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Abstract. We study the Hilbert function of the powers of homogeneous
ideals which are either Cohen-Macaulay of codimension2 or Gorenstein of
codimension3. We show that that ifI is an ideal in one of these classes and
it is of linear type then for allk the Hilbert function ofIk depends only on
the Hilbert function ofI. In other words, ifI andJ are ideals in one of the
above mentioned classes which are both of linear type and they have the
same Hilbert function then alsoIk andJk have the same Hilbert function
for all k.

Introduction

LetI be a homogeneous ideal in a polynomial ringR = K[X1, . . . , Xn] and
let PR/I(z) denote the Hilbert series ofR/I. Consider the classCI of the
ideals ofR which are homogeneous complete intersection. IfI ∈ CI, then
the degrees of a minimal set of generators ofI are uniquely determined by
PR/I(z) and they determine the Hilbert series ofR/Ik for all k ∈ N. In other
words, if I, J ∈ CI andPR/I(z) = PR/J(z), thenPR/Ik(z) = PR/Jk(z)
for all k ∈ N.

One may ask whether other classes of ideals have this property. LetC be
a class of homogeneous ideals ofR. We say thatC hasrigid powers(with
respect to Hilbert functions) if for allI, J ∈ C with PR/I(z) = PR/J(z)
thenPR/Ik(z) = PR/Jk(z) for all k ∈ N. More generally, we say that
C hasrigid t-powersif for all I, J ∈ C with PR/I(z) = PR/J(z) then
PR/Ik(z) = PR/Jk(z) for all 1 ≤ k ≤ t.
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Let us denote byCM(2) the class of the homogeneous ideals ofR
which are Cohen-Macaulay of codimension2 and byG(3) the class of the
homogeneous ideals ofR which are Gorenstein of codimension3. It is easy
to show thatCM(2) andG(3) have not rigid powers. Our goal is to determine
(big) subclasses ofCM(2) andG(3) which have rigid powers or rigidt-
powers for somet ∈ N. We denote bySk(I) thek-th symmetric power of
the idealI. Recall that an idealI is said to bet-syzygetic ifSk(I) ' Ik for
all k = 1, . . . , t. FurthermoreI is said to be of linear type ifSk(I) ' Ik for
all k ∈ N. Our main results are:

i) The class{I ∈ CM(2) : I is of linear type} has rigid powers, [see 2.3].

ii) The class{I ∈ CM(2) : I is t-syzygetic} has rigidt-powers, [see 2.4].

iii) The class{I ∈ G(3) : I is of linear type} has rigid powers, [see 4.5].

iv) The class{I ∈ G(3) : I is t-syzygetic} has rigidt-powers, [see 4.6].

v) Let C be the class of idealsI ∈ CM(2) such that theh-vector ofR/I is
1 + 2z + · · · + mzm−1 for somem ∈ N andµ(IP ) ≤ heightP for all the
prime idealP with heightP < dimR. ThenC has rigid powers, [see 3.2].

Since every idealI ∈ G(3) is 2-syzygetic, fromiv) it follows that:

vi) G(3) has rigid2-powers, [see 4.2].

This result was conjectured by Geramita, Pucci and Shin [GPS, 4.11].
Another proof of it is given independently by J.Kleppe in [Kl, Prop.2.5] by
different methods.

Actually vi) is a consequence of a stronger result; we show that for
every idealI in G(3) theh-polynomial ofR/I2 is given by(1 − zc)h(z) +
(1 + z)3h(z2)/2 − (1 − z)3h(z)2/2 whereh(z) is theh-polynomial of
R/I and c = deg h(z) + 3, see 4.1. Similarly we show that there exist
polynomial formulas for theh-polynomial of thet-power ofI in terms of
theh-polynomial ofI which work for any idealI either inCM(2) or G(3)
which ist-syzygetic.

The results ofii) andv) apply, for instance, to ideals of points ofP2.
One has that the class of the defining ideals of sets of distinct points inP2

has rigid2-powers. This result was conjectured by Geramita, Pucci and Shin
[GPS, 4.12]. Further the class of the defining ideals of

(
m
2

)
distinct points

in P2 with generic Hilbert function has rigid powers.
Conjecture [GPS, 4.11] arose in the study of the schemeGor(H) of all

the Gorenstein idealsI with a givenh-polynomialH. By results of Iarrobino
and Kanev (in the0-dimensional case) and of Kleppe (for higher dimension)
the dimension of the tangent space ofGor(H) atI can be expressed in terms
of the Hilbert function ofR/I and of the Hilbert function of the conormal
moduleI/I2. Our explicit formula relating the Hilbert series ofR/I2 to that
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of R/I for any idealI ∈ G(3) yields explicit formulas for the dimension of
Gor(H) only in terms ofH, see Sect. 5. One should compare these results
with the dimension computations in [Kl] where one has always to introduce
Betti numbers even if one knows that the final results depend only on the
Hilbert function.

Our approach to the study of the Hilbert function of the powers of an
idealI is based on the study of the bigraded structure of the Rees algebra of
I. Roughly speaking, the Hilbert series of the powers ofI are the coefficients
of the bigraded Hilbert series of the Rees algebra ofI. Hence to prove that
a certain classC of ideals has rigid powers it suffices to show that for any
I ∈ C the bigraded Hilbert series of the Rees algebra ofI is determined by
the Hilbert series ofR/I.

Acknowledgements.We thank M.Beltrametti, W.Bruns, A.Geramita, A.Iarrobino, A.Kustin,
L.Ramella, A.Tchernev, B.Ulrich for useful discussion concerning the material of this paper
and we thank J.Kleppe for sending us his preprint [Kl]. Some of the results of this paper
have been conjectured after explicit computations performed by the computer algebra system
CoCoA[CNR].

1 Notation and generalities

Let R = K[X1, . . . , Xn] be a polynomial ring over a fieldK and letM
be a finitely generated gradedR-module. We denote byHM (t) the Hilbert
function and byPM (z) the Hilbert series ofM , that isHM (t) = dimK Mt

andPM (z) =
∑

t HM (t)zt. For larget the Hilbert function ofM coincides
with a polynomial which is uniquely determined and it is called the Hilbert
polynomial ofM .

The Hilbert series can be computed from a free resolution ofM . Consider
a free resolution (minimal or not) ofM

0 →
⊕

j

R(−j)βrj → · · · →
⊕

j

R(−j)βij

→ · · · →
⊕

j

R(−j)β0j → M → 0.

Then
PM (z) =

∑
i,j

(−1)iβijz
j/(1 − z)n.

Let I be a homogeneous ideal ofR. It is well known that the Hilbert
series ofR/I can be expressed as

PR/I(z) = h(z)/(1 − z)d
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whereh(z) ∈ Z[z] and d is the Krull dimension ofR/I. The polyno-
mial h(z) is called theh-polynomial of R/I (sometime improperly the
h-polynomial ofI). Thea-invarianta(R/I) of R/I is, by definition, the
degree of the rational functionPR/I(z), that is,deg h(z) − d. It is well
known thata(R/I) is the maximum of the integersk for which the Hilbert
function and the Hilbert polynomial ofR/I do not agree atk.

Let B =
⊕

(a,b)∈N2 B(a,b) be a finitely generatedN2-gradedK-algebra
such thatB(0,0) = K. Denote by(a1, b1), . . . , (ar, br) the degrees of the
generators ofB.

The bigraded Hilbert seriesPB(z, u) of B is defined as follows:

PB(z, u) =
∑

(s,t)∈N2

dimK B(s,t)z
sut.

The seriesPB(z, u) can be expressed as a rational function

PB(z, u) = F (z, u)/
∏

i

(1 − zaiubi)

whereF (z, u) ∈ Z[z, u]. The polynomialF (z, u) is determined by any bi-
graded free resolution ofB overK[X1, . . . , Xr] where the bigraded struc-
ture onK[X1, . . . , Xr] is given by the weightsdeg Xi = (ai, bi). The
bigraded algebraB is said to bestandard (or homogeneous) if all theK-
algebra generators ofB have degree either(1, 0) or (0, 1).

1.1 The bigraded structure of the Rees algebra

In order to study the powers of the idealI, it is natural to consider the
Symmetric and the Rees algebra ofI. TheSymmetric algebraS(I) of the
R-moduleI has a natural structure ofN-graded algebra, namely

S(I) =
⊕
j∈N

Sj(I)

whereSj(I) is thej-th symmetric power ofI. SinceI is homogeneous and
Sj(I) is a quotient of the tensor productI⊗j , Sj(I) has a natural structure
of gradedR-module. HenceS(I) is aN2-graded algebra

S(I) =
⊕

(i,j)∈N2

Sj(I)i.

The Rees algebraR(I) of I is the subalgebra ofR[T ] consisting of
the polynomials

∑
ajT

j whereaj ∈ Ij . As a subalgebra of the bigraded
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algebraR[T ] = ⊕RiT
j , the Rees algebra ofI has a natural structure of

bigraded algebra
R(I) =

⊕
(i,j)∈N2

(Ij)iT
j .

The canonical epimorphism fromS(I) to R(I) is a homogeneous ho-
momorphism ofN2-graded algebras. An idealI is said to besyzygetic(or
2-syzygetic) if S2(I) ' I2. FurthermoreI is said to bem-syzygeticif
Sj(I) ' Ij for 1 ≤ j ≤ m. Finally I is of linear typeif the Rees algebra
and the Symmetric algebra ofI are isomorphic, i.e.Sj(I) ' Ij for all j.

Let nowF1, . . . , Fr be homogeneous generators of the idealI. We may
present the Rees algebraR(I) as a quotient of the polynomial ringA =
R[T1, . . . , Tr] via the epimorphism ofR-algebras

φ : A → R(I) = R[F1T, . . . , FrT ]

sendingTj to FjT . Since the degree ofFjT in R(I) is (deg(Fi), 1), we
give toA theN2-graded structure induced by the weightsdeg Xi = (1, 0)
anddeg Tj = (deg(Fj), 1) so thatφ is aN2-graded homomorphism.

It is well known (and easy to see) thatS(I) has a presentationS(I) '
A/J whereJ is the ideal generated by the polynomials

∑
DiTi such that∑

DiFi = 0.

We will make frequently use of the following formulas. SinceR(I)(s,t) =
(It)sT

t we have

PIt(z) =
∑
s≥0

dimK(It)sz
s =

∑
s≥0

dimK R(I)(s,t)z
s (1)

and

PR(I)(z, u) =
∑
t≥0

PIt(z)ut. (2)

From this we also get

PIt(z) =
1
t!

[
∂t

∂ut
PR(I)(z, u)

]
u=0

(3)

Note that a classC of ideals has rigid powers if and only if for allI, J ∈ C
with PR/I(z) = PR/J(z) one hasPR(I)(z, u) = PR(J)(z, u).

The associated graded ringG(I) =
⊕

t≥0 It/It+1 inherits formR(I)
the bigraded structure. One has exact sequences of bigraded modules and
homomorphisms

0 → IR(I) → R(I) → G(I) → 0
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and
0 → IR(I)(0,−1) → R(I) → R → 0

where in the second sequence the first map is the multiplication byT which
has bidegree(0, 1). From this one can deduce the following relation between
the bigraded Hilbert series ofR(I) and that ofG(I):

(1 − u)PR(I)(z, u) + uPG(I)(z, u) = PR(z) (4)

Let a1, . . . , ak be the degrees of the minimal generators ofI and assume
a1 ≤ a2 ≤ · · · ≤ ak. We have seen that

PR(I)(z, u) = F (z, u)/(1 − z)n
∏

i

(1 − zaiu)

whereF (z, u) ∈ Z[z, u]. We may writeF (z, u) =
∑h

i=0 gi(z)ui where
gi(z) ∈ Z[z]. Then one has

PIp(z) =
h∑

i=0

gi(z)
∑

|α|=p−i

zαa/(1 − z)n

whereα ∈ Nk, |α| denotes the sum of the components ofα andαa denotes
the scalar product. It follows then easily that

pa1 − 1 − n + height I ≤ a(R/Ip) ≤ pak + max
j

(deg gj − jak) − n

(5)

If the idealI is generated by polynomialsF1, . . . , Fr all of the same de-
gree, sayd, then the Rees algebra can be given a bigraded standard structure
by settingdeg Xi = (1, 0) anddeg FiT = (0, 1). As aboveG(I) inherits
formR(I) the bigraded standard structure. In this caseT has degree(−d, 1)
and hence the relation between the Hilbert series is:

(1 − z−du)PR(I)(z, u) + z−duPG(I)(z, u) = PR(z). (6)

In this case the Rees algebra has also aN-graded standard structure
which is obtained by settingdeg Xi = 1 anddeg FiT = 1. The relation
between the Hilbert series is:

(1 − z−d+1)PR(I)(z) + z−d+1PG(I)(z) = PR(z). (7)
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2 Cohen-Macaulay codimension 2

Let us denote byCM(2) the class of homogeneous ideals of the polynomial
ring R = K[X1, . . . , Xn] which are Cohen-Macaulay of codimension two.
It is easy to see that the classCM(2) does not have rigid powers. Take for
instance the idealsI = (X2, Y 2) andJ = (X2, XY, Y 3) of R = K[X, Y ].
They are0-dimensional and hence Cohen-Macaulay of codimension two.
They have the same Hilbert series, namelyPR/I(z) = PR/J(z) = 1+2z +
z2, butPR/I2(z) 6= PR/J2(z). In this section we will determine a subclass
of CM(2) with rigid powers.

Let I ∈ CM(2). By the Hilbert-Burch theorem,R/I has a minimal free
resolution

0 → ⊕r
i=1R(−bi)

f→ ⊕r+1
i=1 R(−ai) → R → R/I → 0

and it is generated by the maximal minors, sayD1, . . . , Dr+1, of ther ×
(r + 1) matrix H = (Fij) associated with the mapf . The degree ofDi is
ai, while the degree ofFij is bi − aj wheneverFij 6= 0. The Symmetric
algebra ofI has the presentation

S(I) = A/(G1, . . . , Gr)

whereA = R[T1, . . . , Tr+1] andGi =
∑

FijTj . We observe thatFijTj in
the bigraded algebraA has bidegree

(bi − aj , 1) + (aj , 1) = (bi, 1)

so thatGi is homogeneous of bidegree(bi, 1).
A result of Avramov (see [A, Prop.1]) gives a necessary and sufficent

condition under which the elementsG1, . . . , Gr form a regular sequence in
A . The condition is that the idealIt(H) generated by thet × t minors of
H hasheight It(H) ≥ r − t + 1 for everyt = 1, . . . , r.

We show that for anyI ∈ CM(2) with a complete intersection Symmet-
ric algebra, the bigraded Hilbert series ofS(I) can be expressed in terms of
theh-polynomial ofR/I.

Proposition 2.1 LetI ∈ CM(2) such thatS(I) is a complete intersection.
Leth(z) be theh-polynomial ofR/I and set

∑
qiz

i = h(z)(1 − z)2. Then
we have

PS(I)(z, u) =
∏

i>0(1 − ziu)qi

(1 − z)n
.

Proof. Let

0 → ⊕r
i=1R(−bi) → ⊕r+1

i=1 R(−ai) → R → R/I → 0
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be a minimal free resolution ofR/I. We are assuming that

S(I) = A/(G1, . . . , Gr)

is a complete intersection. Sincedeg(Xi) = (1, 0), deg(Ti) = (ai, 1),
deg(Gi) = (bi, 1), we have

PS(I)(z, u) =
∏r

i=1(1 − zbiu)
(1 − z)n

∏r+1
i=1 (1 − zaiu)

Note that ∑
qiz

i = h(z)(1 − z)2 = 1 −
∑

zaj +
∑

zbj .

Hence we clearly have

qi = ]{m | bm = i} − ]{m | am = i}
for everyi > 0. We may conclude that

PS(I)(z, u) =
∏

i>0(1 − ziu)qi

(1 − z)n
.

We will apply 2.1 to the study of the rigidity of the subclass ofCM(2)
consisting of the ideals of linear type. The characterization of the Cohen-
Macaulay codimension two ideals which are of linear type is due to Huneke
[Hu, Thm1.1] and [Hu1, Thm.1.16]:

Theorem 2.2 LetI ∈ CM(2) with Hilbert-Burch matrixH of sizer×(r+
1). Then the following are equivalent:
1) I is of linear type,
2) height It(H) ≥ r − t + 2 for 1 ≤ t ≤ r,
3) µ(IP ) ≤ heightP for every prime idealP with P ⊇ I.

HereIt(H) denotes the ideal generated by thet-minors ofH andµ(IP )
denotes the minimal number of generators ofIP .

From 2.1 it follows:

Theorem 2.3 Let I ∈ CM(2). Assume thatI is of linear type. Leth(z) be
theh-polynomial ofR/I and set

∑
qiz

i = h(z)(1 − z)2. Then we have

PR(I)(z, u) =
∏

i>0(1 − ziu)qi

(1 − z)n

and

PR/It(z) =
1

(1 − z)n
− 1

t!(1 − z)n

[
∂t

∂ut

∏
i>0

(1 − ziu)qi

]
u=0

.

In particular the class{I ∈ CM(2) : I is of linear type} has rigid powers.
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Proof. SinceI is of linear type thenS(I) = R(I). One knows thatdimR(I)
= dimR + 1 and henceS(I) = R(I) is a complete intersection. Then the
first assertion follows immediately from 2.1. As for the second formula, it
follows immediately from the first and from the formula (3) of Sect. 1.

As an example of application of the corollary, let us consider the follow-
ing

Example.Let I be defining ideal of a set of four distinct points inP2 which
are the complete intersection of two quadrics. In this caseI is of linear type
with h-polynomialh(z) = 1 + 2z + z2. Let nowJ be the defining ideal of
four distinct points inP2, three of them lying on a line. ThenJ is generated
by two quadrics and a cubic, hence it is not a complete inetersection but it
is of linear type (because of part 3 of 2.2). We may hence conclude that the
Hilbert functions of the powers ofI andJ coincide. We have

q(z) = (1 − z)2(1 + 2z + z2) = 1 − 2z2 + z4

hence

PR(I)(z, u) = PR(J)(z, u) =
(1 − z4u)

(1 − z)3(1 − z2u)2
.

This implies that

PIt(z) = PJt(z) =
(t + 1)z2t − tz2t+2

(1 − z)3

and

PR/It(z) = PR/Jt(z) =
1 − (t + 1)z2t + tz2t+2

(1 − z)3
=

=
1 + 2z + 3z2 + · · · + (2t)z2t−1 + tz2t

1 − z
.

�
Remark.Let X = (Xij) be ar × r + 1 matrix of distinct indeterminates
over a fieldK. LetR = K[Xij ] andI be the ideal generated by ther-minors
of X. SinceI is of linear type [EH], one has:

PR(I)(z, u) =
(1 − zr+1u)r

(1 − zru)r+1(1 − z)r(r+1)

and from this one can deduce the formula for the Hilbert series ofR/Ik

which is given in [C, Thm.3.3]. �
As an extension of 2.3 we have:
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Proposition 2.4 LetI ∈ CM(2) and assume thatI is t-syzygetic. Leth(z)
be theh-polynomial ofR/I and set

∑
qiz

i = h(z)(1 − z)2. Then we have

PR/It(z) =
1

(1 − z)n
− 1

t!(1 − z)n

[
∂t

∂ut

∏
i>0

(1 − ziu)qi

]
u=0

In particular the class{I ∈ CM(2) : I is t-syzygetic} has rigidt-powers.

Proof. Let

0 → ⊕r
i=1R(−bi) → ⊕r+1

i=1 R(−ai) → R → R/I → 0,

be the minimal free resolution ofR/I, so that

PR/I(z) =
h(z)

(1 − z)n−2 =
1 −∑r+1

i=1 zai +
∑r

i=1 zbi

(1 − z)n
.

For everyj = 1, . . . , t, we have thatIj = Sj(I) and henceSj(I) is
torsion-free. Under this assumption Tchernev [Tc, 5.4] has shown that the
symmetric power complexGtF of the complexF

F : 0 → ⊕r
i=1R(−bi) → ⊕r+1

i=1 R(−ai) → 0

is a minimal free resolution ofIt.
We claim that there exists a Cohen-Macaulay codimension2 idealJ in

a polynomial ring, sayT , such thatJ is of linear type andI andJ have the
same graded Betti numbers. Note that sinceI andJ have the same graded
Betti numbers they have also the sameh-polynomial. SinceJ j = Sj(J) for
all j ∈ N, as above we may conclude thatGtF1 is a minimal free resolution
of J t whereF1 is the complex

0 → ⊕r
i=1T (−bi) → ⊕r+1

i=1 T (−ai) → 0.

Given a complexC the complexGtC is built by canonical combinations of
symmetric and exterior powers of the modules ofC. It follows thatIt and
J t have the same graded Betti numbers. This implies that

PJt(z) = g(z)/(1 − z)m and PIt(z) = g(z)/(1 − z)n

wherem = dimT . Then the desired result follows since by 2.3 we know
that

g(z) =
1
t!

[
∂t

∂ut

∏
i>0

(1 − ziu)qi

]
u=0

.

It remains to prove the claim. We may assumea1 ≤ a2 ≤ · · · ≤ ar+1
andb1 ≤ b2 ≤ · · · ≤ br. Denote byH = (Fij) the Hilbert-Burch matrix
in the resolution ofI and setuij = bi − aj . One hasdeg Fij = uij if
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uij > 0 andFij = 0 if uij ≤ 0. In the degree matrix(uij) the entries do not
decrease if one moves down or left. Since the resolution ofR/I is minimal,
the maximal minors ofH do not vanish and henceuij > 0 for everyi, j
with j ≤ i+1, see for instance [HTV, Sect. 2]. Setαi = uii andβi = uii+1
for i = 1, . . . , r, and consider the matrix

Z =




Xα1
1 Y β1

1 0 . . . 0 0
0 Xα2

2 Y β2
2 . . . 0 0

...
...

... ...
...

...
...

...
...

... ...
...

0 0 . . . 0 Xαr
r Y βr

r




.

Now we defineJ to be the ideal ofT = K[Xi, Yi : i = 1, . . . , r] generated
by maximal minors ofZ . The idealJ has codimension two so that it is
Cohen-Macaulay. Further, sinceI andJ have the same degree matrix, they
have the same Betti numbers. In order to show thatJ is of linear type one
may use 2.2. Alternatively, one may note thatJ is generated by monomials
which form anM -sequence of interval type in the sense of [CD, Def.3.1].
Then it follows from [CD, Thm.2.4,Prop.3.2] thatJ is of linear type.

It is well known that for a Cohen-Macaulay idealI of codimension two,
being syzygetic is equivalent to be generically a complete intersection, i.e.
IP is a complete intersection for allP ∈ Min(I), see [SV, Th.2.2]. Thus
for instance any radical ideal ofCM(2) is syzygetic. IfI ∈ CM(2) is
syzygetic, then Hilbert series ofR/I2 and ofR/I are related in a nice and
somehow unexpected way.

Proposition 2.5 LetI ∈ CM(2) and assume thatI is syzygetic (i.e. gener-
ically complete intersection). Leth(z) be theh-polynomial ofR/I and set
q(z) = h(z)(1 − z)2. Then we have

PR/I2(z) − PR/I(z) = PI/I2(z) =
q(z2) − q(z)2

2(1 − z)n

=
(1 + z)2h(z2) − (1 − z)2h(z)2

2(1 − z)n−2 .

In particular theh-polynomial ofR/I2 is:

h(z) +
(1 + z)2h(z2) − (1 − z)2h(z)2

2
.

Proof. Let us denote byQ(z, u) the rational function
∏

i>0(1−ziu)qi . One
easily sees that

∂

∂u
Q(z, u) = −Q(z, u)

∑
i>0

qiz
i/(1 − ziu)
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SetF1(z, u) =
∑

i>0 qiz
i/(1 − ziu). Then we have

∂2

∂u2 Q(z, u) =
[
F1(z, u)2 − F2(z, u)

]
Q(z, u)

where

F2(z, u) =
∂

∂u
F1(z, u) =

∑
i>0

qiz
2i/(1 − ziu)2.

Hence[
∂2

∂u2 Q(z, u)
]

u=0
= (F1(z, 0)2 − F2(z, 0))Q(z, 0) =

= (q(z) − 1)2 − (q(z2) − 1) = q(z)2 − 2q(z) − q(z2) + 2.

From this we get

PR/I2(z) =
1

(1 − z)n
− q(z)2 − q(z2) − 2q(z) + 2

2(1 − z)n

=
q(z)

(1 − z)n
+

q(z2) − q(z)2

2(1 − z)n
.

SincePR/I(z) = q(z)/(1 − z)n, the first equality follows. The second and
the third one are consequences of the first becauseq(z) = h(z)(1 − z)2.

Remark.One easily see by induction that thet-th partial derivative of the ra-
tional functionQ(z, u) =

∏
i>0(1−ziu)qi can be written asQ(z, u)Wt(z, u)

whereWt(z, u) is a polynomial inF1(z, u), . . . , Ft(z, u) with integer co-
efficents and where

Fk(z, u) =
∂

∂u
Fk−1(z, u) = (k − 1)!

∑
i>0

qiz
ki/(1 − ziu)k.

SinceFk(z, 0) = (k−1)!
∑

i>0 qiz
ki = (k−1)!(q(zk)−1), it follows that

there exists a polynomial

Ct(z, x1, . . . , xt) ∈ Q[z, x1, . . . , xt]

such that for every idealI ∈ CM(2) which ist-syzygetic theh-polynomial
of R/It is given byCt(z, h(z), h(z2), . . . , h(zt)) whereh(z) is the h-
polynomial ofR/I. The polynomialCt(z, x1, . . . , xt) can be explicitely
determined by carrying out all the computations. We have already seen that

C2(z, x1, x2) = x1 + (1/2)x2(1 + z)2 − (1/2)x2
1(1 − z)2.

For instance, fort = 3 one gets:
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C3(z, x1, x2, x3) = x1 + (1/2)x2(1 + z)2 + (1/3)x3(1 + z + z2)2

−(1/2)x1x2(1 − z2)2 − (1/2)x2
1(1 − z)2

+(1/6)x3
1(1 − z)4.

�
We single out a special case of 2.5:

Corollary 2.6 i) LetI be the defining ideal of a set of distinct points inP2

and leth(z)/(1 − z) be the Hilbert series ofK[X0, X1, X2]/I. Then the
Hilbert series ofI/I2 is

PI/I2(z) =
(1 + z)2h(z2) − (1 − z)2h(z)2

2(1 − z)
.

ii) Let I andJ be the defining ideals of two sets of distinct points inP2.
If R/I andR/J have the same Hilbert function then the same is true for
R/I2 andR/J2. In other words, the class of the defining ideals of sets of
distinct points inP2 has rigid second powers.

Partii) of 2.6 has been conjectured in [GPS, 4.12]. The following ex-
ample shows that the assumptions we made in 2.4 and 2.5 are necessary.

Example.Let I andJ be the ideals ofR = K[X0, X1, X2] generated by
the maximal minors of the following matrices:(

0 X1 − 2X2 −X0
X1(X1 − X2) (X0 − X2)(X0 − 2X2) 0

)


 0 X1 − X2 X2 − X0 0

X1 2X2 − X0 0 0
0 0 (X1 − 2X2)(X1 − 3X2) −X0




Both I andJ are the defining ideals of a set of 7 points inP2. It is easy to
prove that

PR/I(z) = PR/J(z) =
1 + 2z + 3z2 + z3

1 − z
.

FurtherI is of linear type because it is an almost complete intersection while
J is syzygetic but not of linear type. By virtue of 2.5 we have

PR/I2(z) = PR/J2(z) =
1 + 2z + 3z2 + 4z3 + 5z4 + 6z5 + z6 − z7

1 − z
.
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By virtue of 2.3

PR/I3(z)

=
1 + 2z + 3z2 + 4z3 + 5z4 + 6z5 + 7z6 + 8z7 + 9z8 − 3z10

1 − z
,

and finally by direct (computer) computation

PR/J3(z)

=
1 + 2z + 3z2 + 4z3 + 5z4 + 6z5 + 7z6 + 8z7 + 9z8 − 2z10 − z11

1 − z
.

�

3 Cohen-Macaulay codimension 2 with linear presentation

We now describe another class of Cohen-Macaulay codimension2 ideals
with rigid powers. We consider the classCM(2)∗ of the homogeneous ideals
I of the polynomial ringR = K[X1, . . . , Xn] which are Cohen-Macaulay
of codimension two and such that the following conditions are satisfied:

1) I has a linear presentation, which means that the entries of the Hilbert-
Burch matrixH of I are linear forms inR.

2) I verifies the propertyGn, which meansµ(IP ) ≤ heightP for every
prime idealP ⊇ I with heightP ≤ n − 1.

Remark.Note that condition 1) (for an idealI ∈ CM(2)) is equivalent to
say that theh-vector ofR/I is of the form1 + 2z + · · · + mzm−1. If this
is the case, the size of the Hilbert-Burch matrixH is m × (m + 1) andI is
minimally generated bym + 1 forms of degreem. By 2.2, condition2) is
equivalent to say thatI is of linear type on the punctured spectrum. �

If m+1 ≤ n, then, by virtue of 2.2,I is of linear type. We know already
how the Hilbert function of the powersIk of an ideal of linear typeI is
related to that ofI. So we restrict for the moment our attention to the case
m + 1 > n.

The presentation of Rees algebra of the ideals of the classCM(2)∗ (with
m + 1 > n) has been determined by Morey and Ulrich in [MU]. Let us
recall their result. LetF1, . . . , Fm+1 be the maximal minors ofH and let

φ : S = R[T1, . . . , Tm+1] → R(I)

be the presentation ofR(I) obtained by sendingTj to FjT . SetJ = Kerφ.
Let G1, . . . , Gm be the defining equations of the Symmetric algebraS(I).
As a vector,(G1 . . . Gm) is given by

(G1 . . . Gm) = (T1 . . . Tm+1) tH.
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Let B be the (unique) matrix of linear forms inK[T1, . . . , Tm+1] such that
one has the matrix factorization

(T1 . . . Tm+1) tH = (X1 . . . Xn)B.

Note thatB has sizen × m. Now let In(B) be the ideal generated by the
maximal minors ofB. ThenJ is equal to(G1, . . . , Gm) + In(B) [MU,
Thm.1.3]. Bruns, Kustin and Miller have studied in [BKM] a class of ideals
which includesJ . SincedimR(I) = n + 1, anddimS = n + m + 1, the
idealJ has heightm, the generic height for an ideal of this type. Therefore
Corollary 4.3 in [BKM] applies and we may describe a minimal bigraded
free resolution ofS/J = R(I). This is given by

0 → Lm → Lm−1 → · · · → Ln → Ln−1 ⊕ Qn−1 → . . .

→ L1 ⊕ Q1 → Q0 → R(I) → 0

where
Qi = S(−i(m + 1),−i)(

m
i )

and

Li = ⊕a,bS(−b − m(n + a),−n − a)(
n+a−b−1

a )(n+a
b )( m

n+a)

where the sum is taken over alla ≥ 0 andb ≥ 0 such thata + b = i − 1
(note that out of the range0 ≤ a ≤ m − n and0 ≤ b ≤ n − 1 the binomial
exponent vanishes). From this we may deduce the following expression for
the bigraded Hilbert series of the Rees algebra ofI:

Theorem 3.1 Let I ∈ CM(2)∗ and assumem ≥ n. Then one has:

PR(I)(z, u) =

∑n−1
i=0 (−1)i(m

i )zi(m+1)ui+
∑

a,b≥0(−1)a+b+1(n+a−b−1
a )(n+a

b )( m
n+a)zb+m(n+a)un+a

(1 − z)n(1 − zmu)m+1 .

As a corollary we have:

Corollary 3.2 The classCM(2)∗ has rigid powers.

Proof. Let I, J ∈ CM(2)∗ and assume they have the same Hilbert series.
We have to show thatR/Ik andR/Jk have the same Hilbert series for all
k. The idealsI andJ have the sameh-polynomial, sayh(z) = 1 + 2z +
· · · + mzm−1. If m < n, thenI, J are of linear type and by virtue of 2.3
R/Ik andR/Jk have the same Hilbert series for allk. If m ≥ n, then the
desired conclusion follows immediately from 3.1.
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It is clear that 3.2 cannot be deduced neither from 2.3 sinceI is not of
linear type, nor from 2.4, where only a finite number of powers ofI are
considered.

Another important property of the ideals inCM(2)∗ is :

Corollary 3.3 Let I ∈ CM(2)∗. Then for every integert we have:

a(R/It) ≤ mt − 1.

Proof. If n ≤ m then it follows from 3.1 that the “numerator” ofPR(I)(z, u)
can be written as

∑m
j=0 gj(z)uj wheredeg gj(z) ≤ jm + n − 1 for j =

0, . . . , m. If n > m then I is of linear type and by 2.3 the “numera-
tor” of PR(I)(z, u) is (1 − zm+1u)m. This polynomial can be written as∑m

j=0 gj(z)uj wheredeg gj(z) = j(m+1) ≤ jm+n−1 for j = 0, . . . , m.
Then in both cases, by virtue of Eq.5 of Sect. 1, we have

a(R/It) ≤ tm + max
j

(deg gj(z) − jm) − n

and sincedeg gj(z) − jm ≤ n − 1 one concludes thata(R/It) ≤ mt − 1.

In some special case the formula of 3.1 simplifies:

Example.In the casen = 2, the ideals of the classCM(2)∗ are the powers
of (X1, X2). If I = (X1, X2)m then obviously

PR/It(z) =
mt−1∑
j=0

(j + 1)zj .

It is also easy to see that

PR(I)(z, u) =
1 + (m − 1 − mz)zmu

(1 − z)2(1 − zmu)2
.

�
Example.If m = n thena = 0 and0 ≤ b ≤ n − 1 so that:

PR(I)(z, u) =

n−1∑
i=0

(−1)i

(
n

i

)
zi(n+1)

[
zi(n+1)ui − zn2+iun

]
(1 − z)n(1 − znu)n+1 =

=
(1 − zn+1u)n − zn2

un(1 − z)n

(1 − z)n(1 − znu)n+1 .

�
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We have also:

Proposition 3.4 Let I be a homogeneous ideal inK[X1, X2, X3] which is
perfect of codimension2. Assume thatI verifiesG3 (i.e. I is generically a
complete intersection) and hash-polynomial1 + 2z + · · · + mzm−1. Then

PR/It(z) =
1 + 2z + · · · + (mt)zmt−1 − (t

2

)(
m
2

)
zmt

(1 − z)

and

PR(I)(z, u)

=
1 + (m − 2 − mz)zmu +

[(
m−1

2

)− m(m − 2)z +
(
m
2

)
z2
]
(zmu)2

(1 − z)3(1 − zmu)3
.

Proof. Denote byh(z) theh-polynomial ofR/It. By 3.3a(R/It) ≤ mt−1.
SincedimR/It = 1 we havedeg h(z) ≤ mt for all m. The initial degree of
It ismt. This implies thath(z) = 1+2z+· · ·+(mt)zmt−1+czmt for some
c ∈ Z. By assumptionI is generically a complete intersection. Therefore
it follows from the multiplicity formula thate(R/It) =

(
t+1
2

)
e(R/I) =(

t+1
2

)(
m+1

2

)
. Thenc =

(
t+1
2

)(
m+1

2

) − (mt+1
2

)
= −(t

2

)(
m
2

)
and this proves

the first formula. The second formula follows easily from the first because
PR(I)(z, u) =

∑
t≥0[1/(1 − z)3 − PR/It(z)]ut].

We remark that the defining idealI of a set of distinct points inP2 is
generically a complete intersection so that it verifiesG3. On the other hand,
the ideal of

(
m+1

2

)
points which are not on a curve of degreem − 1 has

h-polynomialh(z) = 1+2z + · · ·+mzm−1. Hence for such an idealI the
above proposition applies and one has:

Corollary 3.5 Let I be the defining ideal of a set of
(
m+1

2

)
distinct points

in P2 which are not on a curve of degreem − 1. Then

PR/It(z) =
1 + 2z + · · · + (mt)zmt−1 − (t

2

)(
m
2

)
zmt

(1 − z)
.

In particular the class of these ideals has rigid powers.

4 Gorenstein codimension 3

We turn now to the study of the Hilbert function of the powers of ideals
which are Gorenstein of codimension three. Let us denote byG(3) the class
of the homogeneous ideals of the polynomial ringR = K[X1, . . . , Xn]
which are Gorenstein of codimension three. It is easy to see that the class
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G(3) has not rigid powers. Take for instance the idealsI = (X3, X2Y, Y 2−
XZ, Y Z, Z2) andJ = (X2, Y 2, Z2) of R = K[X, Y, Z]. They are both
Gorenstein codimension three ideal and they have the same Hilbert series,
namelyPR/I(z) = PR/J(z) = 1+3z+3z2+z3. One has(X, Y, Z)8 ⊂ J3

andX8 6∈ I3. It follows thatPR/I3(z) 6= PR/J3(z). The goal of this section
is to determine rigid subclasses ofG(3).

LetI ∈ G(3). By virtue of Buchsbaum-Eisenbud structure theorem [BE],
one knows that there exists a skew-symmetric matrixA of size(2g + 1) ×
(2g + 1) with homogeneous entries such thatI is minimally generated by
the2g-pfaffians ofA andR/I has a minimal free resolution

0 → R(−c) → F ∗ = ⊕2g+1
i=1 R(−bi) → F

= ⊕2g+1
i=1 R(−ai) → R → R/I → 0

In [KU] Kustin and Ulrich consider the free complexDq which is built
by canonical combinations of symmetric and exterior powers of the free
modules which appear in the minimal free resolution ofI. They prove that
Dq is a minimal free resolution ofIq provided the ideals of pfaffians of
the skew-symmetric matrixA verify the “sliding grade” condition SPCr for
a certainr depending onq andg, see [KU, Def.5.9,Thm.6.2,6.17] for the
precise statements. They also show that the sliding grade condition SPCr

implies thatSq(I) ' Iq. Boffi and Sanchez also determined the resolution
of Iq in the generic case [BS].

For the second powerI2 the corrisponding sliding grade condition SPCr

is always verified. In particular everyI ∈ G(3) is 2-syzygetic, see also
[HSV, Prop.2.8]. The minimal free resolution ofI2 is given by:

0 → ∧2F ∗ → F ⊗ F ∗/η → S2(F ) → I2 → 0

wheree1, . . . , e2g+1 is the basis ofF , e∗
1, . . . , e

∗
2g+1 is the dual basis and

η = e1 ⊗e∗
1 + · · ·+e2g+1 ⊗e∗

2g+1. Since the degree ofei ⊗e∗
i isai +bi = c,

it follows that the shifts in the resolutions are:

0 →
⊕

1≤i<j≤2g+1

R(−bi − bj) →
⊕

1≤i,j≤2g+1
(i,j) 6=(1,1)

R(−ai − bj) →

→
⊕

1≤i≤j≤2g+1

R(−ai − aj) → R → R/I2 → 0.

Using this resolution we show that the Hilbert series ofR/I andR/I2

are releted by an expression which is similar to the one of 2.5.
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Proposition 4.1 LetI ∈ G(3) and leth(z) be theh-polynomial ofR/I. Set
p(z) = h(z)(1 − z)3 andc = deg p(z) = deg h(z) + 3. Then we have

PR/I2(z) − (1 − zc)PR/I(z) =
p(z2) − p(z)2

2(1 − z)n

=
(1 + z)3h(z2) − (1 − z)3h(z)2

2(1 − z)n−3 ,

and theh-polynomial ofR/I2 is

(1 − zc)h(z) + (1 + z)3h(z2)/2 − (1 − z)3h(z)2/2.

Proof. The Hilbert series ofR/I andR/I2 can be computed from the the
minimal free resolutions. One hasPR/I(z) = p(z)/(1−z)n andPR/I2(z) =
g(z)/(1 − z)n where

p(z) = 1 −
2g+1∑
j=1

zaj +
2g+1∑
j=1

zbj − zc,

and

g(z) = 1 −
∑

1≤i≤j≤2g+1

zai+aj +
∑

1≤i,j≤2g+1
(i,j) 6=(1,1)

zai+bj −
∑

1≤i<j≤2g+1

zbi+bj .

One has:

2


 ∑

1≤i≤j≤2g+1

zai+aj


 =

∑
1≤i,j≤2g+1

zai+aj +
2g+1∑
i=1

z2ai ,

2


 ∑

1≤i,j≤2g+1
(i,j) 6=(1,1)

zai+bj


 = 2


 ∑

1≤i,j≤2g+1

zai+bj


− 2zc

=
∑

1≤i,j≤2g+1

(
zai+bj + zaj+bi

)
− 2zc,

2


 ∑

1≤i<j≤2g+1

zbi+bj


 =

∑
1≤i,j≤2g+1

zbi+bj −
2g+1∑
j=1

z2bj .
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Hence

g(z) = 1 − 1
2


 ∑

1≤i≤j≤2g+1

zai+aj +
2g+1∑
i=1

z2ai




+
1
2


 ∑

1≤i,j≤2g+1

(zai+bj + zaj+bi)


− zc

−1
2


 ∑

1≤i,j≤2g+1

zbi+bj −
2g+1∑
j=1

z2bj




= 1 − zc − 1
2

∑
1≤i,j≤2g+1

(
zai+aj + zbi+bj − zai+bj − zaj+bi

)

+
1
2

2g+1∑
j+1

(z2bj − z2aj )

= 1 − zc − 1
2


2g+1∑

j=1

zbj −
2g+1∑
j=1

zaj




2

+
1
2


2g+1∑

j=1

z2bj −
2g+1∑
j=1

z2aj


.

We finally get

g(z) = 1 − zc − 1
2

(p(z) − (1 − zc))2 +
1
2
(
p(z2) − (1 − z2c)

)
=

= (1 − zc)p(z) +
p(z2) − p(z)2

2
.

The first equality follows, while the second one is an easy consequence of
the first.

As a consequence of the proposition we have:

Theorem 4.2 The classG(3) of the ideals which are Gorenstein of codi-
mension3 has rigid2-powers.

This result was conjectured (and proved for some subclasses) by Gerami-
ta, Pucci and Shin [GPS, 4.11] and it was the starting point of our analysis.
A proof of 4.2 is also given independently by J.Kleppe in [Kl, Prop.2.5] by
different methods.

From the formula of 4.1 it follows immediately that for any idealI ∈
G(3) the multiplicity e(R/I2) of R/I2 is equal to4e(R/I), a result which
is due to Herzog, see [Her].
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We prove now a result which is the analogous of 2.3. The Gorenstein
case is more complicated than the Cohen-Macaulay one because the Rees
algebra of an idealI ∈ G(3) of linear type is not a complete intersection.

The characterization of the idealsI ∈ G(3) which are of linear type is
due to Eisenbud and Huneke [EH, Thm.3.4]

Theorem 4.3 Let I ∈ G(3). The following are equivalent:
1) I is of linear type,
2) µ(IP ) ≤ heightP for every prime idealP with P ⊇ I.

The equivalent conditions of 4.3 are also equivalent to the sliding grade
condition SPC1, see [KU, Obs.6.23].

Theorem 4.4 Let I ∈ G(3). Assume thatI is of linear type and denote by
h(z) the h-polynomial ofR/I. Setp(z) =

∑
piz

i = h(z)(1 − z)3 and
c = deg h(z) + 3 = deg p(z). Then we have

PR(I)(z, u) =
∏

0<i<c(1 − ziu)pi + zcu

(1 − z)n(1 − zcu2)

Proof. By virtue of Buchsbaum and Eisenbud structure theorem there exists
a skew-symmetric matrixAof size(2g+1)×(2g+1),with homogeneous en-
tries such thatI is minimally generated by the pfaffians, sayD1, . . . , D2g+1,
of order2g of A.

FurthermoreR/I has a minimal free resolution

0 → R(−c) → ⊕2g+1
i=1 R(−bi) → ⊕2g+1

i=1 R(−ai) → R → R/I → 0

where the matrix of the map⊕2g+1
i=1 R(−bi) → ⊕2g+1

i=1 R(−ai) is A. By
duality one hasai + bi = c for all i. The Hilbert series ofR/I is

PR/I(z) = (1 −
∑

i

zai +
∑

i

zbi − zc)/(1 − z)n

and hence
p(z) = (1 −

∑
i

zai +
∑

i

zbi − zc).

Let T1, . . . , T2g+1 be indeterminates and let

(G1 . . . G2g+1) = (T1 . . . T2g+1)A.

By assumption the idealJ = (G1, . . . , G2g+1) is the defining ideal of the
Rees algebra ofI as a quotient ofS = K[X1, . . . , Xn, T1, . . . , T2g+1].
The bigraded structure ofS is given by the assignmentdeg(Xi) = (1, 0),
deg(Ti) = (ai, 1). Since the(i, j)-entry ofA has degreebi − aj , we have
deg(Gi) = (bi, 1). Note thatR(I) is a domain of Krull dimensionn + 1, J
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is a prime ideal of height2g, and henceJ is an almost complete intersection.
We claim that

2g+1∑
i=1

TiGi = 0 =
2g+1∑
i=1

DiGi.

In the following, ifM is a matrix, we denote bytM the transpose ofM . We
have

2g+1∑
i=1

TiGi = (T1 . . . T2g+1) t(G1 . . . G2g+1)

= (T1 . . . T2g+1) tA t(T1 . . . T2g+1) = 0

becauseA is skew-symmetric. This proves the first equality. As for the
second one, we have

0 = (D1 . . . D2g+1) tA

hence

(D1 . . . D2g+1) tA t(T1 . . . T2g+1) = (D1 . . . D2g+1) t(G1 . . . G2g+1)

=
2g+1∑
i=1

DiGi = 0.

Let nowE = (G1, . . . , G2g). It follows from the claim that

E + (T2g+1, D2g+1) ⊆ E : G2g+1.

SinceJ has height 2g, we may assume that any2g of the generators ofJ
form a regular sequence. Further, by virtue of [HuU, 2.12] we know that
links specialize; thus we may assume, as in the generic case, that the matrix
A is chosen so that

G1, . . . , G2g form a regular sequence in S (8)

and

E + (T2g+1, D2g+1) = E : G2g+1. (9)

We claim now that the following equalities hold:

E : T2g+1 = J (10)

[E + (T2g+1)] : D2g+1 = (T1, . . . , T2g+1). (11)

Since
∑2g+1

i=1 TiGi = 0, we haveE : T2g+1 ⊇ J. The other inclusion
follows sinceJ is a prime ideal,E ⊆ J andT2g+1 /∈ J .
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Since(T1, . . . , T2g+1) is a prime ideal inS andD2g+1 /∈ (T1, . . . , T2g+1)
while E ⊆ (T1, . . . , T2g+1), we have[E + (T2g+1)] : D2g+1 ⊆ (T1, . . . ,
T2g+1). The other inclusion follows immediately from :

Claim: LetX be a skew-symmetric matrix of sizen × n, n even, and letF
be its pfaffian. Set(G1 . . . Gn) = (T1 . . . Tn)X. ThenTiF ∈ (G1, . . . , Gn)
for everyi = 1, . . . , n.

To prove the claim one notes that there exists a matrixX∗ such that

X X∗ = F In

whereIn is the identity matrix. Then one has

(G1 . . . Gn) X∗ = (T1 . . . Tn) X X∗ = (T1 . . . Tn) F In

which proves the claim.

For simpicity let us setD = D2g+1,G = G2g+1, T = T2g+1, a = a2g+1
andb = b2g+1. We have a short exact sequence

0 → S/(E : G)(−b, −1) → S/E → R(I) → 0 (12)

where the first map is the multiplication byG. By Eq.(9) we know that
S/(E : G) = S/(E + (T, D)), and hence we have

0 → S/ [(E + (T )) : D] (−a, 0) → S/(E + (T )) → S/(E : G) → 0
(13)

where the first map is the multiplication byD. Finally we have another short
exact sequence

0 → S/(E : T )(−a,−1) → S/E → S/(E + (T )) → 0 (14)

where the first map is the multiplication byT . By Eq.(11) we have also

S/ [(E + (T )) : D] = S/(T1, . . . , T2g+1) = R,

while by Eq.(10)
S/(E : T ) = S/J = R(I).

Sincec = a + b, we get

PR(I)(z, u)
(12)
= PS/E(z, u) − zbuPS/(E:G)(z, u) =

(13)
= PS/E(z, u) − zbu

[
PS/(E+(T ))(z, u) − zaPR(z, u)

]
=

(14)
= PS/E(z, u) + zcuPR(z, u) − zbu

[
PS/E(z, u) − zauPR(I)(z, u)

]
.
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It follows that

PR(I)(z, u)(1 − zcu2) = (1 − zbu)PS/E(z, u) + zcuPR(z, u) =

(8)
=

∏2g+1
i=1 (1 − zbiu)

(1 − z)n
∏2g+1

i=1 (1 − zaiu)
+

zcu

(1 − z)n
.

Since ∑
piz

i = h(z)(1 − z)3 = 1 −
∑

zaj +
∑

zbj − zc,

we clearly have for every0 < i < c

pi = ]{m | bm = i} − ]{m | am = i}.

Hence

PR(I)(z, u)(1 − zcu2) =
∏

0<i<c(1 − ziu)pi + zcu

(1 − z)n

and this concludes the proof of the theorem.

As a corollary of the theorem we have:

Corollary 4.5 Let I ∈ G(3) be an ideal of linear type. Leth(z) be the
h-polynomial ofR/I. Setc = s + 3 andp(z) =

∑
piz

i = h(z)(1 − z)3.
Then

PR/It(z) =
1

(1 − z)n
− 1

t!(1 − z)n

[
∂t

∂ut

∏
0<i<c(1 − ziu)pi + zcu

(1 − zcu2)

]
u=0

.

In particular the class{I ∈ G(3) : I is of linear type} has rigid powers.

Remark.Let X = (Xij) be a2g + 1 × 2g + 1 skew-symmetric matrix
of indeterminates overK. Denote byR the polynomial ringK[Xij ], by
n = dim R = (2g + 1)g and byI the ideal generated by the pfaffians of
order2g of I. The idealI is of linear type [EH]. Then one has

PR(I)(z, u) =
1

(1 − z)n(1 − z2g+1u2)

[
(1 − zg+1u)2g+1

(1 − zgu)2g+1 + z2g+1u

]

Since the generators of the idealI have all degreeg, the Rees algebra has
also a bigraded andN-graded standard structure. The Hilbert series ofR(I)
with respect to the standard bigraded structure is obtained from the above
expression by replacingzgu with u. Hence it is

PR(I)(z, u) =
1

(1 − z)n(1 − zu2)

[
(1 − zu)2g+1

(1 − u)2g+1 + zg+1u

]
.
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The Hilbert series ofR(I) with respect to the standardN-graded struc-
ture is obtained from the last expression by replacingu with z. Hence it
is

PR(I)(z) =
1

(1 − z)n(1 − z3)

[
(1 − z2)2g+1

(1 − z)2g+1 + zg+2
]

=
(1 + z)2g+1 + zg+2

(1 − z)n(1 − z3)

Hence theh-polynomial ofR(I) (with respect to the standardN-graded
structure) is:

(1 + z)2g+1 + zg+2

1 + z + z2

from this it follows that the multiplicity ofR(I) (with respect to the standard
N-graded structure) ise(R(I)) = (22g+1 + 1)/3, see [HTU, Ex.3.7] �

As in the Cohen-Macaulay codimension2 case we have:

Theorem 4.6 Let I ∈ G(3) and lett ∈ N such thatIj = Sj(I) for every
j = 1, . . . , t. Let h(z) be theh-polynomial ofR/I and set

∑
piz

i =
h(z)(1 − z)3. Then we have

PR/It(z) =
1

(1 − z)n
− 1

t!(1 − z)n

[
∂t

∂ut

∏
0<i<c(1 − ziu)pi + zcu

(1 − zcu2)

]
u=0

.

In particular the class{I ∈ G(3) : I is t-syzygetic} has rigidt-powers.

Proof. As in the proof of 2.4, it is enough to show that there exists a Goren-
stein idealJ of codimension three in a suitable polynomial ringT such
thatJ is of linear type andI andJ , It andJ t have the same graded Betti
numbers.

Let

0 → R(−c) → ⊕2g+1
i=1 R(−bi) → ⊕2g+1

i=1 R(−ai) → R → R/I → 0

be a minimal free resolution ofR/I and assume thata1 ≤ a2 · · · ≤ a2g+1
andb1 ≥ b2 · · · ≥ b2g+1. Let U = (uij) be the degree matrix ofI, that is
uij = bi − aj . It is known thatuij > 0 for i + j ≤ 2g + 3, see for instance
[HTV, Sect. 5]. Then consider the skew-symmetric matrixB with entries

Bij =
{

0 if i + j < 2g + 1 or i + j > 2g + 3
X

uij

ij if 2g + 1 ≤ i + j ≤ 2g + 3 and1 ≤ i < j ≤ 2g + 1

where theXij with 2g+1 ≤ i+ j ≤ 2g+3 and1 ≤ i < j ≤ 2g+1 form a
set of3g distinct indeterminates. LetJ be the ideal ofT = K[Xij ] generated
the pfaffians of order2g of B. It is easy to see thatJ has codimension3.
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It follows that J ∈ G(3) (of T ) and thatJ andI have the same graded
Betti numbers because, by construction, they have the same degree matrix.
In order to prove thatJ is of linear type one can apply 4.3. Alternatively
one may also note that by virtue of [HT, 6.6], the pfaffians ofB form a
Gröbner basis ofJ with respect to a lexicographic term order and the initial
terms of the pfaffians are their anti-diagonal terms. It is easy to see that the
anti-diagonal terms form aM -sequence of interval type in the sense of [CD,
Def.3.1]. It follows from [CD, Thm.2.5] thatJ is of linear type. It remains
to show thatIt andJ t have the sameh-vector. Actually we will see thatIt

andJ t have the same graded Betti numbers. This will be a consequence of
the following result of Tchernev [Tc1]:

Let I ∈ G(3) and assume thatIj = Sj(I) for everyj = 1, . . . , t. Then
the Kustin-Ulrich complexDt is a (minimal) free resolution ofIt.

SinceI andJ have the same graded Betti numbers, it follows that the
Kustin-Ulrich complexesDt of I andJ are numerically the same. By the
above result the complexesDt for I andJ are free resolution ofIt andJ t,
henceIt andJ t have the same graded Betti numbers.

The formula of 4.2 for the Hilbert series ofR/I2 can be easily recov-
ered from the formula of 4.5 by computing explicitely the second partial
derivative. In details, setQ(z, u) =

∏
0<i<c(1 − ziu)pi/(1 − zcu2) and

P (z, u) = zcu/(1 − zcu2). Then note that:

∂

∂u
Q(z, u) = −Q(z, u)(

∑
1<i<c

(piz
i/(1 − ziu)) − 2zcu/(1 − zcu2))

SetF1(z, u) =
∑

1<i<c piz
i/(1 − ziu) − 2zcu/(1 − zcu2). Then we

have

∂2

∂u2 Q(z, u) =
[
F1(z, u)2 − F2(z, u)

]
Q(z, u)

where

F2(z, u) =
∂

∂u
F1(z, u) =

∑
1<i<c

(piz
2i/(1 − ziu)2)

+(−2zc − 2z2cu2)/(1 − zcu2)2.

Further

[
∂t

t!∂ut
P (z, u)

]
0

=
{

0 if t is even
z(k+1)c if t is odd,t = 2k + 1
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Hence[
∂2

∂u2 (Q(z, u) + P (z, u))
]

u=0
= (F1(z, 0)2 − F2(z, 0))Q(z, 0) =

( ∑
1<i<c

piz
i

)2

−
( ∑

1<i<c

piz
2i

)
+ 2zc

Since we have

p(z) = 1 +
∑

1<i<c

piz
i − zc

and

p(z2) = 1 +
∑

1<i<c

piz
2i − z2c

we obtain[
∂2

∂u2 (Q(z, u) + P (z, u))
]

u=0
= (p(z) − 1 + zc)2 − p(z2)

+1 − z2c + 2zc = p(z)2

−p(z2) − 2p(z)(1 − zc) + 2.

It follows that

PR/I2(z) =
1

(1 − z)n
− p(z)2 − p(z2) − 2p(z)(1 − zc) + 2

2(1 − z)n
=

= (1 − zc)PR/I(z) +
p(z2) − p(z)2

2(1 − z)n

Remark.As in the Cohen-Macaulay case, by computing the higher par-
tial derivatives one proves by induction that for allt ∈ N there exists a
polynomial

Gt(z, z1, x1, . . . , xt) ∈ Q[z, z1, x1, . . . , xt]

such that for every idealI ∈ G(3) which is t-syzygetic theh-polynomial
of R/It is given byGt(z, zc, h(z), h(z2), . . . , h(zt)) whereh(z) is theh-
polynomial ofR/I andc = deg h(z) + 3. �
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5 The dimension of some schemes

In this section, to illustrate the formulas found in the preceding sections, we
perform some computations which simplify and extend several results that
appeared recently in different papers.

Example. By using the formula of corollary 2.6 we can easily prove Propo-
sition 3.6.1 in [IK] concerning the Hilbert function of the square of the
defining ideal of a set of generic points inP2. The h-polynomial of the
defining ideal of a set of generic points inP2 is

h(z) = 1 + 2z + 3z2 + · · · + tzt−1 + azt

for somea, 0 ≤ a < t + 1. Accordingly to corollary 2.6 theh-polynomial
of R/I2 is

g(z) = h(z) +
(1 + z)2h(z2) − h(z)q(z)

2
whereq(z) = h(z)(1 − z)2 is the second difference ofh(z).

We can visualizeh(z) and its first two differences as follows:

h(z) 1 2 3 . . . t a 0 0
1 1 1 . . . 1 a − t −a 0

q(z) 1 0 0 . . . 0 a − t − 1 t − 2a a

From this we get

g(z) = h(z)

+
(1 + z)2h(z2) − h(z)(1 + (a − t − 1)zt + (t − 2a)zt+1 + azt+2)

2

=
2t−1∑
i=0

(i + 1)zi +
(

2t + 1 −
(

t + 2 − a

2

))
z2t

+(a − t + 1)az2t+1 −
(

a

2

)
z2t+2.

We remark that Proposition 3.6.1 in [IK] has been proved for points which
have generic Hilbert Function and minimum number of generators possible
for that Hilbert function. Here we prove that the formula holds for every set
of points with generic (maximal) Hilbert function. �

Next we use the formula of Proposition 4.1 to compute the dimensions
of the schemeGor(H) which parametrize homogeneous codimension3
Gorenstein idealsI in the polynomial ringR = k[X1, . . . , Xn] with h-
polynomialH =

∑s
i=0 hiz

i with hi = hs−i, h0 = 1 andh1 = 3.
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Example.Let us first consider the case whenn = 3. By results of Iarrobino
and Kanev [IK], Diesel [D, Thm.2.7] and J.Kleppe [Kl, Cor.1.5] one knows
thatGor(H) is a smooth irreducible scheme (if it is non-empty) of dimension

dim Gor(H) = HI/I2(s)

whereI is any ideal ofGor(H). By 4.1 we have

PI/I2(z) = (1 + z)3h(z2)/2 − (1 − z)3h(z)2/2 − zch(z).

Hencedim Gor(H) is equal to the coefficient ofzs in [(1+z)3H(z2)−
(1 − z)3H(z)2]/2. The coefficient ofzs in (1 + z)3H(z2)/2 is (hr +
3hr−1)/2 if s = 2r or (3hr + hr−1)/2 if s = 2r + 1. The coefficient
of zs in (1 − z)3H(z)2/2 is

∑s
i=0 hips−i/2 where

pi = (hi − 3hi−1 + 3hi−2 − hi−3)

are the coefficients of the “third difference”(1−z)3H(z) of H(z). Summing
up and taking into account the symmetry of the polynomialH(z) we have:

dim Gor(H) =
{

(hr + 3hr−1 −∑s
i=0 hipi)/2 if s is even,s = 2r

(3hr + hr−1 −∑s
i=0 hipi)/2 if s is odd,s = 2r + 1.

For instance, fors = 4, 5, . . . , 11 we have:

s dim Gor(H)
4 −1/2h2

2 + 13/2h2 − 7
5 1/2h2

2 − 1/2h2 + 5
6 −5/2h2

2 + 3h2h3 − 1/2h2
3 + 21/2h2 − 15/2h3 − 1

7 −1/2h2
2 + 1/2h2

3 + 13/2h2 − 7/2h3 − 1
8 −h2

2 + 4h2h3 − 3h2h4 + 6h2 − 5/2h2
3 + 3h3h4

−13/2h3 − 1/2h2
4 + 7/2h4 − 1

9 −h2
2 + 3h2h3 − 2h2h4 + 6h2 − 1/2h2

3 − 15/2h3
+1/2h2

4 + 9/2h4 − 1
10 −h2

2 + 3h2h3 − 3h2h4 + h2h5 + 6h2 − h2
3 + 4h3h4

−3h3h5 − 8h3 − 5/2h2
4 + 3h4h5 + 9/2h4 − 1/2h2

5 + 1/2h5 − 1
11 −h2

2 + 3h2h3 − 3h2h4 + h2h5 + 6h2 − h2
3 + 3h3h4

−2h3h5 − 8h3 − 1/2h2
4 + +7/2h4 + 1/2h2

5 + 3/2h5 − 1

Notice that the two tables in [IK, 3.5.1] are particular cases of the lines
s = 9 ands = 11 in our table. �
Example.Here we consider the following polynomial which was exten-
sively studied in [GPS]. Lett andj be positive integers such that

(
t+2
2

) ≤
j <

(
t+3
2

)
. For everym ≥ 4 set

H(z) =
t∑

i=0

(
i + 2

2

)
zi +

t+m−1∑
i=t+1

jzi +
2t+m∑
i=t+m

(
2t + m − i + 2

2

)
zi.
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Here we haves = 2t + m and, no matter whetherm is even or odd, the
coefficient ofzs in (1 + z)3H(z2)/2 is 2j. In this case we better write the
coefficient ofzs in (1 − z)3H(z)2/2 as

∑s
i=0 riqs−i/2 whereri andqi are

the coefficients of the “first” and “second ” differencer(z) = (1 − z)H(z)
andq(z) = (1− z)2H(z) of H(z) respectively. We can visualizeH(z) and
its first two differences as follows:

1 3 . . .
(

t+1
2

) (
t+2
2

)
j j j . . . j

(
t+2
2

) (
t+1
2

)
. . . 3 1

1 2 . . . t t + 1 a 0 0 . . . 0 −a −(t + 1) . . . −3 −2
1 1 . . . 1 1 b −a 0 . . . 0 −a b . . . 1 1

wherea = j − (t+2
2

)
andb = a − (t + 1). From this table we easily get

s∑
i=0

riqs−i = 1 + 2 + · · · + (t − 1) + t(a − t − 1) − a(t + 1)

−a − (t + 1) − t − (t − 1) − · · · − 2 = −t2 − 3t − 2a.

Summing up we get

dim Gor(H) = 2j +
t2 + 3t + 2a

2
= 2j +

2j − 2
2

= 3j − 1.

�
Example.We consider here the casen = 4. Hence we are dealing with
zero-dimensional schemes inP3 which are arithmetically Gorenstein. By
[Kl, Prop. 3.1] we have

dim Gor(H) = 3d − HI/I2(s − 1)

whereI is any ideal ofGor(H) andd is the degree ofR/I. Henced =∑s
i=0 hi and as before one can explicitely write down the a formula for

dim Gor(H) only in terms of thehi. For instance fors = 4, 5, . . . , 9 one
obtains:

s dimGor(H)
4 4h2 + 11
5 1/2h2

2 + 3/2h2 + 17
6 −h2

2 + h2h3 + 8h2 − 2h3 + 11
7 1/2h2

2 − h2h3 + 7/2h2 + 1/2h2
3 + 7/2h3 + 11

8 2h2h3 − 2h2h4 + 3h2 − h2
3 + h3h4 − h3 + 6h4 + 11

9 h2h3 − h2h4 + 3h2 + 1/2h2
3 − h3h4 − 5/2h3 + 1/2h2

4 + 17/2h4 + 11
�
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Example.Here we consider arithmetically Gorenstein smooth curves inP4

and for every such curveC, we determine the dimension of the Hilbert
scheme ofP4 at C in terms of theh-polynomialH(z) =

∑s
i=0 hiz

i of C.
By [KM, Example 2.9] we know that

dimHilb[C]P
4 = 5d + 1 − g + HI/I2(s − 2)

whered andg are the degree and the genus of the curve respectively. Since
d =

∑s
i=0 hi and g =

∑s
i=1(i − 1)hi again one can explicitely write

down a formula fordim Gor(H) only in terms of thehi. For instance for
s = 4, 5, 6, 7 one obtains:

s dim Gor(H)
4 3h2 + 37
5 5h2 + 43
6 −1/2h2

2 + 21/2h2 + 2h3 + 33
7 h2

2 − h2h3 + 3h2 + 9h3 + 35
�
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