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INTRODUCTION

In this paper we establish a standard monomial theory for generic
Hankel matrices. By a generic Hankel matrix we mean a matrix Y=( yij)
with yij=x i+ j&1 where the x i are indeterminates over a field K. We use
this structure to determine the symbolic powers and the primary decom-
position of the powers of the determinantal ideals It of Y. Further we prove
that the symbolic and ordinary Rees algebras of It are Cohen�Macaulay
normal domains.

The first standard monomial theory was developed by Hodge [H] to
study the homogeneous coordinate ring of the Grassmannian variety. Later
standard monomial theories were established for generic matrices by
Doubilet, Rota and Stein [DRS], and for generic symmetric and generic
skew symmetric matrices by De Concini and Procesi [DP]. These are all
examples of algebras with straightening law (ASL for short) over a poset
or over a doset. The abstract notion of ASL was introduced and developed
by Eisenbud [E1], and by De Concini, Eisenbud and Procesi [DEP2], see
also [BV]. These structures turned out to be an extremely powerful tool
in studying determinantal rings and ideals arising from the above men-
tioned generic matrices.

Let now x1 , ..., xn be indeterminates over an arbitrary field K. For
j=1, ..., n we denote by Xj the j_(n+1& j) Hankel matrix with entries
x1 , ..., xn , that is,

x1 x2 x3 } } } xn& j+1

x2 x3 } } } } } } } } }

Xj=\x3 } } } } } } } } } } } } +b b b b b
xj } } } } } } } } } xn
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For t=1, ..., min( j, n& j+1) let It(Xj) be the ideal of K[x1 , ..., xn]
generated by the t-minors of Xj . It is known that It(Xj)=It(Xt) for all
t� j�n+1&t, that is, It(Xj) does not depend on j but only on t and n,
see [GP], [W] or 2.2. Let It=It(Xt). The ring defined by It is known to
be a Cohen�Macaulay normal domain, see [E2] and [W]. Further by a
result of Valla [V] the ideal It is set-theoretic complete intersection. It is
well-known that I2 is the defining ideal of the rational normal curve C of
Pn&1. The ideal It with t>2 has also a geometric interpretation, namely it
defines the secant variety of order (t&2) of C, see for instance [R] or
[E2].

The t-minors of Xt with t=1, ..., w(n+1)�2x play a special role in our
theory; we call them maximal minors. In the first section we determine a
family of products of maximal minors, called standard monomials, with the
following properties: distinct standard monomials have distinct initial
monomials and for every ordinary monomial m # K[x1 , ..., xn] there exists
a standard monomial whose initial monomial is m. Here initial monomials are
taken with respect to a diagonal monomial order. It follows then easily that the
standard monomials are a K-basis of the polynomial ring K[x1 , ..., xn], see 1.2.
Unfortunately the polynomial ring K[x1 , ..., xn], equipped with this
standard monomial basis is not an ASL in the classical sense. Nevertheless
this standard monomial basis has a quadratic ``straightening law'' which is
formally very similar to the straightening laws that one has for generic,
generic symmetric and generic skew symmetric matrices, see 2.3 and 2.6.
This is proved in Section 2 and it is indeed the core of the paper.

The lack of an ASL structure is very often balanced by the fact that
every set of standard monomials is a Gro� bner basis for the K-space they
generate. This observation is very useful especially for those ideals which
have K-bases of standard monomials. In Section 3 we determine a class of
ideals Jt, k which have K-bases of standard monomials. We show by using
generic relations and Gro� bner basis arguments that Jt, k coincides with the
k-symbolic power I (k)

t of It , see 3.8. It turns out that, as in the other generic
cases, the ideal I (k)

t is generated by the standard monomials + with
#t(+)�k (see Section 2 for the definition of #t). Set m=w(n+1)�2x and
u=max(1, m&k(m&t)). Again Gro� bner basis arguments allow us to show
that the ideal I k

t has the irredundant primary decomposition:

I k
t =I (k)

t & I (2k)
t&1 & } } } & I ((t+1&u) k)

u ,

see 3.16. Note that again this result is formally similar to the one that one
obtains in the other generic cases. We remark that the primary decomposi-
tion of I k

t and all the results of this paper are characteristic free. This
behavior is partially explained by the fact that the ideals It are all ideals of
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``maximal minors'' and usually maximal minors are not sensitive to the
characteristic.

In the last section we study the symbolic Rees algebra Rs(It) and
ordinary Rees algebra R(It). Since I k

t and I (k)
t have K-bases of standard

monomials we are able to control their initial ideals. This allows us to
determine the initial algebras of Rs(It) and R(It) and to show that they are
normal. Thus we may conclude that Rs(It) and R(It) are Cohen�Macaulay
and normal, see 4.2 and 4.5. Furthermore we show that R(It) is defined by
a Gro� bner basis of quadrics. The normality, the Cohen�Macaulay property
and the presentation of the Rees algebra R(I2) were determined already in
[CHV]. Finally we remark that the knowledge of the primary decomposi-
tion of the powers of the ideal It can be useful in the study of the zero
dimensional schemes lying on rational normal curves or on their secant
varieties, see [CEG].

Some of the results of this paper have been conjectured after (and con-
firmed by) explicit computations performed by the computer algebra
system CoCoA[CNR].

1. THE STANDARD MONOMIALS

Let K be a field and K[X] be the polynomial ring K[x1 , ..., xn]. Denote
by X the arrangement of indeterminates

x1 x2 x3 } } } } } } } } } xn&1 xn

x2 x3 } } } } } } } } } } } } xn

x3 } } } } } } } } } } } } xn

X=
b b b b b
b b b b
b b b

xn&1 xn

xn

and for 1� j�n denote by Xj the submatrix of X

x1 x2 x3 } } } xn& j+1

x2 x3 } } } } } } } } }

Xj=\x3 } } } } } } } } } } } } +b b b b b
xj } } } } } } } } } xn
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Given positive integers a1 , a2 , ..., as , b1 , b2 , ..., bs , with a i+bj&1�n for all
1�i, j�s, we denote by [a1 , a2 , ..., as | b1 , b2 , ..., bs] the minor of X with
row indices a1 , a2 , ..., as and column indices b1 , b2 , ..., bs . A minor of the
form [1, 2, ..., s | b1 , b2 , ..., bs] will be called maximal minor or maximal
s-minor, and it will simply be denoted by [b1 , b2 , ..., bs].

Let >L be the degree lexicographic monomial order on K[X] induced
by the order in the indeterminates x1>x2> } } } >xn . Unless otherwise
specified in( f ) will always denote the initial monomial of a polynomial f
with respect to >L . Similarly in(I ) will always denote the initial ideal of an
ideal I with respect to >L . By construction the initial monomial of a minor
is the product of the elements of its main diagonal. In N we introduce the
following partial order:

i<1 j if and only if i+1< j

We say that a sequence of integers a1 , a2 , ..., as is a <1 -chain if a1<1a2<1

} } } <1as . Similarly we say that a monomial xa1
} } } xas

is a <1 -chain if its
indices form a <1-chain. Note that a monomial is a <1 -chain if and only
if it is the initial monomial of a minor of X. Of course, given a <1 -chain,
say m=xa1

} } } xas
, there are many s-minors whose initial monomial is

equal to m but just one of them is a maximal s-minor, namely [a1 , a2&1,
..., as&s+1]. Hence we have a bijective correspondence between the sets:

.: [<1 -chains of K[X]] � [maximal minors of X].

defined by setting .(xa1
} } } xas

)=[a1 , a2&1, ..., as&s+1]. The inverse of
. is the map in which takes every maximal minor to its initial monomial.

Let m be any monomial of K[X]. We describe now a canonical decom-
position of m into a product of <1 -chains. First let m1 be the <1 -chain
which divides m and it is maximal with respect to >L . If m1 {m, then let
m2 be the <1 -chain which divides m�m1 and it is maximal with respect to
>L , and so on. We end up with a decomposition m=m1m2 } } } mk which
is uniquely determined by m. Denote by si the degree of mi . The sequence
s1 , s2 , ..., sk is called the shape of m. Note that the shape is a non-increasing
sequence. Denote by aj1 , ..., ajsi

the indices of the j-th factor of the canonical
decomposition of m. One represents m by means of the tableau

a11 a12 } } } } } } } } } a1s1

a21 a22 } } } } } } a2s2

b b b b
ak1 } } } aksk

It is easy to see that the fact that the decomposition is canonical is
equivalent to say that the entries of the tableau are bounded by n, the rows
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of the tableau are <1 -chains and that for all 1�h<i�k and 1� j�si one
has:

aij # [ah1 , ah1+1, ..., ahp , ahp+1, ..., ahsh
, ahsh

+1].

From these conditions it follows in particular that the columns are non-
decreasing from the top to the bottom. Now . induces a map

8: [ordinary monomials of K[X]] � [products of maximal minors of X].

which is defined by 8(m)=.(m1) .(m2) } } } .(mk) where m=m1 m2 } } } mk

is the canonical decomposition of m. Note that by construction one has
in(8(m))=m and hence 8 is injective. We define now the set of the
standard monomials of X to be the image of 8. So by construction we have
a bijective correspondence:

8: [ordinary monomials of K[X]] � [standard monomials of X]

whose inverse is given by the map which takes every standard monomial
to its initial monomial, i.e. in(8(m))=m for all ordinary monomial m and
8(in(+))=+ for all standard monomial +.

If one represents products of minors as tableaux, then a standard
monomial is represented by a single tableau A=(aij) of shape, say, s1 , ..., sk

which is standard in the ordinary sense (i.e. aij<aij+1 and a ij�ai+1j when-
ever these inequalities make sense) and it satisfies the following additional
properties: the entries of the j th column of A are bounded by n+1& j and
for all 1�h<i�k and 1� j�si one has

aij+ j&1 # [ah1 , ah1+1..., ahp+ p&1, ahp+ p, ..., ahsh
+sh&1, ahsh

+sh].

Example 1.1. Let m be the monomial x1x2
2x2

3x4x2
6x7 . The canonical

decomposition of m is (x1x3x6)(x2x4x6)(x2x7)(x3) and the shape is 3, 3, 2, 1.
Thus m corresponds to the standard monomial +=[1, 2, 4][2, 3, 4][2, 6][3].
In terms of tableaux

m=

1
2
2
3

3
4
7

6
6

+=

1
2
2
3

2
3
6

4
4

Now we have the following:

Theorem 1.2. The standard monomials form a K-basis of the polynomial
ring K[X]=K[x1 , ..., xn].
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Proof. First note that distinct standard monomials have distinct initial
monomials. Hence the standard monomials are linearly independent. Let
now let f be any non-zero element of K[X]. Let m be the initial monomial
of f, and : be the coefficient of m in f. Set +=8(m). Since in(+)=m, one
has in( f &:+)<L m, and by induction we may assume that f &:+ can be
written as a linear combination of standard monomials. Hence f is a linear
combination of standard monomials. K

Unfortunately K[X] is not an algebra with straightening law in the
classical sense. To see this it is enough to observe that if +1 , +2 , +3 are max-
imal minors and +1+2 and +2+3 are standard monomials then the product
+1 +2 +3 need not to be a standard monomial. Nevertheless some of the for-
mal properties of an ASL are satisfied in our case too. For instance:

Remark 1.3. (a) A product of maximal minors +1 } } } +k is a standard
monomial if and only if +i +j is a standard monomial for all 1�i< j�k,
(b) A power of a standard monomial is a standard monomial.

Every polynomial f of K[X] can be written in a unique way as linear
combination, say f =�k

i=1 :i+i , of standard monomials +i with coefficients
:i # K"[0]. This expression is called the standard representation or
straightening law of f.

Remark 1.4. Let f be a polynomial and f =�k
i=1 :i+ i its standard

representation. Since distinct standard monomials have distinct initial
monomials, we may order the +i in such a way that in( f )=in(+1)>L

in(+2)>L } } } >L in(+k).

The proof of 1.2 suggests an algorithm to determine standard representa-
tions. For instance:

Example 1.5. Suppose we want to determine the standard representa-
tion of the product of maximal minors [1, 2][2, 4]. We take first the initial
monomial of [1, 2][2, 4], that is x1x2x3x5 . Then we take its canonical
decomposition x1x2x3x5=(x1 x3 x5)(x2). It corresponds to the standard
monomial [1, 2, 3][2]. Then we consider the difference [1, 2][2, 4]&
[1, 2, 3][2], and take again its initial monomial, that is x1x2x2

4 . The
canonical decomposition of x1x2x2

4 is (x1 x4) (x2x4). It corresponds to the
standard monomial [1, 3][2, 3]. Then we take the difference [1, 2][2, 4]&
[1, 2, 3][2]&[1, 3][2, 3] which is 0. Hence

[1, 2][2, 4]=[1, 2, 3][2]+[1, 3][2, 3]

is the standard representation of [1, 2][2, 4].
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2. THE STRAIGHTENING LAW

We have shown that the standard monomials are a K-basis of K[X]. As
in the classical cases, we would like to show also that all the relevant ideals
of minors of X have a K-basis of standard monomials. To this end one has
to be able to control somehow the shape of the standard monomials which
appear in the straightening law of products of minors. From the algorithm
which is implicitly given in the proof of 1.2 it is impossible to control these
invariants.

In this section we will show that the straightening law for products of
minors can be determined by means of iterated applications of general rela-
tions among minors. This will allow us to control the straightening law.

Let $ be a product of minors of X, say $=$1 } } } $k . Let si denote the size
of $i , and assume that s1�s2 } } } �sk . The sequence of integers s1 , ..., sk is
the shape of $.

Note first that one has the following elementary relations:

[a1 , ..., at | b1 , ..., bt]=[b1 , ..., bt | a1 , ..., at]

and

[a1+1, ..., at+1 | b1 , ..., bt]=[a1 , ..., at | b1+1, ..., bt+1].

To state other relations we introduce a piece of notation. Let a=a1 , ..., at

be a sequence of integers and I/[1, 2, ..., t]. We denote by a 7 I the
sequence which is obtained from a by omitting those ai with i # I, by aI the
sequence of the ai with i # I. Furthermore we set e(I )=e1 , ..., et where e i=1
if i # I and ei=0 if i � I. If I=[i] then a 7 I will be denoted by a 7 i. One
has:

Lemma 2.1. (a) Let :=:1 , ..., :t and ;=;1 , ..., ;t be sequences of
positive integers. Then for all k=1, ..., t one has

:
I/[1, ..., t], |I |=k

[:+e(I ) | ;]= :
J/[1, ..., t], |J |=k

[: | ;+e(J)]

(b) Let :=:1 , ..., :s+1 , ;=;1 , ..., ;s and #=#1 , ..., #r+1 , $=$1 , ..., $r

be sequences of integers. Then:

:
s+1

i=1

(&1) i [: 7 i | ;][# | :i , $]= :
r+1

j=1

(&1) j [# 7 j | $][: | #j , ;]

Proof. (a) Set (&1)I=(&1) �i # I i. Expanding the minor [:+e(I) | ;]
with respect to the rows with indices I and expanding the minor
[: | ;+e(J)] with respect to the columns with indices J one has:
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:
I

[:+e(I ) | ;]

=:
I

:
J

(&1)I (&1)J [:I+1 | ;J][: 7 I | ; 7 J]

=:
J

:
I

(&1)J (&1)I [:I | ;J+1][: 7 I | ; 7 J]=:
J

[: | ;+e(J)].

(b) Expanding the minors [# | :i , $] and [: | #j , ;] with respect to the
first column one has:

:
i

(&1) i [: 7 i | ;][# | :i , $]

=:
i

(&1) i [: 7 i | ;] :
j

(&1)1+ j [#j | :i][# 7 j | $]

=:
i, j

(&1) i+ j+1 [: 7 i | ;][#j | :i][# 7 j | $]

=:
j

(&1) j [# 7 j | $] :
i

(&1)1+i [:i | # j][: 7 i | ;]

=:
j

(&1) j [# 7 j | $][: | #j , ;] K

The first consequence of the lemma is the following well-know result (see
[GP, Lemma 2.3] or [W, Proposition 5])

Corollary 2.2. (a) If j>t, then every t-minor of Xj is a linear com-
bination of t-minors of Xj&1 ,

(b) It(Xj)=It(Xt) for all t� j�n+1&t,
(c) Every t-minor of X is a linear combination of maximal t-minors.

Proof. (a) Let [c | d]=[c1 , ..., ct | d1 , ..., dt] be a t-minor of Xj . Assume
ci<ci+1 and d i<di+1 for all i. If ct< j then [c | d] is already a t-minor of
Xj&1 . If ct=j, then let h be the smallest integer such that ch= j+h&t. Now
applying the equation 2.1(a) to the sequences :=c1 , ..., ch&1, ch&1, ..., ct&1,
;=d and with k=t&h+1 one writes [c | d] as a linear combination of
t-minors which are either in Xj&1 or they are in Xj but with a bigger ``h''.
Arguing by induction on t&h one obtains the desired expression.

(b) By (a) we have It(Xn+1&t)�It(Xn&t)� } } } �It(Xt) and It(Xt)=
It(Xn+1&t) because Xn+1&t is the transpose on Xt . Finally, statement (c)
follows immediately from (b). K

The crucial case in determining the straightening law for products of
minors is the following:
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Proposition 2.3. Let $1 and $2 be minors of X of size s and r. Let + be
a standard monomial which appears in the standard representation of $1$2 .
Then + has at most two factors and one of its factors has size bigger than
or equal to max[s, r].

Proof. We may assume that s�r. We argue by induction on r and in
($1 $2). In the case r=0 the claim follows from 2.2(c). Now let r>0. Let
$1=[a1 , ..., as | b1 , ..., bs] and $2=[c1 , ..., cr | d1 , ..., dr]. Let $1=++
�i :i +i and $2=+$+�i :$i+$i be the standard representations of $1 and $2 ,
with in($1)=in(+)>L in(+i) and in($2)=in(+$)>L in(+$i). By construction
+=[a1+b1&1, a2+b2&2, ..., as+bs&s] and +$=[c1+d1&1, c2+d2&2,
..., cr+dr&r]. We have that

$1 $2=++$+
linear combination of products of minors of shape s, r
and initial monomial smaller than in($1 $2).

If ++$ is standard then the desired results follows by induction. If ++$ is not
standard, then there exists 1�k�r such that

ah+bh<1ck+dk<ah+1+bh+1

for some 0�h�r, where for systematic reason we have put

a0=b0=0 and as+1=bs+1=�.

We may assume that k is the minimum of the integers with these proper-
ties. Note that h is uniquely determined by k. We will argue also by induc-
tion on (k, h). Now let

a$i=w(ai+bi)�2x , b$i=W(ai+b i)�2X ,

c$i=w(ci+di)�2x , d $i=W(ci+di)�2X ,

where wxx=max[n # N : n�x] and WxX=min[n # N : n�x]. Let $3=
[a$1 , ..., a$s | b$1 , ..., b$s] and $4=[c$1 , ..., c$s | d $1 , ..., d $s]. By construction ai+bi=
a$i+bi$ and ci+di=ci$+di$. Hence we have as above that

$3 $4=++$+
linear combination of products of minors of shape s, r
and initial monomial smaller than in($1 $2),

and thus we have

$1 $2=$3 $4+
linear combination of products of minors of shape s, r
and initial monomial smaller than in($1 $2).
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Therefore by induction it suffices to prove the claim for $3 $4 , that is, we
may assume that

ai�bi�a i+1 and cj�dj�cj+1

for i=1, ..., s and j=1, ..., r.
Now from ah+bh<1 ck+dk<ah+1+bh+1 it follows easily that either:

(1) ah<ck<ah+1 and bh<dk�bh+1

or

(2) ah<ck�ah+1 and bh<dk<bh+1

In the case (1) we apply the equation 2.1(b) to the sequences :=(ck , a),
;=b, #=d, $=c 7 k, and we obtain the expression:

$1 $2= :
s

i=1

\[ck , a 7 i | b][ai , c 7 k | d ]+
linear combination of products of
minors of shape s+1, r&1

By virtue 2.4 the desired conclusion follows by induction. In case (2) we
apply the equation 2.1(b) to the sequences :=(dk , b), ;=a, #=c,
$=d 7 k, and as above the desired conclusion follows from 2.5. K

Lemma 2.4. Assume (1). Then for all i such that [ck , a 7 i | b][ai , c 7 k | d]
{0 one has either

(V) in([ck , a 7 i | b][ai , c 7 k | d])<L in($1 $2),

or

(VV) in([ck , a 7 i | b][ai , c 7k | d])=in($1 $2) and [ck , a 7 i | b][ai , c 7k | d]
has a bigger ``(k, h)'' than $1 $2 with respect to the lexicographical order
(which includes also the case in which it is standard )

Lemma 2.5. Assume (2). For all i such that [a | dk , b 7 i][c | bi , d 7 k]
{0 one has either

(V) in([a | dk , b 7 i][c | bi , d 7 k])<L in($1 $2),

or

(VV) in([a | dk , b 7 i][c | bi , d 7 k])=in($1 $2) and [a | dk , b 7 i][c |
bi , d 7k] has a bigger ``(k, h)'' than $1 $2 with respect to the lexicographical
order (which includes also the case in which it is standard ).
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Now to complete the proof of 2.3 it remains to prove 2.4 and 2.5. Since
the nature of the two cases is essentially the same we prove only 2.4.

Proof of 2.4. By assumption we have

ah<ck<ah+1 and bh<dk�bh+1

Let 1�i�s such that [ck , a 7 i | b][ai , c 7 k | d]{0. In order to compare
the initial terms, we have to rewrite the sequences ck , a 7 i and ai , c 7 k in
ascending order. There exists j, 1� j�r+1, such that

cj&1<ai<cj

(by systematic reason we have put c0=0 and cs+1=�). It is easy to see
that:

ai<ck � j�k � i�h.

We discuss first the:

Case (1). ai<ck , j�k, i�h. After reordering the sequences one has:

ck , a7i : a1 } } } ai&1 ai+1 } } } ah ck ah+1 } } } as

b : b1 } } } b i&1 b i } } } bh&1 bh bh+1 } } } bs

and

ai , c7k : c1 } } } cj&1 a i cj } } } ck&1 ck+1 } } } cr

d : d1 } } } dj&1 d j d j+1 } } } dk dk+1 } } } dr

The first i&1 and last s&h row and column indices of [ck , a7i | b] and
[a | b] coincide and the same is also true for the first j&1 and last r&k
indices of [ai , c7k | d ] and [c | d ]. Hence to compare initial monomials we
may restrict our attention to the following subsequences that we denote for
simplicity again by ck , a7i, b, ... etc.:

ck , a7i : ai+1 } } } ah ck ai , c7k : ai cj } } } ck&1

b : bi } } } bh&1 bh d : d j dj+1 } } } dk

a : ai } } } ah&1 ah c : cj cj+1 } } } ck

b : bi } } } bh&1 bh d : d j dj+1 } } } dk
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There are four subcases to be discussed:

(1.1). i=h and j=k. One has

ck , a7h : ck ah , c7k : ah

b : bh d : dk

a : ah c : ck

b : bh d : dk

and ah+bh<min(ah+dk , ck+bh). Hence (V) holds.

(1.2). i=h and j<k. One has:

ck , a7h : ck ah , c7k : ah cj } } } ck&1

b : bh d : dj dj+1 } } } dk

a : ah c : cj cj+1 } } } ck

b : bh d : dj dj+1 } } } dk

If bh<dj then ah+bh<min(ck+bh , ah+dj) and (V) holds. Otherwise dj�
bh�ah+1�cj�dj and hence dj=bh=ah+1=cj , and ah+bh=ah+dj .
But then cj+dj<min(ck+bh , cj+dj+1) and thus (V) holds.

(1.3). i<h and j=k. One has:

ck , a7i : a i+1 } } } ah ck ai , c7k : ai

b : bi } } } bh&1 bh d : dk

a: ai } } } ah&1 ah c : ck

b : bi } } } bh&1 bh d : dk

If bi<dk then (V) holds. In the opposite case one has dk�bi�ai+1�ah<
ck�dk which is a contradiction.

(1.4). i<h and j<k. Since ai+bi<ai+1+bi , if ai+bi<ai+dj then (V)
holds. If dj�b i then one has dj�b i�ai+1�cj�dj , that is to say
dj=bi=a i+1=cj . Set x=dj . Now let v be the maximum of the integers
with the properties 0�v�min(h&i, k& j), and

bi+u=cj+u=dj+u=x+u, and a i+u=x+u&1 for u=0, ..., v.
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Then the sequences have the form:

ck , a7i : x x+1 } } } x+v&1 a i+v+1 } } } } } } ah ck

b : x x+1 } } } x+v&1 x+v bi+v+1 } } } bh&1 bh

a : x&1 x } } } } } } x+v&1 ai+v+1 } } } } } } ah

b : x x+1 } } } } } } x+v bi+v+1 } } } } } } bh

ai , c7k : x&1 x } } } x+v&1 x+v cj+v+1 } } } ck&1

d : x x+1 } } } x+v dj+v+1 } } } } } } dk

c : x x+1 } } } x+v cj+v+1 } } } } } } ck

d : x x+1 } } } x+v dj+v+1 } } } } } } dk

As above we may skip from the sequences those indices whose contribution
to the initial monomials cancel one against the other. Hence we may
restrict our attention to the following subsequences:

ck , a7i : a i+v+1 } } } } } } ah ck

b : x+v bi+v+1 } } } bh&1 bh

a : ai+v+1 } } } } } } ah

b : bi+v+1 } } } } } } bh

ai , c7k : x+v cj+v+1 } } } ck&1

d : dj+v+1 } } } } } } dk

c : x+v cj+v+1 } } } } } } ck

d : x+v dj+v+1 } } } } } } dk

We have three subcases

(1.4.1). v=k& j�h&i. We have ck=dk=bi+k& j=x+k& j and ai+k& j=
x+k&j&1. Since h�i+k& j we have ah+bh�ai+k& j+bi+k& j=ck+
dk&1 which contradicts the assumption ah<ck and bh<dk .
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(1.4.2): v=h&i<k& j. The sequences have the form:

ck , a7i : ck a i , c7k : x+h&i cj+h&i+1 } } } ck&1

b : x+h&i d : dj+h&i+1 } } } } } } dk

a : c : x+h&i cj+h&i+1 } } } } } } ck

b : d : x+h&i dj+h&i+1 } } } } } } dk

Since x+h&i=dj+h&i<dj+h&i+1 and x+h&i=cj+h&i<ck , we have
2(x+h&1)<min(x+h&i+dj+h&i+1 , x+h&i+ck) and hence (V) holds.

(1.4.3): v<min(h&i, k& j). If ai+v+1>x+v, then (V) holds. If
ai+v+1�x+v, then ai+v+1=x+v because a i+v=x+v&1. In this case, if
bi+v+1<dj+v+1 , then (V) holds. If instead one has b i+v+1�d j+v+1 , then
bi+v+1�ai+v+1+1=x+v+1=cj+v+1�cj+v+1�dj+v+1�bi+v+1 . It
follows that cj+v+1=dj+v+1=bi+v+1=x+v+1 which is a contradiction
because of the definition of v.

Case (2). ai>ck , j>k, i>h: After reordering the sequences and skip-
ping those indices whose contribution to the initial monomials cancel one
against the other, one has:

ck , a7i : ck ah+1 } } } ai&1 ai , c7k : ck+1 } } } cj&1 ai

b : bh+1 bh+2 } } } b i d : dk } } } dj&2 dj&1

a : ah+1 } } } } } } a i c : ck } } } } } } cj&1

b : bh+1 } } } } } } b i d : dk } } } } } } dj&1

There are four subcases:

(2.1). i=h+1 and j=k+1. The sequences have the form:

ck , a7h+1 : ck ah+1 , c7k : ah+1

b : bh+1 d : dk

a : ah+1 c : ck

b : bh+1 d : dk

If dk<bh+1 then (V) holds. If dk�bh+1 then dk=bh+1 . In this case the
initial monomials of [a | b][c | d ] and [ck , a7h+1 | b][ah+1 , c7k | b] coin-
cide. We show that in this case (VV) holds. Given a minor (or better a
bivector) [: | ;]=[:1 , ..., :p | ;1 , ..., ;p], we put [: | ;]u=:u+;u . Now
assume that [ck , a7h+1 | b]u<1 [ah+1 , c7k | b]v<[ck , a7h+1 | b]u+1 . We
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have to show that (v, u) is bigger than (k, h) in the lexicographical order.
Assume by contradiction that (v, u) is smaller than or equal to (k, h) in the
lexicographical order. Note that [ck , a7h+1 | b]p=[a | b]p for all p{h+1
and [ah+1 , c7k | b]q=[c | d ]q for all q{k. If v<k and u<h, then one has
a contradiction because k was chosen minimally. If v<k and u=h, then
one has a contradiction as in the previous case because [ck , a7h+1 | b]h+1=
ck+bh+1<ah+1+bh+1 . If v<k and u>h, then

ck+dk=ck+bh+1=[ck , a7h+1 | b]h+1

�[ck , a7h+1 | b]u< 1 [ah+1 , c7k | b]v=cv+dv

which is a contradiction. If v=k and u�h then

ah+1+dk=[ah+1 , c7k | b]k<[ck , a7h+1 | b]u+1�[ck , a7h+1 | b]h+1

=ck+bh+1=ck+dk<ah+1+dk

which is again a contradiction. This conclude the discussion of (2.1).

(2.2). i=h+1 and j>k+1. The sequences have the form:

ck , a7h+1 : ck ah+1 , c7k : ck+1 } } } c j&1 ah+1

b : bh+1 d : dk } } } d j&2 d j&1

a : ah+1 c : ck } } } } } } cj&1

b : bh+1 d : dk } } } } } } dj&1

If dk<bh+1 then (V) holds. As above in the opposite case one has
dk=bh+1 . If ah+1<ck+1 then (V) holds. If ah+1�ck+1 then ck+1�
ah+1�bh+1=dk�ck+1�ck+1 and hence ck+1=ah+1=bh+1=dk=
ck+1. It follows that (V) holds unless j=k+2. In this last case the initial
monomials of [a | b][c | d ] and [ck , a7h+1 | b][ah+1 , c7k | d ] coincide.
As in (2.1) one shows that (VV) holds.

(2.3). i>h+1 and j=k+1. The sequences have the form:

ck , a7i : ck ah+1 } } } ai&1 ai , c7k : ai

b : bh+1 bh+2 } } } bi d : dk

a : ah+1 } } } } } } ai c : ck

b : bh+1 } } } } } } bi d : dk

If dk<bh+1 then (V) holds. Otherwise dk=bh+1 and then ah+1+bh+1<
min(ah+1+bh+2 , ai+dk). Hence (V) holds.
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(2.4). i>h+1, j>k+1. If dk<bh+1 then (V) holds. So we may assume
dk=bh+1 . If ah+1<ck+1 then (V) holds. On the other hand if ah+1�ck+1 ,
then it follows as above that ck+1=ah+1=bh+1=dk=dk+1&1. Therefore
we may define v to be the maximum of the integers with the properties: 1�
v�min( j&k&1, i&h) and ah+u=bh+u=ck+u=dk+u&1=dk&1+u for
all 1�u�v. Set x=dk&1. Again we may consider only the relevant part
of the sequences. They are:

ck , a7i : x+v ah+v+1 } } } ai&1

b : bh+v+1 } } } } } } bi

a : ah+v+1 } } } } } } ai

b : bh+v+1 } } } } } } bi

ai , c7k : ck+v+1 } } } cj&1 ai

d : x+v+1 } } } dj&2 dj&1

c : x+v ck+v+1 } } } c j&1

d : x+v+1 dk+v+1 } } } dj&1

We have three subcases:

(2.4.1). v=i&h� j&k&1. One has ai=ah+i&h=x+i&h+1 and
cj&1�ck+i&h=x+i&h+1. This is a contradiction because by assump-
tion cj&1<ai .

(2.4.2). v= j&k&1<i&h. The sequences are:

ck , a7i : x+v ah+v+1 } } } ai&1

b : bh+v+1 } } } } } } bi

a : ah+v+1 } } } } } } ai

b : bh+v+1 } } } } } } bi

ai , c7k : a i

d : x+v+1

c : x+v

d : x+v+1
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One observes that (V) holds unless bh+v+1=x+v+1 and v+1=i&h. In
the exceptional case the initial monomials of [ck , a7i | b][a i , c7k | d ] and
[a | b][c | d ] are equal and one verifies that (VV) holds.

(2.4.3). v<min( j&k&1, i&h). If x+v+1<bk+v+1 then (V) holds. The
same is true if x+v+1=bk+v+1 and ah+v+1<ck+v+1 . Finally if x+v+1=
bk+v+1 and ah+v+1�ck+v+1 then ck+v+1�ah+v+1�bh+v+1=x+v+1=
dk+v�dk+v+1&1�ck+v+1 , and hence ck+v+1=ah+v+1=bh+v+1=
dk+v+1&1=x+v+1 which contradicts the definition of v. K

In order to state the straightening law for products of minors, we need
to recall some notation. Given a product of minors $ of shape s=s1 , ..., sk

and t # N one defines

#t($)= :
k

i=1

max[si+1&t, 0]

These functions were introduced in [DEP1] to describe the symbolic
powers of generic determinantal ideals. We are now in the position to state
the following important:

Theorem 2.6 (Straightening law). Let $ be a product of minors of X and
let + be a standard monomial which appears in the standard representation
of $. Then for all t # N one has #t($)�#t(+).

Proof. We introduce an order in the set of the products of minors. Let
$=$1 } } } $k and +=+1 } } } +h be products of minors and assume that in
($1)�L } } } �L in($k) and in(+1)�L } } } �L in(+h). We set $o+ if (k, in($),
in($k), ..., in($1)) is bigger than (h, in(+), in(+h), ..., in(+1)) in the lexico-
graphical order, i.e., k>h or k=h and in($)>L in(+) or k=h, in($)=in(+)
and there exists p such that in($p)>L in(+p) and in($i)=in(+ i) for i=
p+1, ..., k.

We argue by induction on o. Let $=$1 } } } $k be a product of minors
with the factors ordered as above, and let si be the size of $i . For k=1, 2
the claim follows from 2.3. Assume k>2. By virtue of 2.2(c) we may
replace each $i by a linear combination of maximal minors of size si . By
induction we may hence assume that the $i are maximal minors. If $ is a
standard monomial then there is nothing to prove. If $ is not a standard
monomial, then there exist i, j with 1�i< j�k such that $i $j is not a
standard monomial. Let $i $j=+1+�r

h=2 :h+h be the standard representa-
tion of $i $j and assume that in($i $j)=in(+1)>L in(+h) for all h>1. By 2.3
we have that #t($i $j)�#t(+h) for all h.

Replacing $i $j with its standard representation we may write $ as a
linear combinations of $(h)=$1 } } } $ i&1 $i+1 } } } $j&1 $ j+1 } } } $k+h , h=
1, ..., r, and #t($)�#t($(h)) for all h. It suffices now to show that $o$ (h) for
all h.
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If h>1, then $(h) has at most k factors and in($(h))<L in($) and hence
$o$(h).

For h=1, one notes that +=n1n2 where n1 , n2 are maximal minors with,
say, in(n1)>L in(n2) and in(n2)<L in(+ i), in(+j). It follows that $o$(1). K

3. SYMBOLIC POWERS AND PRIMARY DECOMPOSITION
OF POWERS OF IDEALS OF MINORS

We have seen in 2.2 that the ideal It(Xj) of K[X] generated by the
t-minors of Xj does not depend on j but only on t and n. Hence we will
denote it simply by It . The highest order of a minor in X is w(n+1)�2x .
Thus we consider only It with 1�t�w(n+1)�2x. We set

m=w(n+1)�2x .

It is well-known that I2 is the defining ideal of the rational normal curve
C of Pn&1, while It defines the (t&2)-secant variety of C, see for instance
[R, pag. 91, pag. 229] or [E2, Proposition 4.3]. The quotient ring K[X]�It

is known to be a Cohen�Macaulay normal domain of dimension 2(t&1),
see [E2] and [W]. Further by a result of Valla [V] the ideal It is known
to be a set-theoretic complete intersection. This section is devoted to deter-
mine the symbolic powers and the primary decomposition of the powers of
the ideals It .

We say that an ideal I of K[X] is an ideal of standard monomials if I
has a basis as a K-vector space which consists of standard monomials. The
class of ideals of standard monomials is obviously closed under sum and
intersection.

Since distinct standard monomials have distinct initial monomials it
follows immediately:

Lemma 3.1. Let I be an ideal of standard monomials. Let B denote the
standard monomial K-basis of I. Then B is a Gro� bner basis of I with respect
to >L . Furthermore, the monomials in(+) with + # B form a K-basis of in(I ).

Definition 3.2. Let t and k be positive integers. We define Jt, k to be
the K-vector space generated by the standard monomials + with #t(+)�k.

One has:

Proposition 3.3. (a) Jt, k is an ideal of standard monomials,

(b) If $ is a product of minors and #t($)�k, then $ # Jt, k ,

(c) I k
t �Jt, k , and It=Jt, 1 .
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Proof. (a) and (b) follow from the straightening law 2.6. The first part
of (c) follows from (b). It remains to prove that It �Jt, 1 . To this end one
notes that if + is a standard monomial with #t(+)�1 then + has a factor
of size �t. K

By virtue of 3.1 and 3.3 we have that the standard monomials in Jt, k are
a infinite Gro� bner basis of Jt, k . A finite Gro� bner basis is:

Proposition 3.4. The set Gt, k of the standard monomials + which have
all the factors of size �t and #t(+)=k is a finite Gro� bner basis of Jt, k with
respect to <L .

Proof. It is easy to see that whenever + is a standard monomial with
#(+)�k there exists +1 # Gt, k with in(+1) | in(+). This proves that Gt, k is a
Gro� bner basis of Jt, k . Note that the degree of the elements of Gt, k is bounded
by kt. Hence Gt, k is finite. K

In particular Gt, 1 is the set of the maximal t-minors of X and it is a
Gro� bner basis of It . It follows that the ideal in(It) is generated the
<1 -chains of length t and hence it is a square-free monomial ideal associated
with a simplicial complex that we denote by 2t . If j= j1 , ..., jt&1 is a <1 -chain
with jt&1�n&1 then the set F j=[ j1 , j1+1, ..., jt&1 , jt&1+1] is clearly a
facet of 2t . Furthermore it is easy to see that any facets of 2t is of the form Fj

for some <1-chain j of length t&1 and bounded by n&1. Denote At&1 the
set of the <1-chain of length t&1 bounded by n&1, and for j # At&1 denote
by Pj the ideal (xi : i � Fj). We have:

in(It)= ,
j # At&1

Pj

More generally:

Lemma 3.5. For all t=1, ..., m and k # N one has:

in(Jt, k)= ,
j # At&1

Pk
j

Proof. Let +=+1 } } } +p be a standard monomial, and let si denote the
size of + i . The initial monomial in(+j) is a <1 -chain of length si . Each facet
of 2t contains at most t&1 points of the support of in(+i). It follows that
in(+i) # �j # At&1

P#t (+i)
j and thus in(+) # �j # At&1

P#t (+)
j . Since in(Jt, k) is

generated by the initial monomials in(+) of the standard monomials + with
#t(+)�k, we have in(Jt, k)��j # At&1

Pk
j .

Now let m be a monomial in �j # At&1
Pk

j . Let + the standard monomial
which corresponds to m. We have to show that #t(+)�k. Let m1 be the first
factor in the canonical decomposition of m, that is, m1 is the maximum
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(w.r.t. >L) of the <1 -chains which divide m. Say m1=x i1
} } } x is

. It follows
that m=>s

h=1 xah
ih

xbh
ih+1 with ah>0 (we have put xn+1=1 for systematic

reasons). If s<t then there exists j # At&1 such that [i1 , i1+1, ..., is , is+1]
/Fj , and since m # Pk

j , it follows that k=0 which is a trivial case. So we
may assume that s�t. Let n=m�m1=>s

h=1 xah&1
ih

xbh
ih+1 . By induction it

suffices to show that n # �j # At&1
Pk&s&1+t

j , that is,

:
ih � Fj

(ah&1)+ :
ih+1 � Fj

bh�k&s&1+t (1)

for all j # At&1 . Denote by OP(m)=max[z: m # Pz]. Note that the left
hand side of (1) is equal to

OPj
(m)&|[h: ih � Fj]|

which is equal to

OPj
(m)&s+|[h: ih # Fj]|

Set r( j)=|[h: ih # F j]| . Thus (1) is equivalent to

OPj
(m)+r( j)�k+t&1 (2)

for all j # At&1 . We prove (2) by decreasing induction on r( j). In general
r( j)�t&1. If r( j)=t&1 then (2) is trivially true because OPj

(m)�k by
assumption. Assume that r( j)<t&1. Set G=[i1 , i1+1, ..., is , is+1]. It
suffices to prove the following:

Claim. Let j # At&1 such that r( j)<t&1. Then there exists z # At&1

such that Fj & G/Fz and r(z)>r( j).

From the claim it follows by straightforward computations that
OPj

(m)+r( j)�OPz
(m)+r(z), and, since r(z)>r( j), (2) follows by

induction.
We prove now the claim: Let j= j1 , ..., jt&1 .
If for some k one has [ jk , jk+1] & G=<, then Fz is defined to be a

facet which contains (Fj "[ jk , jk+1]) _ [ih] where ih � Fj .
Assume now that for all k=1, ..., t&1 one has [ jk , jk+1] & G{<.

Since r( j)<t&1, there exists k such that [ jk , jk+1] & [i1 , ..., is]=<. It
follows that jk=iq+1 for some q and jk+1 � G. Set p=max[u: u< jk and
u � F j & G]. By construction one has either p # G"Fj or p # Fj"G.

In the first case p=ih for some h, and Fz is defined to be equal to
(Fj "[ jk+1]) _ [ih].

In the second case q= jd for some d and Fz is defined to be a facet of
2t which contains (Fj "[ jd , jk+1]) _ [ih] where ih � F j . K
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For later applications we record the following result which is implicit in
[STV]:

Lemma 3.6. Let J be an ideal of a polynomial ring R and let { be any
monomial order. Then

max[height(P): P # Ass(R�J)]�max[height(P): P # Ass(R�in{(J))]

Proof. For k # N denote by J�k=[ f # R : height(J : f )>k]. One
knows that J�k is the intersection of the primary components of height �k
of any primary decomposition of J, and that in{(J�k)�in{(J) �k , see
[STV, pag. 420]. Put h=max[height(P): P # Ass(R�in{(J))]. Then one has

in{(J)�in{(J�h)�in{(J) �h=in{(J).

It follows that in{(J)=in{(J�h) and therefore J=J�h . Thus the associated
prime ideals of J have height bounded by h. K

Lemma 3.7. Let r, s be integers with 1�r, s�m and s>r+1. Then one
has

IrIs /Ir+1Is&1 .

Proof. Since Is(Xs) is the ideal of maximal minors of the matrix Xs , by
virtue of [BV, Lemma 10.10] one has Ir(Xs) Is(Xs)�Ir+1(Xs) Is&1(Xs). It
follows that Ir Is=Ir(Xs) Is(Xs)�Ir+1(Xs) Is&1(Xs)=Ir+1Is&1 . K

Recall that the k-symbolic power P(k) of a prime ideal P of a Noetherian
ring R is defined to be the P-primary component of Pk. In other words,

P(k)=R & PkRP=[x # R : there exists f # R"P such that fx # Pk].

The symbolic powers of a prime ideal form a filtration, that is,
P(k+1)�P(k) and P(k)P(h)�P(k+h).

Theorem 3.8. For all t=1, ..., m and k # N one has

I (k)
t =Jt, k .

In particular:

I (k)
t =: I at

t I at+1
t+1 } } } I am

m

the sum being extended over all the sequences of non-negative integers
at , at+1 , ..., am , with at+2at+1+ } } } +(m&t+1) am=k.
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Proof. For t=1 the claim is trivial. Hence we assume that 1<t�m.
Let s�t. By virtue of 3.7

I s&t
t&1Is �I s&t&1

t&1 It Is&1 � } } } �I s&t& j
t&1 I j

t Is& j � } } } �I s&t
t It=I s&t+1

t .

This implies that Is �I (s&t+1)
t . Since the symbolic powers form a filtration

for any product of minors + one has + # I (#t(+))
t . Therefore Jt, k �I (k)

t , and
by 3.3, we know also that I k

t �Jt, k . By virtue of 3.5 the ideal in(Jt, k) is the
intersection of the ideals Pk

j with j # At&1 . The ideals Pj are prime and
complete intersections, and hence their powers are primary. It follows that
in(Jt, k) has no embedded prime ideals, and further all its minimal primes
have the same height. By virtue of 3.6 we have that Jt, k has no embedded
prime ideals. Since I k

t �Jt, k �I (k)
t , it follows that Jt, k=I (k)

t . K

Remark 3.9. Since the ideal I2 defines a ring with isolated singularities
(i.e. the rational normal curve is smooth), the only possible embedded
prime ideal of I k

2 is the homogeneous maximal ideal. Thus I (k)
2 is the satura-

tion of I k
2 .

The theorem has the following corollaries:

Corollary 3.10. The ideal I (k)
t is an ideal of standard monomials. In

particular, the set of the standard monomials + with #t(+)�k is a K-basis of
I (k)

t . Further Gt, k is a Gro� bner basis of I (k)
t .

Proof. It follows from 3.3, 3.4 and 3.8. K

Corollary 3.11. The ideal It has primary powers if and only if t=1 or
t=m.

Let {=t1 , t2 , ..., tk be a sequence of integers with m�t1�t2� } } } �tk�1.
Define

#j ({)= :
k

i=1

max[ti+1& j, 0]

For all the products of minors +=+1 } } } +k of shape {=t1 , t2 , ..., tk and
for all j # N one has + # I (#j ({))

j and thus

It1
} } } Itk

� ,
t1

j=1

I (#j ({))
j .

We want to show that:
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Theorem 3.12. Let {=t1 , t2 , ..., tk be a sequence of integers with
m�t1�t2� } } } �tk�1. Then

It1
} } } Itk

= ,
t1

j=1

I (#j ({))
j

is a possibly redundant primary decomposition of It1
} } } Itk

.

To prove the theorem we need some preliminary results. Note that
�t1

j=1 I (#j ({)), being the intersection of ideals of standard monomials, is an
ideal of standard monomials. Its K-basis is the set of the standard
monomials + with #j (+)�#j ({) for all j=1, ..., t1 .

Lemma 3.13. Let n1 and n2 be <1-chains of K[X] of length s and r,
respectively, with s>r+1. Then there exist two <1 -chains n3 , n4 of length
s&1 and r+1, respectively, such that n1n2=n3n4 .

Proof. Let n1=xi1
} } } x is

and n2=xj1
} } } xjr

. For h=1, ..., r we set
i $h=min(ih , jh) and j $h=max(ih , jh). The sequences i $1 , ..., i $r , ir+1 , ..., is and
j $1 , ..., j $r are <1 -chains, and hence we may assume that ih� jh for all
h=1, ..., r. We have to distinguish two cases:

If ik<1 jk for some k, then take k be the minimum of the integers with
this property. Then jk&1�ik&1+1<ik<1 ik+1 . Thus j1 , ..., jk&1 , ik+1 , ..., is

and i1 , ..., ik , jk , ..., jr are <1 -chains and one takes n3 and n4 to be the
associated monomials.

If ik<3 1 jk for all k, then in particular jr�ir+1<ir+1<1 is . Thus
i1 , ..., is&1 and j1 , ..., jr , is are <1 -chains and one takes n3 and n4 to be the
associated monomials. K

Lemma 3.14. Let {=t1 , t2 , ..., tk be a sequence of integers with m�t1�
t2� } } } �tk�1. Let +=+1 } } } +q be a product of minors such that #j (+)�
#j ({) for all j=1, ..., t1 . Then there exists a product of minors $1 , ..., $k of
shape { such that in($1 } } } $k) | in(+).

Proof. If one of the +i is a t1-minor, then one concludes by induction on q
because #j (+1 } } } +i&1+i+1 } } } +q)=#j (+)&(t1+1& j)�#j ({)&(t1+1& j)=
#j (t2 , ..., tk) for all j=1, ..., t1 . Otherwise we may arrange the factors + i in
ascending order according to their size and assume that +1 , ..., +p have size
<t1 and +p+1 , ..., +q have size >t1 . Let r be the size of +p and s
be the size of +p+1 . By virtue of 3.13 we may find two minors \1 and \2

of size r+1 and s&1 respectively such that in(\1 \2)=in(+p+p+1). Set
+$=+1 } } } +p&1 \1\2+p+2 } } } +q . We claim that #j (+$)�#j ({) for j=1, ..., t1 .
Since in(+)=in(+$) we may then conclude by induction because +$ has
either a factor of size t1 or a smaller ``s&r''. To prove the claim one first
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notes that #j (+$)=#j (+) for all j=1, ..., r+1 and that #j (+$)=#j (+)&1 for
all j=r+2, ..., t1 . Arguing by contradiction we may assume that #i (+)=
#i ({) for some i, r+2�i�t1 . Since + has no factors which has size bigger
than r and smaller than or equal to t1 , one has #i&1(+)=#i (+)+q& p. It
follows that q& p+#i ({)�#i&1({) and then

q& p�#i&1({)&#i ({)=|[h: th�i&1]|.

One obtains

#i (+)=#i (+p+1 } } } +q)�(q& p)(t1+2&i)�|[h: th�i&1]| (t1+2&i)

�|[h: th�i]| (t1+2&i)>|[h: th�i]| (th+1&i)=#i ({)=#i (+)

which is a contradiction. K

Proof of Theorem 3.12 Let J denote the ideal generated by the initial
monomials of the products of minors of shape {. Since in(� t1

j=1 I (#j ({))) is
generated by the initial monomials of the standard monomials + with
#j (+)�#j ({) for all j=1, ..., t1 , by virtue of 3.14 one has
in(� t1

j=1 I (#j ({))
j )�J. Then

J�in(It1
) } } } in(Itk

)�in(It1
, ..., Itk

)�in \,
t1

j=1

I (#j ({))
j +�J

It follows that It1
} } } Itk

=� t1
j=1 I (#j ({))

j . K

The proof of the theorem as the following important:

Corollary 3.15. Let {=t1 , t2 , ..., tk be a sequence of integers with
m�t1�t2� } } } �tk�1. Then the product of minors of shape { form a
Gro� bner basis of the ideal It1

} } } Itk
. In particular one has:

in(It1
} } } Itk

)=in(It1
) } } } in(Itk

)

We single out the most important case:

Theorem 3.16. (a) Let 1�t�m and k # N. Set u=max(1, m&
k(m&t)). Then:

I k
t = ,

t

j=u

I (k(t+1& j))
j

is an irredundant primary decomposition of I k
t .

(b) in(I k
t )=in(It)

k for all k.

Proof. (a) To determine an irredundant primary decomposition of I k
t

one has only to detect those components which are superflous in the
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decomposition I k
t =� t

j=1 I (k(t+1& j))
j which is given in 3.12. Hence the ques-

tion is whether one of the I (k(t+1& j))
j already contains the intersection of

the others or not. This question can be refrased completely in terms of
whether there exists an admissible shape with given #-functions and it is
exactly the same question that one has to answer in the generic case, see
[DEP1, Corollary 7.3] and [BV, Corollary 10.13]. Hence the answer is
the same as in the generic case.

(b) It is just a special case of 3.15. K

As a by-product of the proof of Theorem 3.12 we obtain a primary
decomposition of the ideal in(It1

) } } } in(Itk
) :

Corollary 3.17. Let {=t1 , t2 , ..., tk be a sequence of integers with
m�t1�t2� } } } �tk�1. Then

in(It1
) } } } in(Itk

)= ,
t1

j=1

,
z # Aj&1

P#j ({)
z

is a possibly redundant primary decomposition of in(It1
) } } } in(Itk

).

A consequence of 3.16 is the following

Corollary 3.18. The set of associated primes of I k
t is

Ass(K[X]�I k
t )=[Iu , Iu+1 , ..., It].

In particular, if t<m and k�(m&1)�(m&t) then u=1 and hence

Ass(K[X]�I k
t )=[I1 , I2 , ..., It] and depth K[X]�I k

t =0.

4. SYMBOLIC AND ORDINARY REES ALGEBRAS

We next turn to the study of the symbolic and ordinary Rees algebras
associated to the ideals It .

Let I be an ideal of a ring R. The Rees algebra R(I ) of I is the R-graded
algebra ��

k=0 I kT k, where T is an indeterminate over R. In other words,
R(I ) can be identified with the R-subalgebra of R[T] generated by IT. If
I happens to be prime we may also consider the symbolic Rees algebra
Rs(I ), that is, Rs(I )=��

k=0 I (k)T k. If R is a polynomial ring and { a
monomial order, then the initial algebra in(R(I )) of R(I) is in{(R(I ))=
��

k=0 in{(Ik) T k. Similarly the initial algebra of in(Rs(I )) of Rs(I ) is
in{(Rs(I ))=��

k=0 in{(I (k)) T k.
It follows from 3.8 and 3.3 that:
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Proposition 4.1. One has:

Rs(It)=K[X][It T, It+1T 2, ..., Im T m&t+1]

in(Rs(It))=K[X][in(It) T, in(It+1) T 2, ..., in(Im) T m&t+1].

In particular Rs(It) and in(Rs(It)) are Noetherian.

By virtue of 3.5 we have:

in(Rs(It))= �
�

k=0
\ ,

j # At&1

Pk
j + T k= ,

j # At&1
\�

�

k=0

Pk
j T k+= ,

j # At&1

R(Pj)

Since the ideal Pj is generated by indeterminates, R(Pj) is normal. It
follows that in(Rs(It)) is normal, too. By virtue of [CHV, Corollary 2.3],
this suffices to conclude:

Theorem 4.2. The symbolic Rees algebra Rs(It) and its initial algebra
are Cohen�Macaulay normal domains.

Let {=t1 , t2 , ..., tk be a sequence of integers with m�t1�t2� } } } �
tk�1. Set J=It1

} } } Itk
and g j=#j ({). Note that from 3.15 it follows that:

Proposition 4.3. in(R(J))=R(in(J))=R(in(It1
) } } } in(Itk

)).

Now 3.17 yields:

in(R(J))=�
�

i=0
\,

t1

j=1

,
z # Aj&1

P gj i
z + T i= ,

t1

j=1

,
z # Aj&1

R(P gj
z )

Since R(P gj
z ) is a direct summand of R(Pz), it is normal. It follows that

in(R(J)) is normal. As above one has:

Theorem 4.4. Let J=It1
} } } Itk

. Then the Rees algebra R(J) and its
initial algebra are Cohen�Macaulay normal domains. Further the same con-
clusion holds for the special fibre R(J)�(X) R(J) of R(J).

Proof. Set {=t1 , ..., tk . The only statement which still needs an argu-
ment is the one concerning the special fibre of R(J). Let us denote it by
A({). Since the generators of J have all the same degree (i.e. t1 } } } tk) the
algebra A({) can be identified with the K-algebra generated by the products
of minors of shape {. The initial algebra in(A({)) of A({) is the algebra
generated by the initial monomials of the product of minors of shape {.
Thus in(A({)) is a direct summand of in(R(J)). It follows that in(A({)) is
normal. The desired conclusion follows from [CHV, Corollary 2.3]. K

Again we single out the most important case:
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Theorem 4.5. The Rees algebra R(It), its initial algebra and its special
fibre are Cohen�Macaulay normal domains.

For the special case t=2 (and for more general matrices) Theorem 4.4
has been proved in [CHV, Theorem 3.8].

Remark 4.6. Similarly one can show that the multi-homogeneous Rees
algebra R(It1

, ..., Itk
) is normal and Cohen�Macaulay.

We turn now to the study of the presentation of the Rees algebras. We
content ourself to treat the case of the Rees algebra of It . We have:

Theorem 4.7. The Rees algebra R(It) is defined by a Gro� bner basis of
quadrics.

Proof. By virtue of [CHV, Corollary 2.2], it suffices to show that the
initial algebra of R(It) is defined by a Gro� bner basis of quadrics. In this
case the initial algebra is R(in(It)). Let A=[(a1 , ..., at) : a1<1 } } } <1at]
and take a family of indeterminates Y=(Ya)a # A . Consider the (minimal)
presentation of in(R(It))

g: K[X][Y] � R(in(It))

defined by sending Ya to xa T=xa1
xa2

} } } xat
T. In the kernel of g there are

three types of polynomials.

(1) Linear relations:

xk Ya&xah
Yb

with ah&1<1k<ah for some h, 1�h�t and where b is the sequence
(a1 , ..., ah&1 , k, ah+1 , ..., at).

(2) Plu� cker-type relations:

YaYb&Ya 7bYa 6 b

where

a 7b=(min(a1 , b1), ..., min(at , bt)),

a 6b=(max(a1 , b1), ..., max(at , bt))

and ah<bh , ak>bk for some h and k.

(3) Relation of type:

YaYb&YcYd
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with ai�bi for all i, and there exist 1�h�k<t with

bh&1�ah ,

bh>ah+1 , bh+1>ah+2 , ..., bk>ak+1 ,

bk+1�ak+2 ,

where

c=(a1 , ..., ah , bh , bh+1 , ..., bk , ak+2 , ..., at)

and

d=(b1 , ..., bh&1 , ah+1 , ah+2 , ..., ak+1 , bk+1 , ..., bt).

These relations form a Gro� bner basis of Kerg. To prove this one uses an
argument which is standard, see for instance [S, Chapter 14] or [CHV,
Lemma 3.1, Proposition 3.2]. We give just the main details.

We put (a1 , ..., at)O (b1 , ..., bt) if a1�b1�a2� } } } �at�bt . Applying
the above relations one shows that every monomial m in R(in(It)) has a
representation m=nxa1

Txa2
T } } } xak

T (here the a i are elements of A, say
ai=(ai1 , ..., a it)) with the properties

(i) ai Oaj for all 1�i� j�k

(ii) for all the xh in n and i=1, ..., k one has either 0�k&aij�1 for
some j or k�ait .

One shows that this representation is unique. Then one determines a term
order in K[X][Y] such that the initial monomials of the polynomials (1)
(2) and (3) are those on the left hand side, and the desired conclusion
follows. K

The analytic spread l(I ) of an homogeneous ideal I in a polynomial ring
R is defined to be the dimension of the special fiber R(I)�mR R(I ) of the
Rees algebra R(I). Here mR denotes the homogeneous maximal ideal of R.
In general l(I )�min(+(I ), dim R) where +(I ) denotes the minimum num-
ber of generators of I. We have:

Proposition 4.8. Let I=It . Then one has:

n if 1�t<m
l(I )=min(+(I ), n)={1 if t=m and n is odd

m+1 if t=m and n is even
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Proof. If 1�t<m we know by 3.18 that depth K[X]�Ik=0 for k>>0.
The associated graded ring grI (K[X]) is Cohen�Macaulay because R(I ) is.
Then it follows from [BV, Corollary 9.24] that l(I )=dim grI (K[X])=
dim K[X]=n. Alternatively one may observe that the t-minors are non-
maximal minors of the matrix Xm and hence, as in the proof of [BV,
Proposition 10.16], one may show that field of fractions of K[X] is
algebraic over the field of fractions of the special fiber of R(I ).

If t=m then it follows form the proof of 4.7 (and can be easily seen
directly) that the m-minors are algebraically independent. It follows that
l(I )=+(I ). K
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