

R(C1) = 0 for q 0. Hence

Dq
R
(E ∆ F) = Dq

R
(C2).

Let h = f g. By Lemma 2.1 we may assume that h mR. Then we have a
multiplication map C2

h C2 which is bijective. The induced map Hq
R(C2) h

Hq
R(C2) must be bijective. Simlilarly as above, this implies Hq

R(C2) = 0 for
q 0. Hence

D0
R
(C2) = C2 = D0

A
(E) ∆ D0

B
(F),

Dq
R
(C2) = 0, q 1.

Proof. [Proof of 2.2.] Let E and F be minimal injective resolutions of M and
N, respectively. It is known that

Di
A
(M) = Hi(D0

A
(E)), i 0,

Dj
B
(N) = Hj(D0

B
(F)), j 0.

Define canonical complexes C and D of R-modules with

Cq :=
i+j=q

Ei
∆ Fj,

Dq :=
i+j=q

D0
A
(Ei) ∆ D0

B
(Fj)
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for q 0. It is clear that C is a resolution of M ∆N. By Lemma 2.3, D0
R
(C) = D

and Dq
R(C) = 0 for q 1. Hence

Dq
R
(M ∆ N) = Hq(D)

for q 0. Using the Künneth formula for tensor products of complexes over a
field [8, Theorem 3.1, p. 113] we get

Hq(D) =
i+j=q

Hi(D0
A
(E)) ∆ Hj(D0

B
(F))

=
i+j=q

Di
A
(M) ∆ Dj

B
(N).

As a consequence of Theorem 2.2 we obtain the following formula for the
local cohomolgy modules of M ∆ N.

COROLLARY 2.4. For any q 2,

Hq
R
(M ∆ N) = D0

A
(M) ∆ Hq

B
(N) Hq

A
(M) ∆ D0

B
(N)

i+j=q+1
i,j 2

Hi
A
(M) ∆ Hj

B
(N).

Proof. For q 2, we have

Hq
R
(M ∆ N) = Dq 1

R
(M ∆ N)

=
i+j=q 1

Di
A
(M) ∆ Dj

B
(N).

Now we only need to put Di
A
(M) = Hi+1

A
(M) for i 1 and Dj

B(M) = Hj+1
A(M)

for j 1 to get the conclusion.

Example. The above formula does not hold for Segre products over ar-
bitrary 2-graded polynomial rings. Let A = K[X1] with deg X1 = (1, 0) and
B = K[Y1, Y2, Y3] with deg Y1 = (1, 0), deg Y2 = deg Y3 = (0, 1). Let M = A(2, 0)
and N = B and ∆ the (1, 2)-diagonal. If Corollary 2.4 were true in this case
too, then H2

R
(M ∆ N) = 0. On the other hand, if we let A = K[X1, Y1] and

B = K[Y2, Y3] with the same grading on the variables, then A and B satify the
assumption of this section. We have A ∆ B = A ∆ B and, for M = A (1, 2) and
N = B , M ∆ N = M ∆ N. Applying Corollary 2.4 we get

H2
R
(M ∆ N ) = (M ∆ H2

B
(N )) (H2

A
(M ) ∆ N ).
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It is easily seen that M( 2,0) = 0 and H2
B

(N )(0,2) = 0. Hence M ∆ H2
B

(N ) = 0,
which is a contradiction to the assumed fact that H2

R
(M ∆ N ) = H2

R
(M ∆ N)

= 0.

It is of interest to compare the local cohomology modules of M ∆ N with
those of the tensor product M K N. Let S = A K B and let mS be the maximal
graded ideal of S. By [13, Theorem (2.2.5)] we have, for q 0,

Hq
S
(M K N)∆ =

i+j=q

Hi
A
(M) ∆ Hj

B
(N).

LEMMA 2.5. Assume that Hq
A(M) ∆ N = 0 and M ∆ Hq

B(N) = 0 for some
q 1. Then

Hq
R
(M ∆ N) =

i+j=q+1
i,j 1

Hi
A
(M) ∆ Hj

B
(N).

Proof. Since M ∆ Hq
B(N) = 0, applying the exact functor ∆ Hq

B(N) to
the exact sequence

0 H0
A
(M) M D0

A
(M) H1

A
(M) 0

we get D0
A
(M) ∆Hq

B(N) = H1
A
(M) ∆Hq

B(N). Similarly, since Hq
A(M) ∆N =

0, one has Hq
A(M) ∆ D0

B
(N) = Hq

A(M) ∆ H1
B
(N). Putting these relations into

Corollary 2.4 we get the formula for q 2.
For q = 1 we have to consider the commutative diagram with exact rows and

columns

M ∆ N M ∆ D0
B

(N) M ∆ H1
B

(N) 0

D0
A

(M) ∆ N D0
A

(M) ∆ D0
B

(N) D0
A

(M) ∆ H1
B

(N) 0

H1
A

(M) ∆ N H1
A

(M) ∆ D0
B

(N) H1
A

(M) ∆ H1
B

(N) 0

0 0 0.

It is easy to check that if M ∆ H1
B
(N) = 0 and H1

A
(M) ∆ N = 0, then

H1
A
(M) ∆ H1

B
(N) = Coker M ∆ N D0

A
(M) ∆ D0

B
(N)

= H1
R
(M ∆ N).
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Indeed, note that by Theorem 2.2, D0
A
(M) ∆ D0

B
(N) = D0

A
(M ∆ N), and that

the map M ∆ N D0
A
(M) ∆ D0

B
(N) = D0

A
(M ∆ N) in the diagram is the

canonical map, that is, the map which appears in the exact sequence

M ∆ N D0
A
(M ∆ N) H1

R
(M ∆ N) 0.

COROLLARY 2.6. Assume that v = dim M 2 and w = dim N 2. Then

Hv+w 1
R

(M ∆ N) = Hv
A
(M) ∆ Hw

B
(N) = Hv+w

S
(M K N)∆.

Proof. We have Hi
A
(M) = 0 for i = v and Hj

B(N) = 0 for j = w. Since
v +w 1 v, w, putting this into Lemma 2.5 and the formula for the cohomology
modules of M K N we get

Hv+w 1
R

(M ∆ N) = Hv
A
(M) ∆ Hw

B
(N)

Hv+w
S

(M K N) = Hv
A
(M) K Hw

B
(N).

Hence the conclusion is obvious.

Now we will apply the above results to estimate the dimension and to study
the Cohen-Macaulay property of M ∆ N.

LEMMA 2.7. Assume that v = dim M 1 and w = dim N 1. Then

dim M ∆ N v + w 1.

Equality holds if Hv
A
(M) ∆ Hw

B
(N) = 0.

Proof. We have Hi
A
(M) = 0 for i v and Hj

B(N) = 0 for j w. Applying
Corollary 2.4 we get Hq

R(M ∆ N) = 0 for q v + w. Hence dim M ∆ N
v + w 1. Moreover, equality holds if Hv+w 1

R
(M ∆ N) = 0. If v + w = 2, then

v = w = 1. Using the commutative diagram in the proof of Corollary 2.5 we get
an acyclic sequence

M ∆ N D0
R
(M ∆ N) = D0

A
(M) ∆ D0

B
(N) H1

A
(M) ∆ H1

B
(N).

Hence there is a surjective map

H1
R
(M ∆ N) H1

A
(M) ∆ H1

B
(N).

For v + w 3, applying Corollary 2.4 we get an injective map

Hv
A
(M) ∆ Hw

B
(N) Hv+w 1

A
(M ∆ N).
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In any case, we conclude that Hv+w 1
R

(M ∆ N) = 0 if Hv
A
(M) ∆ Hw

B
(N)

= 0.

THEOREM 2.8. Let M and N be 2-graded Cohen-Macaulay modules over A
and B, respectively. Assume that v = dim M w = dim N 1, and dim M ∆ N =
v + w 1. Then M ∆ N is a Cohen-Macaulay module if and only if one of the
following conditions is satisfied:

(i) v = w = 1.

(ii) v w = 1 and M ∆ H1
B
(N) = 0.

(iii) w 2 and Hv
mA

(M) ∆ N = 0 and M ∆ Hw
B
(N) = 0.

Proof. It is well-known that M ∆ N is a Cohen-Macaulay module if and
only if Hq

R(M ∆ N) = 0 for q v + w 1. Since M and N are Cohen-
Macaulay modules, we have Hi

mA
(M) = 0 for i = v and Hj

mB(N) = 0 for j = w. In
particular, the maps M D0

A
(M) and N D0

B
(N) are injective. Hence the map

M ∆ N D0
R
(M ∆ N) is injective. From this it follows that H0

R
(M ∆ N) = 0.

(i) If v = w = 1, then dim M ∆ N = 1. Hence M ∆ N is Cohen-Macaulay.
(ii) If v w = 1, then Hi

A
(M) = 0 for i = 0, 1. Hence D0

A
(M) = M. By

Theorem 2.2, D0
R
(M ∆ N) = M ∆ D0

B
(N). Using the exact sequence

M ∆ N M ∆ D0
B
(N) M ∆ H1

B
(N) 0

we get H1
R
(M ∆ N) = M ∆ H1

B
(N). By Corollary 2.4 we already have

Hq
R(M ∆ N) = 0 for 2 q v 1. Hence M ∆ N is Cohen-Macaulay

if and only if M ∆ H1
B
(N) = 0.

(iii) Now we assume that v, w 2. Then Hi
A
(M) = 0 for i = 0, 1 and

Hj
mB(N) = 0 for j = 0, 1. From this it follows that D0

A
(M) = M and D0

B
(N) =

N. Therefore, D0
R
(M ∆ N) = D0

A
(M) ∆ D0

B
(N) = M ∆ N, which implies

H1
R
(M ∆ N) = 0. By Corollary 2.4 we have, for q 2,

Hq
mS

(M ∆ N) =

0, q = v, w, v + w 1
M ∆ Hv

B
(N), q = w = v,

Hv
A
(M) ∆ N, q = v = w,

M ∆ Hq
B(N) Hq

A(M) ∆ N , q = v = w.

Hence M ∆ N is a Cohen-Macaulay module if and only if M ∆ Hw
B
(N) = 0

and Hv
A
(M) ∆ N = 0.

Remark. According to Lemma 2.7 and Theorem 2.8 we will need to check
the condition E ∆ F = 0 for some 2-graded modules E and F. This can be
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easily done in terms of the supports of E and F. For any 2-graded module L
over a 2-graded algebra we define

supp L := (a1, a2) 2 L(a1,a2) = 0 .

Given two subsets V and W of 2 , let V + W be the set of all elements of 2

of the form x + y with x V and y W. Then E ∆ F = 0 if and only if
( supp E + supp F) ∆ = .

3. Existence of Cohen-Macaulay diagonal subalgebras. In this section
we consider the polynomial ring

S = K[X1, , Xn, Y1, , Yr]

with bigraded structure given by deg Xi = (1, 0), i = 1, , n, and deg Yj = (dj, 1),
j = 1, , r, where d1, , dr are fixed nonnegative integers. For convenience we
assume that n r 2.

Let R = S∆, where ∆ is a (c, e)-diagonal of 2. Given a Cohen-Macaulay
S-module L, we would like to know whether L has a Cohen-Macaulay diagonal
submodule L∆.

First we will consider the case L = S(a, b), where S(a, b) denotes the 2-
graded module S with shifting degree (a, b). For this we shall need some notations.

Given a vector of integers, we will say that 0 (or 0 or 0
or 0) if all the components of satisfy this condition. For s , let Us

(resp. Vs resp. Ws) be the K-vector space generated by the monomials X Y with
0, 0 (resp. 0, 0 resp. 0, 0) and

n

i=1
i +

r

j=1

dj j = cs + a,(1)

r

j=1
j = es + b.(2)

Put U = s 2 Us, V = s 2 Vs, and W = s 2 Ws.
With these notations we are able to describe the local cohomology modules

of S(a, b)∆ as follows.

LEMMA 3.1. For arbitrary integers a, b,

Hq
R
(S(a, b)∆)

0, q = n, r, n + r 1,
V , q = n = r,
W, q = r = n,
V W, q = n = r
U, q = n + r 1.
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Moreover, the canonical map n+r 1
S(a,b) : Hn+r 1

R
(S(a, b)∆) Hn+r

S
(S(a, b))∆ is an iso-

morphism.

Proof. Put A = K[X1, , Xn] and B = K[Y1, , Yr]. As subalgebras of S, A
and B are 2-graded. We have S = A K B. The grading of A K B implies that
S(a, b) = A(a, b) K B. Hence S(a, b)∆ = A(a, b) ∆ B. Note that A(a, b) and B
are Cohen-Macaulay modules with dim A(a, b) = n 2 and dim B = r 2. Then
using the same argument as in the proof of Theorem 2.8 (iii) and Corollary 2.6
we get

Hq
mR

(A(a, b) ∆ B) =

0, q = r, n, n + r 1,
A(a, b) ∆ Hr

B
(B), q = r = n,

Hn
A
(A(a, b)) ∆ B, q = n = r,

(A(a, b) ∆ Hq
B(B)) (Hq

A(A(a, b)) ∆ B), q = n = r
Hn

A
(A(a, b)) ∆ Hr

B
(B), q = n + r 1.

It is known that Hn
A
(A) = 7 0KX and Hr

B
(B) = 0 KX . A monomial

X Y in S(a, b) has degree ( n
i=1 i + r

j=1 jdj a, r
j=1 j b). Hence it belongs

to S(a, b)∆ if and only if and satisfy the system of equations (1) and (2) for
some integer s.

Using the above presentations of A, B, Hn
A
(A), Hr

B
(B) we get

A(a, b) ∆ Hr
B
(B) V ,

Hn
A
(A(a, b)) ∆ B W,

Hn
mA

(A(a, b)) ∆ Hr
mB

(B) U.

Finally, by Corollary 2.6 we have

Hn+r
S

(S(a, b))∆ = Hn+r
S

(A(a, b) K B)∆ = Hn
mA

(A(a, b)) ∆ Hr
mB

(B)

= Hn+r 1
R

(A(a, b) ∆ B) = Hn+r 1
R

(S(a, b)∆).

Hence n+r 1
S(a,b) is an isomorphism.

COROLLARY 3.2. Assume that c ed1 + 1, d1 = min d1, , dr . Then

dim S(a, b)∆ = n + r 1.

Proof. We have dim S(a, b)∆ = n + r 1 if Hn+r 1
R

(S(a, b)∆) = 0. By Lemma
3.1, this condition is satisfied if Us = 0, that is, if the system of equations (1) and
(2) has a solution with 0 and 0 for some integer s. For this we may
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choose

s min
b + r

e
,

(b + r)d1 u a n
c ed1

,

where u = r
j=1 dj. Then es + b + r 0. Put 1 = es + b + r 1 and i = 1,

i = 2, , r. Then

cs + a
r

j=1

dj j = cs + a (es + b + r 1)d1 +
r

j=2

dj

= (c ed1)s + a (b + r)d1 u n.

Hence there exist , 0, such that n
i=1 i + r

j=1 dj j = cs + a.

In the following lemma we determine exactly the nonvanishing graded pieces
of V , W.

LEMMA 3.3. Let d1 dr = d and u = r
j=1 dj. Assume that c ed + 1.

Then

(i) Vs = 0 if and only if
(b + r)d u a

c ed
s

b + r
e

.

(ii) Ws = 0 if and only if
b
e

s
bd a n

c ed
.

Proof. (i) We have Vs = 0 if and only if the system of equations (1) and (2)
has a solution with 0 and 0. Assume that this condition is satified.

Then es + b = r
j=1 j r. Hence s

r + b
e

. Moreover, cs + a r
j=1 dj j =

n
i=1 i 0. Since

cs + a
r

j=1

dj j = cs + a
r 1

j=1

dj j es + b
r 1

j=1
j d

= (c ed1)s + a bd +
r 1

j=1
j(d dj)

(c ed1)s + a bd
r 1

j=1

(d dj)

= (c ed1)s + a (b + r)d + u,

we get (c ed)s + a (b + r)d + u 0. Hence s
(b + r)d u a

c ed
. Conversely,

assume that
(b + r)d u a

c ed
s

r + b
e

. Then es + b + r 0. Put r =
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es + b + r 1 and i = 1, i = 1, , r 1. Then

cs + a
r

j=1

dj j = cs + a (es + b + r 1)d
r 1

j=1

dj

= (c ed)s + a (b + r)d + u 0.

Hence there exist 0 such that n
i=1 i + r

j=1 dj j = cs + a.
(ii) We have Ws = 0 if and only if the system of equations (1) and (2) has

a solution with 0 and 0. Assume that this condition is satified. Then

es + b = r
j=1 j 0. Hence s

b
e

. Moreover, replacing r by es + b r 1
j=1 j

in n
i=1 i + r

j=1 jdj = cs + a one has

s =
n
i=1 i + r 1

j=1 j(dj d) + bd a

c ed
u + bd a
c ed

.

Conversely, assume b
e

bd u a
c ed , then set i = 0 for 1 i r 1, and

r 1 = es+b. By assumption, r 0. Then cs+a r
j=1 jdj = cs+a d(es+b) =

s(c ed) + a db u, by assumption. Hence there exists n , 0, with
n
i=1 i = cs + a r

j=1 jdj.

PROPOSITION 3.4. Let d1 dr = d and u = r
j=1 dj. Assume that c

ed + 1. Then

(i) S(a, b)∆ is a generalized Cohen-Macaulay module with dim S(a, b)∆ =
n + r 1.

(ii) S(a, b)∆ is a Cohen-Macaulay module if and only if

r + b
e

(b + r)d u a
c ed

,

bd a n
c ed

b
e

,

where [x] denotes max n : n x .

Proof. By Lemma 3.1, the module S(a, b)∆ is a generalized Cohen-Macaulay
module if dim S(a, b)∆ = n+r 1 and V , W have finite lengths. But these conditions
are always satisfied by Corollary 3.2 and Lemma 3.3. Similarly, S(a, b)∆ is a
Cohen-Macaulay module if and only if V = 0 and W = 0, which is equivalent to
the conditions of (ii).

In the following we say that a property holds for c 0 relatively to e 0
if there exists e0 such that for all e e0 there exists a positive integer c(e)
depending on e such that this property holds for all (c, e) with c c(e).



DIAGONAL SUBALGEBRAS OF BIGRADED ALGEBRAS 879

COROLLARY 3.5. Let d1 dr = d and u = r
j=1 dj.

(i) For c 0 relatively to e 0, Hq
R(S(a, b)∆)s = 0 for s = 0, q n + r 1.

(ii) S(a, b)∆ is a Cohen-Macaulay module for c 0 relatively to e 0 if and
only if a, b satisfy one of the following conditions:

(1) b r and (b + r)d u a 0,
(2) r b 0,
(3) b 0 and bd a n 0.

Proof. For e (b + r) and c u + a (b + r e)d, we have

b + r
e

1 and 1
(b + r)d u a

c ed
.

In this case, Vs = 0 for all s = 0 by Lemma 3.3. Similarly, for e b and
c (e + b)d n a, we have

1
b
e

and
bd a n

c ed
1,

hence Ws = 0 for all s = 0. Therefore (i) follows from Lemma 3.1.
To prove (ii) we may assume that c ed+1. Assume that S(a, b)∆ is a Cohen-

Macaulay module. If b r, then
b + r

e
0. Hence 0

(b + r)d u a
c ed

by

Proposition 3.4 (ii). From this it follows that (b + r)d u a 0. If b 0, then
b
e

0. Hence
bd a n

c ed
0 by Proposition 3.4 (ii). From this it follows that

bd a n 0. Conversely, for c 0 relatively to e 0 one easily checks that

b + r
e

= 0
(b + r)d u a

c ed
if b r, and (b + r)d u a 0,

bd a n
c ed

0
b
e

if b 0,

b + r
e

1
(b + r)d u a

c ed
if r b,

bd a n
c ed

1
b
e

if b 0, and bd a n 0.

From this it follows that the conditions of Proposition 3.4 (ii) are satisfied
for (1), (2), (3). Hence S(a, b)∆ is Cohen-Macaulay in all these cases.

Now we will use the above information on the modules S(a, b)∆ to study
the diagonal submodule L∆ of a finitely generated 2-graded S-module L. The
following result shows that the local cohomology modules of L∆ are closely
related to those of L.
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THEOREM 3.6. Let S be a 2-graded polynomial ring as above. Assume that
c ed + 1, d = max d1, , dr . For any finitely generated 2-graded S-module
L, the canonical homomorphism q

L: Hq
R(L∆) Hq+1

S (L)∆ is an isomorphism for
q n and almost an isomorphism for q n.

Proof. Let 0 D D1 D0 L 0 be a 2-graded minimal
free resolution of L over S. By Lemma 3.1 and Proposition 3.4, n+r 1

Dp
is an

isomorphism, Hq
R((Dp)∆) = 0 for n q n + r 1, and Lp is a generalized

Cohen-Macaulay module with dim Lp = n + r 1, p = 0, , . Therefore, q
L is

an isomorphism for q n by Lemma 1.7 and almost an isomorphism for q n
by Proposition 1.8.

It would be interesting if the above theorem could be extended to arbitrary
2-graded polynomial rings

Definition 3.7. We say that L has a good 2-graded minimal free resolution

0 D D1 D0 L 0

if every free module Dp is a direct sum of modules S(a, b) such that a, b satisfy
the conditions of Corollary 3.5 (ii).

LEMMA 3.8. Let L be a finitely generated 2-graded S-module. Then the fol-
lowing properties hold for c 0 relatively to e 0:

(i) [ q
L]s is an isomorphism for all s = 0 and q 0,

(ii) q
L is an isomorphism for all q 0 if L has a good 2-graded minimal

free resolution.

Proof. By Lemma 3.1, n+r 1
Dp

is an isomorphism for c 0 relatively to
e 0. Therefore, using Corollary 3.5 we will obtain (i) from Lemma 1.7 and
(ii) from Proposition 1.8 (ii).

THEOREM 3.9. Let L be a finitely generated 2-graded S-module which has a
good 2-graded minimal free resolution. Assume that dim L∆ = dim L 1 for c 0
relatively to e 0. Then the following conditions are equivalent:

(i) L∆ is a Cohen-Macaulay module for c 0 relatively to e 0.

(ii) Hq
S(L)(0,0) = 0 and Hq

S(L)( i, j) = 0 for i 0 relatively to j 0,
0 q dim L.

Proof. By Lemma 3.8 (ii), Hq
R(L∆) = Hq+1

S (L)∆ for q 0, c 0 relatively to
e 0. If (i) is satisfied, then Hq

R(L∆) = 0 for q = dim L 1. Hence Hq+1
S (L)(cs,es) =

0 for all s . Putting s = 0, 1, we see that Hq
S(L)(0,0) = 0 and Hq

S(L)( i, j) = 0
for i 0 relatively to j 0, 0 q dim L. For the converse we first note
that for q = dim L, Hq

S(L) is an artinian module, hence Hq
S(L)(i,j) = 0 for i 0
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relatively to j 0. This together with (ii) implies that Hq
S(L)(cs,es) = 0 for all

integers s, 0 q dim L, c 0 relatively to e 0. So we have Hq
S(L)∆ = 0

and therefore Hq 1
R (L∆) = 0 for 0 q dim L. Hence L∆ is a Cohen-Macaulay

module.

Remark. Theorem 3.9 does not hold without the assumption on the minimal
free resolution of L. The condition (ii) alone does not imply (i), as one may
expect. In fact, by Corollary 3.5, there exist modules S(a, b) which satisfy (ii) but
not (i).

Conjecture. If A[It] is a Cohen-Macaulay ring, then there exist c, e such that
A[It]∆ is a Cohen-Macaulay ring.

In the case of standard bigraded K-algebras we can give reasonable conditions
guaranteeing that high diagonal subalgebras are Cohen-Macaulay. Indeed, let S =
K[X1, , Xn, Y1, , Yr] be standard bigraded with deg Xi = (1, 0) and deg Yi =
(0, 1).

Given integers a, b we consider the bishifted free S-module S(a, b). Let ∆
be the diagonal associated with c, e 0 . From 3.2 and 3.4 we immediately
get

LEMMA 3.10. (i) dim S(a, b)∆ = n + r 1; and (ii) S(a, b)∆ is Cohen-Macaulay
if and only if r+b

e
a
c and n+a

c
b
e .

In particular S(a, b)∆ is Cohen-Macaulay for large ∆ if and only if one of the
following conditions is satisfied:

(1) r b 0 or n a 0;

(2) a 0 and b 0;

(3) a n and b r.

More precisely, if one of the conditions (1), (2) or (3) is satisfied, then S(a, b)∆ is
Cohen-Macaulay if c max a, n a and e max b, r b .

Now let R be a bigraded standard K-algebra, and let R1 = i 0 R(i,0) and
R2 = i 0 R(0,i). Assume emb dim R1 = n and emb dim R2 = r, so that we have
a minimal presentation S R. If S(a, b) appears in the minimal free resolution
of R an S-module; then a 0 and b 0. Hence, by Lemma 3.10, S(a, b)∆ is
Cohen-Macaulay for large ∆ unless a = 0 and b r, or b = 0 and a n.

Notice that the shifts (a, 0) and (0, b) in the resolution of R are exactly the
shifts of R1 and R2 over K[X1, , Xn] and K[Y1, , Yr], respectively. Indeed,
R1 = R∆ where ∆ = (i, 0): i . Applying the exact functor ( )∆ to the
bigraded resolution of R we see that S(a, b)∆ = 0 if b 0 and that S(a, b)∆ =
S1(a) if b = 0 where S1 = K[X1, , Xn]. Similarly one argues for the shifts (0, b).

The above discussions now yield the following result:
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THEOREM 3.11. Suppose the standard bigraded K-algebra is Cohen-Macaulay,
and that for R1 and R2 the shifts in the resolution are strictly greater than n and

r, respectively. Then R∆ is Cohen-Macaulay for large ∆.
More explicitly, one has under these assumptions that R∆ is Cohen-Macaulay

if for all shifts (a, b) in the resolution one has c a n and e b r.
In particular, R∆ is Cohen-Macaulay if c a(R) + r and e a(R) + n. Here

a(R) denotes the a-invariant of R where R is equippped with the natural -graded
structure given by Ri = k+l=i R(k,l).

COROLLARY 3.12. Let R be a standard bigraded Cohen-Macaulay K-algebra.
Suppose that R1 and R2 are Cohen-Macaulay with a(R1) 0 and a(R2) 0. Then
R∆ is Cohen-Macaulay for large ∆.

Note that, in a more special case, the previous result has a converse ([13]): if
R = R1 K R2, and R1 and R2 are Cohen-Macaulay, then R∆ is Cohen-Macaulay
if and only if a(R1) 0 and a(R2) 0.

For Rees rings our arguments yield the following:

COROLLARY 3.13. Suppose I R = K[X1, , Xn] is an equigenerated ideal,
say of degree d, such that R[It] and K[Id] are Cohen-Macaulay. Suppose further that
the relation type r(I) of I is less than the analytic spread l(I) of I (i.e. a(K[Id]) 0).
Then R[It]∆ is Cohen-Macaulay for large ∆.

COROLLARY 3.14. If I R = K[X1, , Xn] is equigenerated and of linear
type, and R[It] is Cohen-Macaulay, then R[It]∆ is Cohen-Macaulay for large ∆.

As a last application of 3.11 we have

COROLLARY 3.15. Let I R = K[X1, , Xn] be a perfect ideal of codimension
2. Suppose that I has a linear presentation matrix of size d d + 1, that d + 1 n
and that I satisfies Gn, that is, (IP) height P for all prime P with P I and
height P d 1. Then R[It]∆ is Cohen-Macaulay for large ∆.

Proof. By [18] one has that R[It] is Cohen-Macaulay, and that the fibre K[Id]
is Cohen-Macaulay with a-invariant 1. Then the claim follows from Corollary
3.13.

THEOREM 3.16. Let L be a finitely generated 2-graded S-module. Assume that
dim L∆ = dim L 1 for c 0 relatively to e 0. Then the following conditions
are equivalent:

(i) L∆ is a Buchsbaum module with Hq
R(L∆)s = 0 for s = 0, 0 q dim L 1,

c 0 relatively to e 0.
(ii) Hq

S(L)( i, j) = 0 for i 0 relatively to j 0, 0 q dim L.

Proof. By Lemma 3.8, Hq
R(L∆)s = (Hq+1

S (L)∆)s for s = 0, q 0, c 0
relatively to e 0. If (i) is satisfied, then Hq+1

S (L)(cs,es) = Hq
R(L∆)s = 0 for s = 0,
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q dim L 1. Putting s = 1 we see that Hq+1
S (L)( i, j) = 0 for i 0 relatively

to j 0. Conversely, assume that (ii) is satisfied. Using the same argument as in
the proof of Theorem 3.5 we can show that for c, e large enough, Hq

S(L)(cs,es) = 0
for all integers s = 0, q dim L 1. Therefore Hq 1

R (L∆)s = Hq
S(L)(cs,es) = 0 for

all integers s = 0. By [21], this implies that L∆ is a Buchsbaum module.

Conjecture. For L = A[It], 3.16 (ii) is equivalent to the property that A[It]∆
is a generalized Cohen-Macaulay module for c 0 relatively to c 0.

COROLLARY 3.17. Assume that A[It] is a generalized Cohen-Macaulay ring,
where denotes the maximal graded ideal of A[It]. Then K[(Ie)c] is a Buchsbaum
ring for c 0 relatively to c 0.

Proof. For c 0 relatively to e 0, we may assume that c ed + 1. Then
K[(Ie)c] = A[It]∆ with dim A[It]∆ = n = dim A[It] 1 by Lemma 1.2 and Lemma
1.3. The assumption means that Hq

R(A[It]) is of finite length for q = n. Hence
Hq

R(A[It])( i, j) = 0 for i 0 relatively to j 0. The conclusion now follows
from Theorem 3.16.

4. Blow-ups of projective spaces at complete intersections. Let A =
K[X1, , Xn], n 2, and I a complete intersection ideal in A generated by
a regular sequence of r forms f1, , fr of degree d1, , dr, r 2. Put d :=
max d1, , dr .

Let X be the blow-up of n 1
K along the ideal sheaf Ĩ. Fix a positive integer

e. It is well-known that for c de+1, the forms of degree c of the ideal Ie define
an embedding of X in the projective space N 1

K , N = dimK (Ie)c. The aim of this
section is to study the Cohen-Macaulay property of the homogeneous coordinate
ring K[(Ie)c] of such an embedding in terms of c and e.

By Lemma 1.2, we may replace K[(Ie)c] by the diagonal subalgebra A[It]∆.
Let S = K[X1, , Xn, Y1, , Yr] be a 2-graded polynomial ring with deg Xi =
(1, 0), i = 1, , n, and deg Yj = (dj, 1), j = 1, , r. By mapping Yj to fjt we
obtain a presentation for the Rees algebra of I: A[It] = S P, where P is the ideal
generated by the 2-minors of the matrix

f1 fr
Y1 Yr

.

A[It] is a Cohen-Macaulay ring with dim A[It] = n + 1. Therefore P is a perfect
ideal of S with height P = r 1. Hence A[It] has a minimal free resolution over
S of length r 1:

0 Dr 1 D1 D0 = S A[It] 0.
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LEMMA 4.1. For p = 1, , r 1,

Dp =
p

m=1 1 j1 jp+1 r

S( (dj1 + + djp+1 ), m).

Proof. It is well-known that the Eagon-Northcott complex gives a minimal
free resolution for S P. Hence we may assume that

Dp = r p+1(G) S Sp 1(F),

where F = Sf1 Sf2 and G = r
i=1Sigi are free S-modules with deg fi = (u, i),

i = 1, 2 and u = r
j=1 dj, and deg gi = (u di, 1), i = 1, , r. From this it follows

that

r p+1(S2) S Sp 1(Sr) =
p 1

m=1 1 j1 jp+1 r

S( (dj1 + + djp+1 ), m).

Lemma 4.1 implies that A[It] has a good minimal free resolution over S in
the sense of 3. By Lemma 1.7, K[(Ie)c] = A[It]∆ is a Cohen-Macaulay ring for
large c, e. The question here is for which c and e is K[(Ie)c] a Cohen-Macaulay
ring? To solve this question we need to compute the local cohomology modules
of the free module S(a, b) for all the shifts

(a, b) = ( (dj1 + + djp+1 ), m),

1 j1 jp+1 r and 1 m p, p = 1, , r 1.

LEMMA 4.2. Let (a, b) be the shift of a free summands of Dp, p = 1, , r 1.
Assume that c ed + 1. Then

(i) Hq
R(S(a, b)∆) = 0 for q = n, n + r 1.

(ii) dimK Hn
R
(S(a, b)∆) =

s 1 0

j=es+b

r
j=1 dj j cs a 1

n 1
.

(iii) S(a, b)∆ is a Cohen-Macaulay module if c (e + b)d a n.

Proof. By Lemma 3.1 we have Hq
R(S(a, b)∆) = 0 for q = n, r, n + r 1. Let

U and V be defined as in Lemma 3.1. First, we shall see that V = 0. By Lemma

3.3 it suffices to show that
r + b

e
(b + r)d a u

c ed
, where u = r

j=1 dj. Let

jp+2, , jr be the complement of the set j1, , jp+1 in the set of indices
1, , r . Then u + a = djp+2 + + djr . Since p b 1 and dj d,
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j = 1, , r, we have

r + b
e

p r
e

0
(r p)d djp+2 djr

c ed
(b + r)d a u

c ed
.

(ii) By Lemma 3.1, V = 0 implies Hq
R(S(a, b)∆) = 0 for q = n, n + r 1. and

Hn
R
(S(a, b)∆) = W. Hence dimK Hn

R
(S(a, b)∆) is the number of solutions of the

systems of equations

n

i=1
i +

r

j=1
jdj = cs + a

r

j=1
j = es + b

with 0, 0. Put i = ( i + 1), i = 1, , n. Then 0 if and only if
0. Rewriting the first equation as n

i=1 i = r
j=1 dj j cs a n, we see

that the number of the solutions 0 is equal
r
j=1 dj j cs a 1

n 1
. Note

that if the second equation has a solution 0, es + b 0. Hence s 1 because
b = m 1. Now we only need to sum up the above binomial over all s 1
and 0 with r

j=1 j = es + b to obtain the number of solutions of the above
system of equations with 0, 0.

(iii) This follows immediately from Proposition 3.4.

COROLLARY 4.3. Assume that c ed + 1. Then for p = 1, , r 1, we have

(i) Hq
R((Dp)∆) = 0 for q = n, n + r 1.

(ii) (Dp)∆ is a Cohen-Macaulay module if c r
j=1 dj + (e 1)d n.

Proof. The conclusions follow from Lemma 4.2, where for (ii) we note that
for every free summand S(a, b) of Dp, b 1 and a r

j=1 dj, hence (e +
b)d a n (e 1)d + r

j=1 dj n c.

LEMMA 4.4. Let c ed + 1 and u = r
j=1 dj. Then

r 1

p=1

( 1)p+r 1 dimK Hn
R
((Dp)∆) =

s 1

r 1

m=1 0

j=es m

dimK (A I)( r
j=1 dj j+u cs n).

Proof. We first note that

r
j=1 dj j cs + dj1 + + djp+1 1

n 1
= dimK A( r

j=1 dj j cs+dj1 + +djp+1
n).
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By Lemma 4.1 and Lemma 4.2 (ii) we get

r 1

p=1

( 1)p+r 1 dimK Hn
R
((Dp)∆)

=
r 1

p=1

( 1)p+r 1
p

m=1 1 j1 jp+1 r s 1

0

j=es m

dimK A( r
j=1 dj j cs+dj1 + +djp+1

n).

Let dr = d. Since r = es m r 1
j=1 j,

r

j=1

dj j cs + dj1 + + djp+1 n

=
r 1

j=1

dj j + d es m
r 1

j=1
j cs + dj1 + + djp+1 n

=
r 1

j=1

(dj d) j + (de c)s dm + dj1 + + djp+1 n

dj1 + + djp+1 dm.

For 1 p r 1 and p + 1 m r 1, or for p = 1, 0 and 1 m r,
we have dj1 + + djp+1 dm 0, hence dimK A( r

j=1 dj j cs+dj1 + +djp+1
n) = 0.

Therefore we may add these values of m and p to the above alternating sum.
Changing the order of the summations we get

r 1

p=1

( 1)p+r 1 dimK Hn
R
((Dp)∆)

=
s 1

r 1

m=1 0

j=es m

(
r 1

p= 1

( 1)p+r 1

1 j1 jp+1 r

dimK A( r
j=1 dj j cs+dj1 + +djp+1

n)).

Let jp+2, , jr denote the complement of the set j1, , jp+1 in the set of the
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indices 1 , r . Then dj1 + + djp+1 = u djp+2 djr . It is easy to see that

r 1

p= 1

( 1)p+r 1

1 j1 jp+1 r

dimK A( r
j=1 dj j cs+dj1 + +djp+1

n)

=
r 1

p= 1

( 1)p+r 1

1 djp+2
djr r

dimK A( r
j=1 dj j cs+u djp+2

djr n)

= dimK (A I)( r
j=1

dj j cs+u n).

Using the commuting property of ∆ on local cohomology modules we obtain
the following general information on the vanishing of the local cohomology
modules of A[It]∆.

PROPOSITION 4.5. Assume that c ed + 1. Then

(i) Hq
R(A[It]∆) = 0 for q n r.

(ii) For n r q n, Hq
R(A[It]∆) = 0 if and only if the sequence

Hn
R
((Dn q+1)∆) Hn

R
((Dn q)∆) Hn

R
((Dn q 1)∆)

is exact.

(iii) A[It]∆ ( A[It])∆.

Proof. Let Cp := Coker (Dp+1 Dp), p = 0, , r 1. Then C0 = A[It] and
there are the short exact sequences

0 Cp+1 Dp Cp 0,

p = 0, , r 2. By Lemma 4.3 (i), Hq
R((Dp)∆) = 0 for q = n, n + r 1. Using

the short exact sequences

0 (Cp+1)∆ (Dp)∆ (Cp)∆ 0,

we get Hq
R((Cp)∆) Hq+1

R ((Cp+1)∆) for q n 1. Since C0 = A[It], Cr 1 = Dr 1,
this implies Hq

R(A[It]∆) = Hq+r 1
R ((Cr 1)∆) for q n r. Since Cr 1 = Dr 1,

Hq+r 1
R ((Cr 1)∆) = 0 for q n r, hence (i).
On the other hand, from the first exact sequences we get Hq

S(Cp)
Hq+1

S (Cp+1) for q n + r 1. Note that Hq
S(C0) = 0 for q n because A[It] is

a Cohen-Macaulay ring with dim A[It] = n + 1. Then we can successively deduce
that Hq

S(Cp+1) = 0 for q n + p + 1. Hence Hr+2
S

(Cp+1) = 0 for p = 1, , r 2.
Applying Theorem 3.6 we obtain Hn+1

R
((Cp+1)∆) = Hn+2

S
(Cp+1)∆ = 0, hence the

induced map Hn
R
((Dp)∆) Hn

R
((Cp)∆) is surjective for p = 1, , r 2.
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Now consider the commutative diagram

Hn
R
((Dn q+1)∆) Hn

R
((Dn q)∆) Hn

R
((Dn q 1)∆)

Hn
R
((Cn q+1)∆) Hn

R
((Cn q)∆)

for n r q n. Since the maps are surjective, by chasing the trace of
an element in the kernel of the map Hn

R
((Dn q)∆) Hn

R
((Dn q 1)∆) we can

easily see that the top sequence is exact if and only if the map Hn
R
((Cn q)∆)

Hn
R
((Dn q 1)∆) is injective or, equivalently, Hn 1

R
((Cn q 1)∆) = 0. Since we

have that Hq
R(A[It]∆) = Hn 1

R
((Cn q 1)∆), this proves (ii).

For (iii) we first note that Hq
S(S) = 0 for q n + 1 because S is a Cohen-

Macaulay ring with dim S = n + r n + 1. Then the exact sequence 0 C1

S A[It] 0 implies

Hn+1
S

(A[It]) Hn+2
S

(C1).

Similarly, since S∆ is a Cohen-Macaulay ring with dimS∆ = n + r 1 by
Lemma 1.1, we have

Hn
R
(A[It])∆) Hn+1

R
((C1)∆).

Applying Proposition 1.8 to C1 we get Hn+1
R

((C1)∆) Hn+2
S

(C1)∆. Therefore we
have Hn

R
(A[It]∆) Hn+1

S
(A[It])∆. From this it follows that

A[It]∆ = HomK (K, Hn
R
(A[It]∆)

HomK (K, Hn+1
S

(A[It])∆)

HomK (K, Hn+1
S

(A[It]))∆ ( A[It])∆.

Now we are able to determine exactly for which c, e the algebra K[(Ie)c] is
a Cohen-Macaulay ring.

THEOREM 4.6. Let I K[X1, , Xn] be a homogeneous complete intersection
ideal minimally generated by r forms of degree d1, , dr. Assume that c ed + 1,
d = max dj j = 1, , r . Then K[(Ie)c] is a Cohen-Macaulay ring if and only if
c r

j=1 dj + (e 1)d n.

Proof. By 1.2 and 1.3 (ii) we have K[(Ie)c] = A[It]∆ and dim A[It]∆ = n. Put
u = r

j=1 dj. Assume that c u + (e 1)d n. Then (Dp)∆ is a Cohen-Macaulay
module with dim (Dp)∆ = n + r 1 by Corollary 3.2 and Corollary 4.3 (ii) for
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p = 0, , r 1. Therefore from the resolution

0 (Dr 1)∆ (D1)∆ (D0)∆ A[It]∆ 0

we can deduce that A[It]∆ is a Cohen-Macaulay ring.
Conversely, assume that A[It]∆ is a Cohen-Macaulay ring. Then Hq

R(A[It]∆) =
0 for all q = n. By virtue of Lemma 4.5 this condition is satisfied only if the
sequence

0 Hn
R
((Dr 1)∆) Hn

R
((D1)∆) 0 = Hn

R
((D0)∆)

is exact. As a consequence we get

r 1

p=1

( 1)p+r 1 dimK Hn
R
((Dp)∆) = 0.

By Lemma 4.4 this implies dimK (A I)((e 1)d+u c n) = 0 because for s = m = 1,
d = dr, and 1 = = r 1 = 0, r = e 1, we have r

j=1 dj j + u cs n =
(e 1)d + u c n. If dim A I 0, then dimK (A I)((e 1)d+u c n) = 0 only
if (e 1)d + u c n 0. If dim A I = 0, then r = n. In this case, A = 0
if 0 u n (the degree of the socle of the complete intersection ideal
I). Since (e 1)d c 0, we have (e 1)d + u c n u n. Hence
dimK (A I)((e 1)d+u c n) = 0 only if (e 1)d + u cs n 0. In both cases, we
get c u + (e 1)d n. The proof is now complete.

Remark. The case e = 1 and d1 = = dr = d was already handled in [19],
where one could only show that K[Id+1] is a Cohen-Macaulay ring if (r 1)d n
and that it fails to do so if (r 1)d n. It was conjectured there that K[Id+1] is
Cohen-Macaulay if and only if (r 1)d n. But this follows from Theorem 4.6.

COROLLARY 4.7. Let I A = K[X1, , Xn] be a homogeneous complete inter-
section ideal minimally generated by two forms f1, f2 of degree d1 d2. If n d2 +1
then K[In] is a Gorenstein ring with a-invariant 1.

Proof. For c = n, e = 1, it is easy to check that c ed2+1 and c d1+ed2 n.
By virtue of Theorem 4.6 and Proposition 4.5 (iii), K[In] is a Cohen-Macaulay
ring with K[In] ( A[It])∆.

Since A[It] A[Y1, Y2] ( f1Y2 f2Y1), A[Y1,Y2] A[Y1, Y2]( n d1 d2, 2)
and the degree of the hypersurface f1Y2 f2Y1 is (d1 + d2, 1), it follows that

A[It] A[It]( n, 1).

This implies ( A[It])∆ (A[It]∆)( 1) = K[In]( 1). Hence K[In] is a Gorenstein
ring with a-invariant 1.
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5. Diagonal subalgebras of a bigraded polynomial ring In this section,
motivated by our studies in the previous sections, we study the diagonal subal-
gebras of the polynomial ring

S = K[X, Y] = K[X1, , Xn, Y1, , Yr]

with bigraded structure induced by the assignment

deg Xi = (1, 0), i = 1, , n, and deg Yj = (dj, 1), j = 1, , r,

where d1, , dr are given nonnegative integers.
As before we let ∆ be the (c, e)-diagonal of 2 . If = ( 1, , n) n

and = ( 1, , r) r , we denote as before by X and Y the monomials
X 1

1 X n
n and Y 1

1 Y r . Further we set = n
i=1 i and = r

i=1 i. The
degree of the monomial X Y in S is

( + d, )

where d denotes the scalar product of the vectors and d = (d1, , dr). Hence
X Y belongs to S∆ if and only if there exists an integer s such that

+ d = sc and = se.

It is easy to see that S∆ is a standard K-algebra (i.e., it is generated as a
K-algebra by its degree one component) provided

c e max d1, , dr .

From now on we assume that this condition holds. Then the generators of S∆ are
the monomials X Y with = c d and = e. We set

F = ( , ) n r : = c d and = e ,

and consider the presentation

Φ: K[T( , ): ( , ) F] S∆

of S∆ defined by setting Φ(T( , )) = X Y for all ( , ) F, where T =
T( , ): ( , ) F is a set of indeterminates. Our goal is to prove the fol-

lowing

THEOREM 5.1. The kernel of Φ has a Gröbner basis of quadrics.

By virtue of [6, Theorem 2.2] follows
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COROLLARY 5.2. The algebra S∆ is Koszul.

Note that if d1 = d2 = = dr, then S∆ is the Segre product of Veronese rings
K[X](c d1e) and K[Y](e), and in this case Theorem 5.1 was proved by Eisenbud,
Reeves and Totaro [9, Proposition 17]. In order to prove Theorem 5.1 in general
we use a slight modification of their argument.

Proof. [Proof of 5.1] We introduce a transitive relation on the nonzero
vectors of m . Let a = (a1, , am), b = (b1, , bm) m , a, b = 0. We set

a b if max i: ai = 0 min i: bi = 0 .

Further denote by the partial order on m defined coefficientwise and
by lex the lexicographic order. The relation extends to n r by setting
( 1, 1) ( 2, 2) if 1 2 and 1 2.

First note that for any monomial XaYb in S(sc,se), there exists a unique rep-
resentation XaYb = X 1Y 1 X sY s such that ( i, i) F and ( s, s)
( 1, 1). The representation exists because one can define i and i recursively by
setting

i = min
lex

r : = e, b
i 1

j=1
j

and

i = min
lex

n : ( , i) F, a
i 1

j=1
j .

The representation is unique because the above recursive equations must be sat-
isfied by all the ( 1, 1), , ( s, s) with the desired properties. We call this
representation the standard representation of XaYb.

For all the pairs ( 1, 1), ( 2, 2) of elements of F such that ( 1, 1)
( 2, 2) ( 1, 1), take the standard representation X 1Y 1X 2Y 2 of
X 1Y 1X 2Y 2 . By construction we obtain an element

T( 1, 1)T( 2, 2) T( 1, 1)T( 2, 2)

of Ker Φ that we call “straightening law.”
For example let n = r = 3, d1 = 1, d2 = d3 = 2, e = 2, c = 5. Then

X2X3Y1Y3, X1X3Y1Y2 S(c,e)

and the standard representation of the product is (X1X2X3Y2
1 )(X3Y2Y3). The asso-
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ciated straightening law is

T((0,1,1),(1,0,1))T((1,0,1),(1,1,0)) T((1,1,1),(2,0,0))T((0,0,1),(0,1,1)).

We claim that the straightening laws form a Gröbner basis of Ker Φ with respect
to any term order on K[T] such that

in (T( 1, 1)T( 2, 2) T( 1, 1)T( 2, 2)) = T( 1, 1)T( 2, 2).

We first prove the claim and then we show that there exists a term order with
the above property. Consider the ideal J of K[T] generated by all the monomials
T( 1, 1)T( 2, 2) such that ( 1, 1) ( 2, 2) ( 1, 1). Since J in ( Ker Φ),
to prove the claim it suffices to show that the monomials not in J are linearly
independent in K[T] Ker Φ = S∆. But this is true because the standard represen-
tation is unique, and because a product X 1Y 1 X sY s is standard if and only
if all the pairs X iY iX jY j with i = j are standard. It remains to prove that there
exists a term order as above. To this end consider the total order on the set T
defined by T( 1, 1) T( 2, 2) if 1 lex 2 or 1 = 2 and 1 lex 2. Then let

be the reverse lexicographic order on the monomials of K[T] induced by the
given total order. By the property of the standard representation it follows that
T( 1, 1) T( 1, 1), T( 2, 2), and hence has the desired property.

6. Asymptotic Koszul property of diagonal subalgebras. Let R be a bi-
graded standard K-algebra. In this section we show that the (c, e)-diagonal algebra

s R(sc,se) of R is Koszul provided c and e are large enough. This result will
be applied to study the Koszulness of algebras of type K[(Ie)c].

A bigraded K-algebra R = (i,j) 2 R(i,j) is standard if R(0,0) = K and if it is
generated as K-algebra by R(1,0) and R(0,1). Let m = dim R(1,0) and n = dim R(0,1),
and let X = X1, , Xm, Y = Y1, , Yn be two sets of indeterminates over K.
Let S = K[X, Y] be bigraded by setting deg Xi = (1, 0), deg Yi = (0, 1). Then R is
isomorphic to a factor ring S J of S by a bihomogeneous ideal J. Let f1, , fr be
a minimal set of bihomogeneous generators of J, and let deg fj = (aj, bj). Let c, e
be positive integers. Denote by R∆ the (c, e)-diagonal algebra

s

R(sc,se) of R.

The presentation of R as S-module

r
j=1S( aj, bj) S R 0

induces a presentation of R∆ as S∆ module

r
j=1S( aj, bj)∆ S∆ R∆ 0.

The K-algebra S∆ is nothing but the ordinary Segre product K[X](c) K[Y](e) of
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the cth Veronese subring of K[X] and the eth Veronese subring of K[Y]. Denote
by F the set ( , ) m n : = c, = e . We may present S∆ and R∆ as
factor rings of the polynomial ring:

K[T] = K[T( , ): ( , ) F] S∆ R∆

by sending T( , ) to X Y . The kernel of K[T] S∆ is generated by quadrics
(Theorem 5.1). It is easy to see that the S∆-module S( a, b)∆ is generated by
elements of degree max a c , b e . Here x denotes min n : n x .
From the above presentation it follows that the kernel of the map S∆ R∆ is
generated by elements of degree less than or equal to max aj c , bj e : j =
1, , r . So we have shown that:

PROPOSITION 6.1. The ideal of definition I of R∆ as a quotient of the polynomial
ring K[T] is generated by polynomials of degree less than or equal to

max 2, max aj c , bj e : j = 1, , r .

In particular if c max aj: j = 1, , r 2 and e max bj: j = 1, , r 2,
then I is generated by forms of degree less than or equal to 2.

Furthermore if c max aj: j = 1, , r and e max bj: j = 1, , r , then
the kernel of S∆ R∆ is generated by linear forms.

We want to investigate the Koszul property of R∆. To this end it does not
suffice to consider the first syzygy module of R over S. One has to consider the
minimal bigraded free resolution

0 Dp Dp 1 D1 S R 0

of R as an S-module. The free S-modules Di are direct sums of bishifted copies
of S, say

Di =
(a,b) 2

S( a, b) i,a,b .

The main goal of this section is to show the following

THEOREM 6.2. Let c, e be positive integers such that

max a c, b e: i,a,b = 0 i + 1

for all i = 1, , p. Then the (c, e)-diagonal algebra R∆ =
s

R(sc,se) of R is Koszul.

Let us first introduce a piece of notation and prove some preliminary facts.
Let A be a positively graded K-algebra. Denote by its maximal homogeneous
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ideal. For a finitely generated graded A-module M denote by Mi its homogeneous
component of degree i, and set

ti(M) = sup j: TorA
i (M, K)j = 0

with ti(M) = if TorA
i (M, K) = 0. The Castelnuovo-Mumford regularity

regA M of an A-module M is defined to be

regA M = sup ti(M) i: i 0 .

The initial degree indeg (M) of M is the minimum of the i such that Mi = 0.
The module M is said to have a linear A-resolution if

regA M = indeg (M).

Note that a module M with linear A-resolution is generated by elements of degree
indeg (M). It is clear that a shifted copy M(a) of a module M has a linear A-
resolution if and only if M has a linear A-resolution. The K-algebra A is said
to be a Koszul algebra if K has a linear A-resolution. This is equivalent to say
that has a linear A-resolution. The bigraded Poincaré series PA

M(s, t) of M is
by definition

PA
M(s, t) =

i,j

dimK TorA
i (M, K)jsjti.

LEMMA 6.3. Let

Mr Mr 1 M1 M0 N 0

be an exact complex of finitely generated graded A-modules. Then:
(i) Let h , and let a such that ts(Mr) a + r + s for all 0 r h and

0 s h r. Then th(N) a + h.
(ii) regA N sup regA Mr r: r .

Proof. (i) By induction on h. For h = 0, one has a surjection TorA
0 (M0, K)j

TorA
0 (N, K)j and hence t0(N) t0(M0) a. Now let h 0. Let N1 be the kernel

of the map M0 N. One has an exact complex

Mr Mr 1 M1 N1 0

and hence by induction th 1(N1) a + h. By tensoring the short exact sequence

0 N1 M0 N 0
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with AK we have an exact sequence

TorA
h (M0, K)j TorA

h (N, K)j TorA
h 1 (N1, K)j.

We know that th 1(N1) a + h and by assumption one has th(M0) a + h. It
follows that TorA

h (N, K)j = 0 for j a + h, and hence th(N) a + h.
(ii) If sup regA Mr r: r , then set a = sup regA Mr r: r .

For all s, r one has ts(Mr) regA Mr + s a + r + s. Then by (i) one has
th(N) a + h for all h . It follows that regA N a.

LEMMA 6.4. Let A be a Koszul algebra and let M be a graded A-module with
a linear A-resolution. Then nM has a linear A-resolution for all n .

Proof. Since ( n 1M) = nM, it suffices to prove the claim for n = 1. Let
a be the initial degree of M and its minimal number of generators. Tensoring
the short exact sequence

0 M M M M K( a) 0

with AK one has an exact sequence

TorA
i+1 (K , K)j a TorA

i ( M, K)j TorA
i (M, K)j.

For j indeg ( M) + i = a + 1 + i one has TorA
i+1 (K , K)j a = 0 because A is

Koszul, and TorA
i (M, K)j = 0 because M has a linear A-resolution, by assumption.

It follows that M has a linear A-resolution.

Let A and B be positively graded K-algebras. Denote by A B the Segre
product

A B =
i

Ai K Bi

of A and B. Given graded modules M and N over A and B, one may form the
Segre product

M N =
i

Mi K Ni

of M and N. Clearly M N is a graded A B-module. It is easy to see that for
a given graded A-module M the functor M from the category of graded B-
modules with degree zero maps to the category of graded A B-modules with
degree zero maps is exact.

LEMMA 6.5. Let A and B be Koszul K-algebras. Let M be a finitely generated
graded A-module, and let N be a finitely generated graded B-module. Assume that
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M and N have linear resolutions over A and B, respectively. Then M N has a
linear A B-resolution and regA B M N = max regA M, regB N .

Proof. Denote by A and B the maximal homogeneous ideals of A and
B. Let a and b respectively be the initial degrees of M and N. If a b, then
M N = b a

A M N, while if a b then M N = M a b
B N. Hence by virtue

of Lemma 6.4, we may assume a = b, and by shifting the degrees, we may also
assume that a = 0. Consider the minimal free resolution of M

Fr Fr 1 F0 M 0.

By assumption Fr is a direct sum of copies of A( r) for all r. Applying N
to this complex we obtain an exact complex:

Fr N Fr 1 N F0 N M N 0.

By virtue of Lemma 6.3 it suffices to show that A( r) N has a linear A B-
resolution whenever N is a B-module generated in degree 0 and with linear B-
resolution. Now taking the minimal free B-resolution of N and applying A( r) ,
one sees that it suffices to show that A( r) B( s) has a linear resolution over
A B for all r, s . Note that A( r) B( s) is isomorphic to a shifted copy
of A ( r s

B (r s)) or to a shifted copy of s r
A (s r) B according to whether

r s or s r. Hence it is enough to show that A ( k
B(k)) and k

A(k) B have
a linear A B-resolution for all k . The last statement is equivalent to saying
that th( k

A(k) B) h and th(A ( k
B(k)) h for all h, k . We argue by in-

duction on h. If h = 0, then the claim is trivial. Let h 0. Since A is Koszul, A

has a linear A-resolution and hence, by virtue of Lemma 6.4, k
A(k) has a linear

A-resolution. Applying B to the minimal free A-resolution of k
A(k) we have

an exact complex

Gr Gr 1 G0
k
A(k) B 0

where each Gr is a direct sum of copies of A( r) B. Now we want to apply
Lemma 6.3(i) to this exact complex, with a = 0. We need to show that ts(A(
r) B) r + s for all r = 0, , h and s = 0, , h r. Since A( r) B =
(A r

B(r))( r), one has

ts(A( r) B) = ts(A r
B(r)) + r

and by induction ts(A r
B(r)) s for all s h. If s = h, then r = 0 and

th(A( r) B) = th(A B) = . By virtue of Lemma 6.3 we may now conclude
that th( k

A(k) B) h. By symmetry one has also th(A ( k
B(k)) h.
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LEMMA 6.6. Let S R be a surjective homomorphism of graded K-algebras.
If S is Koszul and regS R 1, then R is Koszul. Furthermore if regS R = 0, then
PR

K(s, t) PS
K(s, t) coefficientwise.

Proof. The standard change of rings spectral sequence

ExtpR (M, ExtqS (R, K)) Extp+q
S (M, K)

respects the graded structure of the Ext-groups and yields the coefficientwise
inequality of formal power series

PR
K(s, t) PS

K(s, t)(1 + t tPS
R(s, t)) 1.

By assumption the term sjti does not appear in the series PS
R(s, t) for all j i + 1.

Hence the term sjti does not appear in the series t tPS
R(s, t) for all j i. Now

(1+ t tPS
R(s, t)) 1 = k (tPS

R(s, t) t)k, and hence the term sjti does not appear
in the series (1 + t tPS

R(s, t)) 1 for all j i. By assumption the term sjti does
not appear in the series PS

K(s, t) for all j i. By virtue of the above inequality
one concludes that the term sjti does not appear in the series PR

K(s, t) for all j i,
that is, R is Koszul.

If regS R happens to be 0, then repeating the previous argument one shows that
the term sjti does not appear in the series (1 + t tPS

R(s, t)) 1 for all j i 1 0.
It follows that PR

K(s, t) PS
K(s, t) coefficientwise.

Remark. The assumption of Lemma 6.6 does not imply that the map S R
is Golod. This is because the kernel I of S R is allowed to contain linear
forms.

We are now ready for the proof of Theorem 6.2:

Proof. Let c, e 0 and denote by ∆ the diagonal (sc, se) 2 : s .
From the free resolution of R over S

0 Fp Fp 1 F1 S R 0

one obtains an the exact complex

0 (Fp)∆ (Fp 1)∆ (F1)∆ S∆ R∆ 0

of S∆-modules. One has S∆ = A B, where A denotes the cth Veronese subring of
K[X], and B denotes the eth Veronese subring of K[Y]. The ring A B is known
to be Koszul [3, Theorem 4], and by virtue of Lemma 6.3 one has

regA B R∆ sup regA B (Fi)∆ i: i = 1, , p .
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It follows from Lemma 6.6 that R∆ is Koszul whenever

regA B (Fi)∆ i 1 for all i = 1, , p.

Since

(Fi)∆ =
(a,b) 2

S( a, b) i,a,b
∆ ,

one has

regA B (Fi)∆ = max regA B S( a, b))∆: i,a,b = 0 .

We now have to evaluate regA B S( a, b)∆. To this end denote by M0, ,
Mc 1 the relative Veronese submodules of K[X], that is, Mj = k K[X]kc+j for
j = 0, , c 1. Similarly denote N0, , Ne 1 the relative Veronese submodules
of K[Y].

One has

S( a, b)∆ =
s

K[X]sc a K[Y]se b = Mi( a c ) Nj( b e )

where i = a mod c, 0 i c 1, and j = b mod e, 0 j e 1.
The relative Veronese submodules of a polynomial ring are known to have a

linear resolution over the Veronese ring [1, 2.1]. Hence by virtue of Lemma 6.5
one has:

regA B S( a, b)∆ = max a c , b e .

Summing up we see that R∆ is Koszul if

max a c , b e : i,a,b = 0 i + 1

for all i = 1, , p. This concludes the proof of the theorem.

As a corollary to the proof of the theorem we have

COROLLARY 6.7. Let c, e be positive integers such that

max a c, b e: i,a,b = 0 i

for all i = 1, , p. Then PR∆
K (s, t) P

A B
K (s, t) coefficientwise, where A and B are

the cth and the eth Veronese subrings of K[X] and K[Y] respectively.

Proof. The assumption implies that regA B R∆ = 0. Then the claim follows
from Lemma 6.6.
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If the algebra R happens to be Cohen-Macaulay, then the shifts in the reso-
lution of R over S can be bounded in term of the a-invariant a(R) of R. Indeed,
if i,a,b = 0, then a + b a(R) + dim R + i. Thus we get

PROPOSITION 6.8. Assume that R is Cohen-Macaulay. If c, e (a(R) + dim R +
1) 2, then R∆ is Koszul.

Proof. If i,a,b = 0, we have a c (a + b) c (a(R) + dim R + i) c, and
similarly b e (a(R) + dim R + i) e. By virtue of Theorem 6.2, we have that R∆
is Koszul if (a(R) + dim R + i) c and (a(R) + dim R + i) e are less than or equal
to i + 1 for all i = 1, , codim R, that is to say c, e (a(R) + dim R + i) i + 1 for
all i = 1, , codim R. Since a(R) + dim R 1, the last statement is equivalent to
c, e (a(R) + dim R + 1) 2.

COROLLARY 6.9. Let I be a homogeneous ideal of a polynomial ring R =
K[X1, , Xn]. Denote by d the highest degree of a generator of I. Then there
exist integers a, b such the K-algebra K[(Ie)ed+c] is Koszul for all c a and e b.

Proof. By replacing I with the ideal generated by Id we may assume that I
is generated by forms of degree d. The Rees algebra R[It] is a standard bigraded
algebra by setting deg Xi = (1, 0) and deg ft = (0, 1) for all f Id. The claim
follows now from Theorem 6.2 since R[It]∆ = K[(Ie)ed+c].

The integers a, b of the corollary can be explicitly computed whenever one
knows the shifts in the bigraded resolution of R[It] over the polynomial ring. For
instance in the complete intersection case one has:

COROLLARY 6.10. Let I be an ideal of the polynomial ring K[X1, , Xn] gen-
erated by a regular sequence f1, , fr of polynomials of degree d. Then one has:

(1) If c d 2, and e 0, then the ideal of definition of K[Ie
ed+c] as a quotient

of the polynomial ring K[T( , ): ( , ) n r , = c, = e] is generated
by forms of degree less than or equal to 2.

(2) If c d(r 1) r and e 0, then K[Ie
ed+c] is Koszul.

Proof. The resolution of R[It] over S = K[X1, , Xn, T1, , Tr], as observed
in Section 4, is given by the Eagon-Northott complex. It follows that

0 Dr 1 Di D1 S (I) 0

where

Di =
i

j=1

S( jd, i 1 + j)(
r

i+1).

Hence the claim follows from Propositiion 6.1 and Theorem 6.2.
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Perhaps the bound that we obtained in the complete intersection case can be
improved. It could even be true that for a complete intersection ideal I generated
by elements of degree d the algebra K[Ie

ed+c] is Koszul as soon as it is defined
by quadrics, that is, if c d 2.

It was proved by Backelin ([4]) that the Veronese subrings of a Koszul algebra
are all Koszul. Furthermore it is known ([9, Theorem 2]) that large Veronese sub-
rings of a standard graded K-algebra are defined by a Gröbner basis of quadrics.
One may ask whether the same properties hold for diagonal algebras too, that is:

Question 1. Suppose that a bigraded standard algebra R is Koszul. Are all
the diagonal algebras of R Koszul?

Question 2. Let R be a bigraded standard K-algebra. Do there exist integers
a, b such that for all c a and e b the (c, e)-diagonal R∆ of R can be presented
as a quotient of a polynomial ring by a Gröbner bases of quadrics?
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