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Abstract

The Castelnuovo-Mumford regularity reg(M) is one of the most important in-
variants of a finitely generated graded module M over a polynomial ring R. For
instance, it measures the amount of computational resources that working withM
requires. In general one knows that the regularity of a module can be doubly expo-
nential in the degrees of the minimal generators and in the number of the variables.
On the other hand, in many situations one has or one conjectures a much better
behavior. One may ask, for instance, whether the Castelnuovo-Mumford regularity
reg(IM) of the product of an ideal I with a module M is bounded by the sum
reg(I)+reg(M). In general this is not the case. But we show that it is indeed the
case if either dimR/I ≤ 1 or I is generic (in a very precise sense). Further we
show that products of ideals of linear forms have always a linear resolution and that
the same is true for products of determinantal ideals of a generic Hankel matrix.

Introduction

Let R be a polynomial ring over a field K and let m be its graded maximal ideal. Let
I be a graded ideal of R and M a finitely generated graded R-module. The highest
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degree of a generator of the product IM is bounded above by the sum of the highest
degree of a generator of M and the highest degree of a generator of I. One may wonder
whether the same relation holds also for the Castelnuovo-Mumford regularity, that is,
whether

reg(IM) ≤ reg(M) + reg(I). (1)

This is not the case in general. There are examples already with M = I such that
reg(I2) > 2 reg(I), see Sturmfels [15] and Terai [16]. On the other hand, Chandler
[5] and Geramita, Gimigliano and Pitteloud [11] have shown that reg(Ik) ≤ k reg(I)
holds for ideals with dimR/I ≤ 1. In general one has that reg(Ik) is asymptotically
a linear function of k, see [14, 8]. If I = m and M is any finitely generated graded
R-module, then reg(m) = 1 and it is easy to see that reg(mM) ≤ reg(M)+1 holds. So
it is natural to ask whether (1) holds whenever I is generated by a regular R-sequence
or at least by a sequence of linear forms. Unfortunately this is also not the case, even
when M is a monomial ideal with a linear resolution and I is generated by a subset
of the variables, see Example 2.1. The purpose of this note is to describe some cases
where (1) is nonetheless valid.

In Section 1 we recall some generalities about regularity and show in Section 2 that
(1) is valid for ideals generated by sequences which are almost regular with respect to
M and regular with respect to R, see 2.3. We also show the validity of (1) whenever the
Krull dimension of R/I is at most 1. The argument is similar as in the corresponding
result of Chandler. It follows that (1) holds whenever I is generated by any number
of generic forms.

More surprising is the fact, proved in Section 3 (Theorem 3.1), that any product
of ideals of linear forms has a linear resolution. This is obtained as a consequence of a
description of a primary decomposition of such an ideal, see 3.2.

In Section 4 we consider ideals with linear quotients, that is, ideals which can
be generated by a minimal system of generators whose successive colon ideals are
generated by linear forms. Examples of such ideals are stable, and squarefree stable
ideals in the sense of Eliahou-Kervaire [10] and Aramova-Herzog-Hibi [1], as well as
polymatroidal ideals, as noted in [13]. Again it turns out that the property of having
linear quotients is not preserved under taking products or powers. However we show
in Section 5 that products of polymatroidal ideals are again polymatroidal, and hence
have again linear quotients. This is also implied by the fact that discrete polymatroids
are just the integer vectors of an integral polymatroid (see [12, Theorem 3.4]) and a
theorem on polymatroidal sums [17, Theorem 3].

Let X be a generic Hankel matrix and let It be the ideal of the minors of size t
of X. It has been shown in [6] that Ik2 has a linear resolution for all k. Furthermore,
it follows from results in [2] and [7] that Ikt has a linear resolution for all k and for all
t. As an application of the concept of ideals with linear quotients we show in the last
section that any product It1 · · · Itk of ideals of minors of a generic Hankel matrix has
a linear resolution.

Some of the results of this paper have been conjectured after explicit computations
performed by using the computer algebra system CoCoA[4]. We would like to thank
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J. Abbott, A. Bigatti and M. Caboara for their help and suggestions in doing these
computations.

1. Generalities

Let K be a field and let R be a polynomial ring over K. Let M = ⊕i∈ZMi be a finitely
generated graded R-module. For every i ∈ N one defines

tRi (M) = max
{
j |βR

ij(M) �= 0
}

where βR
ij(M) is the ijth graded Betti number of M as an R-module, i.e.

βR
ij(M) = dimK TorRi (M,K)j

and tRi (M) = −∞ if it happens that TorRi (M,K) = 0. The Castelnuovo-Mumford
regularity reg(M) of M is given by

reg(M) = sup
{
tRi (M) − i : i ∈ N

}
.

The initial degree of a non-zero finitely generated graded R-module M is the least i
such that Mi �= 0. A finitely generated graded R-module M has a linear resolution if
its regularity is equal to its initial degree. In other words, M has linear resolution if
its minimal generators have all the same degree and the matrices of the minimal free
resolution of M over R have entries of degree 1.

A short exact sequence

0 → N →M → P → 0

of finitely generated graded R-modules yields a long exact sequence of Tor-modules

· · · → TorRi+1(P,K) → TorRi (N,K) → TorRi (M,K) → TorRi (P,K) → · · ·

It follows that

reg(M) ≤ max
{

reg(P ), reg(N)
}
,

reg(N) ≤ max
{

reg(M), reg(P ) + 1
}
, (2)

reg(P ) ≤ max
{

reg(N) − 1, reg(M)
}
.

Let N be a graded module of finite length. We set s(N) = max {s:Ns �= 0}. One
has (see [9, Corollary 20.19]):

Lemma 1.1

Let N be a graded R-module of finite length. Then:

(a) reg(N) = s(N)
(b) If 0 → N → M → P → 0 is a short exact sequence of finitely generated graded

modules then reg(M) = max {reg(P ), s(N)}.
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Let M be a finitely generated graded R-module. A homogeneous element x ∈ R

of degree d is called almost regular on M if the multiplication map x:Mi−d → Mi is
injective for all i  0. Let N = H0

m(M), i.e. N = {a ∈ M : mka = 0 for some k}.
Then x is almost regular for M if and only if x is a non-zerodivisor on M/N .

A sequence x1, . . . , xm of homogeneous elements of R is called an almost regular
M -sequence if xi is almost regular on M/(x1, . . . , xi−1)M for i = 1, . . . , n.

Proposition 1.2

Let M be a finitely generated graded R-module and x ∈ R an almost regular

element on M of degree d. Set N = H0
m(M). Then

reg(M) = max
{

reg(M/xM) − d+ 1, s(N)
}
.

Proof. Set a = reg(M), b = reg(M/xM), c = reg(xM) and s = s(N). We have to show
that a = max {b − d + 1, s}. Let W = (0 :M x); then W ⊂ N and s(W ) = s(N) = s.
We obtain two exact sequences

0 →W (−d) →M(−d) → xM → 0,

and
0 → xM →M →M/xM → 0.

By virtue of 1.1 and of the first exact sequence we have

(i) a = max {c− d, s}

while from the second exact sequence and (2) we have:

(ii) c ≤ max {a, b+ 1}, (iii) b ≤ max {a, c− 1}.

By (i) and (ii) we have a = max {c − d, s} ≤ max {a − d, b + 1 − d, s} which implies
a ≤ max {b+1−d, s}. By (iii) and (i) we have b ≤ max {a, c−1} = max {c−d, s, c−1} =
max {s, c−1}. Hence max {b+1−d, s} ≤ max {s+1−d, c−d, s} = max{c−d, s} = a. �

Given a homogeneous ideal I in a polynomial ring R and a finitely generated
graded R-module M , one defines the saturation (IM)sat of IM as follows:

(IM)sat = {x ∈M :mkx ⊂ IM for some k}

and the saturation degree sat(IM) the smallest index j such that IM and (IM)sat

coincide from degree j on. In other words, sat(IM) = s((IM)sat/IM) + 1. Note that
H0

m(M/IM) = (IM)sat/IM , and hence sat(IM) is the smallest index j such that
H0

m(M/IM) vanishes from degree j on. As a consequence of 1.2 we have

Corollary 1.3

Let I ⊂ R be a homogeneous ideal, and let x ∈ R be a linear form which is almost

regular on R/I. Then reg(I) = max {reg(I + (x)), sat(I)}.
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2. Regularity of products of ideals and modules

Given a finitely generated graded R-module M and a homogeneous ideal I ⊂ R,
the purpose of this section is to discuss cases in which the inequality (1) holds. We
mentioned already in the introduction that this is not always the case. On the other
hand, if one takes I = m, where m is the graded maximal ideal of R, then reg(mM) ≤
reg(M) + 1 and hence (1) holds. So it is natural to ask whether (1) holds in case I
is generated by an R-regular sequence. Unfortunately this is not true, even when I is
generated by linear forms, as the following example shows.

Example 2.1: Let R = K[a, b, c, d], and let J = (a2b, abc, bcd, cd2). The resolution of
J is

0 → R3(−4) → R4(−3) → J → 0.

It follows that reg(J) = 3. If we take I = (b, c) then the resolution of IJ is

0 → R(−8) → R3(−6) ⊕R2(−7) → R10(−5) ⊕R(−6) → R8(−4) → IJ → 0.

The non-linear minimal syzygy among the generators of IJ is a2(bcd2)− d2(a2bc) = 0.
Anyway, reg(IJ) = 5.

On the other hand, one has

Theorem 2.2

LetM be a finitely generated graded R-module and let I be an ideal of R generated

by an almost regular M -sequence x1, . . . , xm. Set deg xi = di. Then

reg(IM) ≤ reg(M) + d1 + d2 + · · · + dm −m+ 1.

Proof. By 1.2 we have

reg(M/(x1, . . . , xi−1)M) ≥ reg(M/(x1, . . . , xi)M) − di + 1

for all i = 1, . . . ,m. This implies that

reg(M/IM) ≤ reg(M) + d1 + · · · + dm −m.

Now

reg(IM) ≤ max {reg(M/IM) + 1, reg(M)}
≤ max {reg(M) + d1 + · · · + dm −m+ 1, reg(M)}
= reg(M) + d1 + · · · + dm −m+ 1. �

Corollary 2.3

Suppose that, in addition to the assumptions of 2.2, x1, . . . , xm is a regular R-

sequence. Then reg(IM) ≤ regM + reg(I).
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Proof. For the proof we just note that reg(I) = d1 +d2 + · · ·+dm−m+1 if x1, . . . , xm
is a regular R-sequence. �

The following result generalizes a theorem of [5] and [11], and is another case in
which the inequality (1) holds.

Theorem 2.4

Let I be a graded ideal of R with dimR/I ≤ 1. Then for any finitely generated

graded R-module M we have

reg(IM) ≤ reg(M) + reg(I).

Proof. The proof follows very much the line of arguments of [5].

Let x ∈ R1 be an element which is almost regular on M , M/IM and R/I. We
first show that

sat(IM) ≤ reg(M) + reg(I). (3)

We set r = reg(M) and t = reg(I). Since (IM)sat/IM and (IM :M x)/IM have the
same socle, it suffices to show that if f ∈ M is homogeneous of degree ≥ r + t with
xf ∈ IM , then f ∈ IM .

Suppose that f =
∑

i fimi and xf =
∑

i gimi with gi ∈ I. Then
∑

i(xfi−gi)mi =
0. Consider the exact sequence

0 −→ U → F
ε→M −→ 0

where F is free with basis e1, . . . , ek and ε(ei) = mi. Then
∑

i(xfi − gi)ei ∈ U . Let
u1, . . . , ul be a homogeneous system of generators of U , and uj =

∑
i aijei. Then

∑
i

(xfi − gi)ei =
∑
j

kjuj =
∑
i

( ∑
j

aijkj

)
ei,

so that xfi − gi =
∑

j aijkj . Note that deg kj ≥ r + t + 1 − deg uj ≥ t. Hence,
kj ∈ I + (x), since (I + (x))i = Ri for i ≥ t. Thus kj = xpj + qj with qj ∈ I. This
yields

x
(
fi −

∑
j

aijpj

)
= gi +

∑
j

aijqj .

This equation implies that fi −
∑

j aijpj ∈ Isat. However, since sat(I) ≤ reg(I) = t

and deg(fi −
∑

j aijpj) ≥ t, it follows that fi −
∑

j aijpj ∈ I. We conclude that
f =

∑
i(fi −

∑
j aijpj)mi ∈ IM . This concludes the proof of (3).

In order to prove the theorem we assume first that dimM/IM = 0. By (2)
we have reg(IM) ≤ max{reg(M), reg(M/IM) + 1}. Hence it suffices to show that
reg(M/IM) ≤ reg(M) + reg(I) − 1. Since reg(M/IM) = s(M/IM) by 1.1, and since
s(M/IM) = sat(IM) − 1, this follows from (3).

Now we assume that dimM/IM = 1. Set N = M/xM . Then Proposition 1.2
implies

reg(M/IM) = max {reg(N/IN), sat(IM) − 1}. (4)
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By 1.1 we also have reg(N/IN) ≤ max {reg(IN) − 1, reg(N)}, and since N/IN is
0-dimensional we conclude from the first part of the proof that reg(IN) ≤ reg(N) +
reg(I), so that

reg(N/IN) ≤ max {reg(N) + reg(I) − 1, reg(N)}
= reg(N) + reg(I) − 1 ≤ reg(M) + reg(I) − 1.

The last inequality holds since x is almost regular on M . Thus together with (4) we
obtain

reg(M/IM) ≤ max {reg(M) + reg(I) − 1, sat(IM) − 1}. (5)

Notice further that

reg(IM) ≤ max {reg(M), reg(M/IM) + 1}. (6)

We may assume that reg(IM) > reg(M), because otherwise nothing is to prove. But
then (6) implies that reg(IM) ≤ reg(M/IM) + 1. Hence together with (5) we get

reg(IM) ≤ max {reg(M) + reg(I), sat(IM)}.
The desired inequality follows from (3). �

As a Corollary of 2.3 and 2.4 we obtain:

Corollary 2.5
Let M be a finitely generated graded R-module and let I be an ideal generated

by a generic sequence of homogeneous forms. Then reg(IM) ≤ reg(M) + reg(I).

Proof. If I is generated by ≤ dimR elements then its generators, being generic, form a
regular sequence on R which is almost regular sequence on M . Then the result follows
from 2.3. On the other hand, if I is generated by ≥ dimR elements, then dimR/I = 0
and the desired inequality follows from 2.4. �

3. Regularity of products of ideals of linear forms

The goal of this section is to prove the following:

Theorem 3.1
Let I1, I2, . . . , Id be non-zero ideals of R generated by linear forms. Then the

product I1I2 · · · Id has a linear resolution, i.e.

reg(I1I2 · · · Id) = d.

To prove the theorem we need some preliminary results. Let us fix some notation.
For a subset A of {1, . . . , d} we will set IA =

∑
j∈A Ij and denote by |A| the cardinality

of A. We have:

Lemma 3.2
Let I1, I2, . . . , Id be non-zero ideals of R generated by linear forms. Then

I1 · · · Id = ∩AI
|A|
A

is a (possibly redundant) primary decomposition of I1 · · · Id. Here the intersection is
extended to all the non-empty subsets A of {1, . . . , d}.
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As a Corollary of 3.2 we have:

Corollary 3.3

Let I1, I2, . . . , Id be non-zero ideals of R generated by linear forms. Then

sat(I1I2 · · · Id) ≤ d.

Proof. of 3.3: Set J = I1I2 · · · Id. By virtue of 3.2 Jsat = ∩AI
|A|
A where the intersection

is extended to all the non-empty subsets A of {1, . . . , d} such that IA �= m. It follows
that J = Jsat∩md if

∑
Ii = m and J = Jsat, otherwise. This implies that sat(J) ≤ d. �

Now we prove 3.2:

Proof. The ideal I |A|
A is obviously IA-primary and hence it suffices to prove that

I1 · · · Id = ∩AI
|A|
A . Set J = I1I2 · · · Id. Let Ji be the product of the Ij with j �= i. By

induction on d, it is enough to show that:

J = J1 ∩ . . . ∩ Jd ∩
( d∑

i=1

Ii

)d

.

We prove this equality by induction on d and on dimR. The critical inclusion is ⊇. We
may assume that

∑
Ii = m (otherwise all the ideals live in a smaller polynomial ring).

It is also harmless to assume that the residue field is infinite. Summing up, what we
have to prove is that if f is an element in J1 ∩ . . . ∩ Jd of degree ≥ d then f ∈ J . As
Ji is a product of (d− 1) ideals of linear forms, by induction we know that Corollary
3.3 holds for Ji and hence sat(Ji) ≤ d − 1 for all i. Let x be a linear form which is a
non-zerodivisor on R/Jsat

j for all the Jj of positive dimension. The ideals J + (x)/(x)
of R/(x) is the product of ideals of linear forms Ii + (x)/(x). So, arguing modulo x
and using induction on dimR, we see that f ∈ J+(x). Write f = h+xf1, with h ∈ J .
Replacing f with f − h we may assume from the really beginning that f = xf1. Since
f = xf1 ∈ Ji and sat(Ji) ≤ d − 1, by the choice of x we may deduce that f1 itself is
in Ji for all i. Now since the sum of the Ii is m we may write x =

∑
i xi with xi ∈ Ii.

Then we have f = xf1 =
∑

i xif1 and each xif1 ∈ IiJi = J so that f ∈ J . �
We are ready to prove 3.1

Proof. Set J = I1 . . . Id. Since J is generated in degree d our task is to prove that
reg(J) ≤ d. We prove it by induction on the dimension of R and on d. The claim
is trivial if dimR = 1. If dimR/J = 0 then the assertion is also trivial. We may
hence assume that dimR/J > 0. Let x be a linear form which is a non-zerodivisor
modulo Jsat. By 1.3 we have that reg(J) = max {reg(J + (x)), sat(J)}. Note that
reg(J + (x)) = 1 + reg(R/J + (x)). Since reg(R/J + (x)) can be interpreted as the
regularity of R/J + (x) as an R/(x)-module and the ideal J + (x)/(x) of R/(x) is
a product of ideals of linear forms we have reg(R/J + (x)) = d − 1. It follows that
reg(I + (x)) = d. Since by 3.3 sat(J) ≤ d, we are done. �

The primary decomposition of 3.2 is in general far from being irredundant. For
example we have:
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Proposition 3.4

Let V1, . . . , Vd be a family of subspaces of R1 which is linearly general, i.e. one

has

dim
∑
i∈A

Vi = min
{

dimR1,
∑
i∈A

dimVi

}

for all the non-empty subsets A of {1, . . . , d}. Assume that
∑d

i=1 Vi = R1. Let Ii be

the ideal generated by Vi. Then

I1 · · · Id = I1 ∩ . . . ∩ Id ∩ m
d

is a primary decomposition of I1 · · · Id.

Proof. We have to show that all the terms I
|A|
A with 1 < |A| < d in the pri-

mary decomposition 3.2 are superfluous. For such an A we distinguish two cases.
If

∑
i∈A dimVi ≤ dimR1 then by assumption dim

∑
i∈A Vi =

∑
i∈A dimVi which im-

plies that ∩i∈AIi = Πi∈AIi. Hence I |A|
A contains ∩d

i=1Ii and it is therefore superfluous.
If instead

∑
i∈A dimVi > dimR1, then by assumption IA = m and hence I |A|

A ⊃ md. �
On the other hand there are cases where all the 2d − 1 ideals appearing in the

primary decomposition 3.2 are essential.

Example 3.5: Let R = K[x1, . . . , xd, y] and consider Ii = (xi, y). Set J = I1 · · · Id. It
is not difficult to show that for any subset A ⊆ {1, . . . , d} one has J : m = (y) + (xi :
i ∈ A) = IA where m = y|A|−1Πi �∈Axi. Hence each IA is an associated prime of J .
Therefore the primary decomposition given in 3.2 is irredundant in this case.

Question 3.6 After 3.1 it is natural to ask whether

reg(I1I2 · · · Id) ≤ reg(I1) + reg(I2) + . . .+ reg(Id)

holds for ideals Ii generated by regular sequences. By 2.5, this is true if each Ii is
generated by generic forms.

4. Modules with linear quotients

We say that a finitely generated graded R-module M has linear quotients if M admits
a minimal system of generators m1, . . . ,mk such that for every t = 1, . . . , k one has
that 〈m1, . . . ,mt−1〉 :R mt is an ideal of R generated by linear forms.

Examples of ideals with linear quotients are strongly stable and squarefree strongly
stable ideals. Other important classes will be considered in the next sections.

Lemma 4.1

If M has linear quotients then

reg(M) = max {degm:m is a minimal generator of M}.

In particular, if all generators ofM have the same degree, thenM has a linear resolution

over R.
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Proof. Let m1, . . . ,mk be as in the definition of module with linear quotients. Set
Mt = 〈m1, . . . ,mt〉. We have an exact sequence

0 →Mt−1 →Mt →Mt/Mt−1 → 0

and Mt/Mt−1 is of the form R/I[−deg(mt)] with I an ideal of R generated by linear
forms. Since reg(R/I) = 0 it follows that reg(Mt) ≤ max {reg(Mt−1),deg(mt)} and
hence, by induction, the assertion follows. �

Example 4.2: The ideal J = (a2b, abc, bcd, cd2) of 2.1 has linear quotients, the suc-
cessive colons being:

(0), (a), (a), (b).

On the other hand there are ideals with linear resolution and without linear quotients.
The easiest example is the ideal I of 2-minors of the matrix

(
a b c
b c d

)
.

I has a linear resolution but it cannot have linear quotients since it is a prime ideal
and hence (f) : (g) = (f) for each f ∈ I with deg(f) = 2.

Note that for a monomial ideal I to have linear quotients (with respect to the
monomial generators) is a purely combinatorial property and hence does not depend
on the characteristic of the base field. On the other hand the minimal free resolution
of a monomial ideal, and hence its linearity, depends, in general, on the characteristic
of the base field. This shows that also for monomial ideals to have linear quotients
is a stronger property than to have a linear resolution. The (famous) example of the
Stanley-Reisner ideal of a triangulation of the real projective plane (see for example
[3, pag. 236]) gives an example of square free monomial ideal that, if the characteristic
of K is not 2, has a linear resolution and does not have linear quotients.

We have seen that the property of having a linear resolution is not preserved by
taking products or powers of ideals. The same thing can happen for the property of
having linear quotients:

Example 4.3: We know from 4.2 that J = (a2b, abc, bcd, cd2) has linear quotients,
but as we have seen in 2.1, (b, c)J does not even have a linear resolution. Also, the
ideal I = (a2b, a2c, ac2, bc2, acd) has linear quotients, the quotients being

(0), (b), (a), (a), (c, a).

But the minimal resolution of I2 begins with

R24(−7) ⊕R(−8) → R15(−6) → I2 → 0

and hence I2 cannot have linear quotients.

Question 4.4 We have seen that a product of ideals of linear forms has a linear
resolution. One may ask whether such an ideal has even linear quotients. In the next
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section we will see that this is the case for products of ideals of variables, see 5.4. For
the general case, we have tested many examples with CoCoA, starting with generic and
with special ideals of linear forms. We have always found ideals with linear quotients.

5. Polymatroidal ideals

In this section we consider a class of monomial ideals with linear quotients which is
closed under the operation of taking products. The theorems presented here correspond
to analogue theorems in matroid theory.

Let R = K[x1, . . . , xn] be the polynomial ring. For a monomial ideal I ⊂ R we
denote by G(I) the unique minimal set of monomial generators, and for a monomial
u = xa1

1 . . . xan
n we set νi(u) = ai for i = 1, . . . , n. Given monomials u, v we set

[u, v] = GCD(u, v).

Definition 5.1. A monomial ideal I ⊂ R is said to be polymatroidal if all its genera-
tors have the same degree and if it satisfies the following exchange property:

for all u, v ∈ G(I) and all i with νi(u) > νi(v), there exists an integer j with
νj(v) > νj(u) such that xj(u/xi) ∈ G(I).

The name is explained by the fact that the elements of G(I) correspond to the
basis of a polymatroid, as defined in [17]. If I is a squarefree ideal, then this set
corresponds to the basis of a matroid. Hence squarefree polymatroidal ideals are also
called matroidal.

For the convenience of the reader we reproduce from [13] the proof of the following
important property of polymatroidal ideals.

Theorem 5.2
A polymatroidal ideal I has linear quotients with respect to the reverse lexico-

graphical order of the generators.

Proof. Let u ∈ G(I), and let J be the ideal generated by all v ∈ G(I) with v > u (in
the reverse lexicographical order). Then

J : u = (v/[v, u]: v ∈ J).

Thus in order to prove that J : u is generated by monomials of degree 1, we have to
show that for each v > u there exists xj ∈ J : u such that xj divides v/[v, u].

In fact, let u = xa1
1 · · ·xan

n and v = xb11 · · ·xbnn . Since v > u, there exists an integer
i with ai > bi and ak = bk for k = i + 1, . . . , n, and hence an integer j with bj > aj
such that u′ = xj(u/xi) ∈ G(I). Since j < i, we see that u′ ∈ J , and from the equation
xiu

′ = xju we deduce that xj ∈ J : u. Finally, since νj(v/[u, v]) = bj − min{bj , aj} =
bj − aj > 0, we have that xj divides v/[v, u]. �

Though products of ideals with linear quotients need not to have linear quotients,
we nevertheless have

Theorem 5.3
Let I and J be polymatroidal monomial ideals. Then IJ is polymatroidal.



148 Conca and Herzog

Proof. Let u and v be two monomials of same degree. We set

d(u, v) =
1
2

∑
i

|νi(u) − νi(v)|.

Note that this is an integer. We call d(u, v) the distance between u and v. This function
satisfies the usual rules of a distance function. In particular, one has d(u, v) = 0 if and
only if u = v.

Now let u1, u ∈ G(I) and v1, v ∈ G(J) and suppose that νi(u1v1) > νi(uv).
Then we may assume that νi(u1) > νi(u). Hence there exists an integer j1 such that
νj1(u) > νj1(u1) and u2 = xj1(u1/xi) ∈ G(I). Moreover we have d(u2, u) < d(u1, u).

If νj1(v) ≥ νj1(v1) we are done, because then νj1(uv) > νj1(u1v1), and

xj1(u1v1/xi) = u2v1 ∈ G(IJ).

Otherwise νj1(v1) > νj1(v). Hence there exists k1 with νk1(v) > νk1(v1) and such that
v2 = xk1(v1/xj1) ∈ G(J). Moreover we have d(v2, v) < d(v1, v).

If νk1(u) ≥ νk1(u2), then νk1(uv) > νk1(u2v1) = νk1(xj1(u1v1/xi)). Thus if k1 �= i,
then νk1(uv) > νk1(u1v1), and we are done since

xk1(u1v1/xi) = u2v2 ∈ G(IJ).

On the other hand, if k1 = i, then u1v1 = u2v2, and by induction we may assume that
the exchange property holds since d(u2, u) < d(u1, u) and d(v2, v) < d(v1, v).

Otherwise νk1(u2) > νk1(u). Hence there exists j2 with νj2(u) > νj2(u2) and
such that u3 = xj2(u2/xk1) ∈ G(I). If νj2(v) ≥ νj2(v2), then νj2(uv) > νj2(u2v2) =
νj2(xk1(u1v1/xi)). Thus if j2 �= i, then νj2(uv) > νj2(u1v1), and we are done since

xj2(u1v1/xi) = u3v2 ∈ IJ.

On the other hand, if j2 = i, then u3v2 = u1v1, and by induction on the distance we
have the desired exchange property. Otherwise νj2(v2) > νj2(v).

We may proceed in this way. Suppose we have already constructed sequences
xj1 , . . . , xjr , xk1 , . . . , xkr−1 , and u1, . . . , ur+1 ∈ G(I), v1, . . . , vr ∈ G(J) such that for
p = 1, . . . , r we have

(i) xkp−1 divides up and xjp divides vp,
(ii) up+1 = xjp(up/xkp−1) and vp = xkp−1(vp−1/xjp−1),
(iii) d(up+1, u) < d(up, u) and for p �= r, d(vp+1, v) < d(vp, v),
(iv) νjp(u) > νjp(up) and νkp

(v) > νkp
(vp).

Here we have set k0 = i for systematic reasons. Notice that

ur+1 = xjr · · ·xj1(u1/xixk1 · · ·xkr−1) and vr = xkr−1 · · ·xk1(v1/xj1 · · ·xjr−1).

If νjr (v) ≥ νjr (vr), then by (iv), νjr (uv) > νjr (urvr) = νjr (xkr−1(u1v1/xi)). Thus,
if jr �= i, then νjr (uv) > νjr (u1v1), and we are done since

xjr (u1v1/xi) = ur+1vr ∈ G(IJ).
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On the other hand, if jr = i, and then u1v1 = ur+1vr and by induction on the distance
we have the desired exchange property.

Otherwise νjr (vr) > νjr (v), and there exists kr with νkr
(v) > νkr

(vr) and such
that vr+1 = xkr

(vr/xjr ) ∈ G(J). Moreover we have d(vr+1, v) < d(vr, v). Thus the
new elements xkr and vr+1 satisfy again the properties (i)-(iv).

If νkr (u) ≥ νkr (ur+1), then by (iv), νkr (uv) > νkr (ur+1vr) = νkr (xjr (u1v1/xi)).
Thus, if kr �= i, then νkr

(uv) > νkr
(u1v1), and we are done since

xkr (u1v1/xi) = ur+1vr+1 ∈ G(IJ).

On the other hand, if kr = i, and then u1v1 = ur+1vr+1 and by induction on the
distance we have the desired exchange property.

Otherwise νkr
(ur+1) > νkr

(u), and there exists jr+1 with νjr (u) > νjr (ur+1) and
such that ur+2 = xjr+1(ur+1/xkr ) ∈ G(I). Moreover, d(ur+2, u) < d(ur+1, u). Thus
we have the conditions (i)-(iv) as before but r replaced by r+1. Condition (iii) implies
that the process must terminate. This proves the theorem. �

Since ideals generated by subsets of the variables are obviously polymatroidal,
Theorem 5.3 implies

Corollary 5.4

Let I1, . . . , Id be ideals generated by subsets of the variables. Then I = I1 · · · Id
has linear quotients.

Let I and J be matroidal ideals. We let I ∗ J be the ideal which is generated by
all monomials uv with u ∈ G(I) and v ∈ G(J) such that uv is squarefree. We call I ∗J
the squarefree product of I and J . Analogously to 5.3 we have

Theorem 5.5

Let I and J be matroidal ideals. Then I ∗ J is matroidal.

The proof of this theorem similar to that of 5.3. We leave it to the reader.
As a particular case of 5.5 one has that the squarefree product of ideals generated

by variables is matroidal. The corresponding matroid is usually called transversal.

6. Products of ideals defined by Hankel matrix

In this section we use the notion of ideals with linear quotients to show that products
of ideals of minors of a Hankel matrix have a linear resolution.

Let R be the polynomial ring K[x1, . . . , xn] over some field K. Let X be a Hankel
matrix with distinct entries x1, . . . , xn; this means that X is an a× b matrix (yij) with
yij = xi+j−1 and a+ b− 1 = n. Let It be the ideal generated by the minors of size t
of X. It is known that It does not depend on the size of the matrix X (provided, of
course, X contains t-minors); it depends only on t and n. For a given n it follows that
t may vary from 1 to m, where m = [(n + 1)/2] is the integer part of (n + 1)/2. It is
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known that the powers of I2 have a linear resolution, [7]. Blum [2, 3.6] has recently
shown that if the Rees algebra R(I) of an ideal I is Koszul then all the powers of I
have linear resolutions. As we know that R(It) is Koszul [7], we have that Ikt has a
linear resolution for all t and k. We prove here a stronger result:

Theorem 6.1

Let X be a generic Hankel matrix. Let t1, . . . , tp be integers and I be the product

of It1 · · · Itp . Then I has a linear resolution.

We recall some definitions and results from [6]. Let τ be the lexicographic term
order on the monomials of R and >1 the partial order on x1, . . . , xn defined by xj >1 xi
if and only if j − i > 1. A >1-chain is a monomial xi1 · · ·xik such that xi1 <1 xi2 <1

. . . <1 xik . Denote by J the initial ideal of I = It1 · · · Itp and by Jk that of Ik. We
know that

Jk = (m : m is a >1-chain of degree k}

and that
J = Jt1 · · ·Jtp .

Since the regularity can only increase by passing to the initial ideal, it suffices to show
that

Proposition 6.2

The ideal J has linear quotients.

Before proving 6.2 we will describe the generators of J . They have a description
in terms of the γ-functions associated to the canonical decomposition of any monomial
of R. Let us recall how. Any monomial m of R has a canonical decomposition m =
m1 · · ·mk as a product of >1-chains. The monomial m1 is defined to be the largest,
with respect to τ , among all the >1-chains which divide m. Similarly, m2 is the largest
among all the >1-chains which divide m/m1 and so on. The shape of a monomial
m is the sequence of integers s(m) = deg(m1), . . . ,deg(mk) where m = m1 · · ·mk is
the canonical decomposition of m. By the very definition, the shape of m is a weakly
decreasing sequence. For any t and for any sequence of integers s = s1, . . . , sp one
defines

γt(s) =
p∑

i=1

max(si − t+ 1, 0).

Furthermore, if m is a monomial then we set:

γt(m) = γt(s(m)).

Example 6.3: Let m = x2
1x

3
2x

2
3x

3
5x6x7x

3
8. Then

m = (x1x3x5x7)(x1x3x5x8)(x2x5x8)(x2x6x8)(x2)
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is the canonical decomposition of m. Its shape is s(m) = 4, 4, 3, 3, 1 and its γ-values
are γ1(m) = 15, γ2(m) = 10, γ3(m) = 6, γ4(m) = 2, and γt(m) = 0 for t > 4.

Given the numbers t1, . . . , tp, let us denote by Ω the set of the monomials m such
that deg(m) =

∑p
j=1 tj and γi(m) ≥ γi(t1, . . . , tp) for every i. In [6] it is proved:

Proposition 6.4

(1) Ω is a system of generators of J ,
(2) Let m be a monomial with a decomposition (canonical or not) m = n1 · · ·nv

where the ni are >1-chains. Set s = deg(n1), . . . ,deg(nv). Then γi(m) ≥ γi(s)
for every i.

We introduce a total order σ on the monomials of R as follows. Let m,n be
monomials of R and m = m1 · · ·mk and n = n1 · · ·nh their canonical decompositions.
We set m >σ n if mj >τ nj for the first index j such that mj �= nj . Note that σ is
different from τ ; for instance x2

1 >τ x1x3 but x1x3 >σ x
2
1. Note also that σ is not a

term order. Now we are ready to prove:

Proof. of 6.2: We show that J has linear quotients with respect to the set of generators
Ω totally ordered by σ. Let m,n be elements of Ω with m >σ n. We have to show that
there exists v ∈ Ω such that v >σ n, v/[v, n] divides m/[m,n] and deg[v, n] = deg v−1.
Let m = m1 · · ·mk and n = n1 · · ·nh be the canonical decompositions and let j be
the smallest index such that mj �= nj . Then mj >τ nj . Let mj = xa1 · · ·xar and
nj = xb1 · · ·xbs . Then there exists a index z such that ai = bi for i = 1, . . . , z − 1
and either az < bz or s = z − 1 and r ≥ z. In the former case (az < bz) we put
v = nxaz

/xbz . In the latter case we put v = nxaz
/xq where xq is a variable which

appear in nj+1 (note that h > j, since m and n have both degree
∑
ti). We have to

show that v has the desired properties.
First of all, note that v/[v, n] = xaz . This is clear in the first case while in the

second it follows from the fact that q cannot be equal to az otherwise the j-th factor
in the canonical decomposition of n would be a multiple of xb1 · · ·xbz−1xaz .

Secondly, we claim that xaz
divides m/[m,n]. To this end, note that m/[m,n] =

m
′
/[m

′
, n

′
] where m

′
= m/e and n

′
= n/e and e is the common initial part of the

canonical decomposition, i.e. e = m1 · · ·mj−1xa1 · · ·xaz−1 . Since xaz appears in m
′

and it does not appear in n
′

(otherwise, as above, the j-th factor in the canonical
decomposition of n would be a multiple of xb1 · · ·xbz−1xaz ), we may conclude that xaz

divides m/[m,n].
It remains to show that v belongs to Ω and that v >σ n. In the case az < bz

note that the v has a decomposition into >1-chains v = n1 · · ·nj−1unj+1 · · ·nh with
u = njxaz/xbz . This need not to be the canonical decomposition, but its shape is equal
to that of the canonical decomposition of n and this is enough (by 6.4) to conclude
that v ∈ Ω. Since by construction u >τ nj , it is not difficult to check that v >σ n.
In the case s = z − 1 and r ≥ z note that the v has a decomposition into >1-chains
v = n1 · · ·nj−1u1u2nj+2 · · ·nh with u1 = njxaz

and u2 = nj+1/xaz
. As above, this

need not to be the canonical decomposition. Its shape has been obtained from the
shape of n by the operation “increase a larger factor and decrease a shorter”. The
effect of this operation on the γ-values is clear: the γ-values cannot decrease. This,
together with the fact that n is in Ω and 6.4 implies that v is in Ω. As in the other
case, since u1 >τ nj one can also deduce that v > n. �
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