The dimension of certain catalecticant varieties

Aldo Conca and Giuseppe Valla
Department of Mathematics, University of Genoa, Via Dodecaneso 35, 16146 Genoa, Italy
E-mail: conca@dima.unige.it, valla@dima.unige.it

Received April 30, 2003. Revised October 28, 2003

Abstract

Let $V_{s, t}$ be the rank $\leq s$ locus in $\mathbb{P}^{\binom{2 t+2}{2}-1}$ of the generic catalecticant matrix $\operatorname{Cat}(t, t ; 3)$. This matrix has rather more symmetry than a generic symmetric matrix; this implies codim $V_{s, t} \leq\binom{\widetilde{s}+1}{2}$, where $\widetilde{s}:=\binom{t+2}{2}-s$.

In this paper, given the integer t, we explicitely determine an integer N, depending on t, with the property that $\operatorname{codim} V_{s, t}=\binom{\widetilde{s}+1}{2}$ if and only if $\tilde{s} \leq N$.

1. Introduction

Let $R=k\left[X_{1}, \ldots, X_{n}\right]=\oplus_{t \geq 0} R_{t}$ with $k=\bar{k}$ an algebraically closed field of characteristic zero. Fix positive integers d, i, j such that $d=i+j$ and consider the bilinear map, given by multiplication,

$$
R_{i} \times R_{j} \rightarrow R_{d} .
$$

One keeps track of this multiplication in a matrix whose rows are indexed by the monomials of R_{i} (say in the lexicographic order) and whose columns are indexed by the monomials of R_{j}. In each place of the matrix one enters a new variable Y_{a} where \underline{a} is the multiindex of length d corresponding to the monomial which is the result of multiplying the appropriate row monomial by the appropriate column monomial.

The resulting matrix of variables is denoted by $\operatorname{Cat}(i, j ; n)$ and called the (i, j) catalecticant matrix of R.

The size of this matrix is $\binom{n+i-1}{i} \times\binom{ n+j-1}{j}$ and the entries of the matrix are variables taken from the polynomial ring $k\left[Y_{\underline{a}}\right]$ in $\binom{n+d-1}{d}$ variables, where $d=i+j$.

In this paper we are concerned with the special case $i=j$ and $n=3$. The matrix $\operatorname{Cat}(t, t ; 3)$ has size $\binom{t+2}{2} \times\binom{ t+2}{2}$ and it is a symmetric matrix with entries in

[^0]MSC2000: Primary 13D40; Secondary 13P99.
a polynomial ring in $\binom{2 t+2}{2}$ variables. It is a matrix of indeterminates but it is not generic since the same variable can be repeated in the matrix.

For example $\operatorname{Cat}(1,1 ; 3)$ is the matrix

$$
\operatorname{Cat}(1,1 ; 3)=\left(\begin{array}{lll}
Y_{200} & Y_{110} & Y_{101} \\
Y_{110} & Y_{020} & Y_{011} \\
Y_{101} & Y_{011} & Y_{002}
\end{array}\right)
$$

which is the generic symmetric 3×3 matrix. But $C a t(2,2 ; 3)$ is not the generic symmetric 6×6 matrix, namely

$$
\operatorname{Cat}(2,2 ; 3)=\left(\begin{array}{cccccc}
Y_{400} & Y_{310} & Y_{301} & Y_{220} & Y_{211} & Y_{202} \\
Y_{310} & Y_{220} & Y_{211} & Y_{130} & Y_{121} & Y_{112} \\
Y_{301} & Y_{211} & Y_{202} & Y_{121} & Y_{112} & Y_{103} \\
Y_{220} & Y_{130} & Y_{121} & Y_{040} & Y_{031} & Y_{022} \\
Y_{211} & Y_{121} & Y_{112} & Y_{031} & Y_{022} & Y_{013} \\
Y_{202} & Y_{112} & Y_{103} & Y_{022} & Y_{013} & Y_{004}
\end{array}\right)
$$

For every positive integer t and any integer s such that $0 \leq s<\binom{t+2}{2}$, we can consider the ideal $I_{s+1, t}$ generated by the $(s+1) \times(s+1)$ minors of $C a t(t, t ; 3)$. It defines the rank $\leq s$ locus of the matrix $\operatorname{Cat}(t, t ; 3)$ in the projective space \mathbb{P}^{N} where $N=\binom{2 t+2}{2}-1$. This projective variety is denoted by $V_{s, t}$ and it is not empty if $s \geq 1$. When s and t vary, we get the catalecticant varieties we refer to in the title.

It is well known that the codimension of the ideal generated by the $m \times m$ minors of a generic symmetric $q \times q$ matrix is $\binom{q-m+2}{2}$. Hence the codimension of $V_{s, t}$ is bounded above by

$$
\left.\left.\begin{array}{rl}
\operatorname{codim} V_{s, t} & \leq \min \left\{\binom{2 t+2}{2}-1,\binom{t+2}{2}-(s+1)+2\right. \\
2
\end{array}\right)\right\}
$$

where we let

$$
\widetilde{s}:=\binom{t+2}{2}-s
$$

Notice that, since $s<\binom{t+2}{2}$, we have $\widetilde{s} \geq 1$. Further

$$
\operatorname{dim} V_{s, t}=\binom{2 t+2}{2}-1-\operatorname{codim} V_{s, t} \geq \max \left\{0,\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2}\right\}
$$

Hence we will say that

$$
\operatorname{exdim} V_{s, t}:=\max \left\{0,\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2}\right\}
$$

is the expected dimension of $V_{s, t}$.

In [4] Diesel made the conjecture that $\operatorname{dim} V_{s, t}=\operatorname{exdim} V_{s, t}$ if $s \geq\binom{ t+1}{2}$ or equivalently $\widetilde{s} \leq t+1$.

The conjecture as stated is false, as shown by Y. Cho and B. Jung in [2]. In this paper we give a numerical criterion for the equality $\operatorname{dim} V_{s, t}=\operatorname{exdim} V_{s, t}$: we fix t and we determine an integer $N=N(t)$ such that $V_{s, t}$ has the expected dimension if and only if $\tilde{s} \leq N$.

We describe now the contents of this paper. First we remark in Section 2 that the locus $V_{s, t}$ is the union of certain (smooth) irreducible varieties $\operatorname{Gor}(T)$ parametrizing graded artinian quotients of $k\left[X_{1}, X_{2}, X_{3}\right]$ having Hilbert Function T.

In a previous article [3] we had given a compact formula for the dimension of $\operatorname{Gor}(T)$, and here we manipulate this formula to prove in Theorem 2.4 that $\operatorname{dim} V_{s, t}=$ $\max \{\rho(\Gamma)\}$, where Γ runs among the codimension two artinian Hilbert Functions of socle degree at most t and multiplicity s, and where, for $\Gamma=\left\{a_{0}, \cdots, a_{t}\right\}$, we define

$$
\rho(\Gamma):=2 s-\sum_{i=0}^{t-2} a_{i}\left(a_{i+2}-a_{i+1}\right)+2 a_{t-1} a_{t}-\frac{a_{t}\left(a_{t}+3\right)}{2}
$$

Using this formula, in Section 3, we first prove (Corollary 3.4) that if $V_{s, t}$ has the expected dimension then, for every integer $a \geq 1$ such that $\binom{a+2}{2} \leq \tilde{s}$, we must have $\tilde{s} \leq f_{t}(a)$ where

$$
f_{t}(X)=\frac{16 t X+X^{4}+6 X^{3}+11 X^{2}+30 X+8}{4(X+1)(X+2)}
$$

This inequality is proved by looking at some special codimension two artinian Hilbert Functions Γ_{a} which we call towers and which are defined, in the case $\tilde{s} \leq t+1$, for every non negative integer a such that $\binom{a+2}{2} \leq \tilde{s}$.

The last part of this section is devoted to prove that the converse of the above Corollary holds, namely that $V_{s, t}$ has the expected dimension if and only if $\widetilde{s} \leq f_{t}(a)$ for every $a \geq 1$ such that $\binom{a+2}{2} \leq \tilde{s}$ (Theorem 3.11).

This is an easy consequence of the more subtle result of this paper (Theorem 3.9) which states that, in the case $\tilde{s} \leq \min \left\{t, \frac{2 t}{3}+4\right\}$, the dimension of $V_{s, t}$, which is the maximum of the integers $\rho(\Gamma)$, is achieved on one of the towers.

In the last section of the paper, we study the behavior of the rational function $f_{t}(X)$ in order to determine explicitly the integer $N(t)$. More precisely, we prove in Theorem 4.2 that if $t \leq 42$ then $N(t)=\frac{2 t+7}{3}$, while in Theorem 4.6 we prove that if $t \geq 43$ then $N(t)=f_{t}(\bar{a})$ where \bar{a} is the integer defined by the inequalities $w(\bar{a})<t \leq$ $w(\bar{a}+1)$, with

$$
w(X):=\frac{X^{4}+4 X^{3}+5 X^{2}-10 X+16}{8(X-2)}
$$

2. A new formula for $\operatorname{dim} V_{s, t}$

In this section we first recall that $V_{s, t}$ is the union of certain (smooth) irreducible varieties $\operatorname{Gor}(T)$ parametrizing graded artinian quotients of $k\left[X_{1}, X_{2}, X_{3}\right]$ having Hilbert Function T. Hence its dimension is the dimension of its biggest irreducible components. Using a compact formula for the dimension of $\operatorname{Gor}(T)$ proved in [3], we get a new formula for $\operatorname{dim} V_{s, t}$ which will be crucial for the main result of the paper.

Let $j \geq 2$ and $T=\left(1, h_{1}, \ldots, h_{j-1}, 1\right)$ be a symmetric sequence of integers with $h_{1} \leq 3$. We say that T is a Gorenstein sequence if T is the Hilbert function of a standard Gorenstein Artinian graded algebra $A=k\left[X_{1}, X_{2}, X_{3}\right] / I$. The integer j is called the socle degree of T.

Given a Gorenstein sequence T of socle degree j, let us consider the ideal

$$
I_{T}:=\sum_{i=1}^{j-1} I_{h_{i}+1}(C a t(i, j-i ; 3))
$$

in the polynomial ring $k\left[Y_{\underline{a}}\right]$ with $\binom{j+2}{2}$ variables. This ideal defines a variety in $\mathbb{P}^{\binom{+2}{2}-1}$ which is denoted by $\mathbf{G o r}_{\leq}(T)$.

It is clear that

$$
\boldsymbol{G o r}_{\leq}(T)=\left\{\left.P \in \mathbb{P}^{\binom{+2}{2}-1} \right\rvert\, \operatorname{rank}_{P} \operatorname{Cat}(i, j-i ; 3) \leq h_{i}, i=1, \ldots, j-1\right\} .
$$

We can think of $\mathbb{P}^{\left(j_{2}+2\right)-1}$ as $\mathbb{P}\left(S_{j}\right)$ where $S=k\left[Y_{1}, Y_{2}, Y_{3}\right]$ and we identify the points of $\mathbb{P}^{\left(j_{2}^{+2}\right)-1}$ with the corresponding forms of degree j in S.

Recall that every form F of degree j in $k\left[Y_{1}, Y_{2}, Y_{3}\right]$ corresponds, up to scalars, to an artinian Gorenstein graded algebra $A=k\left[X_{1}, X_{2}, X_{3}\right] / I_{F}$ of socle degree j, through the so called inverse system of Macaulay. Further, if $A=R / I_{F}$ is the Gorenstein algebra corresponding to the form F, the Hilbert function of A is given by the formula

$$
H_{A}(i)=\operatorname{rank}_{F} C a t(i, j-i ; 3)
$$

for every $i \geq 0$. This crucial result is due to Macaulay and a proof can be found in [5] Lemma 2.14.

Hence the elements of $\mathbf{G o r}_{\leq}(T)$ can be identified with Gorenstein Artinian graded algebras $A=k\left[X_{1}, X_{2}, X_{3}\right] / I$ with socle degree j and Hilbert function $H_{A} \leq T$, where the inequality is coefficientwise.

We can partially order the Gorenstein sequences of socle degree j coefficientwise. If $T^{\prime} \leq T$, then $I_{T} \subseteq I_{T^{\prime}}$ so that

$$
\mathbf{G o r}_{\leq}\left(T^{\prime}\right) \subseteq \mathbf{G o r}_{\leq}(T) .
$$

Hence, given a Gorenstein sequence T, we can consider the open subset $\operatorname{Gor}(T)$ of Gor $_{\leq}(T)$ defined as

$$
\boldsymbol{\operatorname { G o r }}(T):=\operatorname{Gor}_{\leq}(T) \backslash \bigcup_{T^{\prime}<T} \boldsymbol{\operatorname { G o r }}_{\leq}\left(T^{\prime}\right)
$$

We clearly have

$$
\operatorname{Gor}(T)=\left\{F \in \mathbb{P}\left(S_{j}\right) \mid \operatorname{rank}_{F} \operatorname{Cat}(i, j-i ; 3)=h_{i}, i=1, \ldots, j-1\right\} .
$$

Hence we can say that $\operatorname{Gor}(T)$ parametrizes Artinian Gorenstein graded algebra $A=$ $k\left[X_{1}, X_{2}, X_{3}\right] / I$ with socle degree j and Hilbert function $H_{A}=T$.

In [4] Diesel proved that $\operatorname{Gor}(T)$ is irreducible for every Gorenstein sequence T.
Given the positive integer t, let $1 \leq s<\binom{t+2}{2}$. We define Δ to be the set of sequences $T=\left(1, h_{1}, \ldots, h_{2 t-1}, 1\right)$ which are the Hilbert Functions of Gorenstein Artinian graded algebras $A=k\left[X_{1}, X_{2}, X_{3}\right] / I$ of socle degree $2 t$ and with $h_{t}=s$.

If we can consider the union of irreducible strata

$$
\begin{equation*}
U_{s, t}:=\cup_{T \in \Delta} \boldsymbol{\operatorname { G o r }}(T) \tag{1}
\end{equation*}
$$

it is clear that we can describe $U_{s, t}$ as

$$
U_{s, t}=\left\{F \in \mathbb{P}\left(S_{2 t}\right) \mid \operatorname{rank}_{F} C a t(t, t ; 3)=s\right\}
$$

This identifies $U_{s, t}$ as an open subset of $V_{s, t}$, which was defined as the rank $\leq s$ locus of $C a t(t, t ; 3)$ in $\mathbb{P}^{\binom{2 t+2}{2}-1}$.

By Lemma 3.5 pg .75 in [5], $U_{s, t}$ is in fact a dense open subset of $V_{s, t}$, hence, using (1), we get

$$
\begin{equation*}
\operatorname{dim} V_{s, t}=\operatorname{dim} U_{s, t}=\max _{T \in \Delta}\{\operatorname{dim} \operatorname{Gor}(T)\} \tag{2}
\end{equation*}
$$

We recall here that each Gorenstein sequence $T \in \Delta$ is $2 t$-symmetric in the sense that, for $i \leq t, h_{2 t-i}=h_{i}$.

Further, for every $T \in \Delta$ we have $h_{1}=3$, save for the sequences of embedding dimension ≤ 2 which are either $(1,1, \cdots, 1,1)$ if $s=1$, or $(1,2, \cdots, s, s, s, \cdots, 2,1)$ if $2 \leq s \leq t+1$.

Later in this section we will give a formula for computing $\operatorname{dim} \operatorname{Gor}(T)$ for every Gorenstein sequence T of embedding dimension 3, but let us first consider the case of embedding dimension ≤ 2.

It is clear that a graded algebra $A=k\left[X_{1}, X_{2}, X_{3}\right] / I$ has embedding dimension ≤ 2 if and only if I is a complete intersection ideal generated by three forms of degree $1, s, 2 t-s+2$.

If $s=1, I$ is a complete intersection of forms of degree $1,1,2 t+1$. Hence $\operatorname{dim} \operatorname{Gor}(T)$ equals the dimension of the Grassmannian $\operatorname{Gr}(2,3)$ of 2-dimensional linear subspaces of the 3 -dimensional vector space $k\left[X_{1}, X_{2}, X_{3}\right]_{1}$. Hence

$$
\begin{equation*}
\operatorname{dim} \operatorname{Gor}(T)=\operatorname{dim} G r(2,3)=2 \tag{3}
\end{equation*}
$$

(this is case 6 in Section 4.6 of Diesel paper [4]).
If $s=t+1$, then I is a complete intersection of forms of degree $1, t+1, t+1$, and it is clear that

$$
\operatorname{dim} \operatorname{Gor}(T)=\operatorname{dim} G r(1,3)+\operatorname{dim} G r(2, s+1)=2 s
$$

(this is case 3 in Section 4.6 of Diesel paper [4]).

Finally, if $2 \leq s \leq t$, we have
$\operatorname{dim} \operatorname{Gor}(T)=\operatorname{dim} G r(1,3)+\operatorname{dim} G r(1, s+1)+\operatorname{dim} G r(1,2 t-s+3-(2 t-2 s+3))$
where the last summand is like that because, if F is a form of degree s in two variables, then $\operatorname{dim}(F)_{2 t-s+2}=2 t-2 s+3$. Thus, if $2 \leq s \leq t$, we get

$$
\begin{equation*}
\operatorname{dim} \operatorname{Gor}(T)=2+s+(s-1)=2 s+1 \tag{4}
\end{equation*}
$$

(this is case 5 in Section 4.6 of Diesel paper [4]).

We can use these results to compute $\operatorname{dim} V_{1, t}$ and $\operatorname{dim} V_{2, t}$ for every t. Namely if $s=1$, then $\Delta=\{(1,1, \cdots, 1,1)\}$ so that, by (1) and (3), we get

$$
\operatorname{dim} V_{1, t}=2
$$

If $s=2$, then $\Delta=\{(1,2, \cdots, 2,1)\}$ so that, by (1) and (4), we get

$$
\operatorname{dim} V_{2, t}=5 .
$$

We give now an easy formula for $\operatorname{dim} \operatorname{Gor}(T)$ when T is a Gorenstein sequence of socle degree $2 t$ such that $h_{1}=3$ and $h_{t}=s$.

For a general Gorenstein sequence T of socle degree $j \geq 2$, Kleppe proved in [6] that $\operatorname{Gor}(T)$ is smooth; hence the dimension of $\boldsymbol{\operatorname { G o r }}(T)$ is equal to the dimension of the tangent space to $\operatorname{Gor}(T)$ in any point. We may apply Theorem 3.9 in [5] to get

$$
\operatorname{dim} \boldsymbol{\operatorname { G o r }}(T)=H_{R / I^{2}}(j)-1=H_{I / I^{2}}(j)
$$

for every ideal I such that $A:=k\left[X_{1}, X_{2}, X_{3}\right] / I$ is Gorenstein and $H_{A}=T$. If we write the Hilbert series of A as

$$
P_{A}(z)=h(z)=1+h_{1} z+h_{2} z^{2}+\ldots+h_{j-2} z^{j-2}+h_{j-1} z^{j-1}+z^{j},
$$

we proved in [3] Theorem 4.1 that the Hilbert Series of I / I^{2} is

$$
P_{I / I^{2}}(z)=(1+z)^{3} h\left(z^{2}\right) / 2-(1-z)^{3} h(z)^{2} / 2-z^{j+3} h(z) .
$$

Hence $\operatorname{dim} \operatorname{Gor}(T)$ is equal to the coefficient of z^{j} in the polynomial

$$
\frac{(1+z)^{3} h\left(z^{2}\right)-(1-z)^{3} h(z)^{2}}{2} .
$$

In the case $j=2 t$, the coefficient of $z^{2 t}$ in $\frac{(1+z)^{3} h\left(z^{2}\right)}{2}$ is

$$
\frac{h_{t}+3 h_{t-1}}{2}
$$

and that of $z^{2 t}$ in

$$
\frac{(1-z)^{3} h(z)^{2}}{2}=\frac{(1-z) h(z)}{2} \frac{(1-z)^{2} h(z)}{2}
$$

is

$$
\sum_{i=0}^{2 t} \frac{a_{i} b_{2 t-i}}{2}
$$

where we let

$$
\sum a_{i} z^{i}:=(1-z) h(z), \quad \sum b_{i} z^{i}:=(1-z)^{2} h(z)
$$

to be the first and second difference of $h(z)$.
Summing up we get

$$
\operatorname{dim} \operatorname{Gor}(T)=\frac{h_{t}+3 h_{t-1}-\sum_{i=0}^{2 t} a_{i} b_{2 t-i}}{2}
$$

In the case $h_{t}=s$, we have $a_{t}=s-h_{t-1}$ so that

$$
h_{t}+3 h_{t-1}=s+3\left(s-a_{t}\right)=4 s-3 a_{t} .
$$

As we have seen before, $h(z)$ is $2 t$-symmetric, hence $(1-z) h(z)$ is $(2 t+1)$ antisymmetric and $(1-z)^{2} h(z)$ is $(2 t+2)$-symmetric. This means

$$
a_{t+k}=-a_{t+1-k}, \quad b_{j}=b_{2 t+2-j}
$$

We get

$$
\operatorname{dim} \operatorname{Gor}(T)=\frac{4 s-3 a_{t}-\sum_{i=0}^{t} a_{i} b_{i+2}+\sum_{i=t+1}^{2 t} a_{2 t+1-i} b_{2 t-i}}{2}
$$

It is easy to see that we have

$$
a_{j+1} b_{j}+a_{j-1} b_{j+1}=a_{j}\left(a_{j+1}-a_{j-1}\right)
$$

for every $j \geq 1$, so that

$$
\begin{aligned}
& \sum_{i=0}^{t} a_{i} b_{i+2}-\sum_{i=t+1}^{2 t} a_{2 t+1-i} b_{2 t-i} \\
= & \sum_{i=0}^{t} a_{i} b_{i+2}-\sum_{i=t+1}^{2 t-1} a_{2 t-i}\left(a_{2 t-i+1}-a_{2 t-i-1}\right)+\sum_{i=t+1}^{2 t-1} a_{2 t-i-1} b_{2 t-i+1}-a_{1} b_{0} \\
= & \sum_{i=0}^{t} a_{i} b_{i+2}-a_{t-1} a_{t}+a_{0} a_{1}+\sum_{i=0}^{t-2} a_{i} b_{i+2}-a_{1} b_{0} \\
= & 2 \sum_{i=0}^{t-2} a_{i} b_{i+2}+a_{t-1} b_{t+1}+a_{t} b_{t+2}-a_{t-1} a_{t} \\
= & 2 \sum_{i=0}^{t-2} a_{i} b_{i+2}-4 a_{t-1} a_{t}+a_{t}^{2} .
\end{aligned}
$$

By easy computation, we get from the above formula the following result:

Proposition 2.1

Let $T=\left\{1,3, h_{2}, \ldots, h_{2 t-2}, 3,1\right\}$ be a Gorenstein sequence of socle degree $2 t$ and with $h_{t}=s$; let $a_{i}:=h_{i}-h_{i-1}$ for every i. Then

$$
\operatorname{dim} \boldsymbol{\operatorname { G o r }}(T)=2 s-\sum_{i=0}^{t-2} a_{i}\left(a_{i+2}-a_{i+1}\right)+2 a_{t-1} a_{t}-\frac{a_{t}\left(a_{t}+3\right)}{2} .
$$

We recall now that Stanley proved in [7] that a symmetric sequence of socle degree $2 t$, say $\left\{1,3, \ldots, h_{i}, \ldots, 3,1\right\}$, is a Gorenstein sequence if and only if half of its first difference $\left(1,2, h_{2}-3, \ldots, h_{t}-h_{t-1}\right)$ is a codimension two admissible sequence, which means a sequence which is the Hilbert function of an Artinian graded algebra $k\left[X_{1}, X_{2}\right] / J$ of embedding dimension two and socle degree at most t.

Notice that if we let as before $a_{i}:=h_{i}-h_{i-1}$, then $\sum_{i=o}^{t} a_{i}=h_{t}$.
We can easily describe the codimension two admissible sequences of socle degree at most t. They are sequences $\Gamma=\left(a_{0}=1, a_{1}=2, \ldots, a_{t}\right)$ of $t+1$ non negative integers with the property that for some integer $m, 2 \leq m \leq t+1$

1) $a_{i}=i+1$ for $0 \leq i \leq m-1$,
2) $0 \leq a_{i+1} \leq a_{i}$ for $m-1 \leq i \leq t$.

The integer m is called the initial degree of Γ.
Definition 2.2. We say that a sequence $\Gamma=\left(a_{0}=1,2, \ldots, a_{t}\right)$ is in $V_{s, t}$ and, by abuse of notation, we write $\Gamma \in V_{s, t}$, if Γ verifies the above conditions 1) and 2) and moreover has multiplicity s, which means $\sum a_{i}=s$.

For $\Gamma \in V_{s, t}$ we define

$$
\rho(\Gamma):=2 s-\sum_{i=0}^{t-2} a_{i}\left(a_{i+2}-a_{i+1}\right)+2 a_{t-1} a_{t}-\frac{a_{t}\left(a_{t}+3\right)}{2} .
$$

Using Proposition 2.1 we can prove now the following well known lemma.

Lemma 2.3

Let $1 \leq s \leq\binom{ t+1}{2}$. Then $\operatorname{dim} V_{s, t} \geq 3 s-1$.
Proof. If $s=1,2$ we have already seen that $\operatorname{dim} V_{s, t}=3 s-1$. Let $3 \leq s \leq\binom{ t+1}{2}$. It is clear that there exists an integer m such that $\binom{m+1}{2} \leq s<\binom{m+2}{2}$; this forces $2 \leq m \leq t$ and $m=t$ if and only if $s=\binom{t+1}{2}$.

Let us consider the sequence

$$
\Gamma:=\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & \ldots & \mathrm{~m}-1 & \mathrm{~m} & \mathrm{~m}+1 & \ldots & \mathrm{t} \\
\hline 1 & 2 & \ldots & \mathrm{~m} & s-\binom{m+1}{2} & 0 & \ldots & 0 \\
\hline
\end{array}
$$

Since $0 \leq s-\binom{m+1}{2} \leq m+1$, we get $\Gamma \in V_{s, t}$ and
$\rho(\Gamma)=2 s-\left[\sum_{j=1}^{m-2} j+(m-1)\left(s-\binom{m+1}{2}-m\right)+m\left(\binom{m+1}{2}-s\right)\right]=3 s-1$.
By (2) and Proposition 2.1 we get $\operatorname{dim} V_{s, t} \geq \rho(\Gamma)=3 s-1$ and the conclusion follows.

A corollary of this easy result is the following crucial formula for $\operatorname{dim} V_{s, t}$.

Theorem 2.4

Let $t \geq 2$ and $3 \leq s<\binom{t+2}{2}$; then

$$
\operatorname{dim} V_{s, t}=\max \{\rho(\Gamma)\},
$$

where the maximum is over the sequences $\Gamma \in V_{s, t}$ as described in Definition 2.2.
Proof. If $s \geq t+2$ the result is clear because for every $T \in \Delta$ we have $h_{1}=3$. If $s \leq t+1$ then $s \leq\binom{ t+1}{2}$ and the conclusion follows by the Lemma because the unique sequence in Δ with $h_{1} \leq 2$ is $T=(1,2, \ldots, s-1, s, \ldots, s, s-1, \ldots, 2,1)$ for which $\operatorname{dim} \operatorname{Gor}(T) \leq 2 s+1<3 s-1$, as we have pointed out before.

For example, if $\widetilde{s}=1$, then $s=\binom{t+2}{2}-1$ and $V_{s, t}$ is an hypersurface in $\mathbb{P}^{\binom{2 t+2}{2}-1}$. Hence we have

$$
\operatorname{dim} V_{s, t}=\binom{2 t+2}{2}-2=2 t^{2}+3 t-1
$$

which is the expected dimension. Let us compute $\operatorname{dim} V_{s, t}$ when $t \geq 2$ by using Theorem 2.4. It is clear that $s \geq t+2$ and the unique sequence in $V_{s, t}$ is

$$
\Gamma:=(1,2, \ldots, t, t) .
$$

We have

$$
\begin{aligned}
\rho(\Gamma) & =2 s-[1+2+\ldots+(t-2)]+2 t^{2}-\frac{t(t+3)}{2} \\
& =2\binom{t+2}{2}-2-\binom{t-1}{2}+2 t^{2}-\frac{t(t+3)}{2}=2 t^{2}+3 t-1 .
\end{aligned}
$$

If $t=1$, then $s=2$ and the hypersurface $V_{2,1}$ is the zero locus of the determinant of the generic symmetric 3×3 matrix, namely the secant line variety to the Veronese surface in \mathbb{P}^{5}.

Also the case $\widetilde{s}=2,3,4$ are easy to handle. If $\widetilde{s}=2$ and $t=1$, then $s=1$ and $\operatorname{dim} V_{1,1}=2$ which is the expected dimension. If $t \geq 2$, then $s=\binom{t+2}{2}-2 \geq t+2$. It is clear that there is a unique sequence in $V_{s, t}$ and it is

$$
\Gamma=(1,2, \ldots, t, t-1) .
$$

We have
$\rho(\Gamma)=2 s-[1+2+\ldots+(t-2)-(t-1)]+2 t(t-1)-\frac{(t-1)(t+2)}{2}=2 t^{2}+3 t-3$.
The expected dimension is

$$
\binom{2 t+2}{2}-1-3=2 t^{2}+3 t-3
$$

If $t=1$, then $s=1$ and the surface $V_{1,1}$ is the zero locus of the ideal generated by the 2×2 minors of the generic symmetric 3×3 matrix, namely the Veronese surface in \mathbb{P}^{5}.

In the case $\widetilde{s}=3$ we have $s=\binom{t+2}{2}-3$ so that $t \geq 2$; if $t=2$, then $s=3$ and $\operatorname{dim} V_{3,2}=8$. This is the expected dimension.

If $t \geq 3$, we have two sequences in $V_{s, t}$, namely

$$
\Gamma=(1,2, \ldots, t-1, t, t-2), \quad \Lambda=(1,2, \ldots, t-1, t-1, t-1) .
$$

We have

$$
\rho(\Gamma)=2 t^{2}+3 t-6, \quad \rho(\Lambda)=2 t^{2}+t-4,
$$

hence $\operatorname{dim} V_{s, t}=2 t^{2}+3 t-6$. The expected dimension is

$$
\binom{2 t+2}{2}-1-6=2 t^{2}+3 t-6
$$

Finally in the case $\widetilde{s}=4$, we have $s=\binom{t+2}{2}-4$ so that $t \geq 2$; if $t=2$, then $s=2$ and $\operatorname{dim} V_{2,2}=5$. The expected dimension is 4 so that this is the first example where the dimension is bigger than the expected dimension.

If $t \geq 3$, we have two sequences in $V_{s, t}$, namely

$$
\Gamma=(1,2, \ldots, t-1, t, t-3), \quad \Lambda=(1,2, \ldots, t-1, t-1, t-2) .
$$

By easy computation we get

$$
\rho(\Gamma)=2 t^{2}+3 t-10>\rho(\Lambda)=2 t^{2}+t-5,
$$

hence $\operatorname{dim} V_{s, t}=2 t^{2}+3 t-10$, which is the expected dimension.
Let us consider the case $t=2$. We have seen that $\operatorname{dim} V_{1,2}=2, \operatorname{dim} V_{2,2}=5$, $\operatorname{dim} V_{3,2}=8, \operatorname{dim} V_{4,2}=11(\widetilde{s}=2), \operatorname{dim} V_{5,2}=13(\widetilde{s}=1)$. Hence $V_{s, 2}$ has the expected dimension if and only if $s \geq 3$. This is the kind of result we are looking for when $t \geq 3$.

3. The main result

In this section we focus on some special sequences $\Gamma_{a} \in V_{s, t}$ which are defined, in the case $\widetilde{s} \leq t+1$, for every non negative integer a such that $\binom{a+2}{2} \leq \widetilde{s}$. These sequences
will be called the towers for $V_{s, t}$; their relevance will be clear when we prove that, in the case $\widetilde{s} \leq \min \left(t, \frac{3 t}{3}+4\right)$, the maximum of the integers $\rho(\Gamma)$, which is the dimension of $V_{s, t}$, is achieved on one of the towers.

As a consequence we will get an explicit criterion for $V_{s, t}$ having the expected dimension.

In the following, to avoid trivial cases already considered, we assume that $t \geq 3$ and s is an integer such that $3 \leq s<\binom{t+2}{2}$. First of all we prove that $\widetilde{s} \leq t+1$ is a necessary condition for $V_{s, t}$ to have the expected dimension.

Proposition 3.1

If $\widetilde{s} \geq t+2$, then $\operatorname{dim} V_{s, t}>\operatorname{exdim} V_{s, t}$.
Proof. We have $\widetilde{s} \geq t+2$ so that $s \leq\binom{ t+1}{2}-1$, hence, by Lemma 2.3, we get $\operatorname{dim} V_{s, t} \geq 3 s-1$.

We claim that $3 s-1$ is strictly bigger than the expected dimension, namely

$$
3 s-1>\max \left\{0,\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2}\right\} .
$$

We have

$$
3 s-1>\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2}
$$

if and only if

$$
\widetilde{s}^{2}-5 \widetilde{s}+4-t^{2}+3 t>0
$$

Since $\widetilde{s} \geq t+2$, we must prove that

$$
t+2>\frac{5+\sqrt{9+4 t^{2}-12 t}}{2}
$$

which is equivalent to $8(t-1)>0$. The conclusion follows.
A consequence of this result is that, when $\widetilde{s} \geq t+2$, one should better take $3 s-1$ for the expected dimension of $V_{s, t}$. Namely in the paper [2] some instances where $\operatorname{dim} V_{s, t}=3 s-1$ are presented. For example it is shown that this is the case when $t \geq 9$ and $t+1 \leq s \leq 4 t-3$.

We used Theorem 2.4 for computing $\operatorname{dim} V_{s, t}$ in the case $t=17$ and $s=150$ $(\widetilde{s}=21)$. We got $\operatorname{dim} V_{150,17}=459>3 s-1=449$, but of course here $s=150>$ $4 t-3=65$.

It would be interesting to determine, in the case $\widetilde{s} \geq t+2\left(s \leq\binom{ t+1}{2}\right)$, when $\operatorname{dim} V_{s, t}=3 s-1$.

We remark that if $\widetilde{s}=t+1$, then $3 s-1=\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2}$.
We also notice that if $\widetilde{s} \leq t+1$, then $\operatorname{exdim} V_{s, t}=\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2}$.
If $\widetilde{s} \leq t+1$ and $a \geq 0$ is an integer such that $\binom{a+2}{2} \leq \widetilde{s}$, then $\binom{a+2}{2} \leq t+1$ so that $a \leq t-2$. Since $t-a \geq t+1-\widetilde{s}+\binom{a+1}{2}$, the sequence

$$
\Gamma_{a}:=\begin{array}{|c|c|c|c|c|c|c|}
\hline 0 & 1 & \ldots & \mathrm{t}-\mathrm{a}-1 & \ldots & \mathrm{t}-1 & \mathrm{t} \\
\hline 1 & 2 & \ldots & \mathrm{t}-\mathrm{a} & \ldots & \mathrm{t}-\mathrm{a} & \mathrm{t}+1-\widetilde{s}+\binom{a+1}{2} \\
\hline
\end{array}
$$

is in $V_{s, t}$. In particular Γ_{0} is always in $V_{s, t}$, because $\tilde{s} \geq 1$.
Definition 3.2. Let $\widetilde{s} \leq t+1$. For every non negative integer a such that $\binom{a+2}{2} \leq \widetilde{s}$, let Γ_{a} to be the sequence

$$
\Gamma_{a}:=\begin{array}{|c|c|c|c|c|c|c|}
\hline 0 & 1 & \ldots & \mathrm{t}-\mathrm{a}-1 & \ldots & \mathrm{t}-1 & \mathrm{t} \\
\hline 1 & 2 & \ldots & \mathrm{t}-\mathrm{a} & \ldots & \mathrm{t}-\mathrm{a} & \mathrm{t}+1-\widetilde{s}+\binom{a+1}{2} \\
\hline
\end{array}
$$

Such a sequence is in $V_{s, t}$ and is called a tower for $V_{s, t}$.
For example, if $t=12$ and $\widetilde{s}=10$, then $s=81$ and the towers for $V_{81,12}$ are the following four sequences:

	0	1	\ldots	7	8	9	10	11	12
Γ_{0}	1	2	\ldots	8	9	10	11	12	3
Γ_{1}	1	2	\ldots	8	9	10	11	11	4
Γ_{2}	1	2	\ldots	8	9	10	10	10	6
Γ_{3}	1	2	\ldots	8	9	9	9	9	9

We always have

$$
\begin{aligned}
\rho\left(\Gamma_{0}\right) & =2 s-\left[\binom{t-1}{2}+(t-1)(1-\widetilde{s})\right]+2 t(t+1-\widetilde{s})-\frac{(t+1-\widetilde{s})(t+4-\widetilde{s})}{2} \\
& =2 t^{2}+3 t-\binom{\widetilde{s}+1}{2}=\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2},
\end{aligned}
$$

hence

$$
\operatorname{exdim} V_{s, t}=\rho\left(\Gamma_{0}\right)
$$

This proves that Diesel conjecture, even if not true, is consistent. This was already remarked by Diesel in [4], pg. 385.

In the following we will use the equality:

$$
\begin{equation*}
\rho\left(\Gamma_{0}\right)=\binom{2 t+2}{2}-1-\binom{\widetilde{s}+1}{2}=2 s+t^{2}-2+3 \widetilde{s} / 2-\widetilde{s}^{2} / 2 . \tag{5}
\end{equation*}
$$

which is easy to prove.
To compute the difference $\rho\left(\Gamma_{a}\right)-\rho\left(\Gamma_{0}\right)$ for $a \geq 1$, we need to introduce the following functions

$$
D(X):=\frac{X^{4}+6 X^{3}+11 X^{2}+30 X+8}{4}
$$

and for every positive integer t

$$
\begin{equation*}
f_{t}(X):=\frac{4 X t+D(X)}{(X+1)(X+2)}=\frac{16 t X+X^{4}+6 X^{3}+11 X^{2}+30 X+8}{4(X+1)(X+2)} \tag{6}
\end{equation*}
$$

Lemma 3.3

Let Γ_{a} be a tower for $V_{s, t}$ with $a \geq 1$; then

$$
\rho\left(\Gamma_{a}\right)-\rho\left(\Gamma_{0}\right)=\binom{a+2}{2}\left[\widetilde{s}-f_{t}(a)\right]
$$

Proof. If we let $r:=t+1-\widetilde{s}+\binom{a+1}{2}$, we have

$$
\begin{aligned}
\rho\left(\Gamma_{a}\right) & =2 s-\left[\binom{t-a-1}{2}+(t-a)(r-t+a)\right]+2 r(t-a)-\frac{r(r+3)}{2} \\
& =2 s-\binom{t-a-1}{2}+(t-a)^{2}+r(t-a)-\frac{r(r+3)}{2}
\end{aligned}
$$

When we use the equality $r:=t+1-\widetilde{s}+\binom{a+1}{2}$, we get

$$
\rho\left(\Gamma_{a}\right)=2 s-\frac{a^{4}}{8}-\frac{3 a^{3}}{4}-\frac{11 a^{2}}{8}-\frac{15 a}{4}+t^{2}-2 a t+\frac{a^{2} \widetilde{s}}{2}+\frac{3 a \widetilde{s}}{2}-\frac{\widetilde{s}^{2}}{2}+\frac{5 \widetilde{s}}{2}-3
$$

Hence, by (5), we get

$$
\begin{aligned}
\rho\left(\Gamma_{a}\right)-\rho\left(\Gamma_{0}\right) & =-\frac{a^{4}}{8}-\frac{3 a^{3}}{4}-\frac{11 a^{2}}{8}-\frac{15 a}{4}-2 a t+\frac{a^{2} \widetilde{s}}{2}+\frac{3 a \widetilde{s}}{2}+\widetilde{s}-1 \\
& =\binom{a+2}{2} \widetilde{s}-2 a t-\frac{a^{4}+6 a^{3}+11 a^{2}+30 a+8}{8} \\
& =\binom{a+2}{2} \widetilde{s}-\left[2 a t+\frac{D(a)}{2}\right]=\binom{a+2}{2}\left[\widetilde{s}-f_{t}(a)\right] .
\end{aligned}
$$

As a trivial consequence of the above lemma, we get a necessary condition for $V_{s, t}$ having the expected dimension.

Corollary 3.4

If $V_{s, t}$ has the expected dimension, then for every $a \geq 1$ such that $\binom{a+2}{2} \leq \tilde{s}$, we have

$$
\widetilde{s} \leq f_{t}(a)
$$

Proof. By assumption $\operatorname{dim} V_{s, t}=\operatorname{exdim} V_{s, t}=\rho\left(\Gamma_{0}\right)$, so that by Theorem $2.4 \rho\left(\Gamma_{a}\right) \leq$ $\rho\left(\Gamma_{0}\right)$ for every tower Γ_{a}. The conclusion follows by the lemma.

Thus, for example, $V_{15,5}$ cannot have the expected dimension because $\widetilde{s}=6$ and $\binom{1+2}{2}=3 \leq \widetilde{s}=6$, but $f_{5}(1)=17 / 3<6$.

We want to prove now that the converse of the above statement holds. This will be a consequence of the fact that when $\widetilde{s} \leq \min \left(t, \frac{2 t}{3}+4\right)$ then $\operatorname{dim} V_{s, t}$ is achieved on a tower.

We will prove this last result by using the following strategy. Starting from a sequence in $V_{s, t}$ we will reach a tower along a path of sequences in $V_{s, t}$ in such a way that, at each step, the function ρ does not decrease. We need some preparatory result.

Proposition 3.5

Let $\Gamma=(\ldots, d, a, b, c)$ be a sequence in $V_{s, t}$ such that $c>0$ and $a \neq b<t$. Then $\Lambda=(\ldots, d, a, b+1, c-1)$ is in $V_{s, t}$. Further, if $\widetilde{s} \leq(2 / 3) t+4$, then

$$
\rho(\Lambda) \geq \rho(\Gamma)
$$

Proof. If $a<b$, then $a=t-1$ and $b=t$. Hence $a>b$ so that $\Lambda \in V_{s, t}$.
It is clear that for a suitable integer K we can write

$$
\begin{aligned}
\rho(\Lambda)-\rho(\Gamma)= & \{2 s-[K+d(b+1-a)+a(c-1-b-1)] \\
& \left.+2(b+1)(c-1)-\frac{(c-1)(c+2)}{2}\right\} \\
& -\left\{2 s-[K+d(b-a)+a(c-b)]+2 b c-\frac{c(c+3)}{2}\right\} \\
= & 2 a-2 b+3 c-d-1 .
\end{aligned}
$$

We let $j:=t-d$, hence $j \geq 2$ since $d \leq t-2$. We clearly have

$$
s \leq\binom{ t-2}{2}+d+a+b+c=\binom{t-2}{2}+t-j+a+b+c
$$

so that, with the assumption $\widetilde{s} \leq(2 / 3) t+4$, we get

$$
(2 / 3) t+4 \geq \widetilde{s}=\binom{t+2}{2}-s \geq\binom{ t+2}{2}-\binom{t-2}{2}-t+j-(a+b+c)
$$

which implies

$$
\begin{equation*}
t \leq \frac{3(a+b+c)-3 j+18}{7} \tag{7}
\end{equation*}
$$

But $b+1 \leq a \leq t-1$, hence

$$
a \leq t-1 \leq \frac{3(a+b+c)-3 j+18-7}{7} \leq \frac{3(2 a+c-1)-3 j+11}{7}
$$

which implies

$$
\begin{equation*}
a \leq 3 c-3 j+8 \tag{8}
\end{equation*}
$$

We need to prove

$$
t-j \leq 2 a-2 b+3 c-1
$$

By (7) we have

$$
t-j \leq \frac{3(a+b+c)-3 j+18-7 j}{7}
$$

so that we only need to prove

$$
17 b \leq 11 a+18 c+10 j-25
$$

But $b \leq a-1$, hence
$17 b \leq 17(a-1)=11 a+6 a-17 \leq 11 a+6(3 c-3 j+8)-17=11 a+18 c-18 j+31$,
where the inequality follows by (8).
It remains to prove that

$$
11 a+18 c-18 j+31 \leq 11 a+18 c+10 j-25
$$

But this is equivalent to $56 \leq 28 j$ which is true because $j \geq 2$.
The assumption $\widetilde{s} \leq(2 / 3) t+4$ in the above Proposition is crucial.
Let $t=13, s=92$ so that $\widetilde{s}=13 \leq t$ but $\widetilde{s}=13>(2 / 3) t+4=38 / 3$. With $\Gamma=(\ldots, 10,11,12,11,3)$ and $\Lambda=(\ldots, 10,11,12,12,2)$, we have $\rho(\Gamma)=293$ and $\rho(\Lambda)=292$.

Lemma 3.6

Let us assume $r \geq 2, \widetilde{s} \leq t$, and suppose that the sequence

$$
\Gamma:=\begin{array}{|c|c|c|c|c|}
\hline \ldots & t-r & \ldots & t-1 & t \\
\hline \ldots & b & \ldots & b & c \\
\hline
\end{array}
$$

is in $\in V_{s, t}$. Then

$$
3 b \geq t+\binom{r+1}{2}
$$

Proof. Since $\widetilde{s} \leq t, c \leq b$ and $a_{t-r-1} \leq t-r$, we have

$$
\binom{t+1}{2}<s \leq\binom{ t-r+1}{2}+r b+c \leq\binom{ t-r+1}{2}+(r+1) b
$$

hence

$$
\begin{equation*}
(r+1) b \geq\binom{ t+1}{2}+1-\binom{t-r+1}{2}=r t-\binom{r}{2}+1 \tag{9}
\end{equation*}
$$

On the other hand, $a_{t-r}=b \leq t-r+1$ so that

$$
(r+1)(t-r+1) \geq(r+1) b \geq r t-\binom{r}{2}+1
$$

which implies

$$
t \geq\binom{ r+1}{2}
$$

By (9), we must prove

$$
\frac{r t-\binom{r}{2}+1}{r+1} \geq \frac{t+\binom{r+1}{2}}{3}
$$

We have

$$
\frac{r t-\binom{r}{2}+1}{r+1}-\frac{t+\binom{r+1}{2}}{3}=\frac{t(4 r-2)-\left(r^{3}+5 r^{2}-2 r-6\right)}{6(r+1)}
$$

so that, since $t \geq\binom{ r+1}{2}$, we only need to prove that

$$
\binom{r+1}{2} \geq \frac{r^{3}+5 r^{2}-2 r-6}{4 r-2}
$$

This is equivalent to

$$
r^{3}-4 r^{2}+r+6 \geq 0
$$

so that the conclusion follows because $r \geq 2$ and

$$
r^{3}-4 r^{2}+r+6=(r-2)(r-3)(r+1)
$$

The assumption $\widetilde{s} \leq t$ in the Lemma is essential. If $t=5$ and $\widetilde{s}=6$, we get $s=15$ and $(1,2,3,3,3,3) \in V_{15,5}$ but $9<5+\binom{4}{2}=11$.

Proposition 3.7

Let $r \geq 2$ and let

$\Gamma:=$| \ldots | $t-r-2$ | $t-r-1$ | $t-r$ | \ldots | $t-1$ | t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots | d | a | b | \ldots | b | c |

If $\Gamma \in V_{s, t}, \widetilde{s} \leq t, b<a$ and $c \geq b-2$, then the sequence

$$
\Lambda:=\begin{array}{|c|c|c|c|c|c|c|}
\hline \ldots & t-r-2 & t-r-1 & t-r & \ldots & t-1 & t \\
\hline \ldots & d & a & b+1 & \ldots & b+1 & c-r \\
\hline
\end{array}
$$

is in $V_{s, t}$ and

$$
\rho(\Lambda) \geq \rho(\Gamma)
$$

Proof. In order to prove that $\Lambda \in V_{s, t}$, we only need to prove that $c \geq r$. But if $c<r$ the sequence

\ldots	t-r-2	t-r-1	t-r	\ldots	t-r $+\mathrm{c}-1$	$\mathrm{t}-\mathrm{r}+\mathrm{c}$	\ldots	$\mathrm{t}-1$	t
\ldots	d	a	$\mathrm{b}+1$	\ldots	$\mathrm{~b}+1$	b	\ldots	b	0

would be in $V_{s, t}$, a contradiction to the assumption $s>\binom{t+1}{2}$.
It is clear that for a suitable integer K we have

$$
\begin{aligned}
\rho(\Lambda)= & 2 s-[K+d(b+1-a)+(b+1)(c-r-b-1)] \\
& +2(b+1)(c-r)-\frac{(c-r)(c-r+3)}{2} \\
\rho(\Gamma)= & 2 s-[K+d(b-a)+b(c-b)]+2 b c-\frac{c(c+3)}{2}
\end{aligned}
$$

An easy computation shows that $\rho(\Lambda)-\rho(\Gamma)=-d+b(2-r)+c(r+1)-\binom{r}{2}+1$, hence we need to prove

$$
b(2-r)+c(r+1)-\binom{r}{2}+1 \geq d
$$

Since $c \geq b-2$ and $d \leq t-r-1$, it is enough to prove that

$$
3 b-2(r+1)-\binom{r}{2}+1 \geq t-r-1
$$

which is the same as

$$
3 b \geq t-r-1+2(r+1)+\binom{r}{2}-1=t+\binom{r+1}{2}
$$

This is true by the above lemma.
The assumption $c \geq b-2$ in the above Proposition is crucial. Let $t=22$ and $s=254$ so that $\widetilde{s}=22$. If $\Gamma=(\ldots, 19,20,19,19,6)$ and $\Lambda=(\ldots, 19,20,20,20,4)$, then $\rho(\Gamma)=804$, while $\rho(\Lambda)=803$.

Lemma 3.8

Let $r \geq 2$ and

$\Gamma:=$| \ldots | $t-r-3$ | $t-r-2$ | $t-r-1$ | $t-r$ | \ldots | $t-1$ | t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots | e | d | a | b | \ldots | b | c |

If $\Gamma \in V_{s, t}, a \neq b \neq c$ and $b \leq t-r$, then

$$
\Lambda:=\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \ldots & t-r-3 & t-r-2 & t-r-1 & t-r & \ldots & t-1 & t \\
\hline \ldots & e & d & a-1 & b & \ldots & b & c+1 \\
\hline
\end{array}
$$

is in $V_{s, t}$ and

$$
\rho(\Lambda)-\rho(\Gamma)=e-d+b-c-2
$$

Proof. If $a<b$, then $a=t-r$ and $b=t-r+1$, a contradiction. Hence $a>b$. Further $b \geq c$, so that $c<b$. This proves that $\Lambda \in V_{s, t}$.

For a suitable integer K we can write

$$
\begin{aligned}
\rho(\Lambda)= & 2 s-[K+e(a-1-d)+d(b-a+1)+b(c+1-b)] \\
& +2 b(c+1)-\frac{(c+1)(c+4)}{2} \\
\rho(\Gamma)= & 2 s-[K+e(a-d)+d(b-a)+b(c-b)]+2 b c-\frac{c(c+3)}{2}
\end{aligned}
$$

An easy computation shows that

$$
\rho(\Lambda)-\rho(\Gamma)=e-d+b-c-2
$$

We are ready to prove the main result of the paper.

Theorem 3.9

If $\widetilde{s} \leq \min \left\{t, \frac{2 t}{3}+4\right\}$, then

$$
\operatorname{dim} V_{s, t}=\max \left\{\rho\left(\Gamma_{a}\right)\right\}
$$

where the maximum is over the towers for $V_{s, t}$.
Proof. By Theorem 2.4 we know that $\operatorname{dim} V_{s, t}=\max _{\Gamma \in V_{s, t}}\{\rho(\Gamma)\}$, hence it suffices to show that, given a sequence $\Gamma \in V_{s, t}$, one can find a tower Γ_{a} for $V_{s, t}$ such that $\rho\left(\Gamma_{a}\right) \geq \rho(\Gamma)$.

Let $\Gamma=(\ldots, n, b, m)$ be an element of $V_{s, t}$. If $n<b$ then $n=t-1, b=t$ and $\Gamma=\Gamma_{0}$. Hence we may assume that $n \geq b$ so that $b<t$; since $s>\binom{t+1}{2}$ we have also $m>0$. If $b<n$, by Proposition 3.5 the sequence $\Lambda=(\ldots, n, b+1, m-1)$ is in $V_{s, t}$ and $\rho(\Lambda) \geq \rho(\Gamma)$. Going on in this way, we may assume that

$\Gamma:=$| \ldots | t-r-3 | t-r-2 | t-r-1 | t-r | \ldots | t-1 | t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots | e | d | a | b | \ldots | b | c |

with $r \geq 2$ and $a \neq b$.
If $a<b$, then $a=t-r, b=t-r+1$ and $\Gamma=\Gamma_{r-1}$ is a tower. So let $a>b$, which implies also $b \leq t-r$. If $c \geq b-2$, by Proposition 3.7, the sequence

$$
N:=\begin{array}{|c|c|c|c|c|c|}
\hline \ldots & \mathrm{t}-\mathrm{r}-1 & \mathrm{t}-\mathrm{r} & \ldots & \mathrm{t}-1 & \mathrm{t} \\
\hline \ldots & \mathrm{a} & \mathrm{~b}+1 & \ldots & \mathrm{~b}+1 & \mathrm{c}-\mathrm{r} \\
\hline
\end{array}
$$

is in $V_{s, t}$ and $\rho(N) \geq \rho(\Gamma)$.

Otherwise, $c \leq b-3$ so that

$$
e-d+b-c-2 \geq e-d+c+3-c-2=e-d+1 \geq 0
$$

and by Lemma 3.8 the sequence

$$
M:=\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \ldots & \mathrm{t}-\mathrm{r}-3 & \mathrm{t}-\mathrm{r}-2 & \mathrm{t}-\mathrm{r}-1 & \mathrm{t}-\mathrm{r} & \ldots & \mathrm{t}-1 & \mathrm{t} \\
\hline \ldots & \mathrm{e} & \mathrm{~d} & \mathrm{a}-1 & \mathrm{~b} & \ldots & \mathrm{~b} & \mathrm{c}+1 \\
\hline
\end{array}
$$

is in $V_{s, t}$ and $\rho(M) \geq \rho(\Gamma)$.
In both cases we moved from Γ to a sequence in $V_{s, t}$ with the property that the difference between the integer in position $t-r-1$ and that in position $t-r$ decreases by one. It is now clear that, after a finite number of steps, we will reach a tower Γ_{a} for $V_{s, t}$ such that $\rho\left(\Gamma_{a}\right) \geq \rho(\Gamma)$.

We made some computations with CoCoa when $t \leq 72$ and $\widetilde{s} \leq t$ and it turns out that only 16 cases do not verify the conclusion of the theorem. The case corresponding to the smallest value of t is $t=13, \widetilde{s}=13$, so that $s=92$. We have $\operatorname{dim} V_{92,13}=\rho(\Gamma)$ where $\Gamma=(\ldots, 10,11,12,11,3)$ is obviously not a tower.

The case corresponding to the highest value of t is $t=25, \widetilde{s}=21$, so that $s=330$. We have $\operatorname{dim} V_{330,25}=\rho(\Gamma)$ where $\Gamma=(\ldots, 22,23,24,23,7)$ is not a tower.

We remark that, if $\widetilde{s} \leq t$, there is no counterexample to the equality $\operatorname{dim} V_{s, t}=$ $\max \left\{\rho\left(\Gamma_{a}\right)\right\}$.

Hence we make the following conjecture:

Conjecture 3.10

If $t \geq 26$ and $\widetilde{s} \leq t$, then

$$
\operatorname{dim} V_{s, t}=\max \left\{\rho\left(\Gamma_{a}\right)\right\}
$$

where the maximum is over the towers for $V_{s, t}$.

As a consequence of the above theorem, we can prove the converse of Corollary 3.4.

Theorem 3.11

Let $f_{t}(X)$ be the rational function defined as in (6). Then $V_{s, t}$ has the expected dimension if and only if

$$
\widetilde{s} \leq f_{t}(a)
$$

for every integer $a \geq 1$ such that $\binom{a+2}{2} \leq \tilde{s}$.

Proof. We need only to prove the "if" part of the theorem. We have already seen that if $\widetilde{s} \leq 2$ then $V_{s, t}$ has the expected dimension. Hence let $\widetilde{s} \geq 3$. Then $\binom{1+2}{2}=3 \leq \widetilde{s}$ so that

$$
\widetilde{s} \leq f_{t}(1)=\frac{2 t+7}{3} \leq \frac{2 t}{3}+4
$$

It is clear that $\widetilde{s} \leq \frac{2 t+7}{3}$ does imply $\widetilde{s} \leq t$ unless $t=2,3,4$ and $\widetilde{s}=t+1$, cases in which it is easy to check that $V_{s, t}$ has the expected dimension by using Theorem 2.3. Hence we may assume $\widetilde{s} \leq \min \left\{t, \frac{2 t}{3}+4\right\}$ and apply the above theorem to get $\operatorname{dim} V_{s, t}=\max \left\{\rho\left(\Gamma_{a}\right)\right\}$.

Now the assumption $\widetilde{s} \leq f_{t}(a)$ for every $a \geq 1$ such that $\binom{a+2}{2} \leq \tilde{s}$, implies by Lemma 3.3 that $\rho\left(\Gamma_{a}\right) \leq \rho\left(\Gamma_{0}\right)$ for every tower for $V_{s, t}$. Hence

$$
\operatorname{dim} V_{s, t}=\rho\left(\Gamma_{0}\right)=\operatorname{exdim} V_{s, t}
$$

and the conclusion follows.
This theorem is quite effective if we know t and s. For example if $t=36$ and $\widetilde{s}=26$, then we get $s=\binom{38}{2}-26=677$. We have $\binom{a+2}{2} \leq \widetilde{s}=26$ if and only if $a \leq 5$; by using the table at the end of the paper, we see that

$$
\begin{aligned}
& f_{36}(1)=\frac{79}{3}>26, \quad f_{36}(2)=\frac{83}{3}>26, \quad f_{36}(3)=\frac{271}{10}>26, \\
& f_{36}(4)=\frac{406}{15}>26, \quad f_{36}(5)=\frac{586}{21}>26,
\end{aligned}
$$

so that $V_{677,36}$ has the expected dimension.
With the same $t=36$, if we let $\widetilde{s}=27$, then $s=676$ and we have $\binom{1+2}{2}=3 \leq \widetilde{s}$. Since $f_{36}(1)=\frac{79}{3}<27, V_{676,36}$ has not the expected dimension.

However, a natural and more difficult question is the following: for which s does $V_{s, 36}$ have the expected dimension? Of course we can apply the above theorem, but this need a lot of computations because s must range from 1 to 703 .

In the next section we will find the right answer: $V_{s, 36}$ has the expected dimension if and only if $s \geq 677(\widetilde{s} \leq 26)$.

4. The conclusion

In this last section, we want to improve Theorem 3.11 in order to give a complete answer to the following problem: given the generic catalecticant matrix $\operatorname{Cat}(t, t ; 3)$, for which s the ideal generated by the $s+1$ minors has the expected codimension?

It is clear that we need a deeper knowledge of the rational function

$$
f_{t}(X)=\frac{16 t X+X^{4}+6 X^{3}+11 X^{2}+30 X+8}{4(X+1)(X+2)} .
$$

We recall, see (6), that we can write

$$
f_{t}(X):=\frac{4 X t+D(X)}{(X+1)(X+2)}
$$

where

$$
D(X):=\frac{X^{4}+6 X^{3}+11 X^{2}+30 X+8}{4}
$$

Let us start with the following remark.

Lemma 4.1

We have $f_{t}(1) \leq f_{t}(a)$ for every $a \geq 1$ if and only if $t \leq 41$.

Proof. We have

$$
f_{t}(1)=\frac{2 t+7}{3}, \quad f_{t}(2)=\frac{2 t+11}{3}
$$

so that $f_{t}(1) \leq f_{t}(a)$ for every $a \geq 1$ if and only if $f_{t}(1) \leq f_{t}(a)$ for every $a \geq 3$.
We have

$$
f_{t}(a)-f_{t}(1)=\frac{4 a t+D(a)}{(a+1)(a+2)}-\frac{2 t+7}{3} \geq 0
$$

if and only if

$$
3(4 a t+D(a)) \geq(2 t+7)(a+1)(a+2)
$$

if and only if

$$
t[2(a+1)(a+2)-12 a] \leq 3 D(a)-7(a+1)(a+2)
$$

if and only if

$$
t[2(a-1)(a-2)] \leq 3 D(a)-7(a+1)(a+2)
$$

Hence $f_{t}(1) \leq f_{t}(a)$ for every $a \geq 3$ if and only if

$$
t \leq \frac{3 D(a)-7(a+1)(a+2)}{2(a-1)(a-2)}=\frac{3 a^{3}+21 a^{2}+26 a+32}{8(a-2)}
$$

Now it is easy to see that the rational function

$$
g(X):=\frac{3 X^{3}+21 X^{2}+26 X+32}{8(X-2)}
$$

verifies

$$
g(3)=95 / 2=47, . . \quad g(4)=83 / 2=41,5 \quad g(5)=531 / 12=44, . .
$$

and is strictly increasing for $X \geq 4$. The conclusion follows.
This result is no more true if $t=42$, since we have

$$
f_{42}(1)=91 / 3>f_{42}(4)=454 / 15
$$

This lemma gives already the solution of our problem for small values of t.

Theorem 4.2

If $t \leq 42$, then $V_{s, t}$ has the expected dimension if and only if $\widetilde{s} \leq \frac{2 t+7}{3}$.

Proof. Let $V_{s, t}$ have the expected dimension. If $\widetilde{s} \leq 2$, then $\widetilde{s} \leq \frac{2 t+7}{3}$; hence we may assume $\widetilde{s} \geq 3=\binom{1+2}{2}$. By Theorem 3.11 we get $\widetilde{s} \leq f_{t}(1)=\frac{2 t+7}{3}$ as required.

As for the converse, we have $\widetilde{s} \leq \frac{2 t+7}{3}=f_{t}(1)$, hence if $t \leq 41$, by the above lemma we get $\widetilde{s} \leq f_{t}(a)$ for every $a \geq 1$. The conclusion follows by Theorem 3.11.

If $t=42$, we have $\widetilde{s} \leq \frac{2 t+7}{3}=91 / 3$ so that $\widetilde{s} \leq 30$. As in the above lemma we have

$$
f_{42}(a)=30+1 / 3+\frac{2(a-1)(a-2)(g(a)-42)}{3(a+1)(a+2)}
$$

Since $g(X)$ is strictly increasing for $X \geq 4$ and $g(5) \geq 42$, we have $g(a) \geq 42$ for every $a \geq 5$ so that $f_{42}(a) \geq 30$ for every $a \geq 5$. Since $f_{42}(3)=30.7$, and $f_{42}(4)=30.2$, we get $\widetilde{s} \leq f_{t}(a)$ for every $a \geq 1$ and the conclusion follows again by Theorem 3.11.

This result proves for example that $V_{s, 36}$ has the expected dimension if and only if $\widetilde{s} \leq \frac{79}{3}=26,3 .$. , as announced at the end of Section 3.

Unfortunately, the above theorem does not hold if $t=43$. With such t we have $\frac{2 t+7}{3}=\frac{86+7}{3}=31$. If we take $\widetilde{s}=31$ we get $\binom{4+2}{2}=15 \leq \widetilde{s}$, so that Γ_{4} is a tower. Since $\widetilde{s}-f_{43}(4)=31-154 / 5=1 / 5$, by Lemma 3.3 we get $\rho\left(\Gamma_{4}\right)>\rho\left(\Gamma_{0}\right)$ so that

$$
\operatorname{dim} V_{s, t} \geq \rho\left(\Gamma_{4}\right)>\rho\left(\Gamma_{0}\right)=\operatorname{exdim} V_{s, t}
$$

We come now to the general case.

Lemma 4.3

Let t be a positive integer and $a \geq 3$. We have

$$
\begin{aligned}
& f_{t}(a-1) \geq f_{t}(a) \Longleftrightarrow t \geq \frac{a D(a)-(a+2) D(a-1)}{4(a-2)} \\
& f_{t}(a+1) \geq f_{t}(a) \Longleftrightarrow t \leq \frac{(a+1) D(a+1)-(a+3) D(a)}{4(a-1)}
\end{aligned}
$$

and equality holds on the left if and only if it holds on the right.

Proof. We have $f_{t}(a-1) \geq f_{t}(a)$ if and only if

$$
\frac{4(a-1) t+D(a-1)}{a(a+1)} \geq \frac{4 a t+D(a)}{(a+1)(a+2)}
$$

if and only if

$$
\frac{4(a-1) t+D(a-1)}{a} \geq \frac{4 a t+D(a)}{(a+2)}
$$

if and only if

$$
4(a+2)(a-1) t+(a+2) D(a-1) \geq 4 a^{2} t+a D(a)
$$

if and only if

$$
4 t(a-2) \geq a D(a)-(a+2) D(a-1)
$$

if and only if

$$
t \geq \frac{a D(a)-(a+2) D(a-1)}{4(a-2)}
$$

The second assertion follows in the same way.
Now we remark that for every $a \geq 3$ we have

$$
\frac{a D(a)-(a+2) D(a-1)}{4(a-2)}=\frac{a^{4}+4 a^{3}+5 a^{2}-10 a+16}{8(a-2)}
$$

Hence if we consider the rational function

$$
\begin{equation*}
w(X):=\frac{X^{4}+4 X^{3}+5 X^{2}-10 X+16}{8(X-2)} \tag{10}
\end{equation*}
$$

we have

$$
\begin{aligned}
f_{t}(a-1) & \geq f_{t}(a) \Longleftrightarrow t \geq w(a) \\
f_{t}(a+1) & \geq f_{t}(a) \Longleftrightarrow t \leq w(a+1)
\end{aligned}
$$

and the equality holds on the left if and only if it holds on the right.
It is easy to see that for $X \geq 3$ the function $w(X)$ is strictly increasing and $w(3)=55 / 2$.

This means that, if $t \geq 28$, then $t>w(3)$ and we can find an integer $\bar{a} \geq 3$ such that

$$
w(\bar{a})<t \leq w(\bar{a}+1)
$$

We thus have the following result:

Lemma 4.4

If $t \geq 28$, there exists an integer $\bar{a} \geq 3$, such that

$$
f_{t}(\bar{a}-1)>f_{t}(\bar{a}) \leq f_{t}(\bar{a}+1) .
$$

We prove now that the integer \bar{a} verifies the inequality

$$
\binom{\bar{a}+2}{2} \leq f_{t}(\bar{a})
$$

This will be a consequence of the following lemma.

Lemma 4.5

If $a \geq 3$ and $w(a) \leq t$, then

$$
\binom{a+2}{2} \leq f_{t}(a)
$$

Proof. We must prove that

$$
\frac{4 a t+D(a)}{(a+1)(a+2)} \geq\binom{ a+2}{2} .
$$

Since $w(a) \leq t$, we only need to prove that

$$
\frac{4 a w(a)+D(a)}{(a+1)(a+2)} \geq\binom{ a+2}{2} .
$$

This is true if and only if

$$
\frac{4 a \frac{a D(a)-(a+2) D(a-1)}{4(a-2)}+D(a)}{(a+1)(a+2)} \geq\binom{ a+2}{2}
$$

if and only if

$$
\frac{a^{2} D(a)-a(a+2) D(a-1)+(a-2) D(a)}{(a+1)(a+2)(a-2)} \geq\binom{ a+2}{2}
$$

if and only if

$$
\left(a^{2}+a-2\right) D(a)-a(a+2) D(a-1) \geq(a-2)(a+1)(a+2)\binom{a+2}{2}
$$

if and only if

$$
(a-1) D(a)-a D(a-1) \geq \frac{(a-2)(a+1)^{2}(a+2)}{2} .
$$

An easy computation shows that this is equivalent to $a^{4}+2 a^{3}+3 a^{2}+10 a \geq 0$, so that the conclusion follows.

We come prove now to the main result of this section.

Theorem 4.6

Let $f_{t}(X)$ and $w(X)$ be the rational functions defined as in (6) and (10) respectively. If $t \geq 43$, and we let \bar{a} be the unique integer such that

$$
w(\bar{a})<t \leq w(\bar{a}+1),
$$

then $V_{s, t}$ has the expected dimension if and only if $\widetilde{s} \leq f_{t}(\bar{a})$.

Proof. If $V_{s, t}$ has the expected dimension and, by contradiction, $\widetilde{s}>f_{t}(\bar{a})$, from the above lemma we get $\binom{\bar{a}+2}{2} \leq f_{t}(\bar{a})<\widetilde{s}$, which is absurd by Theorem 3.11.

Let us prove that $\widetilde{s} \leq f_{t}(\bar{a})$ implies $V_{s, t}$ having the expected dimension. By Theorem 3.11 it is enough to show that

$$
f_{t}(\bar{a})=\min _{a \geq 1} f_{t}(a)
$$

Since $t \geq 43$, by Lemma 4.1 we have $f_{t}(2) \geq f_{t}(1)>f_{t}(a)$ for some integer $a \geq 3$. Hence it is enough to prove

$$
f_{t}(\bar{a})=\min _{a \geq 3} f_{t}(a)
$$

Now we remark that

$$
\lim _{a \rightarrow+\infty} \frac{D(a)}{(a+1)(a+2)}=+\infty
$$

hence, since for every t and $a \geq 1$ we have

$$
f_{t}(a)=\frac{4 a t+D(a)}{(a+1)(a+2)} \geq \frac{D(a)}{(a+1)(a+2)}
$$

there exists an integer m such that

$$
f_{t}(a) \geq f_{t}(\bar{a})
$$

for every $a \geq m$. If $m=3$ we are done; so let $m \geq 4$ and

$$
f_{t}(m-1)<f_{t}(\bar{a}) \leq f_{t}(m)
$$

If we would have

$$
f_{t}(2) \leq f_{t}(3) \leq \ldots \leq f_{t}(m-2) \leq f_{t}(m-1)
$$

then $f_{t}(1)=\min _{a \geq 1} f_{t}(a)$, and $t \leq 41$ by Lemma 4.1. Thus there exists an integer j, $3 \leq j \leq m-1$ such that

$$
f_{t}(j-1)>f_{t}(j) \leq \ldots \leq f_{t}(m-1)<f_{t}(\bar{a}) \leq f_{t}(m)
$$

By Lemma 4.3, we get

$$
w(j)<t \leq w(j+1)
$$

so that

$$
w(j)<t \leq w(\bar{a}+1), \quad w(\bar{a})<t \leq w(j+1)
$$

Since $w(X)$ is strictly increasing for $X \geq 3$, this implies

$$
j<\bar{a}+1, \quad \bar{a}<j+1
$$

Thus $j=\bar{a}$, a contradiction because $f_{t}(j)<f_{t}(\bar{a})$.

Here are some of the values of the functions $f_{t}(X)$ and $w(X)$. We have:

$$
\begin{array}{rlrl}
f_{t}(1) & =\frac{2 t+7}{3}, & f_{t}(2)=\frac{2 t+11}{3} & f_{t}(3)=\frac{6 t+55}{10}, \quad f_{t}(4)=\frac{8 t+118}{15} \\
f_{t}(5) & =\frac{10 t+226}{21}, & f_{t}(6)=\frac{12 t+397}{28}, & f_{t}(7)=\frac{14 t+652}{36} \\
f_{t}(8)=\frac{16 t+1015}{45}, & f_{t}(9)=\frac{18 t+1513}{55}, & f_{t}(10)=\frac{10 t+1088}{33} \\
f_{t}(11)=\frac{22 t+3037}{78}, & f_{t}(12)=\frac{24 t+4132}{91}, & f_{t}(13)=\frac{26 t+5500}{105} \\
& \\
w(3)=55 / 2=27.5, & w(4)=71 / 2=35.5, & w(5)=152 / 3=50.6 \\
w(6)=287 / 4=71.7, & w(7)=991 / 10=99.1, & w(8)=400 / 3=133.3 \\
w(9)=1226 / 7=175.1, & w(10)=901 / 4=225.2, & w(11)=5119 / 18=284.3 \\
w(12)=3533 / 10=353.3, & w(13)=4760 / 11=432.7, & w(14)=6281 / 12=523.4
\end{array}
$$

For example, if $t=100$, then $\bar{a}=7$, so that $V_{s, 100}$ has the expected dimension if and only if $\widetilde{s} \leq f_{100}(7)=\frac{1400+652}{36}=57$.

If $t=500$, then $\bar{a}=13$, so that $V_{s, 500}$ has the expected dimension if and only if $\widetilde{s} \leq f_{500}(13)=\frac{(26)(500)+5500}{105}=176,1$.

Some of the results of this paper were conjectured after explicit computations performed by the computer algebra system CoCoA ([1]).

References

1. A. Capani, G. Niesi, and L. Robbiano, CoCoA, a System for Doing Computations in Commutative Algebra, 1995, Available via anonymous ftp from cocoa.dima. unige.it
2. Y.H. Cho and B.E. Jung, The dimension of the determinantal scheme $V_{s}(t, t, 2)$ of the catalecticant matrix, Comm. Algebra 28 (2000), 2423-2443.
3. A. Conca and G. Valla, Hilbert function of powers of ideals of low codimension, Math. Z. 230 (1999), 753-784.
4. S.J. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pacific J. Math. 172 (1996), 365-397.
5. A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics 1721, Springer-Verlag, Berlin and New York, 1999.
6. J.O. Kleppe, The smoothness and the dimension of $\mathbb{P G o r}(\mathrm{H})$ and of the strata of the punctual Hilbert scheme, J. Algebra 200 (1998), 606-628.
7. R.P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), 57-83.

[^0]: Keywords: Ideal of minors of catalecticant matrices, Artinian Gorenstein algebras.

