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Abstract. We study the Hilbert function of the powers of homogeneous
ideals which are either Cohen-Macaulay of codimengionGorenstein of
codimensior8. We show that that if is an ideal in one of these classes and

it is of linear type then for alk the Hilbert function off* depends only on

the Hilbert function ofl. In other words, iff andJ are ideals in one of the
above mentioned classes which are both of linear type and they have the
same Hilbert function then alsi¥ and.J* have the same Hilbert function

for all k.

Introduction

Let I be ahomogeneous ideal in a polynomial rivg= K[X;, ..., X,]and
let Pr/;(2) denote the Hilbert series d@t/I. Consider the clasSZ of the
ideals of R which are homogeneous complete intersectiof.dfCZ, then
the degrees of a minimal set of generatorg afe uniquely determined by
Pr/1(z) andthey determine the Hilbert serieddf7* forallk € N. Inother
words, if I, J € CZ and Pr/;(z) = Pry;(2), thenPgx(2) = Pgyx(2)
forall £ € N.

One may ask whether other classes of ideals have this propertyheet
a class of homogeneous idealsidfWe say that hasrigid powers(with
respect to Hilbert functions) if for all, J € C with Pg,;(2) = Pg,;(2)
then Pp v (2) = Pgyx(2) for all k € N. More generally, we say that
C hasrigid t-powersif for all 1, J € C with Pg/;(2) = Pg/;(z) then
Pr(2) = Pgygr(z) foralll <k <t.
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Let us denote by’ M (2) the class of the homogeneous idealsiof
which are Cohen-Macaulay of codimensi®and by (3) the class of the
homogeneous ideals & which are Gorenstein of codimensidnit is easy
to show that M (2) andg (3) have notrigid powers. Our goal is to determine
(big) subclasses af M (2) andG(3) which have rigid powers or rigid-
powers for some € N. We denote by5;(I) the k-th symmetric power of
the ideall. Recall that an ideal is said to be-syzygetic ifS;, (1) ~ I* for
allk = 1,...,t. Furthermord is said to be of linear type i, (1) ~ I* for
all k € N. Our main results are:

i) The clasg{I € CM(2) : I is of linear typg has rigid powers, [see 2.3].
ii) The clasq I € CM(2) : I is t-syzygetic} has rigidi-powers, [see 2.4].
ii1) The clasg[I € G(3) : I is of linear typé has rigid powers, [see 4.5].
iv) The clasq I € G(3) : I is t-syzygetic} has rigidt-powers, [see 4.6].

v) LetC be the class of ideals € CM(2) such that thé:.-vector of R/1 is
1+ 22+ +mz™"! for somem € N andu(Ip) < height P for all the
prime idealP with height P < dim R. ThenC has rigid powers, [see 3.2].

Since every ideal € G(3) is 2-syzygetic, fromiv) it follows that:
vi) G(3) has rigid2-powers, [see 4.2].

This result was conjectured by Geramita, Pucci and Shin [GPS, 4.11].
Another proof of it is given independently by J.Kleppe in [KI, Prop.2.5] by
different methods.

Actually vi) is a consequence of a stronger result; we show that for
every ideall in G(3) the h-polynomial of R/I? is given by(1 — z¢)h(z) +
(14 2)3h(2?)/2 — (1 — 2)3h(2)%/2 whereh(z) is the h-polynomial of
R/I andc = degh(z) + 3, see 4.1. Similarly we show that there exist
polynomial formulas for thé-polynomial of thet-power of I in terms of
the h-polynomial of I which work for any ideal either inCM(2) or G(3)
which ist-syzygetic.

The results ofii) andv) apply, for instance, to ideals of points Bf.

One has that the class of the defining ideals of sets of distinct poif$ in
has rigid2-powers. This result was conjectured by Geramita, Pucci and Shin
[GPS, 4.12]. Further the class of the defining ideal$®f distinct points

in P2 with generic Hilbert function has rigid powers.

Conjecture [GPS, 4.11] arose in the study of the schémé H ) of all
the Gorenstein idealswith a givenh-polynomial H . By results of larrobino
and Kanev (in th@-dimensional case) and of Kleppe (for higher dimension)
the dimension of the tangent spacébfr( H) at/ can be expressed in terms
of the Hilbert function ofR/I and of the Hilbert function of the conormal
modulel /2. Our explicit formula relating the Hilbert series Bf 12 to that
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of R/I for any ideall € G(3) yields explicit formulas for the dimension of
Gor(H) only in terms ofH, see Sect. 5. One should compare these results
with the dimension computations in [KI] where one has always to introduce
Betti numbers even if one knows that the final results depend only on the
Hilbert function.

Our approach to the study of the Hilbert function of the powers of an
ideal! is based on the study of the bigraded structure of the Rees algebra of
1. Roughly speaking, the Hilbert series of the powerkarfe the coefficients
of the bigraded Hilbert series of the Rees algebra. ¢ience to prove that
a certain clasg¢ of ideals has rigid powers it suffices to show that for any
I € C the bigraded Hilbert series of the Rees algebraigfdetermined by
the Hilbert series oR? /1.

Acknowledgements\We thank M.Beltrametti, W.Bruns, A.Geramita, A.larrobino, A.Kustin,
L.Ramella, A.Tchernev, B.Ulrich for useful discussion concerning the material of this paper
and we thank J.Kleppe for sending us his preprint [KI]. Some of the results of this paper
have been conjectured after explicit computations performed by the computer algebra system
CoCoA[CNR].

1 Notation and generalities

Let R = K[X4,...,X,] be a polynomial ring over a fiel& and letM
be a finitely generated gradétimodule. We denote b¥,,(¢) the Hilbert
function and byP,,(z) the Hilbert series of\/, that isH ), (t) = dimg M,
andPy(z) = >, Hu(t)z'. For larget the Hilbert function of\/ coincides
with a polynomial which is uniquely determined and it is called the Hilbert
polynomial of M.

The Hilbert series can be computed from a free resolutidd o€onsider
a free resolution (minimal or not) a¥/

0= PR = > PR=DHM
= = P R(—5)™ - M — 0.
Then A '
Pa(z) =Y (=1)'8i27 /(1 = 2)™.
.3

Let I be a homogeneous ideal & It is well known that the Hilbert
series ofR /I can be expressed as

Pryi(z) = h(z)/(1 — 2)?
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whereh(z) € Z[z] andd is the Krull dimension ofR/I. The polyno-
mial h(z) is called theh-polynomial of R/I (sometime improperly the
h-polynomial of I). The a-invarianta(R/I) of R/I is, by definition, the
degree of the rational functioRz,;(z), that is,deg h(z) — d. It is well
known thata(R/I) is the maximum of the integefsfor which the Hilbert
function and the Hilbert polynomial a®/I do not agree ak.

LetB = EB(Q,,))GNQ By, be afinitely generateM2-gradedk -algebra
such thatB 5y = K. Denote by(ay,b1), ..., (ar,b;) the degrees of the
generators oB.

The bigraded Hilbert serieBs(z, u) of B is defined as follows:

Pp(z,u) = Z dimKB(&t)zsut.
(s,t)ENZ

The seriesPs(z, u) can be expressed as a rational function
PB(Zvu) = F(Zvu)/H(l - Zaiubi)
i

whereF(z,u) € Z[z,u]. The polynomialF'(z, v) is determined by any bi-
graded free resolution d8 over K[ X1, ..., X,] where the bigraded struc-
ture on K[X1,...,X,] is given by the weightsleg X; = (a;,b;). The
bigraded algebr® is said to bestandard (or homogeneous) if all th&'-
algebra generators @ have degree eithéi, 0) or (0, 1).

1.1 The bigraded structure of the Rees algebra

In order to study the powers of the idehlit is natural to consider the
Symmetric and the Rees algebralofThe Symmetric algebr®'(I) of the
R-module! has a natural structure d¥-graded algebra, namely

S =@ s;0)
JEN

wheresS;(I) is thej-th symmetric power of. Sincel is homogeneous and
S;(I) is a quotient of the tensor produkt’, S;(I) has a natural structure
of gradedR-module. Hences (1) is alN2-graded algebra

sy = @ s
(,5)ENZ

The Rees algebraR () of I is the subalgebra oR[T] consisting of
the polynomialsy  a;77 wherea; € I7. As a subalgebra of the bigraded
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algebraR[T] = ®R;T’, the Rees algebra df has a natural structure of
bigraded algebra
R()= P )1
(i,j)ENZ

The canonical epimorphism froi(/) to R(I) is a homogeneous ho-
momorphism ofN?-graded algebras. An ideélis said to besyzygetiqor
2-syzygetic) if So(I) ~ I%. Furthermorel is said to bem-syzygeticif
S;(I) ~ I’ for 1 < j < m. Finally I is of linear typeif the Rees algebra
and the Symmetric algebra éfare isomorphic, i.eS;(1) ~ I/ for all .

LetnowFy,. .., F,. be homogeneous generators of the idealle may
present the Rees algebRy(/) as a quotient of the polynomial ring =
R[Th, ..., T,] viathe epimorphism oR-algebras

¢: A= R(I)=R[FT,... FT)

sending7; to F;T. Since the degree df;7" in R(I) is (deg(F;),1), we
give to A the N2-graded structure induced by the weighitg X; = (1,0)
anddeg Tj = (deg(F}), 1) so thatp is aN?-graded homomorphism.

It is well known (and easy to see) théit/) has a presentatiofi(/) ~
A/J whereJ is the ideal generated by the polynomidlsD;T; such that
S D;F; = 0.

We will make frequently use of the following formulas. SirRel) , ;) =
(I*)sT* we have

Pre(z) =Y dimg(I')ez® =Y dimg R(I) (52" (1)
s>0 s>0
and
Prn(z,u) = Z Pre(z)u. (2)
t>0

From this we also get

1[0
P = [Pz @

Note that a class of ideals has rigid powersifand onlyiffordll J € C
with PR/I(Z) = PR/J(Z) one haSPR(I)(Z,U) = PR(J)(Z,U).

The associated graded ridg(1) = @, I*/I'™ inherits formR (1)
the bigraded structure. One has exact sequences of bigraded modules and
homomorphisms

0= IR(I)—>R(I)—GI)—0
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and
0—IR(I)0,-1) >R(I) > R—0

where in the second sequence the first map is the multiplicatidhvalgich
has bidegre€), 1). From this one can deduce the following relation between
the bigraded Hilbert series & (1) and that ofG(I):

(1 —u)Pr(r)(2,u) + uPg(r)(2,u) = Pr(z) 4)

Letay,...,ar be the degrees of the minimal generatorg ahd assume
a1 < ag < --- < ai. We have seen that

Pr(py(z,u) = F(z,u)/(1 - 2)" H(1 — 2%)

where F(z,u) € Z[z,u]. We may writeF(z,u) = S"_ g:(2)u’ where
gi(2) € Z[z]. Then one has

h

Pp(z) = gi(z) Y z/(1-2)"

=0 laf=p—i

wherea € N¥, |a| denotes the sum of the componenta@indaa denotes
the scalar product. It follows then easily that

pay —1 —n+ height I < a(R/I?) < paj, + max(deg g; — jar) — n
j
®)

If the ideall is generated by polynomials, . . ., F, all of the same de-
gree, sayl, then the Rees algebra can be given a bigraded standard structure
by settingdeg X; = (1,0) anddeg F;T = (0,1). As aboveG(I) inherits
form R (I) the bigraded standard structure. In this CE$ms degreé—d, 1)
and hence the relation between the Hilbert series is:

(1 — 2~ %) Prqpy(2,u) + 2~ "uPgr) (2, u) = Pr(2). (6)

In this case the Rees algebra has alsN-graded standard structure
which is obtained by settindeg X; = 1 anddeg F;T = 1. The relation
between the Hilbert series is:

(1 — 2= Py (2) + 2~ Popy (2) = Pr(2). (7)
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2 Cohen-Macaulay codimension 2

Let us denote b¢ M (2) the class of homogeneous ideals of the polynomial
ring R = K[X1,...,X,] which are Cohen-Macaulay of codimension two.
It is easy to see that the claS41(2) does not have rigid powers. Take for
instance the ideals= (X?,Y?)andJ = (X%, XY,Y3) of R = K[X,Y].
They are0-dimensional and hence Cohen-Macaulay of codimension two.
They have the same Hilbert series, nam@ly ;(2) = Pr/;(z) = 1+2z+
22, but Pr,2(2) # Prys2(2)- In this section we will determine a subclass
of CM(2) with rigid powers.

Let] € CM(2). By the Hilbert-Burch theoren®?/I has a minimal free
resolution

0 — @, R(=b;) L &I R(~a;) > R — R/T — 0
and it is generated by the maximal minors, 42y, ..., D,1, of ther x
(r+ 1) matrix H = (Fj;) associated with the mafy The degree oD; is
a;, while the degree of; is b; — a; wheneverF;; # 0. The Symmetric
algebra ofl has the presentation

S(I) = A/(Gh,...,Gy)

whereA = R[Ti, ..., T,41] andG; = ) Fj;T;. We observe thak;; T} in
the bigraded algebra has bidegree

(bi — aj, 1) + (aj, 1) = (bi, 1)

so thatGG; is homogeneous of bidegrék, 1).

A result of Avramov (see [A, Prop.1]) gives a necessary and sufficent
condition under which the elemerts, . . ., G, form a regular sequence in
A . The condition is that the ided} (/) generated by the x ¢ minors of
H hasheight I[,(H) >r —t+ 1foreveryt =1,...,r.

We show that for any € CM (2) with a complete intersection Symmet-
ric algebra, the bigraded Hilbert seriesXifl) can be expressed in terms of
the h-polynomial of R/1.

Proposition 2.1 Let] € CM(2) such thatS(I) is a complete intersection.
Leth(z) be theh-polynomial ofR/I and setd_ ¢;2* = h(z)(1 — z)2. Then

we have '
[Liso(L — 2'u)®
(1—2)"

PS(I)(Z7U) -

Proof. Let

0— ®/_ R(~b;) = &/ R(—a;) = R— R/I =0
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be a minimal free resolution d?/I. We are assuming that
S(I)=A/(Gy,...,Gy)

is a complete intersection. Sineeg(X;) = (1,0), deg(T;) = (a4 1),

deg(G;) = (b;, 1), we have

I, (21— 2bi)
Note that

Zqizi =h(z)(1-2)?%=1- Zzaj + Zzbﬂ'.
Hence we clearly have
Qi:ﬁ{m‘bm:i}_ﬁ{m|am:i}
for everyi > 0. We may conclude that

[Tiso(1 — 2'u)
(1—2)"

We will apply 2.1 to the study of the rigidity of the subclas<Co¥1(2)
consisting of the ideals of linear type. The characterization of the Cohen-
Macaulay codimension two ideals which are of linear type is due to Huneke
[Hu, Thml.1] and [Hul, Thm.1.16]:

Theorem 2.2 LetI € CM(2) with Hilbert-Burch matrixH of sizer x (r+
1). Then the following are equivalent:

1) I is of linear type,

2) height L(H) >r—t+2for1 <t <,

3) u(Ip) < height P for every prime ideaP with P D I.

Ps(ry(z,u) =

Herel,(H) denotes the ideal generated by thminors of H andu(Ip)
denotes the minimal number of generatord of
From 2.1 it follows:

Theorem 2.3 LetI € CM(2). Assume that is of linear type. Let(z) be
the h-polynomial ofR/I and setd_ ¢;2* = h(z)(1 — z)2. Then we have

[Liso(1— Zi)%

PR(I)(Zau) = (1 — Z)n
and
1 1 ot ,
: — _ I AL A
Prye) = g— ~ag—ap [aut 110 == ] By

In particular the clas§ I € CM(2) : I is of linear typg has rigid powers.
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Proof. Sincel isoflineartypethe (/) = R(I).Oneknows thatim R (1)

= dim R + 1 and hence (1) = R(I) is a complete intersection. Then the
first assertion follows immediately from 2.1. As for the second formula, it
follows immediately from the first and from the formula (3) of Sect. 1.

As an example of application of the corollary, let us consider the follow-
ing
Example.Let I be defining ideal of a set of four distinct pointsi which
are the complete intersection of two quadrics. In this dasef linear type
with h-polynomialh(z) = 1+ 2z + 22. Let now.J be the defining ideal of
four distinct points ifP2, three of them lying on a line. Thehis generated
by two quadrics and a cubic, hence it is not a complete inetersection but it
is of linear type (because of part 3 of 2.2). We may hence conclude that the
Hilbert functions of the powers df and.J coincide. We have

q2)=(1—22A+22+2%)=1-222+ 24
hence

1 -z
Pr(n)(z,u) = Pryy(z,u) = (1 _(2)3(1 — )z/Qu)T

This implies that

(t+1)2% — 2212

PIt(Z) = PJt(Z) = (1 — 2)3

and 2t 2142
1—(t+1)2%" + ¢+
PR/It(z) :PR/Jt(Z) = (1_2)3 =

14224322+ + (2022 2
N 1—2 ’
®
Remark.Let X = (X;;) be ar x r + 1 matrix of distinct indeterminates

overafieldK. LetR = K[X;;] andI be the ideal generated by theninors
of X. Sincel is of linear type [EH], one has:

B (1 o zr+1u)r
Pr(p(z,u) = (L= 2a) (1= 2) 0D

and from this one can deduce the formula for the Hilbert serieB/dF
which is given in [C, Thm.3.3]. ©

As an extension of 2.3 we have:
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Proposition 2.4 Let] € CM(2) and assume thdtis ¢t-syzygetic. Lek(z)
be theh-polynomial ofR/I and sef}_ ¢;2* = h(z)(1 — z)2. Then we have
1 1 o' ;

P t = — — 1 — 2%u)%
R1E) = G T A= [aut M( Zu) ]

u=0

In particular the clasg{I € CM(2) : I is t-syzygeti¢ has rigid¢t-powers.
Proof. Let

0 — ®_R(~b;) = &1 R(—a;) - R— R/T — 0,
be the minimal free resolution d?/I, so that

k() 1= av Y ah
Ppyi(z) = (1—z)m2 (1—2)n :

For everyj = 1,...,t, we have that’ = S;(I) and henceS;(I) is
torsion-free. Under this assumption Tchernev [Tc, 5.4] has shown that the
symmetric power compleg! F' of the complext’

F:0— @ R(—b;) = O R(—a;) = 0

is a minimal free resolution af’.

We claim that there exists a Cohen-Macaulay codimenZioleal J in
a polynomial ring, say’, such that/ is of linear type and and.J have the
same graded Betti numbers. Note that sih@nd.J have the same graded
Betti numbers they have also the satrpolynomial. Since/? = S;(J) for
all j € N, as above we may conclude tig#t; is a minimal free resolution
of J whereF} is the complex

0— @I T(~b;) = &2 T(~a;) — 0.

Given a complexC the complexgtC is built by canonical combinations of
symmetric and exterior powers of the modules’bflt follows that 7t and
J! have the same graded Betti numbers. This implies that

Pp(z) = g(=)/(1— 2™ and Pp(z) = g(2)/(1— 2)"

wherem = dim T'. Then the desired result follows since by 2.3 we know
that

T
>0

1| o ,
9(=) = [au (1- u>]
u=0
It remains to prove the claim. We may assume< as < -+ < apq1
andb; < by < --- < b,. Denote byH = (F;;) the Hilbert-Burch matrix
in the resolution off and setu;; = b; — a;. One hasdeg F;; = w;; if
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ui; > 0andFj; = 0if u;; < 0. Inthe degree matriku;;) the entries do not
decrease if one moves down or left. Since the resolutidi/dfis minimal,
the maximal minors off do not vanish and henag; > 0 for everysi, j
with j < i+ 1, see forinstance [HTV, Sect. 2]. Set = u;; ands; = w11

fori =1,...,r, and consider the matrix
Xy 0 ... 0 0
0 X2v> ... 0 0
7 S o
0 0 ... 0 XY’
Now we defineJ to be the ideal of = K[X;,Y; : i = 1,...,r] generated

by maximal minors ofZ . The idealJ has codlmenS|on two so that it is
Cohen-Macaulay. Further, sinéeand.J have the same degree matrix, they
have the same Betti numbers. In order to show thi of linear type one
may use 2.2. Alternatively, one may note thiat generated by monomials
which form aniM/-sequence of interval type in the sense of [CD, Def.3.1].
Then it follows from [CD, Thm.2.4,Prop.3.2] thdtis of linear type.

Itis well known that for a Cohen-Macaulay ideabf codimension two,
being syzygetic is equivalent to be generically a complete intersection, i.e.
Ip is a complete intersection for at € Min(I), see [SV, Th.2.2]. Thus
for instance any radical ideal ¢fM(2) is syzygetic. If] € CM(2) is
syzygetic, then Hilbert series &/1? and of R/ are related in a nice and
somehow unexpected way.

Proposition 2.5 Let] € CM(2) and assume thdtis syzygetic (i.e. gener-
ically complete intersection). Lét(z) be theh-polynomial ofR/I and set
q(z) = h(2)(1 — 2)%2. Then we have

2?) — q(z)?
Pryp2(2) — Pryi(2) = Pryp2(2) = (w

(14 2)2h(22) — (1 — 2)%h(2)?
2(1 — z)n—2 '

In particular theh-polynomial ofR/I? is:
2 2y (1 \2 2
hz) + (1+ 2)°h(2*) . (1 —2)%h(z) ‘

Proof. Letus denote by)(z, u) the rational functiof [, ,(1 — z*u)%. One
easily sees that

éQ(zu zqul /(1 — Z'u)

ou
>0
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SetFi(z,u) = Y,.0qz"/(1 — z'u). Then we have

0? 2
5@ u) = [Fi(z.0)? - Bz, w)] Q(zu)

where
Fy(z,u) = —Fl (z,u) Z:qZ 22/
>0
Hence
62
0G| = (07 - R 0)Q(0) -
u=0

= (a(2) = 1)* = (a(z*) = 1) = q(2)* — 2q(=) — q(=*) +2.

From this we get

1 q(z?) -2 2
PR/IQ(Z) = (1—2’)" - ( ) El ) ) Q( )+
A=), =) - qz?

T =2 21— 2)m
SincePg;(z) = q(2)/(1 — 2)", the first equality follows. The second and
the third one are consequences of the first becaise= h(z)(1 — z)2.

Remark.One easily see by induction that théh partial derivative of the ra-
tional functionQ(z, u) = [],-o(1—2"u)% canbewritten a@(z, u)W;(z, u)
whereW,(z, u) is a polynomial inF (z,u), ..., Fi(z,u) with integer co-
efficents and where

B A A
Fi(z,u) = %FkA(ZaU) = (k=D g1 - 2'u)*
i>0

SinceFy(z,0) = (k—1)!' >, @i2* = (k—1)!(g(z*) — 1), it follows that
there exists a polynomial

Ci(z,x1,..., 1) € Qlz,x1, ..., x¢]

such that for every idedl € CM (2) which ist-syzygetic theé:-polynomial

of R/I is given by Cy(z, h(2), h(z%),...,h(z!)) where h(z) is the h-

polynomial of R/I. The polynomialCy(z, x1,...,z;) can be explicitely

determined by carrying out all the computations. We have already seen that
Co(z,x1,20) = 21 + (1/2)29(1 4 2)% — (1/2)23(1 — 2)2

For instance, fot = 3 one gets:



Hilbert function of powers of ideals 765

Cg(z, 131,1‘2,1’3) =21+ (1/2)1‘2(1 + 2)2 + (1/3)1’3(1 +z+ 22)2
—(1/2)ra(1 - 2)% — (1/2)23(1 - 2)?

+(1/6)x3(1 — 2)*.

We single out a special case of 2.5:

Corollary 2.6 i) LetI be the defining ideal of a set of distinct pointsh
and leth(z)/(1 — z) be the Hilbert series o[ Xy, X1, X2]|/I. Then the
Hilbert series off /12 is

(14 2)%h(2%) — (1 — z)2h(z)2'

PI/I2(Z): 2(1_2)

i7) Let I and.J be the defining ideals of two sets of distinct point®ih

If R/I and R/J have the same Hilbert function then the same is true for
R/I? and R/J?. In other words, the class of the defining ideals of sets of
distinct points inP? has rigid second powers.

Parti?) of 2.6 has been conjectured in [GPS, 4.12]. The following ex-
ample shows that the assumptions we made in 2.4 and 2.5 are necessary.

Example.Let I and.J be the ideals ok = K[Xy, X1, X2] generated by
the maximal minors of the following matrices:

0 X1 —2X; ~Xo
X1(X1 — X3) (X0 — X2)(Xo—2X3) 0
0 X1—Xo Xo — X 0

X1 2X5 — X, 0 0

0 0 (X1—2X5)(X1 —3X3) —Xo

Both I and.J are the defining ideals of a set of 7 pointsHA. It is easy to
prove that

14224322423
Pri(2) = Pryj(2) = T :
Further! is of linear type because itis an almost complete intersection while
J is syzygetic but not of linear type. By virtue of 2.5 we have

14224322 4+423 + 522 +62° 4 26 — 27

Pryr2(2) = Ppyp2(z) = T :
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By virtue of 2.3

Pr3(2)
14224322 4+423 + 52 +62° + 726 + 827 4928 — 3210
- 1—=z2 ’
and finally by direct (computer) computation
PR/J3 (Z)
- 14224322 +423 + 524 4625+ 720 + 827 4928 — 2210 — 211
1—=2

©

3 Cohen-Macaulay codimension 2 with linear presentation

We now describe another class of Cohen-Macaulay codimensideals

with rigid powers. We consider the clag81(2)* of the homogeneous ideals
I of the polynomial ringk = K[Xj, ..., X,] which are Cohen-Macaulay
of codimension two and such that the following conditions are satisfied:

1) I has a linear presentation, which means that the entries of the Hilbert-
Burch matrixH of I are linear forms inR.

2) I verifies the property,,, which meansg(Ip) < height P for every
prime idealP D I with height P < n — 1.

Remark.Note that condition 1) (for an idedl € CM(2)) is equivalent to
say that theh-vector of R/ I is of the form1 + 2z + - - - + mz™" L. If this
is the case, the size of the Hilbert-Burch matkixis m x (m + 1) and! is
minimally generated byn + 1 forms of degreen. By 2.2, conditior2) is
equivalent to say that is of linear type on the punctured spectrum. ©

If m+1 < n, then, by virtue of 2.2[ is of linear type. We know already
how the Hilbert function of the powerE’ of an ideal of linear typd is
related to that of . So we restrict for the moment our attention to the case
m+1>n.

The presentation of Rees algebra of the ideals of the €l&$&2)* (with
m + 1 > n) has been determined by Morey and Ulrich in [MU]. Let us
recall their result. Lef, . . ., F,,+1 be the maximal minors off and let

¢:S:R[T17"'aTm+l} _>,R’(I)

be the presentation & () obtained by sendin@; to F;T". SetJ = Ker ¢.
LetGy,..., Gy, be the defining equations of the Symmetric alge®fa).
As a vector(G; ...Gp,) is given by

(G1...Gp) = (Ty...Trny1) "H.
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Let B be the (unique) matrix of linear forms & |71, . . ., T),,+1] such that
one has the matrix factorization

(T ... Tmy1) 'H = (Xy...X,)B.

Note thatB has sizen x m. Now let I,,( B) be the ideal generated by the
maximal minors ofB. ThenJ is equal to(G1,...,Gy) + I,(B) [MU,
Thm.1.3]. Bruns, Kustin and Miller have studied in [BKM] a class of ideals
which includes/. SincedimR(I) = n + 1, anddim S = n + m + 1, the
idealJ has heighin, the generic height for an ideal of this type. Therefore
Corollary 4.3 in [BKM] applies and we may describe a minimal bigraded
free resolution of5/J = R(I). This is given by

O—>Ly—>Lp1— - —Ly—>Ly 10Qn_1—...
- L1 ®Q1 — Qo —R(I)—0

where
Qi = S(=i(m +1),=i)(?)
and

L = ®qpS(—b—m(n+a),—n — o) TG

where the sum is taken over all> 0 andb > O suchthats +b =7 — 1

(note that out of the range< a < m —n and0 < b < n — 1 the binomial
exponent vanishes). From this we may deduce the following expression for
the bigraded Hilbert series of the Rees algebra: of

Theorem 3.1 Let/ € CM(2)* and assumen > n. Then one has:
Prn(z,u) =

T D () g (1) () (1) ()b

(1 _ Z)n(l _ Zmu)m-‘rl

As a corollary we have:
Corollary 3.2 The clas€ M (2)* has rigid powers.

Proof. Let I, J € CM(2)* and assume they have the same Hilbert series.
We have to show thak/I* and R/J* have the same Hilbert series for all
k. The ideals/ and.J have the samé-polynomial, sayh(z) = 1 + 2z +
-+ mz™ L If m < n, thenl, J are of linear type and by virtue of 2.3
R/I* and R/ J* have the same Hilbert series for &llIf m > n, then the
desired conclusion follows immediately from 3.1.
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It is clear that 3.2 cannot be deduced neither from 2.3 sinsenot of
linear type, nor from 2.4, where only a finite number of powerd aire
considered.

Another important property of the ideals@\(2)* is :

Corollary 3.3 LetI € CM(2)*. Then for every integerwe have:
a(R/T") < mt — 1.

Proof. If n < mthenitfollows from 3.1 thatthe “numerator” &%z ;) (2, u)

can be written a3 7", g;(2)u! wheredeg gj(z) < jm +n —1for j =

0,...,m. If n > m then[ is of linear type and by 2.3 the “numera-

tor” of Pr(p)(z,u) is (1 — z™1u)™. This polynomial can be written as

Z;n:o g;(z)w/ wheredeg g;(z) = j(m+1) < jm+n—1forj =0,...,m.
Then in both cases, by virtue of Eq.5 of Sect. 1, we have

a(R/T") < tm + max(deg gj(z) — jm) — n
J

and sinceleg g;(z) — jm < n — 1 one concludes that(R/I') < mt — 1.
In some special case the formula of 3.1 simplifies:

Example.In the case: = 2, the ideals of the claggdM (2)* are the powers
of (X1, Xs). If I = (X3, X2)™ then obviously

mt—1

Prip(2)= > (j+1)7.

j=0
Itis also easy to see that

1+ (m—1—mz)z"u
Prin(&w) = =45 —map

Example.If m = nthena = 0and0 < b <n — 1 so that:

n—1
Z(_l)i (”) Liln+1) [Zi(n+1)ui _ iy
(3
1=0
P’R(I)(Z’u) = (1 — z)n(l — Znu)nJrl =

(1= ) — 2y (1 — z)"
(1 —2)"(1 — zru)ntl
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We have also:

Proposition 3.4 LetI be a homogeneous ideal K[ X1, X2, X3] which is
perfect of codimensioR. Assume that verifiesGs (i.e. I is generically a
complete intersection) and haspolynomiall + 2z + - - - +mz™"!. Then

z... mi)zmt—1 _ () (M) ,mi
PR/If(Z): 1+22+ +((1t)_ Z) (2)(2)

and

Prn(z,u)
1+ (m—2—mz)z"u+ [(m2—1) —m(m —2)z + (3)z%] (z™u)?
B (1—2)3(1 = zmu)3 '

Proof. Denote by (z) theh-polynomial ofR/I*. By 3.3a(R/I") < mt—1.
Sincedim R/I' = 1 we haveleg h(z) < mt for all m. The initial degree of
Itismt. Thisimpliesthat(z) = 14+2z+- - -+ (mt) 2™~ 4cz™ for some

¢ € Z. By assumptiorY is generically a complete intersection. Therefore
it follows from the multiplicity formula thae(R/I*) = ("3')e(R/I) =
("51) ("3")- Thene = (51) (")) — (™5") = —(3) (%) and this proves
the first formula. The second formula follows easily from the first because

Prny(z,u) = 32150[1/(1 = 2)% = Prype(2)]u'].

We remark that the defining ideélof a set of distinct points i®P? is
generically a complete intersection so that it verifigs On the other hand,
the ideal of(m;’l) points which are not on a curve of degree— 1 has
h-polynomialh(z) = 142z +- - - +mz™"L. Hence for such an idedlthe

above proposition applies and one has:

Corollary 3.5 Let I be the defining ideal of a set ()’I”S’l) distinct points
in P2 which are not on a curve of degree — 1. Then

Z4 ... mt)zmt—1 _ (b)) (M) ,mi
P () = L2 +<(1t)z) (2) (5)=""

In particular the class of these ideals has rigid powers.

4 Gorenstein codimension 3

We turn now to the study of the Hilbert function of the powers of ideals
which are Gorenstein of codimension three. Let us denotgBythe class

of the homogeneous ideals of the polynomial riRg= K[Xj, ..., X,]

which are Gorenstein of codimension three. It is easy to see that the class
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G(3) has notrigid powers. Take for instance the iddais (X3, X2Y, Y2 —
XZ,YZ,Z% andJ = (X2%,Y2, Z%) of R = K[X,Y, Z]. They are both
Gorenstein codimension three ideal and they have the same Hilbert series,
namelyPg,;(z) = Pgryj(z) = 14+32+32>+2%. OnehagX,Y, Z)* C J*
andX® ¢ I°. Itfollows thatPp 3(z) # Pg,s(z). The goal of this section

is to determine rigid subclasses®f3).

Let] € G(3). By virtue of Buchsbaum-Eisenbud structure theorem [BE],
one knows that there exists a skew-symmetric matrof size(2g + 1) x
(2¢ + 1) with homogeneous entries such tlias minimally generated by
the 2¢g-pfaffians ofA and R/ I has a minimal free resolution

0= R(—¢) = F* = @XT'R(~b;)) » F
— ¥ R(~a;) > R— R/I —0

In [KU] Kustin and Ulrich consider the free compléX? which is built
by canonical combinations of symmetric and exterior powers of the free
modules which appear in the minimal free resolutiod of hey prove that
D7 is a minimal free resolution of? provided the ideals of pfaffians of
the skew-symmetric matriA verify the “sliding grade” condition SPGor
a certainr depending oy andg, see [KU, Def.5.9,Thm.6.2,6.17] for the
precise statements. They also show that the sliding grade condition SPC
implies thatS,(I) ~ I9. Boffi and Sanchez also determined the resolution
of I in the generic case [BS].

For the second powe? the corrisponding sliding grade condition SPC
is always verified. In particular every € G(3) is 2-syzygetic, see also
[HSV, Prop.2.8]. The minimal free resolution 61 is given by:

0= A°F* 5 FQF*/n— S3(F) = I* =0

whereey, ..., ezg41 is the basis off, e7, ..., €5 4 is the dual basis and
n=e®ej+-- -+e2g+1®e§g+1. Since the degree ef®e; isa; +b; = c,
it follows that the shifts in the resolutions are:

0+ P Rbi-b)—> P R(—ai—1b)—
1<i<j<2g+1 1<i,j<2g+1
(1,5)#(1,1)

- @ R(-ai—a;) > R— R/T* 0.
1<i<j<2g+1

Using this resolution we show that the Hilbert series?gfl and R/ 1>
are releted by an expression which is similar to the one of 2.5.
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Proposition 4.1 Let] € G(3) and leth(z) be theh-polynomial ofR/I. Set
p(2) = h(2)(1 — 2)? andc = deg p(z) = deg h(z) + 3. Then we have

(%) — p(2)*

2(1 —2)»

(1+2)°h(2?) — (1 — 2)°h(2)
2(1 — z)n—3 ’

Pryp2(2) — (1 = 2°)Pryr(2) =

and theh-polynomial ofR/I? is
(1= 29h(z) + (1 +2)°h(2%)/2 = (1 = 2)°h(2)* /2.
Proof. The Hilbert series of2/I and R/ I? can be computed from the the

minimal free resolutions. One h&%;(2) = p(z)/(1—2)" andPg/2(2) =
g(z)/(1 — z)™ where

2g+1 2g+1
p(z)=1- E 2% + E 20— 2°,
7=1 7j=1
and
g(z) =1— E L@ita; + E Zai+bj _ E Zbi‘i’bj‘
1<i<j<2g+1 1<i,j<2g+1 1<i<j<2g+1
=29 GHZEL) 1=
One has:
2g+1
2 Z Lita; | — Z Laitaj 4 Z 220%’
1<i<i<2g+1 1<4,5<2g+1 i=1

2 Z 2%thi | =9 Z 2%thi | _9,c

1<i,j<2g+1 1<4,5<2g+1

(4,5)#(1,1)
— § (Zai+bj 4 Zaj+b¢) _ 2207
1<ij<2g+1

2g+1

j=1

1<i<j<2g+1 1<i,j<2g+1
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Hence
2g+1
g(z)=1-— Z 20T 4 Z 22%
1<i<j<2g+1 i=1

Z (Zai-l—b]' + Zaj+bi) _ ZC

+
DN | =

1<4,j<2g+1
1 2g+1
_ Z Zbr‘rbj _ § Zij
2
1<i,j<2g+1 j=1
— 1 C 1 Z (zai+aj + Zbi+bj _ Zai"!‘bj _ Zaj+bi>
2 1<4,j<2g+1
1 2g+1
4= (ZQb]- _ Z2aj)
2 <4
Jj+1
2g+1 2g+1 2 2g+1 2g+1
c 1 b a; 1 2b; 2a;
1 DO W RS 1 DR o
2\ 4 ’ 2\ “ ,
Jj=1 Jj=1 Jj=1 Jj=1
We finally get

[
—~
!
—~~
N
N
~
|
—~~
—_
|
N
[\
o
~
~—
I

9(2) =1 -2 — 2 (p(z) — (1— =) +

The first equality follows, while the second one is an easy consequence of
the first.

As a consequence of the proposition we have:

Theorem 4.2 The classj(3) of the ideals which are Gorenstein of codi-
mensiorB has rigid 2-powers.

This result was conjectured (and proved for some subclasses) by Gerami-
ta, Pucci and Shin [GPS, 4.11] and it was the starting point of our analysis.
A proof of 4.2 is also given independently by J.Kleppe in [KI, Prop.2.5] by
different methods.

From the formula of 4.1 it follows immediately that for any iddak
G(3) the multiplicity e(R/I?) of R/I? is equal tote(R/I), a result which
is due to Herzog, see [Her].
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We prove now a result which is the analogous of 2.3. The Gorenstein
case is more complicated than the Cohen-Macaulay one because the Rees
algebra of an ideal € G(3) of linear type is not a complete intersection.

The characterization of the idealsc G(3) which are of linear type is
due to Eisenbud and Huneke [EH, Thm.3.4]

Theorem 4.3 Let] € G(3). The following are equivalent:
1) I is of linear type,
2) u(Ip) < height P for every prime ideaP with P D 1.

The equivalent conditions of 4.3 are also equivalent to the sliding grade
condition SPE, see [KU, Obs.6.23].

Theorem 4.4 Let € G(3). Assume that is of linear type and denote by
h(z) the h-polynomial of R/I. Setp(z) = > piz* = h(z)(1 — 2)3 and
¢ = degh(z) + 3 = deg p(z). Then we have

HO<Z<C( ziu)pi + 2%u
(1—2)"(1 — zcu?)

Pr(n(z,u) =

Proof. By virtue of Buchsbaum and Eisenbud structure theorem there exists
askew-symmetric matrid of size(2g+1) x (2g+1), withhomogeneous en-
tries such thaf is minimally generated by the pfaffians, sy, . . ., Dag11,
of order2g of A.

FurthermoreR /I has a minimal free resolution

0 — R(—c) = &2 R(—b;) —» &2I'R(~a;) = R— R/I -0

where the matrix of the map??I' R(—b;) — @?T'R(—a;) is A. By
duality one has; + b; = ¢ for all 7. The Hilbert series oR/I is

PR/I 1—22“1—&—22 1—Z)

and hence

p(z)=(1- Zzai + Zzbi — 2.

LetTy,...,Tog41 be indeterminates and let

(Gl e Ggngl) = (T1 A ng+1)A.

By assumption the ideal = (G, ..., Ga4+1) is the defining ideal of the
Rees algebra of as a quotient ofS = K[X;,...,X,,T1,...,Thgt1].
The bigraded structure ¢ is given by the assignmendeg(X;) = (1,0),
deg(T;) = (a4, 1). Since the(i, j)-entry of A has degreé; — a;, we have
deg(G;) = (b;,1). Note thatR(I) is a domain of Krull dimension + 1, J
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is a prime ideal of heightg, and hencé is an almost complete intersection.

We claim that
2g+1 2g+1

Z T,G; =0 = Z D;G;.
=1 =1

In the following, if M is a matrix, we denote byl the transpose af/. We
have

2g+1
> TGi=(T1... Togr1) "(Gr... Gagi1)
=1

=(Ty...Togt1) "ANTy .. . Thgr1) =0

becaused is skew-symmetric. This proves the first equality. As for the
second one, we have
0= (Di...Dagy1) A

hence
(Dy...Dogy1) "ANTy ... Togy1) = (Dy ... Dagi1) “(Gi ... Gagyi1)
2g+1
= DG =0.
=1
LetnowE = (G, ..., Gyy). It follows from the claim that

E + (Tagy1, Dagi1) € E: Gogya.

SinceJ has height 2g, we may assume that apyof the generators of

form a regular sequence. Further, by virtue of [HuU, 2.12] we know that
links specialize; thus we may assume, as in the generic case, that the matrix
A'is chosen so that

G1,...,Gyy formaregular sequence in S (8)

and

E + (Tag+1, D2gi1) = E : Gogy1. 9)
We claim now that the following equalities hold:

E: T29+1 =J (10)

[E + (T29+1)} : D29+1 = (Tla s 7T29+1)- (11)

Since>" ¥ T;G; = 0, we haveE : Ty,,1 2 J. The other inclusion
follows sinceJ is a prime idealF C J andT5,41 ¢ J.
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Since(Th, ..., Tog41)isaprimeidealirb andDog 1 ¢ (11, ..., Tog+1)
while £ C (Tl, cey ng+1), we have[E + <T2g+1)] : D29+1 - (Tl, ey
Th4+1)- The other inclusion follows immediately from :

Claim: Let X be a skew-symmetric matrix of sizex n, n even, and lef”
be its pfaffian. SetG; ... G,) = (T1 ... T,) X. ThenT; F € (Gy,...,Gy)
foreveryi =1,...,n.

To prove the claim one notes that there exists a mafrixsuch that
XX*"=F1I,
wherel,, is the identity matrix. Then one has
(Gr...G) X*=(Ty..T,)) X X*=(T\...T,) F I,
which proves the claim.

For simpicity letus seD = Dyg11,G = Gogi1,T = Togy1,a = agg41
andb = byy41. We have a short exact sequence

0—S/(E:G)(=b,—-1) = S/E—R(I)—0 (12)

where the first map is the multiplication kY. By Eq.(9) we know that
S/(E:G)=S/(E+ (T, D)), and hence we have

0— S/[(E+(T)):D](—a,0) = S/(E+(T)) = S/(E:G) =0
(13)

where the first map is the multiplication y. Finally we have another short
exact sequence

0—S/(E:T)(-a,-1)—>S/E—S/(E+(T)) =0 (14)
where the first map is the multiplication fy. By Eq.(11) we have also
S/(E+(T)) : D] = S/(T1,. .., Trg41) = R,

while by Eq.(10)
S/HE:T) = 8/J=R().
Sincec = a + b, we get

12
Pr(n(z,u) 2 Pgyp(z,u) — 2"uPs)(p.c)(2,u) =

(13) a
=’ Ps/p(2,u) — 2%u [Ps)(p () (2, u) — 2" Pr(z,u)] =

14
= Ps/p(z,u) + 2“uPR(2,u) — 2P [Ps/p(z,u) — 2%uPrp) (2, u)] .
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It follows that

PR(I)(Z7U)(1 ZCU’Q) (1_2bu>PS/E(Zau)+ZCUPR(Z7U) =

(8) 121 (1 — 2bi) 2Cu
(1 =2 [ (1 - zom)  (L—2)"

Since

ZP@Z = lfz) zlezaquZzbjfzc,
we clearly have for ever§ < i < ¢
pi=H{m | by =i} —H{m [ am =1}.
Hence

[Tocicc(1 = Zu)P + 2u
(1- Z)

and this concludes the proof of the theorem.

Prp(z,u)(1 - 2u?) =

As a corollary of the theorem we have:

Corollary 4.5 Let I € G(3) be an ideal of linear type. Lek(z) be the
h-polynomial of R/I. Setc = s + 3 andp(z) = > p;2" = h(2)(1 — 2)3.
Then

1 _ 1 it [Tocice(l = 2'u)P + zu
(I—2)» t(1—2z)" |Out (1 — z¢u?)

Prr(z) =

u=0

In particular the class{I € G(3) : I is of linear type} has rigid powers.

Remark.Let X = (X;;) be a2¢g + 1 x 2g + 1 skew-symmetric matrix
of indeterminates oveK'. Denote byR the polynomial ringiK [ X;;]|, by

n = dim R = (2¢g 4+ 1)g and byI the ideal generated by the pfaffians of
order2g of I. The ideall is of linear type [EH]. Then one has

1 (1 — 2+ )2
PR(I) (27’11,) = (1 — Z)n(l _ 22g+1u2) |: (]_ — Zgu)29+1

+ 229+1u:|

Since the generators of the iddahave all degreg, the Rees algebra has
also a bigraded arN-graded standard structure. The Hilbert serieR (f)
with respect to the standard bigraded structure is obtained from the above

expression by replacing/u with u. Hence it is
1 1 — zu)?9tt

Prp(z,u) = (1 —2)"(1 — zu?) [((1 — u)29+1

+ 29“4 )
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The Hilbert series oR () with respect to the standabd-graded struc-
ture is obtained from the last expression by replacingith z. Hence it
is

1 (1 _ 22)2g+1
Prin®) = g —Zma = g awn
(1 +Z)29+1 +zg+2
(1—2)"(1—2%
Hence theh-polynomial of R(I) (with respect to the standaf-graded
structure) is:

4 2912

(1 —|—Z)29+1 +Zg+2
142422

from this it follows that the multiplicity ofR (I) (with respect to the standard
N-graded structure) is(R(I)) = (2291 4+ 1)/3, see [HTU, Ex.3.7] ©

As in the Cohen-Macaulay codimensiprcase we have:

Theorem 4.6 LetI € G(3) and lett € N such thatl? = 5;(I) for every
j = 1,...,t. Let h(z) be theh-polynomial of R/I and set)_ p;z' =
h(z)(1 — z)3. Then we have

1 1 O Tlo<cice(l — Ziu)Pi 4 2
1—z) (1 —2)" |oul (1 — 2¢u?) w0

Pr(2) = (

In particular the class{! € G(3) : I ist-syzygetig has rigid¢-powers.

Proof. As in the proof of 2.4, it is enough to show that there exists a Goren-
stein idealJ of codimension three in a suitable polynomial rifigsuch
that.J is of linear type and and.J, I* and.J! have the same graded Betti
numbers.

Let
0 — R(—c) = &2 R(—b;) = &22T'R(~a;) = R— R/I =0

be a minimal free resolution dt/I and assume that; < as--- < agg+1
andby; > by--- > bygy1. LetU = (u;5) be the degree matrix df, that is
ui; = b; — a;. Itis known thatu;; > 0 fori + j < 2g + 3, see for instance
[HTV, Sect. 5]. Then consider the skew-symmetric mafixvith entries

X7 if2g4+1<i+j<2g+3andl <i<j<29+1

{0 ifi+j<2g+1ori+j>29+3
where theX;; with2g+1 <i+j <2g+3andl <i < j <2g+1forma
setof3g distinctindeterminates. Letbe the ideal of' = K[X;;] generated

the pfaffians of orde2g of B. It is easy to see that has codimensioS.
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It follows thatJ € G(3) (of T') and thatJ and I have the same graded
Betti numbers because, by construction, they have the same degree matrix.
In order to prove that/ is of linear type one can apply 4.3. Alternatively
one may also note that by virtue of [HT, 6.6], the pfaffiansibform a
Grobner basis off with respect to a lexicographic term order and the initial
terms of the pfaffians are their anti-diagonal terms. It is easy to see that the
anti-diagonal terms form &/-sequence of interval type in the sense of [CD,
Def.3.1]. It follows from [CD, Thm.2.5] that is of linear type. It remains

to show that'* and.J! have the samg-vector. Actually we will see that!

andJ! have the same graded Betti numbers. This will be a consequence of
the following result of Tchernev [Tc1]:

LetI € G(3) and assume thdt = S;(I) for everyj = 1,...,t. Then
the Kustin-Ulrich complexD? is a (minimal) free resolution aft.

Sincel andJ have the same graded Betti numbers, it follows that the
Kustin-Ulrich complexe®! of I and.J are numerically the same. By the
above result the complex@¥ for I and.J are free resolution of’ and.J?,
hencel’ and.J! have the same graded Betti numbers.

The formula of 4.2 for the Hilbert series &/I? can be easily recov-
ered from the formula of 4.5 by computing explicitely the second partial
derivative. In details, sef)(z,u) = []yo;.(1 — 2'w)Pi/(1 — zu?) and
P(z,u) = z°u/(1 — z°u?). Then note that:

D) = ~Qeu)( Y (pizt/(1 — 2hu)) — 22/(1 — 20)
1<i<e

SetFi(z,u) = > ;..piz'/(1 — z'u) — 22°u/(1 — 2°u?). Then we
have

2
;uzQ(z,u) = [Fl(z,u)2 — Fg(z,u)} Q(z,u)
where
o . .
Fy(z,u) = 5-Fi(2,u) = 1;@(%2%/(1 — Z'u)?)
(=22 — 22%4?) /(1 — z°u?).
Further

o Plou)| - 0 if ¢ is even
tout” )T ke if tis odd,t = 2k + 1
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Hence

2
[8 <Q<z,u>+P<z,u>>] — (Fi(,0)% — Fy(2,0)Q(2,0) =

2
ou u=0

(50 - (5 ) o

1<i<e 1<i<ce

Since we have

p(z) =1+ Z pizt — 2

1<i<c
and
p(z2) -1+ Z plZQz 7220
1<i<e
we obtain
82 c\2 2
(@) + Pl w)| = (p(z) — 1+ 29 = ()
u=0

+1 — 2% 22 = p(2)?
—p(2%) — 2p(2)(1 — 2°) + 2.

It follows that

_ 1 p(2)* = p(*) = 2p(2)(1 —2°) +2 _
PR/IQ(Z) - (1 — Z)n - 2(1 _ Z)n -

Remark.As in the Cohen-Macaulay case, by computing the higher par-
tial derivatives one proves by induction that for &l N there exists a

polynomial
Gt(za 21, XLy -y l't) € Q[Za PR PR l‘t]
such that for every ideal € G(3) which is¢-syzygetic theh-polynomial

of R/I! is given byGy(z, z¢, h(2), h(22), ..., h(z!)) whereh(z) is the h-
polynomial of R/I andc = deg h(z) + 3. ©
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5 The dimension of some schemes

In this section, to illustrate the formulas found in the preceding sections, we
perform some computations which simplify and extend several results that
appeared recently in different papers.

Example. By using the formula of corollary 2.6 we can easily prove Propo-
sition 3.6.1 in [IK] concerning the Hilbert function of the square of the
defining ideal of a set of generic points Y. The h-polynomial of the
defining ideal of a set of generic pointsR? is

h(z) =1422432% 4+t 4 a2t
for somea,0 < a < t + 1. Accordingly to corollary 2.6 thé-polynomial

of R/I%is

o) = h(z) + LEPHE) = ha(2)

whereq(z) = h(z)(1 — 2)? is the second difference bfz).
We can visualizé(z) and its first two differences as follows:

R 112131 [ a 0 0
1111 ]... |1 |a—t —a 0
q(z) [ 1]0]0|... |0fa—t—1|t—2a]|a

From this we get

9(2) = h(z)
N (14 2)2h(2%) — h(2)(1 + (a — t — 1)2t + (t — 2a) 2T + aztt?)
2
- 21 i f+2—a ”
= iz;(z%—l)z + <2t+1— ( ) >>z

+(a —t+1)az? — <g> 2212,

We remark that Proposition 3.6.1 in [IK] has been proved for points which
have generic Hilbert Function and minimum number of generators possible
for that Hilbert function. Here we prove that the formula holds for every set
of points with generic (maximal) Hilbert function. ®

Next we use the formula of Proposition 4.1 to compute the dimensions
of the schemeéGor(H) which parametrize homogeneous codimensjon
Gorenstein ideald in the polynomial ringk = k[X1,..., X,] with A-
polynomialH = Y7 h;z" with h; = hs_;, hg = 1 andh; = 3.
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Example.Let us first consider the case whenr= 3. By results of larrobino
and Kanev [IK], Diesel [D, Thm.2.7] and J.Kleppe [KI, Cor.1.5] one knows
thatGor(H ) isasmooth irreducible scheme (ifitis non-empty) of dimension
dim Gor(H) = Hj/p2(s)
where! is any ideal ofGor(H). By 4.1 we have
Prp(z) =1+ 2)3h(22)/2 — (1 — 2)3h(2)?/2 — 2°h(2).

Hencedim Gor(H) is equal to the coefficient af in [(1+2)3H (2?) —
(1 — 2)3H(2)?]/2. The coefficient ofz* in (1 + 2)3H(2%)/2 is (h, +
3hr—1)/2if s = 2r or (3h, + h,—1)/2 if s = 2r 4+ 1. The coefficient
of 25in (1 — 2)3H(2)?/21is Y_;_, hips—i/2 Where

pi = (hi — 3hi—1 +3h;—2 — h;_3)

are the coefficients of the “third differencel'— z)3 H (z) of H(z). Summing
up and taking into account the symmetry of the polynoriiét) we have:

(hr +3h,_1 — Zf:o hipi>/2 if siseven,s = 2r

dim Gor(H) = { (3hs + hy1 — S5 hap)/2 if sis odd,s = 2r + 1.

For instance, fos = 4,5, ...,11 we have:
s | dim Gor(H)
4 | —1/2h3 +13/2hy — 7
5 | 1/2h3 —1/2hs +5
6 | —5/2h3 + 3hahs — 1/2h3 + 21/2hy — 15/2h3 — 1
7 | —1/2h3 +1/2h3 + 13/2hy — 7/2h3 — 1
8 —h% + 4hohs — 3hohy + 6ho — 5/2h§ + 3hshy

—13/2h3 — 1/2h3 + 7/2hs — 1

9 | —h3 + 3hohs — 2haohy + 6he — 1/2h3 — 15/2h;

+1/2h3 +9/2hy — 1

10 —h% + 3hohs — 3hohyg + hohs + 6hy — h% + 4hghy

—3hshs — 8hs — 5/2h3 + 3hghs + 9/2hg — 1/2h% +1/2h5 — 1
11 —h% + 3hohs — 3hohyg + hohs + 6hy — h% + 3hghy

—2h3hs — 8hs — 1/2h3 + +7/2hg + 1/2h% + 3/2h5 — 1

Notice that the two tables in [IK, 3.5.1] are particular cases of the lines
s =9ands = 11 in our table. ®

Example.Here we consider the following polynomial which was exten-

sively studied in [GPS]. Let andj be positive integers such thétgz) <

j < ("5%). For everym > 4 set

t . t+m—1 2t+m .
1+ 2\ y 2t+m —i+2\
H(z) = E < 5 )zl—k g jzt+ E < 5 )zl.

=0 i=t+1 i=t+m
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Here we haves = 2t + m and, no matter whether is even or odd, the
coefficient of2* in (1 + 2)3H(22)/2 is 2j. In this case we better write the
coefficient ofz* in (1 — 2)3H (2)?/2 asY_;_, riqs—i/2 wherer; andg; are
the coefficients of the “first” and “second ” differencé:) = (1 — 2) H(2)
andq(z) = (1—2)?H(z) of H(z) respectively. We can visualizé(z) and
its first two differences as follows:

sl GO bl LG (5) [ [8]1
2] t |t+1]al 0 [0]...[0] —a |[—(t+1)]...|—3]—2
1] 1 T [b|—al0]...[0] —a b ... |11

wherea = j — ("}?) andb = a — (t + 1). From this table we easily get

S
N rigei =14 24 (t— 1)+ ta—t—1) —a(t+1)
=0
—a—(t+1)—t—(t—1)—- —2=—t* -3t —2a.

Summing up we get

2+ 3t+2 27 —2
dimGor(H)sz—l—%:Qj—l— 32 =35—1.

©

Example.We consider here the case= 4. Hence we are dealing with
zero-dimensional schemes R¥ which are arithmetically Gorenstein. By
[KI, Prop. 3.1] we have

dim Gor(H) = 3d — Hy/p2(s — 1)

where! is any ideal ofGor(H) andd is the degree oR?/I. Henced =
>-i_, hi and as before one can explicitely write down the a formula for

dim Gor(H) only in terms of theh,. For instance fos = 4,5,...,9 one
obtains:

s | dim Gor(H)

4 [ 4ho +11

5 | 1/2h3 + 3/2ho + 17

6 | —h3 + hahs + 8ha — 2h3 + 11

7 | 1/2h3 — hohs + 7/2ho + 1/2R3 + 7/2hs + 11

8 | 2hohs — 2hohy + 3ho — h% + hzhs — hs + 6hs + 11

9 | hahs — hoha + 3ha + 1/2h3 — haha — 5/2h3 + 1/2h3 + 17/2hs + 11
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Example.Here we consider arithmetically Gorenstein smooth curv@stin
and for every such curvé’, we determine the dimension of the Hilbert
scheme oP* atC in terms of theh-polynomial H(z) = Y7, hiz* of C.
By [KM, Example 2.9] we know that

dim Hilbio)P* = 5d + 1 — g+ Hyjp2(s — 2)

whered andg are the degree and the genus of the curve respectively. Since
d=>7,hiandg = > 7 (i — 1)h; again one can explicitely write
down a formula fordim Gor(H) only in terms of theh;. For instance for

s =4,5,6,7 one obtains:

s | dim Gor(H)

4 | 3ho + 37

5 | bhy +43

6 | —1/2h3 + 21/2hg + 2h3 + 33

7 h% — hohs + 3ho + 9h3 + 35

®
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