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Introduction

Let K be a field and letR be a homogeneousK-algebra, i.e. an algebra of
the formR = K[x1, . . . , xn]/I whereI is a homogeneous ideal with respect
to the standard grading degxi = 1. Recall thatR is said to be Koszul if the
residue fieldK has a linearR-free resolution as anR-module. Koszul algebras
have been introduced by Priddy [P] in the seventies and since then they have
been extensively studied in various contexts. For an updated survey and a rich
bibliography on this topic we refer the reader to the recent paper of Fr¨oberg [F].

In this article we introduce and studyuniversally Koszul algebras.A homoge-
neous algebraR is said to be universally Koszul (u-Koszul for short) if every ideal
of R generated by linear forms has a linearR-free resolution. This notion can
be seen as a strong version of Koszulness. As one may expect u-Koszul algebras
are very rare. The goal of the paper is to present some classes of algebras with
this property and to classify those u-Koszul algebras which are Cohen-Macaulay
domains.

Section 1 contains generalities on u-Koszul algebras. A characterization of
them in terms of colon ideals is given and the behaviour of u-Koszul algebras
under standard algebra operations (tensor, fiber and Segre products, Veronese
subrings, and quotients) is studied.

Section 2 is devoted to Artinian algebras. We show that a quadratic algebra
R with Hilbert series 1+ nz + mz2 is u-Koszul if eitherm ≤ 1 or 2m ≤ n and
the relations ofR are “generic", see 2.1 and 2.4.

As a consequence of a result of Bertini and of Harris’general position theorem
one shows that a necessary condition for a Cohen-Macaulay domain to be u-
Koszul is to have minimal multiplicity (at least, say, over an algebraically closed
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field of characteristic 0). Cohen-Macaulay domains of minimal multiplicity are
classified by a theorem of Bertini and Del Pezzo. They are of essentially of three
types: quadric hypersurfaces, coordinate rings of rational normal scrolls, and the
coordinate ring of the Veronese embeddingP2 → P5. This opens the way to a
classification of the u-Koszul Cohen-Macaulay domains. In Sect. 3 we show that

1) any quadric hypersurface is u-Koszul (3.1),

2) the coordinate ring of the rational normal scroll of type(a1, a2, . . . , ak) is
u-Koszul if and only ifk = 1 (the rational normal curve) ork = 2 anda1 = a2

(3.3),

3) the coordinate ring of the Veronese embeddingP2 → P5 is u-Koszul (3.12).

Some of the results of this paper have been conjectured after (and confirmed
by) explicit computations performed with the computer algebra system CoCoA
[CNR].

1 Notation, definitions and generalities

Let us first recall the definition of Koszul filtration. This notion, introduced in
[CTV], was inspired by the work Herzog, Hibi and Restuccia [HHR] on strongly
Koszul algebras.

Definition 1.1 Let R be a homogeneousK-algebra. A familyF of ideals ofR
is said to be a Koszul filtration ofR if:

1) Every idealI ∈ F is generated by linear forms,

2) The ideal 0 and the maximal homogeneous idealM of R belong toF,

3) For everyI ∈ F, I 6= 0, there existsJ ∈ F such thatJ ⊂ I , I/J is cyclic and
J : I ∈ F.

One has (see [CTV]):

Proposition 1.2 Let F be a Koszul filtration ofR. Then for everyI ∈ F the
quotientR/I has a linearR-free resolution.

Examples of algebras which admit Koszul filtrations are given in [CTV].

Definition 1.3 A homogeneous algebraR is universally Koszul (u-Koszul for
short) if every idealI generated by linear forms has a linearR-free resolution,
that is TorRi (R/I, K)j = 0 for everyi 6= j .

First of all note that u-Koszul algebras exist. For instance polynomial rings
and rings of the typeK[x1, . . . , xn]/(x1, . . . , xn)

2 are simple examples of u-
Koszul algebras. Set

L(R) = {I ⊂ R : I is an ideal ofR generated by linear forms}
We have the following characterization of u-Koszul algebras:
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Proposition 1.4 LetR be a homogeneousK-algebra. The following conditions
are equivalent:

1) R is u-Koszul,

2) For everyI ∈ L(R) one hasTorR2 (R/I, K)j = 0 for everyj > 2,

3) For everyI ∈ L(R) andx ∈ R1 \ I one hasI : (x) ∈ L(R),

4) L(R) is a Koszul filtration ofR.

Proof. 1) ⇒ 2) is obvious, 3) ⇒ 4) is easy, and 4) ⇒ 1) follows from 1.2. For
2) ⇒ 3), lety1, . . . , yk be a system of generators ofI and consider a presentation
φ : R⊕Rk → (x)+I of (x)+I . The projection of the syzygy module� = Kerφ
on the first coordinate isI : (x) and it is generated by linear forms because by
assumption� is generated by elements of degree 1. ut

The following simple lemma will be useful for inductive arguments:

Lemma 1.5 LetR be a homogeneousK-algebra.Assume that for every non-zero
z ∈ R1 one has0 : (z) ∈ L(R) andR/(z) is u-Koszul. ThenR is u-Koszul.

Proof. We show thatI : (x) ∈ L(R) for everyI ∈ L(R) andx ∈ R1\I . If I = 0
then this is true by assumption. IfI 6= 0, then take a non-zero linear formz ∈ I .
By assumptionR/(z) is u-Koszul, and hence the idealI : (x)/(z) is generated
by linear forms. It follows thatI : (x) ∈ L(R). ut

It is known that the Koszul property behaves well under standard operations
on algebras, see [BF]. As far as u-Koszul algebras are concerned we have:

Lemma 1.6 LetR, S be u-KoszulK-algebras. One has:

1) LetI ∈ L(R). Then the algebraR/I is u-Koszul,

2) R[x1, . . . , xn] is u-Koszul,

3) The fiber productR ◦ S is u-Koszul.

Proof. 1) SetA = R/I . LetJ ∈ L(A) andy ∈ A1 \ J . We haveJ = Q/I with
Q ∈ L(R) andy = x + I with x ∈ R1 \ Q. One hasJ : (y) = Q : (x)/I . It
follows thatJ : (y) ∈ L(A) sinceQ : (x) ∈ L(R) .

As for 2), we may assumen = 1. Let J ∈ L(R[x]). If the generators ofJ
belong toR, thenJ = IR[x] whereI ∈ L(R). The idealI has a linearR-free
resolutionF . ThenF ⊗R R[x] is a linearR[x]-free resolution ofJ . Now assume
that some of the generators ofJ do not belong toR. We may decomposeJ as
I + (x + L) whereI ∈ L(R) andL is a linear form inR. We have seen already
thatI has a linearR[x]-free resolution. Note thatx + L is a non-zerodivisor on
R[x]/I . Then it follows from the short exact sequence

0 → R[x]/I [−1] → R[x]/I → R[x]/J → 0
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thatJ has a linearR[x]-free resolution.

3) SetA = R ◦ S. Recall thatA is by definition the quotient ofR ⊗K S by
the ideal generated by the elements of the formx ⊗ y with x ∈ R1 andy ∈ S1.
Let I ∈ L(A), sayI = (a1 + b1, . . . , ak + bk) with ai ∈ R1 andbi ∈ S1, and
x ∈ A1 \ I , sayx = y + z with y ∈ R1 andz ∈ S1. We have to show that
I : (x) ∈ L(A). Denote byQ andW respectively the projection ofI on R and
S, i.e.Q = (a1, . . . , an) andW = (b1, . . . , bn). SetJ = QA + WA. We have
I ⊆ J andIk = Jk for everyk ≥ 2. It follows thatI : (x) = (J : (x)) ∩ MA,
whereMA denotes the homogeneous maximal ideal ofA. If x ∈ J thenI :
(x) = MA ∈ L(A). If x 6∈ J , thenI : (x) = J : (x). Now we distinguish three
cases:

i) y 6∈ Q andz 6∈ W . ThenJ : (x) = (Q :R (y))A + (W :S (z))A

ii) y 6∈ Q andz ∈ W . ThenJ : (x) = J : (y) = (Q :R (y))A + (S1)A.

iii) y ∈ Q andz 6∈ W . ThenJ : (x) = J : (z) = (R1)A + (W : (z))A.

In any caseJ : (x) is generated by linear forms becauseQ :R (y) and
W :S (z) are generated by linear forms. ut

As one may expect, u-Koszul algebras are quite rare. For instance one has:

Lemma 1.7 LetK be an algebraically closed field of characteristic0 and letR
be a homogeneous Cohen-Macaulay domainK-algebra. IfR is u-Koszul then
R has minimal multiplicity.

Recall that ifR is a Cohen-Macaulay homogeneousK-algebra, then one
hase(R) ≥ 1 + codim(R). Heree(R) denotes the multiplicity (or degree) of
R and codim(R) = dimK R1 − dimR. The algebraR is said to have minimal
multiplicity if e(R) = 1 + codim(R), see [EG]. In order to prove 1.7 we need
the following:

Lemma 1.8 LetK be an infinite field and letR be the coordinate ring of a set of
points{P1, . . . , Ps} in the projective spacePn

K . Assume thats > n + 1 and that
P1, . . . , Ps−1 are not contained in a hyperplane ofPn

K . ThenR is not u-Koszul.

Proof. Let I be the defining ideal of the given set of points. ThenI = ∩s
i=1Pi

wherePi is the defining ideal ofPi . Letx be a linear form inPs \∪s−1
i=1Pi (it exists

becauseK is infinite). Then 0: (x) = ∩s−1
i=1Pi/I is non-zero. By assumption

∩s−1
i=1Pi does not contain linear forms and hence 0: (x) cannot be generated by

linear forms. ut

Proof of 1.7: Set d = dimR and n = codimR and assume by contradic-
tion thate(R) > 1 + n. Let x1, . . . , xd−2 be general linear forms. ThenS =
R/(x1, . . . , xd−2) is a 2-dimensional Cohen-MacaulayK-algebra withe(S) =
e(R) and codimS = codimR. Furthermore, by virtue of Bertini’s theorem [Z,
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p.68] (for an algebraic form of the result see also [S, Prop.3.2]) the ringS is a
domain. Now letx be a general linear form onS. By virtue of Harris’ “general
position theorem” [ACGH, pg.109]S/(x) is the coordinate ring of a set ofe(R)

points ofPn
K in general position and therefore the assumption of 1.8 is satisfied by

S/(x). HenceS/(x) is not u-Koszul. It follows from 1.6 thatR is not u-Koszul.
ut

Remark 1.9In general the tensor products, the Segre products and the Veronese
subrings of u-Koszul algebras are not u-Koszul. As far as the tensor product is
concerned, one can consider for instance the algebraR = K[x, y]/(x, y)2 which
is u-Koszul while the algebra

S = R ⊗K R = K[x, y, z, t]/(x, y)2 + (z, t)2

is not u-Koszul since inS one has 0: (x + z) = (x − z, yt) andyt 6∈ (x − z).
Let R andS be polynomial rings with 1< dimR ≤ dimS. Among the

Segre products and Veronese subrings of polynomial rings those with minimal
multiplicity are:

i) R ◦ S with dimR = 2,

ii) R(d) with dimR = 2 andd ≥ 1,

iii) R(2) with dimR = 3.

HereR ◦ S denotes the Segre product ofR andS andR(d) denotes thed-th
Veronese subring ofR. Segre products and Veronese subrings of polynomial
rings are Cohen-Macaulay domains. Hence it follows from 1.7 thatR ◦ S is not
u-Koszul if dimR, dimS ≥ 3 (at least, say, over an algebraically closed field
of characteristic 0). Analogously, thed-Veronese subringR(d) is not u-Koszul if
either dimR ≥ 4 andd ≥ 2 or dimR = 3 andd ≥ 3.

A more explicit argument (not using Bertini’s theorem) to show that, for
instance, the third Veronese subring ofR = K[x, y, z] is not u-Koszul is the
following (assume charK 6= 2, 3): LetI be the ideal ofR = K[x, y, z]generated
by x(x − z)(x −2z) andy(y − z)(y −2z). The idealI is a complete intersection
and defines the setX of the 9 points inP2 with coordinates(a, b, 1) where
a = 0, 1, 2 andb = 0, 1, 2. The point(0, 0, 1) is in X, hence the idealI : (x, y)

is the ideal of the points inX \ {(0, 0, 1)}. By [BH, Cor.2.3.10] one knows that
I : (x, y) = I +(h) whereh = (x −z)(x −2z)(y −z)(y −2z). Now if one takes
f ∈ R to be a cubic form such that{f = 0} ∩ X = {(0, 0, 1)} (take for instance
f = x3 + y3) then one has thatI : f = I : (x, y) = I + (h). Intersecting with
A = R(3) one hasI :A f = I + (hR2). Since(hR2) it is not contained inI ,
we have thatI :A f is not generated by linear forms ofA and henceA is not
u-Koszul.

The question of whether the Segre and Veronese rings with minimal multi-
plicity are u-Koszul will be answered in Sect.3.
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It is known that an algebra defined by monomialsm1, . . . , mk is Koszul if and
only if degmi = 2 for everyi. The following example shows that the u-Koszul
property of an algebra defined by monomials depends on the characteristic of
the base field.

Example 1.10Let R = K[x, y, z]/(x2, y2, z2) and charK 6= 2. Then the ideal
0 : (x + y + z) is generated by quadrics and henceR is not u-Koszul. Note that
the algebraK[x1, x2, . . . , xn]/(x2

1, x
2
2, . . . , x

2
n) is u-Koszul if charK = 2.

It would be interesting to characterize the quadratic monomial ideals defining
u-Koszul algebras at least, say, over a field of characteristic 0.

2 Artinian algebras

In this section we describe some families ofArtinian algebras which are u-Koszul.
We mentioned already that algebras with Hilbert series 1+ nz are examples of
u-Koszul algebras. A less trivial class is given by the following:

Proposition 2.1 Letn be an integer withn ≥ 2. LetR be a homogeneous algebra
defined by quadrics and with Hilbert series1 + nz + z2. ThenR is u-Koszul.

To prove 2.1 we use the following criterion for an algebra to be u-Koszul
which is similar to Fitzgerald’s result [Fi, Thm.3.6]:

Proposition 2.2 Let R = ⊕i≥0Ri be a homogeneous algebra. Assume that for
everyx ∈ R1 \ {0} one has(0 : (x))R1 ⊇ R2. ThenR is u-Koszul.

Proof. Let I ∈ L(R) andx ∈ R1 \ I . By 1.4 it suffices to showI : (x) ∈ L(R).
Note that 0: (x) ⊆ I : (x). Since the linear forms in 0: (x) generate an ideal
containingR2, it follows that the same is true also for the linear forms inI : (x).
ThenI : (x) ∈ L(R). ut

Proof of 2.1: Let x ∈ R1 \ {0}. Denote byV the space of linear forms in 0: (x).
We have to show thatV R1 = R2. SinceR2 is one-dimensional we haven − 1 ≤
dimV ≤ n. If dim V = n, that isV = R1, thenV R1 = R2 clearly holds. Now
assume that dimV = n − 1. Assume by contradiction thatV R1 6= R2. Then
V R1 = 0. LetR = S/I be a presentation ofR whereS = K[x1, . . . , xn] and
identify R1 with S1. It follows thatV S1 ⊆ I2 and then they are equal because
they have both codimension 1 inS2. SinceI is generated by quadrics we have
thenI = (V R1) and this contradicts the fact thatI3 = S3

More generally, we consider now quadratic algebras with Hilbert series 1+
nz + mz2, with saym small relatively ton. Not all of them are u-Koszul. For
instance
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Example 2.3The algebraA = K[x1, x2, x3]/(x1x2, x1x3, x2x3, x
2
1 + x2

2 + x2
3)

has Hilbert series 1+ 3z + 2z2. Lety = a1x1 + a2x2 + a3x3 be a non-zero linear
form ofA. Setρ(y) = |{i : ai 6= 0}|. It is easy to see thatyA1 = A2 if and only if
ρ(y) > 1. Using this one easily shows that 0: (x1 + x2) = (x3)+A2 = (x3, x

2
1)

and that the generator of degree 2 is needed. HenceA is not u-Koszul. The same
argument works for any principal ideal(y) generated by a linear formy with
ρ(y) = 2. On the other handA is “almost u-Koszul". It is not difficult to prove
that the set of the idealsI ∈ L(A) which are not of the type(y) with ρ(y) = 2
is a Koszul filtration ofA.

Now takeB = K[x4, . . . , xn]/(x4, . . . , xn)
2 and setC = A ◦ B. The Hilbert

series ofC is 1+ nz + 2z2. Furthermore,C is not u-Koszul. This follows from
1.6 because the quotientC/(x4, . . . , xn) is A which is not u-Koszul.

For generic algebras we have:

Theorem 2.4 Letm, n be positive integers with2m ≤ n and letR be a quadratic
algebra with Hilbert series1 + nz + mz2. If R is generic thenR is u-Koszul.
More precisely, if the variety of the linear formsx such thatxR1 6= R2 has the
expected codimension (which isn − m + 1) thenR is u-Koszul.

Let us first explain what is the meaning of “generic" in the statement of the
theorem. LetS = K[x1, . . . , xn] be polynomial ring and letm be an integer.
For every space of quadricsV ⊆ S2 of codimensionm we get a quadratic
algebraR = S/(V ); here(V ) denotes the ideal generated by the elements inV .
The set of the spaces of quadrics of codimensionm is a projective variety, the
Grassmannian Grass(m, S2), which is embedded in the projective spacePN via
the Plücker map. HereN = (dimS2

m

) − 1. Therefore the family of the quadratic
algebras with dimR1 = nand dimR2 = mgets identified with the Grassmannian
Grass(m, S2) via the correspondenceV → S/(V ). We then say that a property
P holds for a generic algebra if there exists a non-empty Zariski open subsetU

of Grass(m, S2) such that for everyV ∈ U the algebraR = S/(V ) has property
P .

Proof of 2.4 It is easy to see that for a genericV ∈ Grass(m, S2) one has
V S1 = S3, that is, the Hilbert series of the corresponding algebra is 1+nz+mz2.
Let V ∈ Grass(m, S2), R = S/(V ) and consider the set

XV = {x ∈ P(S1) : xS1 + V 6= S2}
Fix a setu1, . . . , um of monomials of degree 2 in thexi ’s and let us restrict our
attention to the open affine subset of the Grassmannian of the elementsV such
thatV +〈u1, . . . , um〉 = S2. In other words, we are assuming thatu1, . . . , um is a
basis ofR2. Note thatx = ∑

i aixi is in XV if and only if the multiplication map

from R1
x→ R2 is not surjective. The matrixM(x) of the mapR1

x→ R2 has size
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n×m and its entries are linear forms in theai whose coefficients are polynomial
functions of the Pl¨ucker coordinates ofV . HenceXV is the subvariety ofP(S1)

defined by the maximal minors ofM(x). Therefore the codimension ofXV is
bounded byn − m + 1. We claim that for a genericV the codimension ofXV

is equal ton − m + 1. By the semicontinuity of the fiber dimension (see for
instance [E, Cor.14.19]) it is enough to exhibit a spaceV ∈ Grass(m, S2) such
that the codimension ofXV is n − m + 1. We will first complete the proof of the
theorem and then present the example. By 2.2 it suffices to show that for every
x ∈ R1 \ {0} one hasWR1 = R2 whereW denotes the space of linear forms in
0 : (x). The dimension of the vector spaceW is greater than or equal ton − m.
HenceW cannot be contained inXV , otherwise by comparing the dimensions
one will haven ≤ 2m − 1, a contradiction with the assumption. Therefore there
exists a linear formy ∈ W \ XV and soWR1 = R2.

It remains to present the example of a spaceV ∈ Grass(m, S2) such thatXV

has codimensionn−m+1. Sets = n−m andB = K[y1, y2, . . . , ym, z1, z2, . . . ,

zs] wherey1, . . . , ym andz1, z2, . . . , zs are indeterminates. Then consider the
algebraR = B/(V ) whereV is the space generated by the following quadrics:

(1) z2
i −∑m

j=1 cijyjym with 1 ≤ i ≤ s

(2) zizj with 1 ≤ i < j ≤ s

(3) ziyj with 1 ≤ i ≤ s and 1≤ j ≤ m

(4) yiyj with 1 ≤ i ≤ j ≤ m − 1 andi + j ≤ m

(5) yiyj − yi+j−mym with 1 ≤ i ≤ j ≤ m − 1 andi + j > m

wherecij ∈ K. It is easy to see that the Hilbert series ofR is 1+nz+mz2 provided
c1m 6= 0. By construction the monomialsy1ym, y2ym, . . . , y2

m form a basis ofR2.
Now letx be a linear form ofR, sayx = ∑s

i=1 aizi +∑m
i=1 biyi . In order to de-

scribe the matrixM(x) we express the elementsz1x, z2x, . . . , zsx, y1x, . . . , ymx

in terms of the basisy1ym, y2ym, . . . , y2
m. One has

zix = aiz
2
i = ∑m

j=1 aicij yjym with 1 ≤ i ≤ s

yjx = ∑m
i=1 biyiyj = ∑j

k=1 bm−j+kykym with 1 ≤ j ≤ m

Hence the matrixM(x) is



Universally Koszul algebras 337

M(x) =




a1c11 a1c12 . . . . . . a1c1j . . . . . . a1c1m

a2c21 a2c22 . . . . . . a2c2j . . . . . . a2c2m

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

ascs1 ascs2 . . . . . . ascsj . . . . . . ascsm

bm 0 . . . . . . 0 . . . . . . 0
bm−1 bm 0 . . . 0 . . . . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

bm−j bm−j+1 . . . . . . bm 0 . . . 0
...

...
...

...
...

...
...

...

b2 b3 . . . . . . . . . . . . bm 0
b1 b2 . . . . . . . . . . . . . . . bm




Let Q be the ideal ofK[a1, . . . , as, b1, . . . , bm] generated by the minors of size
m of M(x). We will show that the codimension ofQ isn−m+1 provided every
minor of the matrixC = (cij ) is non-zero. This will complete the proof because
a matrixC with that property always exists ifK is infinite. Hence assume that
every minor of the matrixC = (cij ) is non-zero. LetJi be the ideal generated
by the square-free monomials of degreei in the indeterminatesa1, . . . , as . Set

W = (bm) + (bm−1)J1 + (bm−2)J2 + · · · + (b1)Jm−1 + Jm

We claim thatW is the radical Rad(Q) of Q. From this it follows then easily
that the codimension ofQ is n − m + 1. The inclusionQ ⊆ W is clear. Hence
it is enough to show thatW ⊆ Rad(Q). Sincebm

m ∈ Q one hasbm ∈ Rad(Q).
Therefore we may assume by induction that

(bm) + (bm−1)J1 + (bm−2)J2 + · · · + (bj+1)Jm−j−1 ⊆ Rad(Q) (∗)

and show that(bj )Jm−j ∈ Rad(Q). Take a minor of sizem of M(x) which
involvesm− j rows among the firsts, say the rows with indices 1≤ i1 < · · · <

im−j ≤ s and the lastj rows of M(x). Expanding the minor and taking into
consideration(∗) one gets that

δb
j

j ai1 . . . aim−j
∈ Rad(Q)

whereδ is the minor ofC which involves the rowsi1, i2, . . . , im−j and the last
m − j columns. By assumptionδ 6= 0 and hencebjai1 . . . aim−j

∈ Rad(Q). It
follows that(bj )Jm−j ∈ Rad(Q). This concludes the proof of Theorem 2.4.ut
Remark 2.5In 2.3 we have seen a quadratic algebra with Hilbert series 1+3z+
2z2 which is not u-Koszul. One can prove something more: an algebraR with



338 A. Conca

Hilbert series 1+ 3z + 2z2 and with generic quadratic relations is not u-Koszul.
With the notation of the proof of 2.4, the setXV is defined by the of 2-minors of a
2× 3 matrix. Therefore, for a genericV , the codimension ofXV in P2 = P(R1)

is 2, that is,XV is a finite set. Takex ∈ XV , then 0 :R1 (x) is a subspace of
R1 of dimension> 1 and it cannot be contained inXV . Therefore we may take,
y ∈ R1 \ XV such thatyx = 0. By construction 0: (y) = (x) + (R2) and it is
not generated by linear forms.

On the other hand, there are (non-generic) quadratic algebras with Hilbert
series 1+ 3z + 2z2 which are u-Koszul. For instance:

Example 2.6The algebraR = K[x, y, z]/(x2, xy, y2, z2) is u-Koszul. It is
enough to show thatR/(f ) is u-Koszul and 0: (f ) ∈ L(R) for every non-
zero linear formf of R. Since no linear form annihilatesR1, we have that
S = R/(f ) has always dimS2 ≤ 1 and hence is u-Koszul by 2.1. Now write
f = ax + by + cz. If c = 0 then obviously 0: (f ) = (x, y) and if c 6= 0 then
0 : (f ) = (ax + by − cz).

Let us also record the following:

Remark 2.7Let I be an ideal in a polynomial ringS. One knows that the Koszul
property behaves well under Gr¨obner deformations. One may wonder whether
the same is true also for the u-Koszul property, that is, whetherS/I is u-Koszul
providedS/ in(I ) is u-Koszul. The answer is no.

To see this, we consider an algebraically closed fieldK of characteristic6= 2
and a quadraticK-algebraR = K[x, y, z]/I with Hilbert series 1+ 3z + 2z.
It is know that any such an algebra in defined by a Gr¨obner basis of quadrics
(in a suitable system of coordinates), see [C]. It follows that an initial ideal
of I is in(I ) = (x2, y2, z2, xy) ⊂ K[x, y, z]. This is because that is the only
quadratic monomial ideal with the correct Hilbert function (up to permutations).
By virtue of 2.6 the algebraK[x, y, z]/ in(I ) is u-Koszul, but by 2.5 we know
that if we takeR generic then it is not u-Koszul. Explicitly, one can takeR =
K[x, y, z]/(x2 − yz, xy, y2, z2). The initial ideal of(x2 − yz, xy, y2, z2) is of
(x2, xy, y2, z2) and inR one has 0: x = (y, xz).

3 Universally Koszul algebras of minimal multiplicity

LetK be an algebraically closed field of characteristic 0. We have seen in 1.7 that
a necessary condition for a Cohen-Macaulay domainR to be u-Koszul is to have
minimal multiplicity. The homogeneous domains with minimal multiplicity are
classified by a theorem of Del Pezzo and Bertini, see for instance [EH]. There
are essentially (i.e. up to polynomial extensions) three classes of such algebras:

1) Quadric hypersurfaces, i.e. rings of the formK[x1, . . . , xn]/(f ) with f an
irreducible polynomial of degree 2,
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2) The coordinate rings of rational normal scrolls, i.e. rings of the formRa =
K[x(1), . . . , x(k)]/I2(X) where thex(i) are pairwise disjoint sets of variables, say
x(i) = {x(i)

0 , x
(i)
1 , . . . , x(i)

ai
}, with ai > 0 andI2(X) is the ideal of the 2-minors of

the 2× (a1 + · · · + ak) matrix

X = (
X(1) | X(2) | . . . | X(k)

)
where eachX(i) is the 2× ai Hankel block:(

x
(i)
0 x

(i)
1 x

(i)
2 . . . x

(i)
ai−1

x
(i)
1 x

(i)
2 . . . . . . x(i)

ai

)
.

The sequencea = (a1, a2, a3, . . . , ak) is said to be the type of the corresponding
scroll. These algebras have also a presentation as semigroup algebras. Let us
recall how. Consider the polynomial ringS = K[x, y][s1, s2, . . . , sk] equipped
with the bigraded structure given by deg(x) = deg(y) = (1, 0) and deg(si) =
(0, ai). Denote byS(i,j) the homogeneous component of bidegree(i, j) of S.
The subalgebraSa = ⊕uS(u,u) of S is (isomorphic to) the coordinate ring of
the rational normal scroll of typea. For instance, ifa = (3, 2) then Sa =
K[x3s1, x

2ys1, xy2s1, y
3s1, x

2s2, xys2, y
2s2] and it is isomorphic to

Ra = K[x(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3 , x

(2)
0 , x

(2)
1 , x

(2)
2 ]/I2(X)

where

X =
(

x
(1)
0 x

(1)
1 x

(1)
2 | x

(2)
0 x

(2)
1

x
(1)
1 x

(1)
2 x

(1)
3 | x

(2)
1 x

(2)
2

)
.

3)The coordinate ring of theVeronese embedding ofP2 → P5, that is, the second
Veronese subringK[x, y, z](2) = K[x2, xy, xz, y2, yz, z2] of K[x, y, z].

Unless otherwise specified, from now onK will be any infinite field (i.e. not
necessarily algebraically closed of characteristic 0). Let us start with the algebras
of the class 1).

3.1 Quadric hypersurfaces

We have:

Proposition 3.1 Any quadric hypersurface is u-Koszul.

Proof. Let R = K[x1, . . . , xn]/(f ) where deg(f ) = 2. We may argue by in-
duction onn. The casen = 1 is trivial. Let z 6= 0 be a linear form inR. The
ring R/(z) is either a quadric hypersurface with embedding dimensionn − 1 or
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a polynomial ring and hence it is u-Koszul by induction. By virtue of 1.5 it is
now enough to show that 0: (z) is generated by linear forms. Letz = y + (f )

with y a linear form inK[x1, . . . , xn]. If y 6 |f then 0: (z) = 0 while if y|f , say
f = yy1, then 0: (z) is generated by the class ofy1. ut
Remark 3.2A complete intersection of quadrics is not u-Koszul in general. For
instance, the coordinate ring of four general points ofP2 is a complete intersection
of 2 quadrics and by 1.8 is not u-Koszul. Explicitly, the ringR = K[x, y, z]/I
where

I = (x, y) ∩ (x, z) ∩ (y, z) ∩ (x − z, y − z) = (xz − yz, xy − yz)

is a c.i. of two quadrics and inR the ideal 0: (x+y) is generated by one quadric.
Another example isK[x, y, z]/(x2, yz) where one has 0: (x + y) = (xz).

As far as Artinian c.i. of quadrics are concerned, if the codimension is 2 then
they are u-Koszul by 2.1, while in codimension> 2 they are not u-Koszul in
general, see 1.10.

3.2 Rational normal scrolls

We have:

Theorem 3.3 LetRa be the coordinate ring of the rational normal scroll of type
a = (a1, a2, . . . , ak). ThenRa is u-Koszul if and only if eitherk = 1 (a rational
normal curve) ork = 2 anda1 = a2.

Let us split the proof of Theorem 3.3 in three parts and start by showing:

Lemma 3.4 LetRa be the coordinate ring of the rational normal scroll of type
a = (a1, a2, . . . , ak) with eitherk > 2 or k = 2 anda1 6= a2. ThenRa is not
u-Koszul.

Proof. Assume first thatk = 2 anda1 6= a2. Saya1 > a2. Consider the semi-
group presentation ofRa, i.e. Ra = K[xa1s1, x

a1−1ys1, . . . , y
a1s1, x

a2s2, x
a2−1

ys2, . . . , y
a2s2]. We claim that the ideal(xa1s1) : (ya1s1) of Ra is not generated

by linear forms in the ringRa. This shows thatRa is not u-Koszul. To prove the
claim we note first that the ideal(xa1s1) : (ya1s1) contains exactly one element of
degree 1, namelyxa1s1. Sett = min{i ∈ N : i ≥ a1/a2}. Then by construction
the elementxa1yta2−a1st

2 is in (xa1s1) : (ya1s1), it is not a multiple ofxa1s1 and
its degree inRa is t > 1. This concludes the proof of the claim and hence of the
casek = 2 anda1 6= a2.

Now assume thatk > 2, saya = (a1, a2, a3, . . . , ak) with a1 ≥ a2 ≥ · · · ≥
ak. If Ra would be u-Koszul then by 1.6 any ring of the formRa/I , whereI is an
ideal generated by elements of degree 1, would be u-Koszul. But among these
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rings there are also rings of typeRb with b = {b1, b2} with b1 6= b2: just kill all
the variables of the blocks with index> 3 (if any) and identify the last variable
of the first block with the first variable of the second one. Since we know already
that these rings are not u-Koszul, we may conclude thatRa itself is not u-Koszul.
ut

Next we show:

Theorem 3.5 The coordinate ring of the rational normal curve ofPn (i.e. the
n-th Veronese subring ofK[x, y]) is u-Koszul for everyn.

We will present two proofs of this theorem. The first is based on the semigroup
presentation of the ring under consideration and on the Hilbert-Burch theorem.
The second does not use the semigroup presentation and it is valid also for a
2-dimensional homogeneous Cohen-Macaulay domain of minimal multiplicity
which is not aVeronese subring ofK[x, y] (they can exist ifK is not algebraically
closed).

Proof of 3.5–(1)Let R be the coordinate ring of the rational normal curve ofPn,
i.e.R is then-th Veronese subringK[x, y](n) of S = K[x, y]. By virtue of 1.4 it
suffices to show that ifI is an ideal ofR generated by linear forms andz is a linear
form not inI then the idealI :R (x) is generated by linear forms. Note thatR is a
direct summand of the polynomial ringS and henceI :R (z) = (IS :S (z)) ∩ R.
Since linear forms inR are forms of degreen in S, it turns out that it is enough
to show that ifI is an ideal generated by forms of degreen in S andz is a form
of degreen then the idealI :S (z) is generated by forms of degree≤ n. If I = 0
then the assertion is trivial. If the codimension of the idealI + (z) is 1, then there
exists a homogeneous polynomial, sayg, which is a common factor ofI andz,
sayI = gI ′ andz = gz′. ThenI :S (z) = I ′ :S (z′) and hence we may assume
without loss of generality that the codimension of idealI + (z) is 2. Letm be the
minimal number of generators ofI . By the Hilbert-Burch theoremI + (z) has a

presentationSm A→ Sm ⊕ S → I + (z) and the maximal minors of the matrixA
are a system of minimal generators ofI +(z). The matrixA has sizem×(m+1)

and each of its rows contains elements of a given degree, say the elements of the
i-th row have degreedi . Since

∑
i di = n it follows thatdi ≤ n. By construction

the elements of the last column of the matrixA generatesI : (z). It follows that
I :S (z) is generated in degree≤ n.

Proof of 3.5–(2)Let R be a 2-dimensional homogeneous Cohen-Macaulay do-
main of minimal multiplicity. SinceR is a domain, according to 1.5 it suffices
to show thatR/z is u-Koszul for every non-zero linear form inR. Hence the
assertion is a consequence of the following lemma.

Lemma 3.6 A one-dimensional Cohen-Macaulay homogeneousK-algebra of
minimal multiplicity is u-Koszul.
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Proof. By assumption the Hilbert function ofR isH(R, 0) = 1 andH(R, i) = n

for i > 0. Let y be a linear form which is a non-zero-divisor onR. One has
yRk = Rk+1 for all k ≥ 1 and hence the multiplication byy from Rk to Rk+1

is bijective for all k ≥ 1. Let us denote byJi the degreei component of a
homogeneous idealJ . Let I ∈ L(R) andx ∈ R1 \ I . SinceI is generated by
linear forms, one hasIk+1 = I1Rk = I1Rk−1y = Iky for all k ≥ 2.

SetJ = I : (x). Let f ∈ Jk with k ≥ 2. Thenf = yg with g ∈ Rk−1.
Sincef x ∈ Ik+1 = yIk we haveygx = f x = yh with h ∈ Ik and therefore
y(gx − h) = 0. It follows thatgx = h and theng ∈ J . We have shown that
Jk = yJk−1 for all k ≥ 2 and henceJ ∈ L(R). ut

As a corollary of 3.6 we have:

Proposition 3.7 The algebraR = K[x1, . . . , xn]/(xixj : 1 ≤ i < j ≤ n)

is u-Koszul. In particular the coordinate ring ofn + 1 points ofPn in general
position is u-Koszul.

Proof. It follows from 3.6 sinceR is a one-dimensional Cohen-Macaulay ring
with minimal multiplicity. Alternatively one may note thatR is the fiber product
of K[x1], . . . , K[xn], and hence the statement follows from 1.6. ut

To conclude the proof of 3.3 it remains to treat the case of the scrolls of type
(a, a). To this end we need some preliminary observations and results.

The ringR(a,a) is the Segre product of two copies of the Veronese subring
K[x, y](a) of K[x, y]. Hence its semigroup presentation is given by the algebra
K[xas, xa−1ys, . . . , xya−1s, yas, xau, xa−1yu, . . . , xya−1u, yau]. It is a subal-
gebra of the polynomial ringS = K[x, y][s, u] equipped with the normalized
bigraded structure given by deg(x) = deg(y) = (1, 0) and deg(s) = deg(u) =
(0, 1). The algebraR(a,a) is a direct summand ofS and the linear forms ofR(a,a)

are bihomogeneous forms of bidegree(a, 1) in S. We will need the following
technical lemma:

Lemma 3.8 Let S = K[x, y][s, u] be the polynomial ring equipped with the
bigraded structure given bydeg(x) = deg(y) = (1, 0) anddeg(s) = deg(u) =
(0, 1). Letf1, f2 be a regular sequence of forms of bidegree(b, 1) and letA =
S/(f1, f2). Leta ≥ b andS1 = ⊕i∈ZS(ia,i) andM = ⊕i∈ZA(ia+b,i+1). Then:
1) M is anS1-module of positive depth (indeed, it is a Cohen-Macaulay module
of dimension1),
2) LetD be an ideal ofA generated by elements of bidegree(b, 1) and letz be
an element of bidegree(b, 1). SetJ = D : (z). Then for everya ≥ b and for
everyk > 1 one hasJ(ka,k) = J(a,1)A(ka−a,k−1).

Proof. 1) For every bigradedS-moduleT = ⊕(i,j)∈Z2T(i,j) we will denote by
T1 the S1-graded module⊕i∈ZT(ia,i). FurthermoreS(h, k) denotes the ringS
shifted by(h, k), i.e. the component of bidegree(i, j) of S(h, k) is S(i+h,j+k).
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The bigraded minimal free resolution ofA as anS-module is given by

0 → S(−2b, −2) → S(−b, −1)2 → S → A → 0

Taking into consideration only those homogeneous components of bidegree
(ia + b, i + 1) we get an exact sequence ofS1-modules:

0 → S(−b, −1)1 → S2
1 → S(b, 1)1 → M → 0

By virtue of [CHTV, Prop.3.4]S1 is a Cohen-Macaulay ring of dimension 3
andS(−b, −1)1 is Cohen-MacaulayS1-module of dimension 3. On the other
handS(b, 1)1 has positive depth (it is not CM in general). It follows that

depthM ≥ min{depthS(b, 1)1, depthS2
1 − 1, depthS(−b, −1)1 − 2} ≥ 1.

2) One easily shows that dimA(i,j) = 2b if i ≥ 2b andj ≥ 2 and also that
dimA(b,1) = 2b. Since by 1) we know thatM has positive depth, there exists an
elementg ∈ A(a,1) such that the multiplication byg from A(b,1) to A(b+a,2) is
injective. But then it is also surjective. It follows that for all(h, k) ≥ (b + a, 2)

one has

A(h,k) = A(h−b−a,k−2)A(b+a,2) = A(h−b−a,k−2)A(b,1)g = A(h−a,k−1)g.

From now one the argument is similar to that of 3.6. LetF ∈ J(ka,k) with
k > 1. Sincea ≥ b, we have(ka, k) ≥ (b + a, 2) and henceF = gF1

with F1 ∈ A(ka−a,k−1). By assumption

Fz ∈ D(ka+b,k+1) = D(b,1)A(ka,k) = D(b,1)A(ka−a,k−1)g = D(b+ka−a,k)g

and henceFz = Bg with B ∈ D(b+ka−a,k). Then(F1z−B)g = 0 and deg(F1z−
B) = (b+ ka −a, k). Butg is a non-zero-divisor onM, and henceF1z−B = 0
which in turn impliesF1 ∈ J(ka−a,k−1) and we are done by induction onk. ut
Lemma 3.9 Let S = K[x, y][s, u] be the polynomial ring equipped with the
bigraded structure given bydeg(x) = deg(y) = (1, 0) anddeg(s) = deg(u) =
(0, 1). LetV be a non-zero space of forms of bidegree(a, 1). Then there exists
a decomposition ofV asV = W + 〈z〉 such that if we setJ = (W) : (z), then
J(ka,k) = J(a,1)S(ka−a,k−1) for all k > 1.

Proof. Let d be the dimension ofV . If d = 1 then the assertion is trivial. So
assumed > 1. Letg be the greatest common divisor of the elements ofV (g is
possibly 1) and let(α, β) ≤ (a, 1) its bidegree. Then we may writeV = gV ′
whereV ′ is a space of forms of bidegree(a − α, 1− β) and the codimension of
the ideal(V ′) is 2. If β = 1 then we can argue has in the (first) proof of 3.5 and
the conclusion follows from the Hilbert-Burch theorem. Hence we may assume
thatβ = 0. We may then findf1, f2 ∈ V ′ of bidegree(a − α, 1) such that they
form a regular sequence inS.
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If d = 2 thenV = g〈f1, f2〉 and we may clearly takeW = 〈gf1〉 andz = gf2

so thatJ = (f1) and the assertion follows.
If d > 2 then letW be any space of forms of bidegree bidegree(a, 1),

such that dimW = d − 1 andW containsgf1, gf2. Let z be an element of
V such thatV = W + 〈z〉. We claim that this decomposition has the desired
property. To this end note that by constructionW = gW ′ andz = gz′ so that
J = (W) : (z) = (W ′) : (z′). SetA = S/(f1, f2). Note that by by construction
(f1, f2) ⊆ J andJ/(f1, f2) = (W ′)/(f1, f2) : (z′) wherez′ is the residue class
of z′ in A. Then the claim follows directly from 3.8. ut

Now we are ready to prove:

Theorem 3.10 The coordinate ringR(a,a) of the rational normal scroll of type
(a, a) is u-Koszul.

Proof. By 1.4 it suffices to show thatL(R(a,a)) is a Koszul filtration ofR(a,a).
SinceR(a,a) is a direct summand inS = K[x, y][s, u] this follows immediately
from 3.9. ut
Remark 3.11We want to point out that there is an important difference between
the proof of the u-Koszul property for the rational normal curves and that for
the scrolls of type(a, a). In the case of the rational normal curves the result is
a consequence of the fact that ifI is an ideal ofK[x, y] generated by elements
of degreen andz is an element of degreen then the idealI : (z) is generated in
degree≤ n. When dealing with the case(a, a) one has the same sort of situation.
In order to show that the scroll of type(a, a) is u-Koszul it would be enough to
prove that given an idealI ⊂ K[x, y][s, u] generated by forms of bidegree(a, 1)

and an elementz of bidegree(a, 1), then the idealI : (z) is generated by forms
of bidegree≤ (a, 1). Unfortunately this is not the case. For instance ifa = 2,
I = (x2s, xyt) ⊂ S = K[x, y][s, u] , andz = xys − x2t then the idealI : (z)

is minimally generated by(xy, xs, yt, st). The bidegreest is (0, 2) 6≤ (2, 1).
But the important fact is that these “bad" generators do not give contributions in
the relevant bidegrees. This is what we have proved in 3.9. In the example, if we
multiply st with S(4,0) to get to bidegree(4, 2) we obtain something which is in
the span of the other generators. AlreadyS(1,0)st is in (xy, xs, yt).

3.3 The Veronese surface

For the algebra of the class 3) in Bertini-Del Pezzo’s classification we have:

Theorem 3.12 The coordinate ring of the Veronese embedding ofP2 → P5 (i.e.
K[x, y, z](2)) is u-Koszul.
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Proof. SetS = K[x, y, z] and denote byR the second Veronese subring ofS.
We prove thatL(R) is a Koszul filtration. LetV be a non-zero space of linear
forms in R (i.e. a space of quadrics inS). Setd = dimV . We have to show
that there exist a subspaceW of V of dimensiond − 1 such that(W) :R (V ) is
generated by elements ofR of degree 1. Ifd = 1 then the assertion is trivial. If
d = 2 thenV = 〈f, g〉 and(f ) :R (g) = ((f ) :S (g)) ∩ R and the assertion
is clearly true. So assumed > 2. If the ideal(V ) has codimension≥ 2 in
S then we may find a regular sequencef, g of elements ofV . SinceR is a
direct summand inS, the elementsf, g form a regular sequence inR also.
TheR/(f, g) is a 1-dimensional Cohen-Macaulay homogeneousK-algebra of
minimal multiplicity. HenceR/(f, g) is u-Koszul by 3.6. It follows that any
subspaceW of V containingf, g has the desired property. If instead the ideal
(V ) has codimension 1 inS thenV is necessarily of the formlS1 wherel is a
non-zero linear form inS. We may assumel = x. Then takeW = 〈x2, xy〉 and
note that(W) :R (V ) = (x2, xy) :R (xz) = (x2, xy, y2, xz, yz). ut

We have seen that a 2-dimensional Cohen-Macaulay homogeneous algebra
R which is a domain of minimal multiplicity is u-Koszul. One may wonder
whether the domain assumption can be replaced by, say, the assumption that
R is reduced. This is not possible. The ringR = K[x, y, z, t]/(xy, yz, zt) is
a 2-dimensional Cohen-Macaulay homogeneous reduced algebra with minimal
multiplicity which is not u-Koszul.
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