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INTRODUCTION

In this paper we study monomial ideals and ladder determinantal ideals
of linear type and their blow-up algebras. Our main tools are Grobner
bases and Sagbi bases deformations and the notion of M-sequence of
monomials.

Let R = K[X] be a polynomial ring over a field K equipped with a
monomial order 7. Let I be an ideal of R generated by polynomials
fi, -+, f,. Consider the presentation

w:R[T]=R[T,,...,T,] >%2(I) = R[fit,...,ft]
of the Rees algebra #(I) of I, defined by setting (7)) = f.t. Let J
denote the kernel of . The ideal J is R-homogeneous, and I is said to be
of linear type if J is generated by R-homogeneous elements of degree 1.
In other words, I is of linear type if and only if the canonical map
S(I) - %(I) from the symmetric algebra S(I) of the ideal I to the Rees
algebra (1) is an isomorphism.

It has been shown in [CHV] that I is of linear type provided its initial
ideal in_(7) is of linear type. Moreover, in this situation many good
properties (as Cohen—Macaulayness or normality, for instance) are pre-
served by passing from #(in_(1)) to #(I). This approach leads us to look
for conditions under which a monomial ideal is of linear type.

The paper is organized in the following way. The first section contains
notation and terminology. In the second section we introduce the notion of
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an M-sequence of monomials. A sequence of monomials m,,...,m, in a
set of indeterminates X is said to be an M-sequence if forall i,1 <i <,
there exists a total order on the indeterminates of m;, say m; = x{* -+ x;n,
such that for all j >iand 1 <k <n with x;[m; one has xg* -+ x;"|m;.

We show that an ideal I generated by an M-sequence my,..., m, is of
Grobner linear type, that is, the linear relations form a Grobner basis of
the ideal of presentation of the Rees algebra of I with respect to some
monomial order (2.4). Moreover, the m,’s together with their linear rela-
tions form a Grobner basis of the ideal of presentation of the associated
graded ring gr,(R). The initial ideals of the ideals of presentation of %(I)
and gr,(R) turn out to be Cohen—Macaulay (2.3). Furthermore, they are
radical ideals provided the m,’s are square-free. It follows that .%(I) and
gr;(R) are Cohen—Macaulay, and that, if in addition the m;,’s are square-
free, then gr,(R) is reduced and #(I) is normal. As a consequence we
have that the above results hold also for an ideal / whose initial ideal is
generated by an M-sequence (2.5, 2.6).

In Section 3 we present a special class of M-sequences, the sequences of
interval type. We are able to describe the Hilbert series of the Rees
algebra associated with a homogeneous ideal I, whose initial ideal is
generated by a sequence m,, ..., m, of interval type of monomials of fixed
degree, in terms of the degree of gcd(m;, m;) (3.3).

Given a graph I" with vertices X and edges E, Villarreal [Vil] defined
the graph ideal I(G) to be the ideal generated by the monomials of the
form xy where (x,y) € E. We generalize this notion in Section 4 by
considering the ideal I,(T") generated by all of the monomials x, --- x,
such that x,,..., x, isapathin I'. If I is a tree, then it turns out that the
generators of I(I') form an M-sequence. It follows that 7(I") is of linear
type and that #(I,(T")) is normal and Cohen—Macaulay. For ordinary
graph ideals of trees (i.e., t = 2) these results were already known [SVV,
5.3, 5.9]. Our arguments show that, if T' is a tree and I = I,(T"), then the
defining ideal of gr,(R) has an initial ideal that is Cohen—Macaulay of the
form I(T""), where T is a graph (which is not a tree in general). Using this
we are able to show that the ith component of the i-vector of gr,(R) is the
number of sets of independent edges of I' with exactly i elements (4.3).

The ideal 1, of m-minors of an m X m + 1 generic matrix of indeter-
minates and the ideal P, of 2m-pfaffians of a 2m + 1 X 2m + 1 skew-
symmetric matrix of indeterminates are known to be of linear type, to
define normal Cohen—Macaulay Rees algebras, and normal Gorenstein-
associated graded rings; see, for instance, [BST], [EH], and [Hu3]. The aim
of Section 5 is to present two classes of ladder ideals that are a generaliza-
tion of the ideals /,, and P, and to show that they have the above-men-
tioned properties, too. This is done by showing that the initial ideals of the
ideals under consideration are generated by an M-sequence of square-free
monomials and by inversion tricks.
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1. NOTATION AND GENERALITIES

Let R be a ring (commutative, Noetherian, and with 1) and let I be an
ideal of R. The Rees algebra (1) of I is defined to be the R-graded
algebra @,_,I'. It can be identified with the R-subalgebra of R[¢]
generated by I¢, where ¢ is an indeterminate over R. Let f,,...,f, be a
system of generators of I and consider the epimorphism of graded R-alge-
bras

¢:R[T]=R[T,,....T.] >%(I) = R[fyt..... fit]

defined by setting (7.) = f;¢. The ideal J = Ker ¢y of R[T]is R-homoge-
neous. Denote by J; the R-homogeneous component of degree i of J. The
elements of J, are called linear relations. The relation type r(I) of I is
defined to be the minimum of the integers r such that J = &;_, J,R[T].
In other words, (1) is the highest degree of a minimal homogeneous
generator of J. The ideal [ is said to be of linear type if its relation type is
1, that is, if the linear relations generate J. Several classes of ideals of
linear type are known. For instance, ideals generated by d-sequences are
of linear type; see [Hul] or [Va2]. Determinantal ideals of linear type were
characterized by Huneke [Hu4] in the generic case and by Kotzev [K] in
the symmetric case. The associated graded ring gr,(R) of [ is by definition
the factor ring #(1)/1%(1) = ®,.,I'/I'**, and it can be identified with
the factor ring of R[T] defined by the ideal J + I.

Now let R be a standard (or homogeneous) graded K-algebra, that is,
R = &, , R, with R, = K a field, and R is generated as a K-algebra by

i>0
elements x,,...,x,, of degree 1. Let I be a homogeneous ideal and
denote by I, its homogeneous component of degree 4. Then #(I) and
gr;(R) inherit a natural structure of positively graded K-algebra. Explicitly,

the homogeneous components of degree i of #(I) and gr,(R) are

i

i
H(1); = EB() Ii_; and gr,(R); = '690 I /1
i= i=

If I is generated by homogeneous elements f,..., f,, with deg f, = d,,
then %(I) is generated as K-algebra by the x,’s and by the f;t's, and
gr;(R) is generated by the residue classes of these elements. The degree of
x; in #(I) and gr,(R) is 1, and the degree of fit is d, + 1. From the
presentation point of view, this means that we give degree d; + 1 to the
indeterminate 7;, 1 <i <s. We will refer to this graded structure as the
nonstandard grading of #(I) and gr;(R).

In the case in which I is d-equigenerated, that is, d, =d for all
i=1,...,s, %) and gr,(R) can be viewed as standard graded K-algebras
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by setting their degree i components to be equal to

i i

(1) = Gaoljj(d—l)ﬂ and gr,(R); = @)I]j(d—l)-#i/ljj(zil)-#i'
j= j=

From the presentation point of view, this means that we give degree 1 to
the indeterminates 7;. We will refer to this graded structure as the
standard grading of (1) and gr,(R). It is easy to see that the Hilbert
series H (M), Hy (z)(A), and Hr(A) of %(1), gr,(R), and R are related
as follows:

ng,(R)( )\) = )‘d_lHR(A) +(1- Ati_l)Hﬁ(l)( )‘)- (1)

The Krull dimension of gr,(R) is equal to that of R, and that of %(1) is
equal to dim R + 1, provided I contains a nonzero-divisor; see [Val, 1.6].
Hence under this assumption, the A-polynomials and the multiplicities of
(1), gr;(R), and R satisfy the relations

P ry(A) = A7 Thg(A) + (L+ A+ + A7) hg(A), (2)
e(gr;(R)) =e(R) + (d — ye(%(1)). (3

We assume from now on that R is the polynomial ring K[X] over a
field K in a set of indeterminates X. Given a monomial order = on R, we
denote, respectively, by in_(f) the initial monomial of a polynomial f € R,
and by in_(I) the initial ideal of a homogeneous ideal I of R. Throughout
the paper we will use repeatedly the following well-known facts: the
Hilbert series of R/I and R/in_(I) coincide, R/I is Cohen—Macaulay or
reduced whenever R/in_(I) is so, and the polynomials g,,..., g, are a
R/I-regular sequence if their initial monomials are a R/in_(I)-regular
sequence.

We say that an ideal I of R is of Grobner linear type if the linear
relations form a Grobner basis of J with respect to some monomial order
on R[T] = K[X, T]. Of course, ideals of Grobner linear type are of linear
type.

It has been shown in [CHV, 2.2, 2.8] that an ideal I is of (Grdbner)
linear type whenever the initial ideal in_(I) with respect to a monomial
order 7 has this property. Furthermore, if in addition #(in_(I)) is
Cohen—-Macaulay (resp. normal), then %(I) is Cohen—Macaulay (resp.
normal). This fact leads to the following interesting problem: given an
ideal I generated by monomials m;, ..., m, find conditions on the m,’s
that guarantee that I is of linear type (or of Grobner linear type).
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For instance, it is easy to see that a sequence of three square-free
monomials is always of (universal) Grobner linear type. Of course, d-se-
guences of monomials are of linear type, but they are rare, see [HSV1,
5.2]. Villarreal characterized explicitly the ideals of linear type generated
by square-free monomials of degree 2 (graph ideals) [Vi2, 2.2]. In the next
section we present a new class of monomial ideals of Grdbner linear type.

2. M-SEQUENCES

In this section we introduce the notion of an M-sequence of monomials,
and then we show that an ideal generated by an M-sequence is always of
Graobner linear type. Quite surprisingly, it turns out that the Rees algebra
associated with an M-sequence is always Cohen—Macaulay. Furthermore,
the associated graded ring is reduced and the Rees algebra is normal
whenever the monomials are square-free.

DerFiniTioN 2.1, A sequence of monomials m,,...,m, in a set of
indeterminates X is said to be an M-sequence if for all 1 <i < s there
exists a total order on the set of indeterminates that appear in m;, say
X, < - <x, with m; =xf - x and a, >0,...,a, >0, such that

whenever xk|mj with 1 <k < n and i <j, then xgx - xj,"llmj.

Note that the total order on the indeterminates of m; is allowed to
depend on i. Obviously the property of being an M-sequence depends on
the order in which we list the monomials. For example, xy, yz, zw is an
M-sequence, and yz, xy, zw is not. Given a sequence my,,...,m, Of
monomials for all 1 < i, j < s, we set

my; = m,/ged(m;, m;).

We collect some properties of M-sequences in the following:

LEMMA 2.2. Let my, ..., m, be an M-sequence in a set of indeterminates
X. Then:

(1) Every subset of my,...,m
induced orders.

, Is an M-sequence with respect to the

Q) Let 1 <b, < -+ <b, be integers. Then m%+,...,m" is an M-se-
quence.

(3) Let m be a monomial such that m\m,. Then m,/m, m,, ..., m; is
an M-sequence.

4) ng(mij,ng(ml-, mj)) =1foralll <i<j<s.
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(5) Lert i,j, k be integers with 1 <1i,j,k <s, i <j, and i < k. Then
one has either gcd(m;, mj)lgcd(mi, m,) or gcd(m;, m,)lgcd(m;, mj).

(6) Assume gcd(my, m,) # 1 for some k > 1. By virtue of (5) there
existsr, 1 <r <s, such that gcd(m,, mj)lgcd(ml, m,) forall 1 <j <sandr
is minimal with respect to this property. Then

() ged(m,, mj) = ged(my, m;, m,) forallj,1<j<s,
(i) ged(my, m,)/ged(my, m,, m)lm,; forallj > r.

Proof. Statements (1), (2), and (3) are trivial.

(4 Letm;=x{* - x;, and let p = min{A: x,|m}, with the conven-
tion that p =n + 1 if gcd(m,;, m;) = 1. From the definition of M-se-
quence it follows that gcd(m,, m;) =x,» -+ x,», and m;; = x{* -+ xpr-4.
Hence gcd(m;;, gcd(m;, m))) = 1.

(5) Letm;,=x{* - x,; and j > i Let p = min{h: x,|m}. As above,
one has gcd(m;, m;) =x;» -+ x,». Similarly, gcd(m;, m;) = xgs - x,
where g = min{h: x,|m,}. Therefore, gcd(m;, mylgcd(m,;, m)) if p <gq,
and gcd(m;, m)lged(m;, m,) if q < p.

(6)(i) We fix an indeterminate x and denote by b,, b, b; the
exponents of x in my, m,, m;. The statement is min{b,, b;} = min{b,, b;, b,}.
If b, = 0 or b; = 0, then it holds true. If b, # 0 and b; # 0, then b, # 0 by
construction, and b, <b,, b, < b;, because m is an M-sequence. Hence
the statement holds true in this case, too.

(6)(ii) In terms of exponents the statement is min{b,, b} —
min{by, b,, b} < b, — min{b,, b}. It is trivial if one among by, b,, and b; is
equal to 0. Assume b; # 0, b, # 0, and b; # 0. Then b, < b, < b; because
m is an M-sequence and hence the statement holds true. |

The next proposition deals with the Cohen—Macaulay property of two
monomial ideals associated with an M-sequence my, ..., m. In the sequel
we will see that they are the initial ideals of the ideals of definition of the
Rees algebra and of the associated graded ring of my, ..., m.

ProposITION 2.3. Let my,...,m, be an M-sequence of monomials in a
set of indeterminates X, and let T = T,,...,T, be a set of indeterminates. Let
I=0ny,...,m) and Q = (mijTj: 1<i<j<s) Then K[X,T1/Q and
K[X,T1/Q + I are Cohen—Macaulay of dimension | X| + 1 and | X |, respec-
tively.

Proof. We argue by induction on s. The claim is trivial for s = 1.
Hence assume s > 1. Set Q, = (m;;T;:2 <i <j <s),and [, = (m;: 2 < i
< s). By induction K[ X,T,,...,T,1/0Q, and K[ X, T,,...,T.1/Q, + I, are
Cohen—Macaulay rings of dimension [ X| + 1 and | X|.
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Assume that gcd(m,, m;) = 1for all j > 1. Then m, is a nonzero-divisor
modulo @, and modulo Q, + I,. Note that Q, + I, + (m;) = Q + I.
Hence it follows by induction that K[ X, T]/Q + I is Cohen—Macaulay of
dimension | X|. Now note that Q = Q, + (m;T;: 1 <i <s) = (Q,,m) N
(T,,...,T), and (Q,,my) + (T,,..., T,) = (my, T,,...,T,). Hence
K[X,T]1/Q has dimension |X|+ 1. Furthermore, from the short exact
sequence

0 K[X,T1/Q — K[X,T1/(Q,.m,) ® K[X.T,]
- K[X, T,]/(m;) =0, (@)

by depth chasing it follows that K[ X, T1/Q is Cohen—Macaulay.

Now assume that gcd(m,, m,) # 1 for some k£ > 1, and let r be as in
2.2(6). Let m) = gcd(ml, m,), and let m’ be the sequence ml, m,,
...,m,,...,m, where m, means that m, is omitted. Set mlj
m /gcd(my, m)), j > 1. By virtue of 22(1)(3) the sequence m' is an
M-sequence. The ideals associated with m' are

Q' =(myT,1<j<s,j#r)+(mT:2<i<j<s,i#r#j)
and

I' =(my,my,....im 1)

Farroee

By induction K[X, T, T, ...,T,...,T,])/Q" and K[X, T, T,
T,...,T.]/Q" + I' are Cohen—Macaulay rings of dimension |X|+ 1

ey 4y,

and | X/, respectively. Set

J.=(Q.T1), J, = (Qp,my,),
J3=(Q"I''T.), Jy=(Q;, I, my).
We claim that
o=J,nlJ,, O+I=J;nJ,, (5)
and
Jo+ T, =ymy), Jy+J,=(J3,my,). (6)
Before proving (5) and (6), we conclude the proof of the proposition. By
construction the indeterminates of m,,, do not appear in the generators of
Q, and of I,, and the indeterminate 7, does not appear in the generators
of Q' and of I'. Hence J, and J, define Cohen—Macaulay factor rings of

K[ X, T] of dimension |X|+ 1, and J; and J, define Cohen—Macaulay
factor rings of K[X,T] of dimension |X|. Furthermore, (J,,m,,) and
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(J3, m,,) define Cohen—Macaulay factor rings of K[ X, T] of dimension
|X| and |X| — 1, respectively. As above, it follows from the short exact
sequences

0-K[X,T]/Q - K[X,T]/], e K[X,T]/],
- K[X,T]/(J;,my,) =0, (7
and
0->K[X,T]/Q+1—-K[X,T|/],®K[X,T]/],
- K[X,T]/(J3,my,) =0 (8)

that K[X,T]1/Q and K[X,T]/Q + I are Cohen—Macaulay of dimension
|X| + 1 and | X|, respectively.
It remains to prove (5) and (6). One has

I, =[(myT,1<j<s,j#r)
+(myTi2<i<j<si#r#+j)+(T,)]
N[(m,;T:2<i<j<s)+ (my,)]

=(mT:2<i<j<s,i#r)
H(myT 1 <j<s.j#r)+(T)]
N[(mTir <j=s) + (my)].
By 2.2(6)(ii) m; | m,; for all j > r. It follows that
IoNT,=(mT:2<i<j<s)
+H(my T 1 <j<s, j#r)+(T)] N (my,).

Now note that by virtue of 2.2(4) the indeterminates of ,, do not appear
in m}; for all j> 1 and that by 2.2(6)(i) m;,m}; = m,;. It follows that
JyNnJ,=0m;T:1<i<j<s)=Q. By means of similar arguments one
shows the other equalities. i

Let / be an ideal generated by an M-sequence m,,...,m, in a set of
indeterminates X. Consider the presentation

v KIX[T,..... T,] - (1)

defined by setting (7.) = m;t and denote by J the kernel of . For
l<i<j<sset

i = myT; — m; T,
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Let 7 be a monomial order on K[X,T] such that in (7)) = m,;T; (for
instance, one can take the lexicographic order induced by the total order
T, > -+ > T,). The main result of this section is:

THEOREM 2.4. (i) The linear relations /', form a Grobner basis of J with
respect to 7, that is, in (J) = (m;T;: 1 <i<j<s) and I is of Grobner
linear type.

(i) The linear relations /;; and the m; form a Grobner basis of the
ideal of presentation of gr;(R) with respect to 7, that is, in (J + I) = (m;T;:
1<i<j<s)+(mil<i<s)

Proof. (i) Denote by Q the ideal (m;;T;: 1 <i <j <s). To show that
the linear relations /;; are a Grobner basis of J with respect to 7, we
argue by contradiction. Suppose the claim is false. Since the binomial
relations are known to be a universal Grobner basis of J [St, 2.2], there
exists a binomial relation a7 — bT? € J, with @ and b monomials in the
x's, whose initial monomial is not in the ideal Q. We may assume that
T T# have no common factors. Furthermore, we also may assume that
both aT% and bT? are not in Q. This is because one of the two
monomials (the initial) is not in Q by assumptions, and if the other is in Q,
then we may reduce it by means of the relations /l.j and repeat this
procedure until we obtain a binomial relation with the desired properties.

Now let i be the smallest index such that 7, appears in T* or in T”. By
symmetry, we may assume that 7, appears in 7% Since aT* — bT* € J,
m, divides by(T?).

If m,|b, then let T, be any of the indeterminates in T#. One has

J
m;Tlm,T|bT* and i < j. This is a contradiction.

']I'r]\us m; does not divide b. Let x; < -+ <x, be the total order of the
indeterminates of m;, and let m, = x{* --- x;». Let k be the minimum of
the indices such that xj* does not divide b. Then x{ --- x7%¢|b. Since
x{+|by(TP), there exists j such that T, appears in T# and x,|m;. Since m
is an M-sequence, one has xg* -+ x,"|m; and m[x{* --- x{-{|b. It follows
that mlﬂ}leﬁ, which again is a contradiction.

(i) The ideal of presentation of gr,(R) is J + I. We know that
J=(/;: 1<i<j<s) and that the /s form a Grobner basis with
respect to a monomial order 7 such that in (#;;) = m;;T.. To show that the
/;;’s and the m;’s form a Grobner basis of J + I with respect to 7, we
apply the Buchberger criterion. It suffices to analyze the S-pairs S(/l.j, m,;)
=m;T;m; /gcd(m;, m;;) forall 1 <i <j<sand 1<k <s. We have to
distinguish two cases.
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Assume first i < k. By virtue of 2.2(5) we have either gcd(m;,
mlged(m;, m;) or gcd(m,;, m)lged(m;, m;). 1f ged(m;, m,)lgcd(m;,
m;), then ged(m,, m;;) = 1 and S(Z,;, m;) = m;T;m,. Hence the polyno-
mial S(Z;;, m;) reduces to 0 via m,. If gcd(m,, mlgcd(m,, m;), then we
claim that mm;m,/gcd(m,, m;). From the claim it follows that
8(Z,;, m) reduces to 0 via m;. To prove the claim we fix an indeterminate
x and denote by b;, by, b; the exponents of x in m;, m,, m;. In terms of the
exponents the assertion is
b; < b, — min{b,, b} + b, — min{b,, b

J g

; — min{b,, b;}}. (9)
If b, =0, then (9) clearly holds. If b; > 0, then b, < b; because m is an
M-sequence. Since gcd(m;, mlgcd(m,, m,), b, = min{b;, b} < min{b,, b,}.
Hence b; < b,. Now (9) reads b; < b, — b, + b, and holds true.

If k <1, then arguing as above one shows that m;|m;m, /gcd(m,, m;)).
Then m;T,m,/gcd(m,, m;;) reduces to S, = m,m;T,/gcd(m,, m,;;) via
;- By means of the same argument one shows that m[S; and then §;
reduces to 0 via m;. This concludes the proof of (iD). [

An important consequence of 2.4 is

THEOREM 2.5. Let I be a homogeneous ideal of a polynomial ring
R = K[ X] over a field K. Suppose that there exists a monomial order, say §,
such that ing(I) is generated by an M-sequence m, ..., m,. Thenletf,, ..., f,
be a Grobner basis of I with ing(f,) = m;, and consider the presentation s
RIT] — (1) defined by (T,) = f;t. Denote by J the kernel of . Then there
exists a monomial order o on K[ X, T] such that

() in,(J)=(m;T: 1<i<j<s) In particular, I is of Grobner
linear type.
Gi) iny(I") = iny(I) forall i € N,
(i) in,(J + D =in,(J) + in;(I) = (m;T: 1 <i<j<s)+
(my,...,m).
(iv) #(I) and gr,(R) are Cohen—Macaulay.
(V) If the m;'s are square-free, then gr;(R) is reduced.

Proof. Set Q = (m;T;; 1 <i<j<s). By assumption, ins(I) =
(my, ..., m,). By virtue of 2.4(), in (1) is of Grobner linear type, and there
exists a monomial order = on K[X, T] such that the initial ideal of the
ideal of presentation of the Rees algebra of ing(7) is Q. It follows from
[CHV, 2.2, 2.7, 2.8] that I is of GrGbner linear type, that ins(1)) = ins(1)’
for all i € N, and that there exists a monomial order o on K[ X, T'] (which
is defined by combining = and &) and linear relations L;; €J such that
in,(L;;)) = m;T; and in,(J) = Q. This proves (i) and (ii).



IDEALS OF LINEAR TYPE 609

(iii) Toprove thatin (J + I) = Q + ins(I), we note that by the very
definition of o (see [CHV, 2.2]) one has in_(f;) = ins(f,) = m;. Hence we
have Q + ing(I) cin, (J + I). For the other inclusion, it is enough to
show that the Hilbert function (with respect to the nonstandard grading) of
A=K[X,T]/in,(J + I) and that of B = K[X,T1/Q + ins(I) coincide.
Denote by G and by G, the rings gr,(R) and gr;, ,(R). Note that G and
G, have the same Hilbert function (with respect to the nonstandard
grading) because by (ii) ins(1") = ins(1)" for all i. Since 4 and G have the
same Hilbert function, it suffices to show that G, and B have the same
Hilbert function. But this follows from 2.4(ii), since one knows that
Q + ing(I) is the initial ideal of the ideal of presentation of G,.

(iv) We have shown in (i) and in 2.3 that Q is the initial ideal of J
with respect to 7 and that it defines a Cohen—Macaulay ring. This implies
that (1) = K[X,T]/J is Cohen—Macaulay. The Cohen—Macaulayness
of gr,(R) follows from that of %(7) [Hu2, 1.1], but also from (iii) and 2.3.

(v) Since the m,’s are square-free, it follows from (iii) that in (J + I)
is generated by square-free monomials and hence it is radical. But this
forces J + I to be a radical ideal. Hence gr;(R) is reduced. |

With the assumption and notation of 2.4 one has
COROLLARY 2.6. (1) Assume that the m;'s are square-free; then:

() (1) is normal, it is F-injective and F-rational in positive charac-
teristic, and it has rational singularities in characteristic 0.

(i) gr,(R) is F-injective. Furthermore, gr,(R) is Gorenstein if I is
unmixed and it is a domain if I is prime.

(2) If the m,'s have degree 2, then gr,(R) is a Koszul algebra with
respect to the standard grading.

Proof. (1) By 2.5(v) gr;(R) is reduced and hence (1) is normal; see
[Ba, 5]. Furthermore, (1) and gr,(R) are F-injective because by Theorem
2.5 and Proposition 2.3 their ideals of presentation have initial ideals that
are square-free and Cohen—Macaulay; see [CH, 2.1]. The F-rationality and
the rational singularities of %(I) follow from [CHYV, 2.3], because the
initial algebra of (1) is #(ing(1)) and it is normal. If I is unmixed, it
follows from [HSV2, 4.2.3] that gr,(R) is Gorenstein. Finally, if I is prime,
then it follows from [HuSV, 1.1] that gr,(R) is a domain.

(2) If the m’s have degree 2, then by virtue of 2.5(iii) the ideal J + I
is generated by a Grdobner basis of quadrics. It follows from [BHV, 2.2]
that gr,(R) is a Koszul algebra with respect to the standard grading. |
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For the next applications we record the following:

LEMMA 2.7. With the assumptions and the notation of 2.5, denote by t;
the residue class of f, in 1/1?> C gr,(R). Let h be an integer such that
ged(m;, m;)) =1 forall 1 <i <j < h. Then

(1) The indeterminates T,,...,T, do not appear in the generators of
in (J + D).

() t,,...,t, is a gr,(R)-regular sequence.

(3)  Ifin addition the monomials my, ..., m are square-free, then K[ X,
T1/in,(J +1+ T, --- T)) is reduced and Cohen—Macaulay forall 1 < i < h.

Proof. The initial ideal of J + I'is (my,...,m) + (m;T:1<i<j<
s). By assumption m;; =m, for all 1 <i<j<h. It follows that the
indeterminates 7,,...,7, do not appear in the generators of in (J + I).
Statements (2) and (3) follow directly from (1) and Proposition 2.3. |

Note that the assumption of Lemma 2.7 is trivially satisfied if one takes
h=1

3. SEQUENCES OF INTERVAL TYPE

The aim of this section is to present a class of M-sequences, the
sequences of interval type. We show how the Hilbert series of the Rees
algebra and of the associated graded ring of an ideal I generated by a
sequence of monomials m, ..., m, of interval type can be expressed in
terms of the degree of the monomials m,;.

Given a monomial n and an indeterminate x, denote by O.(n) the
exponent of x in n. We start with the definition:

DerFiniTioN 3.1. A sequence of monomials m,...,m, in the set of
indeterminates X is said to be of interval type if forall 1 <i <j <s and
x|gcd(m;, m;), one has O,(m;) < O,(m,) for all i <k <j. In other words,
any indeterminate appears in a ‘“subinterval” of m,,...,m, and with
nondecreasing exponents from the left to the right.

Let m,,..., m, be a sequence of interval type. For all x € X set
i(x) = min{k: xlm,} and j(x) = max{k: x|m,}.
One has

ProrPoSITION 3.2. A sequence of interval type is an M-sequence.

Proof. Let m =m,,...,m, be a sequence of interval type. First we
order the indeterminates according to the function j(..): x <y if and only
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if j(x) <j(y)or x =y. Then we extend this partial order to a total order.
We claim that, with this order on the indeterminates, m is an M-sequence.
To show that this is the case, we write m; = x{* --- x;» with a, > 0 for all
h=1,...,nand j(x;) < -+ <j(x,), and assume x,|m; with j > i. Note
that for all 4 =k,...,n one has i(x,) <i <j <j(x,) < j(x,), and hence
xp,lm;. It follows that xj|m;, forall h = k,...,n. |

Let I be a homogeneous ideal whose initial ideal is generated by a
sequence my, ..., m, Of interval type, and denote by Q the ideal (mijTj:
1 <i <j < s). Note that the integer r defined in 2.2(6), for a sequence of
interval type, is always equal to 2. As a by-product, from the short exact
sequences (4) and (7) it follows that the Hilbert series of K[ X, T']/Q can
be expressed in terms of deg m,, and of the Hilbert series of rings of the
same kind, but associated with the shorter sequences m,,...,m,, and
gcd(my, m,), my, ..., m,, which are again of interval type. To be more
explicit, let us denote by A(m,, ..., m )(A) the h-polynomial of K[ X,T1/0.
Then one has

(1 — /\degmlz)
Py
+ A9z p(ged(my, my), my, ..., my)(A). (10)

h(my,...,m,)(A) = h(my,,...,m,)(A)

This recursive formula allows one to describe the h-vector of K[ X, T]/Q
in terms of numerical invariants of the sequence. Forall 1 <i <j < s set

[i,j] =degm,;, (i,j)=degm,; —degm

ij-1

and for systematic reasons put [i,i] = 0. Note that by virtue of Lemma
2.2(5),
(i,j) = degm;;/m;;_, = deggcd(m;, m;_,)/gcd(m;, m;)

= degged(m;, m;, 4, ..., mj—l)/ng(mil Mgy, mj)'
Now from (10), by induction on s, it follows that

h(my, ... mg)(A)
— /\(ij—lx i_,‘)

k
-y Y 1—[)\[1',71,1',—111— ik 1,
1

k20 1=ig<i;< - <ip<s \J= 1-2A
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If the m,’s all have the same degree, then by virtue of Lemma 2.5(i) the
Hilbert function of %(I), equipped with the standard degree, coincides
with that of K[ X, T]/Q. Hence we have shown

COROLLARY 3.3. Let I be a homogeneous ideal whose initial ideal is
generated by a sequence my, ..., m of interval type of elements of fixed degree
d. Then the h-polynomial of %(I) is

k 1 — AGnip
A=Y L h]ww' —————%ww

k=0 1=ig<i < - j=1 1-2A

and its multiplicity is

(#) =L ¥ (ruhl;ﬁ_

k>0 1=ig<i;< - j

ExampLE 3.4. Given two positive integers r and s, consider the se-
quence of monomials m,, ..., m defined as follows: m; = x,x,,, "+ x,,,_
for all i = 1,...,s. This sequence is clearly a sequence of interval type. It
is easy to see that

ifj—i<r

o 1 <
“J)_{o ifj—i>r.
By virtue of 3.3, e(%(1)) coincides with the cardinality of the set

A={{ig,....i,} CN1k>0, 1=iy< - <iy<s,i;—ij_ ;<r

forall 1 <j < k}.

The cardinality of 4 can be computed by means of the “inclusion-exclu-
sion principle.” One obtains

) = £ (-p)[* T T e,

j=0

Given an M-sequence my,..., m,, we would like to know when the
sequence m;, my,...,m;, ..., m, is again an M-sequence. This is impor-
tant since, by virtue of Lemma 2.7, it would then follow that the residue
class of 7. in gr,(R) is a nonzero-divisor. To this end we introduce the

following definition: let m,,...,m, be a sequence of interval type of
square-free monomials. We say that m; satisfies the last-in—first-out prop-
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erty if for every pair of indeterminates x, y in m, with j(x) < j(y), then
i(y) < i(x). One has

LeEMMA 3.5. Let my, ..., m, be a sequence of interval type of square-free
monomials in the set of indeterminates X. Assume that m;,...,m; satisfy the
last-in—first-out property. Then My, My, My, I"ﬁil, . r'ﬁ,-k, co,my s

an M-sequence.

Proof. It is clear that one may assume that & = 1. Set i; = i. We order
the indeterminates according to the function j(..). Since m,, ..., m;, ..., m;
is an M-sequence, it suffices to show that for any indeterminate x that
divides gcd(m;, m;) for some 1 <j <, j # i, then y|m; whenever y is an
indeterminate such that y|m; and j(x) < j(y). By assumption, i(y) < i(x)

<j <jx) <j(y), and hence ylm;. 1

4. GENERALIZED GRAPH IDEALS OF TREES

Ordinary graph ideals have been studied by Villarreal in [Vi1], [Vi2], and
subsequently by Simis, Vasconcelos, and Villarreal [SVV]. The aim of this
section is to generalize the notion of graph ideals and to show that
generalized graph ideals of trees are generated by M-sequences.

A graph T is a pair (X, E), where X is a finite set and E c X X
X\ {(x,x): x €X}. The elements of X are called vertices, and the
elements of E edges. A path from x to y is a sequence of vertices
X =xy,...,x, =y of I"such that (x,,x, ., ) €E foralli=1,...,t — 1. A
path of length t is a path with ¢ vertices.

A tree is a graph T with a vertex x, called a root, such that for any
vertex y of I' there exists a unique path from x to y. It is easy to see that
a tree has a unique root. Furthermore, given a tree I" with root x, any
other vertex y is the end point of a unique edge. Figure 1 illustrates a tree
(the edges are oriented from the top to the bottom).

FIG.1. Atree.
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Let I" be a graph and let K be a field. We consider the polynomial ring
K[X] over K whose indeterminates are the vertices X of I'. We define
I(T") to be the ideal of K[X] generated by the monomials of the form
x, - x,, where x,,..., x, is a path of I'. In the sequel we will identify the
paths with the corresponding monomials. For instance, if T" is the tree of
Fig. 1, the ideal I(T) is generated by the monomials w,z,y,, w,zsys,
ZUV1X, ZoV1X, Z3VaX, Z4VoX, ZsYo X, ZgyaXx. Note that I,(T') is the ordinary
graph ideal as introduced by Villarreal [Vil].

ProrosITION 4.1. Let T be a tree. Then for all t the ideal I(T') is
generated by an M-sequence.

Proof. Let us denote by x the root of I". Given y € X, the rank rk y is
by definition the length of the path from x to y. We introduce a partial
order on X by setting y <z if y =z orrk y > rk z. Then we extend this
partial order to a total order, and we denote it by <. Let y,,...,y, be a
path in I'. By construction one has rk y, = rk y, + i — ¢t and hence y, <

- <y,. The total order on X gives rise to a total order on the set of the
paths of length ¢ of I' by setting y,,...,y, <z,...,z, if and only if
¥, < z,. We want to show that the set of paths of length ¢, equipped with
this total order, is an M-sequence if the indeterminates in the monomials
are ordered according to < . To this end, consider a path y =y,,..., y,
and a path z = z,, ..., z,, and assume that y < z and that y and z have a
common vertex, say y; = z;. Thenrky, +i—t=rky, =rkz; =rkz +j
—t,and j—i=rky —rkz >0 Hence y, =z, forall k=1,...,..
This shows that y;y;_; *-- y,/z and concludes the proof. |

Now by virtue of Proposition 4.1, Theorem 2.5, and Corollary 2.6 we
have

COROLLARY 4.2. Let T be a tree and set I = I(T"). Then

(1) I is of Grobner linear type.

(2) The Rees algebra (1) is normal and Cohen—Macaulay, and
gr;(R) is reduced.

() Ift = 2, then gr;(R) is a Koszul algebra with respect to the standard
grading.

Consider now the ordinary graph ideal I = I,(I') associated with a tree
I' = (X, E). As in the proof of Proposition 4.1, we fix a total order < on
X that refines the rank function. The total order < induces a total order
on E in such a way that the monomials associated with the edges form an
M-sequence. Then the initial ideal in_(J + I) of the ideal J + I of defini-
tion of gr,(R) with respect to the term order 7 is generated by square-free
monomials of degree 2. Hence in_(J + I) is again a graph ideal associated
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FIGURE 2

with a graph T'’ (which is not a tree in general) and, by Proposition 2.3, it
is Cohen—Macaulay. The vertices of I'’ are the elements of X U E, while
its edges are the elements of E and the pairs (y,(z,w)) € X X E such that
(w,y) € E (see Fig. 2) or (z,y) € E and y < w in the total order of the
elements of X (see Fig. 3).

Note that the graph I'’" depends strongly on the order < on X. Figure
4 illustrates the two graphs I'’ obtained by the same graph I' with two
different orders.

The Hilbert series of gr;(R) is equal to that of the ring K[ X, E]/L(T").
Next we want to give a combinatorial interpretation. To this end we
introduce the following definition: given a graph I' = (X, E), a subset
F CE is said to be a set of independent edges of I' if for all x € X, x
belongs to at most one edge in F. We have:

THEOREM 4.3. Let T = (X, E) be a tree, and set I = I,(T'). Denote by
ho, hy, ..., h, the h-vector of gr,(R). Then h; is equal to the number of sets of
independent edges of T" with i elements.

Proof. Let us denote by g; the number of sets of independent edges of
[ with i elements. Then set hp(A) = X,_, A and gr(D) = X, g\
Consider a total order < on the vertices X of I' defined as in the proof
of Proposition 4.1. Let w, be the smallest element of X. Let z be the
vertex such that e; = (z,w) € E, and denote by w,,...,w, the vertices of
X\ {w,;} such that e; = (z,w,) € E. Finally, denote (if it exists) by y the
vertex of I' such that f = (y, z) € E. Now set

I = (X, E) = (X\{w}, EX{e;}) and
D= (X0 Ep) = (XN Wy W, 21 EN {esr v ).

/z\
Yy w

FIGURE 3
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FIGURE 4

By construction, I'; and I', are trees. The sets of independent edges of I'
that do not contain e, are exactly the sets of independent edges of I';. The
sets of independent edges of I' that contain e, are of the form {e,} U F,
where F is a set of independent edges of I',. These facts yield the
following equation: gr-(A) = gr.(A) + Agp(A). To show that gr(A) = hp(A),
it suffices to show that

hr(A) = hp(A) + Ahp(A), (13)

because the functions & and g agree for trees with few vertices. Consider
the following short exact sequence:

0- K[ X, E]/(L(T"): wy)[-1] 5 K[ X, E]/I,(T")
> K[ X, E]/L(T") + (w;) = 0 (14)

and note that (1,(T"): w,) = L,(T) + (e,, ..., e, f,z) and (') + (w,)
= I(T}) + (w,). Hence

K[XIE]/(Iz(F'):Wl) =K[X,, E;|[wy,....w,, e1]/,(T3)
and
K[X,E]/L,(T") + (w,) = K[ X, E][e,]/L,(T}).

Then, taking into account that the Hilbert series of K[X, E]/L(T") is
equal to that of gr,(R) and that the dimension of gr,(R) is | X|, (13) follows
from (14). 1

Theorem 4.3 allows us to determine the A-polynomial of gr,(R) for
certain trees:

ExampLE 4.4. Let §, be the star with n edges, that is, the edges of S,
are (x, y,),(x,y,),...,(x, y,). Denote by 4,()) the h-polynomial of gr,(R),
I =18, = (xyy, xy,, ..., xv,). The only sets of independent edges of S,
are the empty set and the sets {(x, y,)}. Hence /,(A\) = 1 + nA.



IDEALS OF LINEAR TYPE 617

ExampLE 4.5. Let L, be the line with n points, that is, the edges of the
tree L, are (x;, x,),(x,, x3),...,(x,_q, x,). Denote by &, (A) the h-poly-
nomial of gr,(R), I =1,(L,) = (x;x,, x,x5,...,x,_,x,). Note that (13)
yields the following equation: %,(A) = A, _,(A) + Ak, _,(A) for all n > 2.
Since h,(A) = 1 and h,(A) = 1 + A, one has

h(\) =Y (” N l))\f.
i>0 l

ExampLE 4.6. Let T'=(X,E) be a tree, with vertex set X =
{x,,..., x,}. By definition the suspension S of T" is the tree with vertices
XU{y,...,y,) and edges E U {(x,, y;),...,(x,,,)}. Denote by I and J
the ideals I,(T") and £,(S), respectively. A set of independent edges F of T’
with i elements involves exactly 2i distinct vertices, say x; , ..., x; . Adding
to F any subset of {(x;,yy),...,Cx,, y, I \{(x;,y;), ..., (x; .y, )}, one
obtains a set of independent edges of S, and any set of independent edges
of § has exactly one such “presentation.” It follows that, if the A-poly-
nomial of gr,(R) is ¥;. o #; A, then the A-polynomial of gr,(R[Y ] is

Z(Ehj(”.__z-j))Ai, (15)

i>0\j>0 t J

and in particular the multiplicity of gr,(R[Y D is X, o ;2" 2". The polyno-
mial (15) has degree n, and it is symmetric. This is not surprising, because
it was proved by Villarreal [Vil, 2.4, 2.5] that J is unmixed, and hence by
2.6 gr,(R[Y]) is a Gorenstein ring.

5. LADDER IDEALS OF LINEAR TYPE

In this section we show that certain ladder ideals of minors and of
pfaffians are of Grobner linear type, that their Rees algebras are
Cohen—Macaulay and normal, and their associated graded rings are
Gorenstein normal domains.

Ladder determinantal ideals of minors have been introduced and stud-
ied by Abhyankar [A], and subsequently by other authors; see [N], [AK],
[M], [HT], [CH], and [C]. They are defined as the ideals generated by the
minors of certain subregions, called ladders, of a generic matrix of indeter-
minates. Likewise, one defines ladder ideals of pfaffians as the ideals
generated by pfaffians of certain subregions of a skew-symmetric matrix of
indeterminates; see [D].

To avoid confusion, we call generic ladders the ladders of a generic
matrix, and ladders of pfaffians those of a skew-symmetric matrix. We
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introduce now the class of generic ladders Y, ,, and the class of ladders of
pfaffians L,,, that we want to investigate.

We start with the definition of Y, ,. Let X = (x;;) be a matrix of
indeterminates over a field K, and fix two positive integer m and n.

n!

=l1=b,c=)]=

we set

X1 =lk+1Lk+m]x[k+1,k+1+m], and

m

Xyokso=lk+1Lk+1+m]xX[k+2k+1+m]

Note that X,, ,,,, and X, ,,,, are matrices of size m X m + 1 and
m + 1 X m, respectively, and that they intersect in a submatrix of size
m X m.

Then we set

For example,

Y3 = Xg1 X5 Xg3 Xy Xgs-

Now let Z = (z;;) be a skew-symmetric matrix of indeterminates over a
field K, and fix two positive integers m and n. For k > 1, we set

Zy =Lk, k+2m] x[k,k+2m].

Note that Z,, , is a skew-symmetric matrix of size 2m + 1 X 2m + 1.
Then we set
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For example,
0 212 213 Z14 Z15
—Z12 0 223 224 225 226

—Z13 T2 0 Z34 Z35 Z36 237
Lyy= —214 —Zy —2Zy 0 Zs5 Z46 Za7

TZ15 235 TZ3s T Zss 0 Z56 Z57

T2  TZ3 246 Zse 0 Zg7

—Zy  —Zy  —Zyz  —Ze O

The main antidiagonal of a minor of X (resp. of a pfaffian of Z) with
row indices a; < --+ < a, and column indices b, < --- < b, (resp. with
row and column indices a; < --- <a,,) is the monomial T1;_; x,,
(resp. TT;i_y 2,0, .. )-

The set Y, , is a generic ladder, that is, if the main antidiagonal of a
minor is in Y,,,, then the minor is in Y, ,. Analogously, the set L, , is a

ladder of pfaffians, that is, if the main antidiagonal of a pfaffian isin L,,,,
then the pfaffian isin L,,,.

DerFiniTioN 5.1, Let K[Y,,,] and K[L,,,] be the polynomial rings over
the field K in the set of indeterminates of Y, , and L,,,, respectively. We

define I,, to be the ideal of K[Y,,,] generated by the m-minors of Y, ,,
and P, to be the ideal of K[L,,,] generated by the 2m-pfaffians of L,,,.

A monomial order 7 on the polynomial ring K[ X] (resp. K[Z]) is said
to be antidiagonal if the leading monomial of any minor of X (resp.
pfaffian of Z) is its main antidiagonal. It is known that the z-minors (resp.
2¢t-pfaffians) of a generic ladder (resp. ladder of pfaffians) form a Grobner
basis of the ideal they generate with respect to an antidiagonal monomial
order; see [N, 3.4] and [D, 1.4].

In general, initial ideals of ideals of pfaffians of ladders are also initial
ideals of ideals of minors of ladders. For instance, in the case under
investigation, the initial ideal of P, and the initial ideal of 7, ,, are the
same.

To apply Theorem 2.5 and Corollary 2.6 to the ideals /,,, and P,,,, it is
enough to check that the main antidiagonals of the m-minors of Y, , and
of the 2m-pfaffians of L,, are M-sequences. It is easy to see that they
even form a sequence of interval type. To this end, it suffices to note that
listing the main antidiagonals as they appear in the ladder from the left to
the right, one passes from one antidiagonal to the next just by replacing an
indeterminate with a new one. This is enough to conclude that the main
antidiagonals are a sequence of interval type.



620 CONCA AND DE NEGRI

For instance, the main antidiagonals of the 3-minors of Y3, are

X31X22 %13, X31XooX14y  X31Xo3X14y  X3pX23X140  Xg2X23X14,
XapX33X14r  XgpX33X04s XgpX33X25:0  XgpX34X05,

X43X34X05, X53X34Xp5,  XgzXygXos, XgzXyqX3s-

Combining the above discussion with Theorem 2.5, Corollary 2.6, and
Proposition 3.2 and the fact that ladder ideals are prime ([N, 4.2] and [D,
1.3]), one has

THEOREM 5.2. Let I=1,, and R=K][Y,,] or I=P,, and R =
KI[L, 1 Then

(i) Iis of Grobner linear type.

(i) If 7 is an antidiagonal monomial order, then in_(I') = in_(I)' for
alli e N,

(iii)y If m =2, then gr,(R) is a Koszul algebra with respect to the
standard grading.

(iv) The Rees algebra (1) is a Cohen—Macaulay normal domain, it is
F-injective and F-rational in positive characteristic, and it has rational singu-
larities in characteristic 0.

(V) The associated graded ring gr;(R) is a normal Gorenstein domain
and IV = I' for all i € N. Furthermore, gr,(R) is F-pure and F-regular if K
is perfect of positive characteristic, and it has rational singularities in character-
istic 0.

Proof. The only statements that still need to be proved are the normal-
ity, the F-purity, the F-regularity, and the rational singularities of gr,(R).
First of all, note that gr,(R) is Gorenstein and F-injective and hence is
F-pure; see [F, 1.5]. F-regularity for Gorenstein rings is equivalent to
F-rationality [HH, 4.7]. Furthermore, F-rationality in positive characteris-
tic together with the fact that the ring gr,(R) defined over Z is Z-free
(which is easy to see) implies rational singularities in characteristic 0 [Sm,
4.3]. So it is enough to show that gr,(R) is normal (in arbitrary characteris-
tic) and that it is F-rational over a perfect field of positive characteristic.
We make use of the Fedder—Watanabe F-rationality criterion [FW, 2.13],
which says that if the base field is perfect and there exists a nonzero
element ¢ in gr,(R) such that gr,(R)[c¢~*]is regular and gr,(R)/c gr,(R) is
F-injective, then gr,(R) is F-rational.

We distinguish the determinantal from the pfaffian case. So consider
first I=1,, and R = K[Y,,,], and denote by f, the ith minor of Y,
(counting from the left to the right), by ¢, the residue class in /1% c gr,(R)
of f;, and by A; the main antidiagonal of f;. For systematic reasons, denote
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by I,,, the ideal generated by the determinant of the m X m matrix Y, , of
the first m rows and columns of X. It is easy to see that 4,,,,, has the
last-in—first-out property for k =0,...,n. Furthermore, gcd(A,,,, .,
Aypns) =1 for all k # h. By virtue of Lemma 3.5, Lemma 2.7, and
Theorem 2.5 there exists a monomial order ¢ on KI[Y,,,, T] such that
7.7,.,1..-.T,,,, do not appear in the generators of in (J + 1) =
in_(J) + in_(I). Let g be the (m — 1)-minor of X of the first m — 1 rows
and columns. The elements of the main antidiagonal of g do not appear in
the generators of in, (J +1). Weset C =T, -+ T,_y),,,18 and ¢ =t
“ t,—1m+18 Note that in,(J +1+ (C) =in,(J+ 1)+ in,(C)=
in,(J+1 + (T, --- T,,,, in(g)), and this implies that in,(J + I + (C))
is square-free and Cohen—Macaulay because in_(J + I) is so. By virtue of
[CH, 2.1], RIT]/J +1+ (C)=gr,(R)/cgr,(R) is F-injective. To show
that gr,(R)[c '] is regular, we argue by induction on n. If n =0, then
gr;(R) is a polynomial extension of K[Y,,,]1/detY,,,, and after inversion of
g, it becomes a localization of a polynomial ring. Now assume n > 0. We
claim that

grlm,l(R)[t(_nl—l)m-%—l] = gr[m,l,l(R) [t(_nl—l)m-%-l] [’T(n—l)m-%—Z L Tmn+l] .
(11)

From (11) it follows by induction that gr,(R)[c¢~*] is a localization of a
polynomial ring. So it remains to show (11). The ladder that is obtained
from Y, by deleting the last column or the last row (depending on
whether n is odd or even) is Y, _,. Denote by B the K-subalgebra of
gr; (R) generated by the residue classes of the elements of Y,,,_; and by
the ¢s. By using the linear relations among fi,_1y,+1s--+s funs+1 that
arise from the matrix X,,,, one shows that gr, (R 1),..] coincides
with B[t(’nl,l)mﬂ]. By comparing the dimensions, one sees immediately
that the only relations in B are those that define gr,mn_l(R). This proves
(12).

The pfaffian case can be treated similarly. We just indicate the main
steps. Set C = T1T,,,+1 " Typi—1ym+18, Where g is the pfaffian of the
first 2m — 2 rows and columns of L,,,, and ¢ = t15,,,1 " ty0—1)m+18-
The F-injectivity of gr,(R)/c gr,(R) follows from [CH, 2.1] and from the
fact that, by virtue of Lemma 3.5, Lemma 2.7, and Theorem 2.5, one knows
that in_(J + I + (C)) is square-free and Cohen—Macaulay for a suitable
monomial order ¢. By induction, and using the isomorphism

gern(R)[tE(i—l)m+1] = grpmn,l(R)[tE(i—l)m+1] [tZ(n—l)mH: cee t2nm+1] )

(12)

one shows that gr,(R)[c '] is a localization of a polynomial ring.
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FIGURE 5

Finally the normality of gr,(R) follows from (11) and (12) (which hold
for any field K) because (c)gr,(R) is a radical ideal. |

The ideals 1,, = I,,, and P, = P,, are the ideal of the m-minors of an
m X m + 1 generic matrix and the ideal of the 2m-pfaffians of a 2m + 1
X 2m + 1 skew-symmetric matrix. In addition to the properties listed in
Theorem 5.2, they are known to be generated by d-sequences and to be
strongly Cohen—Macaulay. We do not know whether this is true for the
ideals /,,, and P, n > L.

Note that Corollary 3.3 gives us the possibility of determining the
h-vector of the Rees algebras associated with the ideals [, and P,,,.
Unfortunately, we are not able to derive a compact expression unless
m = 2. But in this case one can also argue as follows. One observes that
the initial ideal of I,, (resp. P,,) can be interpreted as the ordinary graph
ideal associated with the suspension of a line with n + 1 points (resp.
2n + 1 points). For example, the main antidiagonals of Y,, are x,,x,,,
X1 X1z, XppX13, XapX13, Xg0Xp3, X3pX04, Xg3X,4, and they can be arranged as
in Fig. 5. The A-polynomial of the associated graded ring of the graph ideal
of the suspension of a line is determined by Examples 4.5 and 4.6. It
follows that the ith component of the A-vector of gr,(R) is

+1—j +1-2j
¥ n ; JAVRL .y J) if1=1,,
j=0
h.(gr,(R)) =
(o (R)) 2n+1—j\(2n+1-2j .
> . . ifI=r,,,
i=0 J 1=J
and its multiplicity is
+1—j ,
Z n ] ])2n+12/ if1=12n’
j=0
e(gr,(R)) =
(ar,(R)) om4 1]

X
j=0

; )22””—21' ifI=P,,.
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