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INTRODUCTION

In this paper we study monomial ideals and ladder determinantal ideals
of linear type and their blow-up algebras. Our main tools are Grobner¨
bases and Sagbi bases deformations and the notion of M-sequence of
monomials.

w xLet R s K X be a polynomial ring over a field K equipped with a
monomial order t . Let I be an ideal of R generated by polynomials
f , . . . , f . Consider the presentation1 s

w x w x w xc : R T s R T , . . . , T ª RR I s R f t , . . . , f tŽ .1 s i s

Ž . Ž .of the Rees algebra RR I of I, defined by setting c T s f t. Let Ji i
denote the kernel of c . The ideal J is R-homogeneous, and I is said to be
of linear type if J is generated by R-homogeneous elements of degree 1.
In other words, I is of linear type if and only if the canonical map
Ž . Ž . Ž .S I ª RR I from the symmetric algebra S I of the ideal I to the Rees

Ž .algebra RR I is an isomorphism.
w xIt has been shown in CHV that I is of linear type provided its initial

Ž .ideal in I is of linear type. Moreover, in this situation many goodt

Ž .properties as Cohen]Macaulayness or normality, for instance are pre-
Ž Ž .. Ž .served by passing from RR in I to RR I . This approach leads us to lookt

for conditions under which a monomial ideal is of linear type.
The paper is organized in the following way. The first section contains

notation and terminology. In the second section we introduce the notion of

*Present address: Dipartimento di Matematica, Universita di Genova, Via Dodecaneso 35,`
I-16146 Genoa, Italy.

599
0021-8693r99 $30.00

Copyright Q 1999 by Academic Press
All rights of reproduction in any form reserved.



CONCA AND DE NEGRI600

an M-sequence of monomials. A sequence of monomials m , . . . , m in a1 s
set of indeterminates X is said to be an M-sequence if for all i, 1 F i F s,
there exists a total order on the indeterminates of m , say m s x a1 ??? x an,i i 1 n

< ak an <such that for all j ) i and 1 F k F n with x m one has x ??? x m .k j k n j
We show that an ideal I generated by an M-sequence m , . . . , m is of1 s

Grobner linear type, that is, the linear relations form a Grobner basis of¨ ¨
the ideal of presentation of the Rees algebra of I with respect to some

Ž .monomial order 2.4 . Moreover, the m ’s together with their linear rela-i
tions form a Grobner basis of the ideal of presentation of the associated¨

Ž . Ž .graded ring gr R . The initial ideals of the ideals of presentation of RR II
Ž . Ž .and gr R turn out to be Cohen]Macaulay 2.3 . Furthermore, they areI

Ž .radical ideals provided the m ’s are square-free. It follows that RR I andi
Ž .gr R are Cohen]Macaulay, and that, if in addition the m ’s are square-I i

Ž . Ž .free, then gr R is reduced and RR I is normal. As a consequence weI
have that the above results hold also for an ideal I whose initial ideal is

Ž .generated by an M-sequence 2.5, 2.6 .
In Section 3 we present a special class of M-sequences, the sequences of

interval type. We are able to describe the Hilbert series of the Rees
algebra associated with a homogeneous ideal I, whose initial ideal is
generated by a sequence m , . . . , m of interval type of monomials of fixed1 s

Ž . Ž .degree, in terms of the degree of gcd m , m 3.3 .i j
w xGiven a graph G with vertices X and edges E, Villarreal Vi1 defined

Ž .the graph ideal I G to be the ideal generated by the monomials of the
Ž .form xy where x, y g E. We generalize this notion in Section 4 by

Ž .considering the ideal I G generated by all of the monomials x ??? xt 1 t
such that x , . . . , x is a path in G. If G is a tree, then it turns out that the1 t

Ž . Ž .generators of I G form an M-sequence. It follows that I G is of lineart t
Ž Ž ..type and that RR I G is normal and Cohen]Macaulay. For ordinaryt

Ž . wgraph ideals of trees i.e., t s 2 these results were already known SVV,
x Ž .5.3, 5.9 . Our arguments show that, if G is a tree and I s I G , then the2

Ž .defining ideal of gr R has an initial ideal that is Cohen]Macaulay of theI
Ž . Ž .form I G9 , where G9 is a graph which is not a tree in general . Using this2

Ž .we are able to show that the ith component of the h-vector of gr R is theI
Ž .number of sets of independent edges of G with exactly i elements 4.3 .

The ideal I of m-minors of an m = m q 1 generic matrix of indeter-m
minates and the ideal P of 2m-pfaffians of a 2m q 1 = 2m q 1 skew-m
symmetric matrix of indeterminates are known to be of linear type, to
define normal Cohen]Macaulay Rees algebras, and normal Gorenstein-

w x w x w xassociated graded rings; see, for instance, BST , EH , and Hu3 . The aim
of Section 5 is to present two classes of ladder ideals that are a generaliza-
tion of the ideals I and P and to show that they have the above-men-m m
tioned properties, too. This is done by showing that the initial ideals of the
ideals under consideration are generated by an M-sequence of square-free
monomials and by inversion tricks.
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1. NOTATION AND GENERALITIES

Ž .Let R be a ring commutative, Noetherian, and with 1 and let I be an
Ž .ideal of R. The Rees algebra RR I of I is defined to be the R-graded

i w xalgebra [ I . It can be identified with the R-subalgebra of R tiG 0
generated by It, where t is an indeterminate over R. Let f , . . . , f be a1 s
system of generators of I and consider the epimorphism of graded R-alge-
bras

w x w x w xc : R T s R T , . . . , T ª RR I s R f t , . . . , f tŽ .1 s 1 s

Ž . w xdefined by setting c T s f t. The ideal J s Ker c of R T is R-homoge-i i
neous. Denote by J the R-homogeneous component of degree i of J. Thei

Ž .elements of J are called linear relations. The relation type r I of I is1
r w xdefined to be the minimum of the integers r such that J s [ J R T .is1 i

Ž .In other words, r I is the highest degree of a minimal homogeneous
generator of J. The ideal I is said to be of linear type if its relation type is
1, that is, if the linear relations generate J. Several classes of ideals of
linear type are known. For instance, ideals generated by d-sequences are

w x w xof linear type; see Hu1 or Va2 . Determinantal ideals of linear type were
w x w xcharacterized by Huneke Hu4 in the generic case and by Kotzev K in

Ž .the symmetric case. The associated graded ring gr R of I is by definitionI
Ž . Ž . i iq1the factor ring RR I rI RR I s [ I rI , and it can be identified withiG 0

w xthe factor ring of R T defined by the ideal J q I.
Ž .Now let R be a standard or homogeneous graded K-algebra, that is,

R s [ R with R s K a field, and R is generated as a K-algebra byiG 0 i 0
elements x , . . . , x of degree 1. Let I be a homogeneous ideal and1 m

Ž .denote by I its homogeneous component of degree h. Then RR I andh
Ž .gr R inherit a natural structure of positively graded K-algebra. Explicitly,I

Ž . Ž .the homogeneous components of degree i of RR I and gr R areI

i i

j j jq1RR I s I and gr R s I rI .Ž . Ž .[ [i iiyj I iyj iyj
js0 js0

If I is generated by homogeneous elements f , . . . , f , with deg f s d ,1 s i i
Ž .then RR I is generated as K-algebra by the x ’s and by the f t ’s, andi i

Ž .gr R is generated by the residue classes of these elements. The degree ofI
Ž . Ž .x in RR I and gr R is 1, and the degree of f t is d q 1. From thei I i i

presentation point of view, this means that we give degree d q 1 to thei
indeterminate T , 1 F i F s. We will refer to this graded structure as thei

Ž . Ž .nonstandard grading of RR I and gr R .I
In the case in which I is d-equigenerated, that is, d s d for alli

Ž . Ž .i s 1, . . . , s, RR I and gr R can be viewed as standard graded K-algebrasI
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by setting their degree i components to be equal to

i i

j j jq1RR I s I and gr R s I rI .Ž . Ž .[ [i ijŽdy1.q i I jŽdy1.q i jŽdy1.q i
js0 js0

From the presentation point of view, this means that we give degree 1 to
the indeterminates T . We will refer to this graded structure as thei

Ž . Ž .standard grading of RR I and gr R . It is easy to see that the HilbertI
Ž . Ž . Ž . Ž . Ž .series H l , H l , and H l of RR I , gr R , and R are relatedRRŽ I . gr ŽR. R II

as follows:

H l s ldy1H l q 1 y ldy1 H l . 1Ž . Ž . Ž . Ž . Ž .gr ŽR. R RRŽ I .I

Ž . Ž .The Krull dimension of gr R is equal to that of R, and that of RR I isI
w xequal to dim R q 1, provided I contains a nonzero-divisor; see Val, 1.6 .

Hence under this assumption, the h-polynomials and the multiplicities of
Ž . Ž .RR I , gr R , and R satisfy the relationsI

h l s ldy1h l q 1 q l q ??? qldy2 h l , 2Ž . Ž . Ž . Ž . Ž .gr ŽR. R RRŽ I .I

e gr R s e R q d y 1 e RR I . 3Ž . Ž . Ž . Ž . Ž .Ž .Ž .I

w xWe assume from now on that R is the polynomial ring K X over a
field K in a set of indeterminates X. Given a monomial order t on R, we

Ž .denote, respectively, by in f the initial monomial of a polynomial f g R,t

Ž .and by in I the initial ideal of a homogeneous ideal I of R. Throughoutt

the paper we will use repeatedly the following well-known facts: the
Ž .Hilbert series of RrI and Rrin I coincide, RrI is Cohen]Macaulay ort

Ž .reduced whenever Rrin I is so, and the polynomials g , . . . , g are at 1 m
Ž .RrI-regular sequence if their initial monomials are a Rrin I -regulart

sequence.
We say that an ideal I of R is of Grobner linear type if the linear¨

relations form a Grobner basis of J with respect to some monomial order¨
w x w xon R T s K X, T . Of course, ideals of Grobner linear type are of linear¨

type.
w x Ž .It has been shown in CHV, 2.2, 2.8 that an ideal I is of Grobner¨

Ž .linear type whenever the initial ideal in I with respect to a monomialt

Ž Ž ..order t has this property. Furthermore, if in addition RR in I ist

Ž . Ž . ŽCohen]Macaulay resp. normal , then RR I is Cohen]Macaulay resp.
.normal . This fact leads to the following interesting problem: given an

ideal I generated by monomials m , . . . , m , find conditions on the m ’s1 s i
Ž .that guarantee that I is of linear type or of Grobner linear type .¨
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For instance, it is easy to see that a sequence of three square-free
Ž .monomials is always of universal Grobner linear type. Of course, d-se-¨

wquences of monomials are of linear type, but they are rare, see HSV1,
x5.2 . Villarreal characterized explicitly the ideals of linear type generated

Ž . w xby square-free monomials of degree 2 graph ideals Vi2, 2.2 . In the next
section we present a new class of monomial ideals of Grobner linear type.¨

2. M-SEQUENCES

In this section we introduce the notion of an M-sequence of monomials,
and then we show that an ideal generated by an M-sequence is always of
Grobner linear type. Quite surprisingly, it turns out that the Rees algebra¨
associated with an M-sequence is always Cohen]Macaulay. Furthermore,
the associated graded ring is reduced and the Rees algebra is normal
whenever the monomials are square-free.

DEFINITION 2.1. A sequence of monomials m , . . . , m in a set of1 s
indeterminates X is said to be an M-sequence if for all 1 F i F s there
exists a total order on the set of indeterminates that appear in m , sayi
x - ??? - x with m s x a1 ??? x an and a ) 0, . . . , a ) 0, such that1 n i 1 n 1 n

< ak an <whenever x m with 1 F k F n and i - j, then x ??? x m .k j k n j

Note that the total order on the indeterminates of m is allowed toi
depend on i. Obviously the property of being an M-sequence depends on
the order in which we list the monomials. For example, xy, yz, zw is an
M-sequence, and yz, xy, zw is not. Given a sequence m , . . . , m of1 s
monomials for all 1 F i, j F s, we set

m s m rgcd m , m .Ž .i j i i j

We collect some properties of M-sequences in the following:

LEMMA 2.2. Let m , . . . , m be an M-sequence in a set of indeterminates1 s
X. Then:

Ž .1 E¨ery subset of m , . . . , m is an M-sequence with respect to the1 s
induced orders.

Ž . b1 bs2 Let 1 F b F ??? F b be integers. Then m , . . . , m is an M-se-1 s 1 s
quence.

Ž . <3 Let m be a monomial such that m m . Then m rm, m , . . . , m is1 1 2 s
an M-sequence.

Ž . Ž Ž ..4 gcd m , gcd m , m s 1 for all 1 F i - j F s.i j i j



CONCA AND DE NEGRI604

Ž .5 Let i, j, k be integers with 1 F i, j, k F s, i - j, and i - k. Then
Ž . < Ž . Ž . < Ž .one has either gcd m , m gcd m , m or gcd m , m gcd m , m .i j i k i k i j

Ž . Ž . Ž .6 Assume gcd m , m / 1 for some k ) 1. By ¨irtue of 5 there1 k
Ž . < Ž .exists r, 1 - r F s, such that gcd m , m gcd m , m for all 1 - j F s and r1 j 1 r

is minimal with respect to this property. Then
Ž . Ž . Ž .i gcd m , m s gcd m , m , m for all j, 1 - j F s,1 j 1 j r

Ž . Ž . Ž . <ii gcd m , m rgcd m , m , m m for all j ) r.1 r 1 r j r j

Ž . Ž . Ž .Proof. Statements 1 , 2 , and 3 are trivial.

Ž . a1 an � < 44 Let m s x ??? x , and let p s min h: x m , with the conven-i 1 n h j
Ž .tion that p s n q 1 if gcd m , m s 1. From the definition of M-se-i j
Ž . ap an a1 apy 1quence it follows that gcd m , m s x ??? x , and m s x ??? x .i j p n i j 1 py1

Ž Ž ..Hence gcd m , gcd m , m s 1.i j i j

Ž . a1 an � < 45 Let m s x ??? x and j ) i. Let p s min h: x m . As above,i 1 n h j
Ž . ap an Ž . aq anone has gcd m , m s x ??? x . Similarly, gcd m , m s x ??? x ,i j p n i k q n
� < 4 Ž . < Ž .where q s min h: x m . Therefore, gcd m , m gcd m , m if p F q,h k i k i j

Ž . < Ž .and gcd m , m gcd m , m if q F p.i j i k

Ž .Ž .6 i We fix an indeterminate x and denote by b , b , b the1 r j
� 4 � 4exponents of x in m , m , m . The statement is min b , b s min b , b , b .1 r j 1 j 1 j r

If b s 0 or b s 0, then it holds true. If b / 0 and b / 0, then b / 0 by1 j 1 j r
construction, and b F b , b F b , because m is an M-sequence. Hence1 r 1 j
the statement holds true in this case, too.

Ž .Ž . � 46 ii In terms of exponents the statement is min b , b y1 r
� 4 � 4min b , b , b F b y min b , b . It is trivial if one among b , b , and b is1 r j r r j 1 r j

equal to 0. Assume b / 0, b / 0, and b / 0. Then b F b F b because1 r j 1 r j
m is an M-sequence and hence the statement holds true.

The next proposition deals with the Cohen]Macaulay property of two
monomial ideals associated with an M-sequence m , . . . , m . In the sequel1 s
we will see that they are the initial ideals of the ideals of definition of the
Rees algebra and of the associated graded ring of m , . . . , m .1 s

PROPOSITION 2.3. Let m , . . . , m be an M-sequence of monomials in a1 s
set of indeterminates X, and let T s T , . . . , T be a set of indeterminates. Let1 s

Ž . Ž . w xI s m , . . . , m and Q s m T : 1 F i - j F s . Then K X, T rQ and1 s i j j
w x < < < <K X, T rQ q I are Cohen]Macaulay of dimension X q 1 and X , respec-

tï ely.

Proof. We argue by induction on s. The claim is trivial for s s 1.
Ž . ŽHence assume s ) 1. Set Q s m T : 2 F i - j F s , and I s m : 2 F i2 i j j 2 i

. w x w xF s . By induction K X, T , . . . , T rQ and K X, T , . . . , T rQ q I are2 s 2 2 s 2 2
< < < <Cohen]Macaulay rings of dimension X q 1 and X .
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Ž .Assume that gcd m , m s 1 for all j ) 1. Then m is a nonzero-divisor1 j 1
Ž .modulo Q and modulo Q q I . Note that Q q I q m s Q q I.2 2 2 2 2 1

w xHence it follows by induction that K X, T rQ q I is Cohen]Macaulay of
< < Ž . Ž .dimension X . Now note that Q s Q q m T : 1 - i F s s Q , m l2 1 i 2 1

Ž . Ž . Ž . Ž .T , . . . , T , and Q , m q T , . . . , T s m , T , . . . , T . Hence2 s 2 1 2 s 1 2 s
w x < <K X, T rQ has dimension X q 1. Furthermore, from the short exact

sequence

w x w x w x0 ª K X , T rQ ª K X , T r Q , m [ K X , TŽ .2 1 1

w xª K X , T r m ª 0, 4Ž . Ž .1 1

w xby depth chasing it follows that K X, T rQ is Cohen]Macaulay.
Ž .Now assume that gcd m , m / 1 for some k ) 1, and let r be as in1 k

Ž . X Ž . X2.2 6 . Let m s gcd m , m , and let m9 be the sequence m , m ,1 1 r 1 2
. . . , m , . . . , m , where m means that m is omitted. Set mX sˆ ˆr s r r 1 j

X Ž X . Ž .Ž .m rgcd m , m , j ) 1. By virtue of 2.2 1 3 the sequence m9 is an1 1 j
M-sequence. The ideals associated with m9 are

Q9 s mX T , 1 - j F s, j / r q m T : 2 F i - j F s, i / r / jŽ . Ž .1 j j i j j

and

I9 s mX , m , . . . , m , . . . , m .Ž .ˆ1 2 r s

ˆw x wBy induction K X , T , T , . . . , T , . . . , T rQ9 and K X , T , T ,1 2 r s 1 2
ˆ x < <. . . , T , . . . , T rQ9 q I9 are Cohen]Macaulay rings of dimension X q 1r s
< <and X , respectively. Set

J s QX , T , J s Q , m ,Ž . Ž .1 r 2 2 1 r

J s Q9, I9, T , J s Q , I , m .Ž . Ž .3 r 4 2 2 1 r

We claim that

Q s J l J , Q q I s J l J , 5Ž .1 2 3 4

and

J q J s J , m , J q J s J , m . 6Ž . Ž . Ž .1 2 1 1 r 3 4 3 1 r

Ž . Ž .Before proving 5 and 6 , we conclude the proof of the proposition. By
construction the indeterminates of m , do not appear in the generators of1 r
Q and of I , and the indeterminate T does not appear in the generators2 2 r
of Q9 and of I9. Hence J and J define Cohen]Macaulay factor rings of1 2

w x < <K X, T of dimension X q 1, and J and J define Cohen]Macaulay3 4
w x < < Ž .factor rings of K X, T of dimension X . Furthermore, J , m and1 1 r
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Ž . w xJ , m define Cohen]Macaulay factor rings of K X, T of dimension3 1 r
< < < <X and X y 1, respectively. As above, it follows from the short exact
sequences

w x w x w x0 ª K X , T rQ ª K X , T rJ [ K X , T rJ1 2

w xª K X , T r J , m ª 0, 7Ž . Ž .1 1 r

and

w x w x w x0 ª K X , T rQ q I ª K X , T rJ [ K X , T rJ3 4

w xª K X , T r J , m ª 0 8Ž . Ž .3 1 r

w x w xthat K X, T rQ and K X, T rQ q I are Cohen]Macaulay of dimension
< < < <X q 1 and X , respectively.

Ž . Ž .It remains to prove 5 and 6 . One has
XJ l J s m T , 1 - j F s, j / rŽ .1 2 1 j j

q m T : 2 F i - j F s, i / r / j q TŽ .Ž .i j j r

l m T : 2 F i - j F s q mŽ .Ž .i j j 1 r

s m T : 2 F i - j F s, i / rŽ .i j j

Xq m T , 1 - j F s, j / r q TŽ .Ž .1 j j r

l m T : r - j F s q m .Ž .Ž .r j j 1 r

Ž .Ž . XBy 2.2 6 ii m N m for all j ) r. It follows that1 j r j

J l J s m T : 2 F i - j F sŽ .1 2 i j j

Xq m T , 1 - j F s, j / r q T l m .Ž . Ž .Ž .1 j j r 1 r

Ž .Now note that by virtue of 2.2 4 the indeterminates of m do not appear1 r
X Ž .Ž . Xin m for all j ) 1 and that by 2.2 6 i m m s m . It follows that1 j 1 r 1 j 1 j

Ž .J l J s m T : 1 F i - j F s s Q. By means of similar arguments one1 2 i j j
shows the other equalities.

Let I be an ideal generated by an M-sequence m , . . . , m in a set of1 s
indeterminates X. Consider the presentation

w x w xc : K X T , . . . , T ª RR IŽ .1 s

Ž .defined by setting c T s m t and denote by J the kernel of c . Fori i
1 F i - j F s set

ll s m T y m T .i j j ji ii j
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w x Ž . ŽLet t be a monomial order on K X, T such that in ll s m T fort i j ji j
instance, one can take the lexicographic order induced by the total order

.T ) ??? ) T . The main result of this section is:s 1

Ž .THEOREM 2.4. i The linear relations ll form a Grobner basis of J with¨i j
Ž . Ž .respect to t , that is, in J s m T : 1 F i - j F s and I is of Grobner¨t i j j

linear type.

Ž .ii The linear relations ll and the m form a Grobner basis of the¨ii j
Ž . Ž . Žideal of presentation of gr R with respect to t , that is, in J q I s m T :I t i j j

. Ž .1 F i - j F s q m : 1 F i F s .i

Ž . Ž .Proof. i Denote by Q the ideal m T : 1 F i - j F s . To show thati j j
the linear relations ll are a Grobner basis of J with respect to t , we¨i j
argue by contradiction. Suppose the claim is false. Since the binomial

w xrelations are known to be a universal Grobner basis of J St, 2.2 , there¨
exists a binomial relation aT a y bT b g J, with a and b monomials in the
x ’s, whose initial monomial is not in the ideal Q. We may assume that
T a, T b have no common factors. Furthermore, we also may assume that
both aT a and bT b are not in Q. This is because one of the two

Ž .monomials the initial is not in Q by assumptions, and if the other is in Q,
then we may reduce it by means of the relations ll and repeat thisi j
procedure until we obtain a binomial relation with the desired properties.

Now let i be the smallest index such that T appears in T a or in T b. Byi
symmetry, we may assume that T appears in T a. Since aT a y bT b g J,i

Ž b .m divides bc T .i
< bIf m b, then let T be any of the indeterminates in T . One hasi j

< < bm T m T bT and i - j. This is a contradiction.i j j i j
Thus m does not divide b. Let x - ??? - x be the total order of thei 1 n

indeterminates of m , and let m s x a1 ??? x an. Let k be the minimum ofi i 1 n
ak a1 aky 1 <the indices such that x does not divide b. Then x ??? x b. Sincek 1 ky1

ak < Ž b . b <x bc T , there exists j such that T appears in T and x m . Since mk j k j
ak an < < a1 aky 1 <is an M-sequence, one has x ??? x m and m x ??? x b. It followsk n j i j 1 ky1

< bthat m T bT , which again is a contradiction.i j j

Ž . Ž .ii The ideal of presentation of gr R is J q I. We know thatI
Ž .J s ll : 1 F i - j F s and that the ll ’s form a Grobner basis with¨i j i j

Ž .respect to a monomial order t such that in ll s m T . To show that thet i j ji j
ll ’s and the m ’s form a Grobner basis of J q I with respect to t , we¨ii j

Ž .apply the Buchberger criterion. It suffices to analyze the S-pairs S ll , mki j
Ž .s m T m rgcd m , m for all 1 F i - j F s and 1 F k F s. We have toji i k k i j

distinguish two cases.
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Ž . ŽAssume first i F k. By virtue of 2.2 5 we have either gcd m ,i
. < Ž . Ž . < Ž . Ž . < Žm gcd m , m or gcd m , m gcd m , m . If gcd m , m gcd m ,j i k i k i j i k i
. Ž . Ž .m , then gcd m , m s 1 and S ll , m s m T m . Hence the polyno-j k i j k ji i ki j

Ž . Ž . < Ž .mial S ll , m reduces to 0 via m . If gcd m , m gcd m , m , then wek k i j i ki j
< Ž .claim that m m m rgcd m , m . From the claim it follows thatj ji k k i j

Ž .S ll , m reduces to 0 via m . To prove the claim we fix an indeterminatek ji j
x and denote by b , b , b the exponents of x in m , m , m . In terms of thei k j i k j
exponents the assertion is

b F b y min b , b q b y min b , b y min b , b . 9� 4 � 4 Ž .� 4j j i j k k i i j

Ž .If b s 0, then 9 clearly holds. If b ) 0, then b F b because m is anj j i j
Ž . < Ž . � 4 � 4M-sequence. Since gcd m , m gcd m , m , b s min b , b F min b , b .i j i k i i j i k

Ž .Hence b F b . Now 9 reads b F b y b q b and holds true.i k j j i k
< Ž .If k - i, then arguing as above one shows that m m m rgcd m , m .k i ji k k i j

Ž . Ž .Then m T m rgcd m , m reduces to S s m m T rgcd m , m viaji i k k i j 1 i ji k k i j
<ll . By means of the same argument one shows that m S and then Sj 1 1k i

Ž .reduces to 0 via m . This concludes the proof of ii .j

An important consequence of 2.4 is

THEOREM 2.5. Let I be a homogeneous ideal of a polynomial ring
w xR s K X o¨er a field K. Suppose that there exists a monomial order, say d ,

Ž .such that in I is generated by an M-sequence m , . . . , m . Then let f , . . . , fd 1 s 1 s
Ž .be a Grobner basis of I with in f s m , and consider the presentation c :¨ d i i

w x Ž . Ž .R T ª RR I defined by c T s f t. Denote by J the kernel of c . Then therei i
w xexists a monomial order s on K X, T such that

Ž . Ž . Ž .i in J s m T : 1 F i - j F s . In particular, I is of Grobner¨s i j j
linear type.

Ž . Ž i. Ž . iii in I s in I for all i g N.d d

Ž . Ž . Ž . Ž . Ž .iii in J q I s in J q in I s m T : 1 F i - j F s qs s d i j j
Ž .m , . . . , m .1 s

Ž . Ž . Ž .iv RR I and gr R are Cohen]Macaulay.I

Ž . Ž .v If the m ’s are square-free, then gr R is reduced.i I

Ž . Ž .Proof. Set Q s m T : 1 F i - j F s . By assumption, in I si j j d

Ž . Ž . Ž .m , . . . , m . By virtue of 2.4 i , in I is of Grobner linear type, and there¨1 s d

w xexists a monomial order t on K X, T such that the initial ideal of the
Ž .ideal of presentation of the Rees algebra of in I is Q. It follows fromd

w x Ž i. Ž . iCHV, 2.2, 2.7, 2.8 that I is of Grobner linear type, that in I s in I¨ d d

w x Žfor all i g N, and that there exists a monomial order s on K X, T which
.is defined by combining t and d and linear relations L g J such thati j

Ž . Ž . Ž . Ž .in L s m T and in J s Q. This proves i and ii .s i j i j j s



IDEALS OF LINEAR TYPE 609

Ž . Ž . Ž .iii To prove that in J q I s Q q in I , we note that by the verys d

Ž w x. Ž . Ž .definition of s see CHV, 2.2 one has in f s in f s m . Hence wes i d i i
Ž . Ž .have Q q in I : in J q I . For the other inclusion, it is enough tod s

Ž .show that the Hilbert function with respect to the nonstandard grading of
w x Ž . w x Ž .A s K X, T rin J q I and that of B s K X, T rQ q in I coincide.s d

Ž . Ž .Denote by G and by G the rings gr R and gr R . Note that G and1 I in Ž I .d

ŽG have the same Hilbert function with respect to the nonstandard1
. Ž . Ž i. Ž . igrading because by ii in I s in I for all i. Since A and G have thed d

same Hilbert function, it suffices to show that G and B have the same1
Ž .Hilbert function. But this follows from 2.4 ii , since one knows that

Ž .Q q in I is the initial ideal of the ideal of presentation of G .d 1

Ž . Ž .iv We have shown in i and in 2.3 that Q is the initial ideal of J
with respect to t and that it defines a Cohen]Macaulay ring. This implies

Ž . w xthat RR I , K X, T rJ is Cohen]Macaulay. The Cohen]Macaulayness
Ž . Ž . w x Ž .of gr R follows from that of RR I Hu2, 1.1 , but also from iii and 2.3.I

Ž . Ž . Ž .v Since the m ’s are square-free, it follows from iii that in J q Ii s

is generated by square-free monomials and hence it is radical. But this
Ž .forces J q I to be a radical ideal. Hence gr R is reduced.I

With the assumption and notation of 2.4 one has

Ž .COROLLARY 2.6. 1 Assume that the m ’s are square-free; then:i

Ž . Ž .i RR I is normal, it is F-injectï e and F-rational in positï e charac-
teristic, and it has rational singularities in characteristic 0.

Ž . Ž . Ž .ii gr R is F-injectï e. Furthermore, gr R is Gorenstein if I isI I
unmixed and it is a domain if I is prime.

Ž . Ž .2 If the m ’s ha¨e degree 2, then gr R is a Koszul algebra withi I
respect to the standard grading.

Ž . Ž . Ž . Ž .Proof. 1 By 2.5 v gr R is reduced and hence RR I is normal; seeI
w x Ž . Ž .Ba, 5 . Furthermore, RR I and gr R are F-injective because by TheoremI
2.5 and Proposition 2.3 their ideals of presentation have initial ideals that

w xare square-free and Cohen]Macaulay; see CH, 2.1 . The F-rationality and
Ž . w xthe rational singularities of RR I follow from CHV, 2.3 , because the

Ž . Ž Ž ..initial algebra of RR I is RR in I and it is normal. If I is unmixed, itd

w x Ž .follows from HSV2, 4.2.3 that gr R is Gorenstein. Finally, if I is prime,I
w x Ž .then it follows from HuSV, 1.1 that gr R is a domain.I

Ž . X Ž .2 If the m s have degree 2, then by virtue of 2.5 iii the ideal J q Ii
w xis generated by a Grobner basis of quadrics. It follows from BHV, 2.2¨

Ž .that gr R is a Koszul algebra with respect to the standard grading.I
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For the next applications we record the following:

LEMMA 2.7. With the assumptions and the notation of 2.5, denote by ti
2 Ž .the residue class of f in IrI ; gr R . Let h be an integer such thati I

Ž .gcd m , m s 1 for all 1 F i - j F h. Theni j

Ž .1 The indeterminates T , . . . , T do not appear in the generators of1 h
Ž .in J q I .s

Ž . Ž .2 t , . . . , t is a gr R -regular sequence.1 h I

Ž . w3 If in addition the monomials m , . . . , m are square-free, then K X,1 s
x Ž .T rin J q I q T ??? T is reduced and Cohen]Macaulay for all 1 F i F h.s 1 i

Ž . ŽProof. The initial ideal of J q I is m , . . . , m q m T : 1 F i - j F1 s i j j
.s . By assumption m s m for all 1 F i - j F h. It follows that thei j i

Ž .indeterminates T , . . . , T do not appear in the generators of in J q I .1 h s

Ž . Ž . Ž .Statements 2 and 3 follow directly from 1 and Proposition 2.3.

Note that the assumption of Lemma 2.7 is trivially satisfied if one takes
h s 1.

3. SEQUENCES OF INTERVAL TYPE

The aim of this section is to present a class of M-sequences, the
sequences of interval type. We show how the Hilbert series of the Rees
algebra and of the associated graded ring of an ideal I generated by a
sequence of monomials m , . . . , m of interval type can be expressed in1 s
terms of the degree of the monomials m .i j

Ž .Given a monomial n and an indeterminate x, denote by O n thex
exponent of x in n. We start with the definition:

DEFINITION 3.1. A sequence of monomials m , . . . , m in the set of1 s
indeterminates X is said to be of interval type if for all 1 F i - j F s and

< Ž . Ž . Ž .x gcd m , m , one has O m F O m for all i F k F j. In other words,i j x i x k
any indeterminate appears in a ‘‘subinterval’’ of m , . . . , m and with1 s
nondecreasing exponents from the left to the right.

Let m , . . . , m be a sequence of interval type. For all x g X set1 s

< <i x s min k : x m and j x s max k : x m .� 4 � 4Ž . Ž .k k

One has

PROPOSITION 3.2. A sequence of inter̈ al type is an M-sequence.

Proof. Let m s m , . . . , m be a sequence of interval type. First we1 s
Ž .order the indeterminates according to the function j .. : x F y if and only
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Ž . Ž .if j x - j y or x s y. Then we extend this partial order to a total order.
We claim that, with this order on the indeterminates, m is an M-sequence.
To show that this is the case, we write m s x a1 ??? x an with a ) 0 for alli 1 n h

Ž . Ž . <h s 1, . . . , n, and j x F ??? F j x , and assume x m with j ) i. Note1 n k j
Ž . Ž . Ž .that for all h s k, . . . , n one has i x F i - j F j x F j x , and henceh k h

ah< <x m . It follows that x m , for all h s k, . . . , n.h j h j

Let I be a homogeneous ideal whose initial ideal is generated by a
Žsequence m , . . . , m of interval type, and denote by Q the ideal m T :1 s i j j

. Ž .1 F i - j F s . Note that the integer r defined in 2.2 6 , for a sequence of
interval type, is always equal to 2. As a by-product, from the short exact

Ž . Ž . w xsequences 4 and 7 it follows that the Hilbert series of K X, T rQ can
be expressed in terms of deg m and of the Hilbert series of rings of the12
same kind, but associated with the shorter sequences m , . . . , m , and2 s

Ž .gcd m , m , m , . . . , m , which are again of interval type. To be more1 2 3 s
Ž .Ž . w xexplicit, let us denote by h m , . . . , m l the h-polynomial of K X, T rQ.1 s

Then one has

1 y ldeg m12Ž .
h m , . . . , m l s h m , . . . , m lŽ . Ž . Ž . Ž .1 s 2 s1 y lŽ .

q ldeg m12 h gcd m , m , m , . . . , m l . 10Ž . Ž . Ž .Ž .1 2 3 s

w xThis recursive formula allows one to describe the h-vector of K X, T rQ
in terms of numerical invariants of the sequence. For all 1 F i - j F s set

w xi , j s deg m , i , j s deg m y deg m ,Ž .i j i j i jy1

w xand for systematic reasons put i, i s 0. Note that by virtue of Lemma
Ž .2.2 5 ,

i , j s deg m rm s deg gcd m , m rgcd m , mŽ . Ž . Ž .i j i jy1 i jy1 i j

s deg gcd m , m , . . . , m rgcd m , m , . . . , m .Ž . Ž .i iq1 jy1 i iq1 j

Ž .Now from 10 , by induction on s, it follows that

h m , . . . , m lŽ . Ž .1 s

k Ž i , i .jy 1 j1 y l
w i , i y1x w i , s xjy 1 j ks l l .Ý Ý Łž /1 y ljs1kG0 1si -i - ??? -i Fs0 1 k



CONCA AND DE NEGRI612

Ž .If the m ’s all have the same degree, then by virtue of Lemma 2.5 i thei
Ž .Hilbert function of RR I , equipped with the standard degree, coincides

w xwith that of K X, T rQ. Hence we have shown

COROLLARY 3.3. Let I be a homogeneous ideal whose initial ideal is
generated by a sequence m , . . . , m of inter̈ al type of elements of fixed degree1 s

Ž .d. Then the h-polynomial of RR I is

k Ž i , i .jy 1 j1 y l
w i , i y1x w i , s xjy 1 j kh RR I l s l l ,Ž . Ž .Ž . Ý Ý Łž /1 y ljs1kG0 1si -i - ??? -i Fs0 1 k

and its multiplicity is

k

e RR I s i , i .Ž .Ž . Ž .Ý Ý Ł jy1 jž /js1kG0 1si -i - ??? -i Fs0 1 k

EXAMPLE 3.4. Given two positive integers r and s, consider the se-
quence of monomials m , . . . , m defined as follows: m s x x ??? x1 s i i iq1 iqry1
for all i s 1, . . . , s. This sequence is clearly a sequence of interval type. It
is easy to see that

1 if j y i F r
i , j sŽ . ½ 0 if j y i ) r .

Ž Ž ..By virtue of 3.3, e RR I coincides with the cardinality of the set

� 4A s i , . . . , i ; N: k G 0, 1 s i - ??? - i F s, i y i F r� 0 k 0 k j jy1

for all 1 F j F k .4

The cardinality of A can be computed by means of the ‘‘inclusion-exclu-
sion principle.’’ One obtains

s y 1 y jrj sy1yjŽ rq1.e RR I s y1 2 .Ž . Ž .Ž . Ý ž /j
jG0

Given an M-sequence m , . . . , m , we would like to know when the1 s
sequence m , m , . . . , m , . . . , m is again an M-sequence. This is impor-ˆi 1 i s
tant since, by virtue of Lemma 2.7, it would then follow that the residue

Ž .class of T in gr R is a nonzero-divisor. To this end we introduce thei I
following definition: let m , . . . , m be a sequence of interval type of1 s
square-free monomials. We say that m satisfies the last-in]first-out prop-i



IDEALS OF LINEAR TYPE 613

Ž . Ž .erty if for every pair of indeterminates x, y in m with j x F j y , theni
Ž . Ž .i y F i x . One has

LEMMA 3.5. Let m , . . . , m be a sequence of inter̈ al type of square-free1 s
monomials in the set of indeterminates X. Assume that m , . . . , m satisfy thei i1 k

last-in]first-out property. Then m , . . . , m , m , . . . , m , . . . , m , . . . , m isˆ ˆi i 1 i i s1 k 1 k

an M-sequence.

Proof. It is clear that one may assume that k s 1. Set i s i. We order1
Ž .the indeterminates according to the function j .. . Since m , . . . , m , . . . , mˆ1 i s

is an M-sequence, it suffices to show that for any indeterminate x that
Ž . <divides gcd m , m for some 1 F j F s, j / i, then y m whenever y is ani j j

< Ž . Ž . Ž . Ž .indeterminate such that y m and j x F j y . By assumption, i y F i xi
Ž . Ž . <F j F j x F j y , and hence y m .j

4. GENERALIZED GRAPH IDEALS OF TREES

w x w xOrdinary graph ideals have been studied by Villarreal in Vi1 , Vi2 , and
w xsubsequently by Simis, Vasconcelos, and Villarreal SVV . The aim of this

section is to generalize the notion of graph ideals and to show that
generalized graph ideals of trees are generated by M-sequences.

Ž .A graph G is a pair X, E , where X is a finite set and E ; X =
�Ž . 4X _ x, x : x g X . The elements of X are called ¨ertices, and the

elements of E edges. A path from x to y is a sequence of vertices
Ž .x s x , . . . , x s y of G such that x , x g E for all i s 1, . . . , t y 1. A1 t i iq1

path of length t is a path with t vertices.
A tree is a graph G with a vertex x, called a root, such that for any

vertex y of G there exists a unique path from x to y. It is easy to see that
a tree has a unique root. Furthermore, given a tree G with root x, any
other vertex y is the end point of a unique edge. Figure 1 illustrates a tree
Ž .the edges are oriented from the top to the bottom .

FIG. 1. A tree.
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Let G be a graph and let K be a field. We consider the polynomial ring
w xK X over K whose indeterminates are the vertices X of G. We define
Ž . w xI G to be the ideal of K X generated by the monomials of the formt

x ??? x , where x , . . . , x is a path of G. In the sequel we will identify the1 t 1 t
paths with the corresponding monomials. For instance, if G is the tree of

Ž .Fig. 1, the ideal I G is generated by the monomials w z y , w z y ,3 1 2 1 2 6 3
Ž .z y x, z y x, z y x, z y x, z y x, z y x. Note that I G is the ordinary1 1 2 1 3 2 4 2 5 2 6 3 2

w xgraph ideal as introduced by Villarreal Vi1 .

Ž .PROPOSITION 4.1. Let G be a tree. Then for all t the ideal I G ist
generated by an M-sequence.

Proof. Let us denote by x the root of G. Given y g X, the rank rk y is
by definition the length of the path from x to y. We introduce a partial
order on X by setting y F z if y s z or rk y ) rk z. Then we extend this
partial order to a total order, and we denote it by - . Let y , . . . , y be a1 t
path in G. By construction one has rk y s rk y q i y t and hence y -i t t
??? - y . The total order on X gives rise to a total order on the set of the1
paths of length t of G by setting y , . . . , y F z , . . . , z if and only if1 t 1 t
y F z . We want to show that the set of paths of length t, equipped witht t
this total order, is an M-sequence if the indeterminates in the monomials
are ordered according to - . To this end, consider a path y s y , . . . , y1 t
and a path z s z , . . . , z , and assume that y - z and that y and z have a1 t
common vertex, say y s z . Then rk y q i y t s rk y s rk z s rk z q ji j t i j t
y t, and j y i s rk y y rk z G 0. Hence y s z for all k s 1, . . . , i.t t k kqjyi

<This shows that y y ??? y z and concludes the proof.i iy1 1

Now by virtue of Proposition 4.1, Theorem 2.5, and Corollary 2.6 we
have

Ž .COROLLARY 4.2. Let G be a tree and set I s I G . Thent

Ž .1 I is of Grobner linear type.¨
Ž . Ž .2 The Rees algebra RR I is normal and Cohen]Macaulay, and

Ž .gr R is reduced.I

Ž . Ž .3 If t s 2, then gr R is a Koszul algebra with respect to the standardI
grading.

Ž .Consider now the ordinary graph ideal I s I G associated with a tree2
Ž .G s X, E . As in the proof of Proposition 4.1, we fix a total order - on

X that refines the rank function. The total order - induces a total order
on E in such a way that the monomials associated with the edges form an

Ž .M-sequence. Then the initial ideal in J q I of the ideal J q I of defini-t

Ž .tion of gr R with respect to the term order t is generated by square-freeI
Ž .monomials of degree 2. Hence in J q I is again a graph ideal associatedt
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FIGURE 2

Ž .with a graph G9 which is not a tree in general and, by Proposition 2.3, it
is Cohen]Macaulay. The vertices of G9 are the elements of X j E, while

Ž Ž ..its edges are the elements of E and the pairs y, z, w g X = E such that
Ž . Ž . Ž .w, y g E see Fig. 2 or z, y g E and y - w in the total order of the

Ž .elements of X see Fig. 3 .
Note that the graph G9 depends strongly on the order - on X. Figure

4 illustrates the two graphs G9 obtained by the same graph G with two
different orders.

Ž . w x Ž .The Hilbert series of gr R is equal to that of the ring K X, E rI G9 .I 2
Next we want to give a combinatorial interpretation. To this end we

Ž .introduce the following definition: given a graph G s X, E , a subset
F ; E is said to be a set of independent edges of G if for all x g X, x
belongs to at most one edge in F. We have:

Ž . Ž .THEOREM 4.3. Let G s X, E be a tree, and set I s I G . Denote by2
Ž .h , h , . . . , h the h-¨ector of gr R . Then h is equal to the number of sets of0 1 s I i

independent edges of G with i elements.

Proof. Let us denote by g the number of sets of independent edges ofi
Ž . i Ž . iG with i elements. Then set h l s Ý h l and g l s Ý g l .G iG 0 i G iG 0 i

Consider a total order - on the vertices X of G defined as in the proof
of Proposition 4.1. Let w be the smallest element of X. Let z be the1

Ž .vertex such that e s z, w g E, and denote by w , . . . , w the vertices of1 2 n
� 4 Ž . Ž .X _ w such that e s z, w g E. Finally, denote if it exists by y the1 i i

Ž .vertex of G such that f s y, z g E. Now set

� 4 � 4G s X , E s X _ w , E _ e andŽ . Ž .1 1 1 1 1

� 4 � 4G s X , E s X _ w , . . . , w , z , E _ e , . . . , e , f .Ž . Ž .2 2 2 1 n 1 n

FIGURE 3
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FIGURE 4

By construction, G and G are trees. The sets of independent edges of G1 2
that do not contain e are exactly the sets of independent edges of G . The1 1

� 4sets of independent edges of G that contain e are of the form e j F,1 1
where F is a set of independent edges of G . These facts yield the2

Ž . Ž . Ž . Ž . Ž .following equation: g l s g l q lg l . To show that g l s h l ,G G G G G1 2

it suffices to show that

h l s h l q lh l , 13Ž . Ž . Ž . Ž .G G G1 2

because the functions h and g agree for trees with few vertices. Consider
the following short exact sequence:

w1w x w x w x0ªK X , E r I G9 : w y1 ª K X , E rI G9Ž . Ž .Ž .2 1 2

w xª K X , E rI G9 q w ª 0 14Ž . Ž . Ž .2 1

Ž Ž . . Ž X . Ž . Ž . Ž .and note that I G9 : w s I G q e , . . . , e , f , z and I G9 q w2 1 2 2 2 n 2 1
Ž X . Ž .s I G q w . Hence2 1 1

w x w x w x XK X , E r I G9 : w s K X , E w , . . . , w , e rI GŽ . Ž .Ž .2 1 2 2 1 n 1 2 2

and
w x X w x w x XK X , E rI G q w s K X , E e rI G .Ž . Ž . Ž .2 1 1 2 1

w x Ž .Then, taking into account that the Hilbert series of K X, E rI G9 is2
Ž . Ž . < < Ž .equal to that of gr R and that the dimension of gr R is X , 13 followsI I

Ž .from 14 .

Ž .Theorem 4.3 allows us to determine the h-polynomial of gr R forI
certain trees:

EXAMPLE 4.4. Let S be the star with n edges, that is, the edges of Sn n
Ž . Ž . Ž . Ž . Ž .are x, y , x, y , . . . , x, y . Denote by h l the h-polynomial of gr R ,1 2 n n I
Ž . Ž .I s I S s xy , xy , . . . , xy . The only sets of independent edges of S2 n 1 2 n n

�Ž .4 Ž .are the empty set and the sets x, y . Hence h l s 1 q nl.i n
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EXAMPLE 4.5. Let L be the line with n points, that is, the edges of then
Ž . Ž . Ž . Ž .tree L are x , x , x , x , . . . , x , x . Denote by h l the h-poly-n 1 2 2 3 ny1 n n
Ž . Ž . Ž . Ž .nomial of gr R , I s I L s x x , x x , . . . , x x . Note that 13I 2 n 1 2 2 3 ny1 n

Ž . Ž . Ž .yields the following equation: h l s h l q lh l for all n ) 2.n ny1 ny2
Ž . Ž .Since h l s 1 and h l s 1 q l, one has1 2

n y i ih l s l .Ž . Ýn ž /i
iG0

Ž .EXAMPLE 4.6. Let G s X, E be a tree, with vertex set X s
� 4x , . . . , x . By definition the suspension S of G is the tree with vertices1 n

� 4 �Ž . Ž .4X j y , . . . , y and edges E j x , y , . . . , x , y . Denote by I and J1 n 1 1 n n
Ž . Ž .the ideals I G and I S , respectively. A set of independent edges F of G2 2

with i elements involves exactly 2 i distinct vertices, say x , . . . , x . Addingj j1 2 i
�Ž . Ž .4 �Ž . Ž .4to F any subset of x , y , . . . , x , y _ x , y , . . . , x , y , one1 1 n n j j j j1 1 2 i 2 i

obtains a set of independent edges of S, and any set of independent edges
of S has exactly one such ‘‘presentation.’’ It follows that, if the h-poly-

Ž . i Ž w x.nomial of gr R is Ý h l , then the h-polynomial of gr R Y isI iG 0 i J

n y 2 j ih l , 15Ž .Ý Ý j ž /i y jž /iG0 jG0

Ž w x. ny2 iand in particular the multiplicity of gr R Y is Ý h 2 . The polyno-J iG 0 i
Ž .mial 15 has degree n, and it is symmetric. This is not surprising, because

w xit was proved by Villarreal Vi1, 2.4, 2.5 that J is unmixed, and hence by
Ž w x.2.6 gr R Y is a Gorenstein ring.J

5. LADDER IDEALS OF LINEAR TYPE

In this section we show that certain ladder ideals of minors and of
pfaffians are of Grobner linear type, that their Rees algebras are¨
Cohen]Macaulay and normal, and their associated graded rings are
Gorenstein normal domains.

Ladder determinantal ideals of minors have been introduced and stud-
w x w x w xied by Abhyankar A , and subsequently by other authors; see N , AK ,

w x w x w x w xM , HT , CH , and C . They are defined as the ideals generated by the
minors of certain subregions, called ladders, of a generic matrix of indeter-
minates. Likewise, one defines ladder ideals of pfaffians as the ideals
generated by pfaffians of certain subregions of a skew-symmetric matrix of

w xindeterminates; see D .
To avoid confusion, we call generic ladders the ladders of a generic

matrix, and ladders of pfaffians those of a skew-symmetric matrix. We
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introduce now the class of generic ladders Y , and the class of ladders ofm n
pfaffians L that we want to investigate.m n

Ž .We start with the definition of Y . Let X s x be a matrix ofm n i j
indeterminates over a field K, and fix two positive integer m and n.

w x w x Ž .Denote by a, b = c, d the submatrix x of X. For k G 0i j aF iF b, cF jF d
we set

w x w xX s k q 1, k q m = k q 1, k q 1 q m , andm , 2 kq1

w x w xX s k q 1, k q 1 q m = k q 2, k q 1 q m .m , 2 kq2

Note that X and X are matrices of size m = m q 1 andm , 2 kq1 m , 2 kq2
m q 1 = m, respectively, and that they intersect in a submatrix of size
m = m.

Then we set

n

Y s X .Dm n m , i
is1

For example,

x x x x11 12 13 14

x x x x x21 22 23 24 25

Y s .x x x x x34 31 32 33 34 35

x x x x42 43 44 45
x x x53 54 55

Ž .Now let Z s z be a skew-symmetric matrix of indeterminates over ai j
field K, and fix two positive integers m and n. For k G 1, we set

w x w xZ s k , k q 2m = k , k q 2m .m , k

Note that Z is a skew-symmetric matrix of size 2m q 1 = 2m q 1.m , k
Then we set

n

L s Z .Dm n m , k
ks1
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For example,

0 z z z z12 13 14 15

yz 0 z z z z12 23 24 25 26

yz yz 0 z z z z13 23 34 35 36 37

yz yz yz 0 z z zL s .14 24 34 45 46 4723

yz yz yz yz 0 z z15 25 35 45 56 57

yz yz yz yz 0 z26 36 46 56 67

yz yz yz yz 037 47 57 67

Ž .The main antidiagonal of a minor of X resp. of a pfaffian of Z with
Žrow indices a - ??? - a and column indices b - ??? - b resp. with1 t 1 t

. trow and column indices a - ??? - a is the monomial Ł x1 2 t is1 a bi ty iq1
Ž t .resp. Ł z .is1 a ai 2 ty iq1

The set Y is a generic ladder, that is, if the main antidiagonal of am n
minor is in Y , then the minor is in Y . Analogously, the set L is am n m n m n
ladder of pfaffians, that is, if the main antidiagonal of a pfaffian is in L ,m n
then the pfaffian is in L .m n

w x w xDEFINITION 5.1. Let K Y and K L be the polynomial rings overm n m n
the field K in the set of indeterminates of Y and L , respectively. Wem n m n

w xdefine I to be the ideal of K Y generated by the m-minors of Y ,m n m n m n
w xand P to be the ideal of K L generated by the 2m-pfaffians of L .m n m n m n

w x Ž w x.A monomial order t on the polynomial ring K X resp. K Z is said
Žto be antidiagonal if the leading monomial of any minor of X resp.

. Žpfaffian of Z is its main antidiagonal. It is known that the t-minors resp.
. Ž .2 t-pfaffians of a generic ladder resp. ladder of pfaffians form a Grobner¨

basis of the ideal they generate with respect to an antidiagonal monomial
w x w xorder; see N, 3.4 and D, 1.4 .

In general, initial ideals of ideals of pfaffians of ladders are also initial
ideals of ideals of minors of ladders. For instance, in the case under
investigation, the initial ideal of P and the initial ideal of I are them n m , 2 n
same.

To apply Theorem 2.5 and Corollary 2.6 to the ideals I and P , it ism n m n
enough to check that the main antidiagonals of the m-minors of Y andm n
of the 2m-pfaffians of L are M-sequences. It is easy to see that theym n
even form a sequence of interval type. To this end, it suffices to note that
listing the main antidiagonals as they appear in the ladder from the left to
the right, one passes from one antidiagonal to the next just by replacing an
indeterminate with a new one. This is enough to conclude that the main
antidiagonals are a sequence of interval type.
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For instance, the main antidiagonals of the 3-minors of Y are34

x x x , x x x , x x x , x x x , x x x ,31 22 13 31 22 14 31 23 14 32 23 14 42 23 14

x x x , x x x , x x x , x x x ,42 33 14 42 33 24 42 33 25 42 34 25

x x x , x x x , x x x , x x x .43 34 25 53 34 25 53 44 25 53 44 35

Combining the above discussion with Theorem 2.5, Corollary 2.6, and
Žw x wProposition 3.2 and the fact that ladder ideals are prime N, 4.2 and D,

x.1.3 , one has

w xTHEOREM 5.2. Let I s I and R s K Y or I s P and R sm n m n m n
w xK L . Thenm n

Ž .i I is of Grobner linear type.¨
Ž . Ž i. Ž . iii If t is an antidiagonal monomial order, then in I s in I fort t

all i g N.
Ž . Ž .iii If m s 2, then gr R is a Koszul algebra with respect to theI

standard grading.
Ž . Ž .iv The Rees algebra RR I is a Cohen]Macaulay normal domain, it is

F-injectï e and F-rational in positï e characteristic, and it has rational singu-
larities in characteristic 0.

Ž . Ž .v The associated graded ring gr R is a normal Gorenstein domainI
Ž i. i Ž .and I s I for all i g N. Furthermore, gr R is F-pure and F-regular if KI

is perfect of positï e characteristic, and it has rational singularities in character-
istic 0.

Proof. The only statements that still need to be proved are the normal-
Ž .ity, the F-purity, the F-regularity, and the rational singularities of gr R .I

Ž .First of all, note that gr R is Gorenstein and F-injective and hence isI
w xF-pure; see F, 1.5 . F-regularity for Gorenstein rings is equivalent to
w xF-rationality HH, 4.7 . Furthermore, F-rationality in positive characteris-

Ž .tic together with the fact that the ring gr R defined over Z is Z-freeI
Ž . wwhich is easy to see implies rational singularities in characteristic 0 Sm,

x Ž . Ž4.3 . So it is enough to show that gr R is normal in arbitrary characteris-I
.tic and that it is F-rational over a perfect field of positive characteristic.

w xWe make use of the Fedder]Watanabe F-rationality criterion FW, 2.13 ,
which says that if the base field is perfect and there exists a nonzero

Ž . Ž .w y1 x Ž . Ž .element c in gr R such that gr R c is regular and gr R rc gr R isI I I I
Ž .F-injective, then gr R is F-rational.I

We distinguish the determinantal from the pfaffian case. So consider
w xfirst I s I and R s K Y , and denote by f the ith minor of Ym n m n i m n

Ž . 2 Ž .counting from the left to the right , by t the residue class in IrI ; gr Ri I
of f , and by A the main antidiagonal of f . For systematic reasons, denotei i i
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by I the ideal generated by the determinant of the m = m matrix Y ofm0 m0
the first m rows and columns of X. It is easy to see that A has thek mq1

Žlast-in]first-out property for k s 0, . . . , n. Furthermore, gcd A ,k mq1
.A s 1 for all k / h. By virtue of Lemma 3.5, Lemma 2.7, andhmq1

w xTheorem 2.5 there exists a monomial order s on K Y , T such thatm n
Ž .T , T , . . . , T do not appear in the generators of in J q I s1 mq1 nmq1 s

Ž . Ž . Ž .in J q in I . Let g be the m y 1 -minor of X of the first m y 1 rowss t

and columns. The elements of the main antidiagonal of g do not appear in
Ž .the generators of in J q I . We set C s T ??? T g, and c s ts 1 Žny1.mq1 1

Ž Ž .. Ž . Ž .??? t g. Note that in J q I q C s in J q I q in C sŽny1.mq1 s s s

Ž . Ž Ž .. Ž Ž ..in J q I q T ??? T in g , and this implies that in J q I q Cs 1 nmq1 t s

Ž .is square-free and Cohen]Macaulay because in J q I is so. By virtue ofs

w x w x Ž . Ž . Ž .CH, 2.1 , R T rJ q I q C , gr R rc gr R is F-injective. To showI I
Ž .w y1 xthat gr R c is regular, we argue by induction on n. If n s 0, thenI

Ž . w xgr R is a polynomial extension of K Y rdet Y , and after inversion ofI m0 m0
g, it becomes a localization of a polynomial ring. Now assume n ) 0. We
claim that

y1 y1gr R t , gr R t T , . . . , T .Ž . Ž .I Žny1.mq1 I Žny1.mq1 Žny1.mq2 m nq1m n m ny1

11Ž .

Ž . Ž .w y1 xFrom 11 it follows by induction that gr R c is a localization of aI
Ž .polynomial ring. So it remains to show 11 . The ladder that is obtained

Žfrom Y by deleting the last column or the last row depending onm n
.whether n is odd or even is Y . Denote by B the K-subalgebra ofm ny1

Ž .gr R generated by the residue classes of the elements of Y and byI m ny1m n

the t ’s. By using the linear relations among f , . . . , f thati Žny1.mq1 m nq1
Ž .w y1 xarise from the matrix X , one shows that gr R t coincidesm n I Žny1.mq1m nw y1 xwith B t . By comparing the dimensions, one sees immediatelyŽny1.mq1

Ž .that the only relations in B are those that define gr R . This provesIm ny1
Ž .11 .

The pfaffian case can be treated similarly. We just indicate the main
steps. Set C s T T ??? T g, where g is the pfaffian of the1 2 mq1 2Žny1.mq1
first 2m y 2 rows and columns of L , and c s t t ??? t g.m1 1 2 mq1 2Žny1.mq1

Ž . Ž . w xThe F-injectivity of gr R rc gr R follows from CH, 2.1 and from theI I
fact that, by virtue of Lemma 3.5, Lemma 2.7, and Theorem 2.5, one knows

Ž Ž ..that in J q I q C is square-free and Cohen]Macaulay for a suitables

monomial order s . By induction, and using the isomorphism

y1 y1gr R t , gr R t t , . . . , t ,Ž . Ž .P 2Žny1.mq1 P 2Žny1.mq1 2Žny1.mq1 2 nmq1m n m ny1

12Ž .

Ž .w y1 xone shows that gr R c is a localization of a polynomial ring.I
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FIGURE 5

Ž . Ž . Ž . ŽFinally the normality of gr R follows from 11 and 12 which holdI
. Ž . Ž .for any field K because c gr R is a radical ideal.I

The ideals I s I and P s P are the ideal of the m-minors of anm m1 m m1
m = m q 1 generic matrix and the ideal of the 2m-pfaffians of a 2m q 1
= 2m q 1 skew-symmetric matrix. In addition to the properties listed in
Theorem 5.2, they are known to be generated by d-sequences and to be
strongly Cohen]Macaulay. We do not know whether this is true for the
ideals I and P , n ) 1.m n m n

Note that Corollary 3.3 gives us the possibility of determining the
h-vector of the Rees algebras associated with the ideals I and P .m n m n
Unfortunately, we are not able to derive a compact expression unless
m s 2. But in this case one can also argue as follows. One observes that

Ž .the initial ideal of I resp. P can be interpreted as the ordinary graph2 n 2 n
Žideal associated with the suspension of a line with n q 1 points resp.

.2n q 1 points . For example, the main antidiagonals of Y are x x ,23 21 12
x x , x x , x x , x x , x x , x x , and they can be arranged as21 13 22 13 32 13 32 23 32 24 33 24
in Fig. 5. The h-polynomial of the associated graded ring of the graph ideal
of the suspension of a line is determined by Examples 4.5 and 4.6. It

Ž .follows that the ith component of the h-vector of gr R isI

¡ n q 1 y j n q 1 y 2 j
if I s I ,Ý 2 nž / ž /j i y j

jG0~h gr R sŽ .Ž .i I 2n q 1 y j 2n q 1 y 2 j
if I s P ,Ý 2 nž / ž /¢ j i y j

jG0

and its multiplicity is

¡ n q 1 y j nq1y2 j2 if I s I ,Ý 2 nž /j
jG0~e gr R sŽ .Ž .I 2n q 1 y j 2 nq1y2 j2 if I s P .Ý 2 nž /¢ j
jG0
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