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Abstract

Let Vs,t be the rank≤ s locus inP(2t+2
2 )−1 of the generic catalecticant matrix

Cat(t, t; 3). This matrix has rather more symmetry than a generic symmetric

matrix; this implies codimVs,t ≤
(
s̃+1
2

)
, wheres̃ :=

(
t+2
2

)
− s.

In this paper, given the integert, we explicitely determine an integerN ,

depending ont, with the property that codimVs,t =
(
s̃+1
2

)
if and only if s̃ ≤ N.

1. Introduction

Let R = k[X1, . . . , Xn] = ⊕t≥0Rt with k = k an algebraically closed field of charac-
teristic zero. Fix positive integers d, i, j such that d = i + j and consider the bilinear
map, given by multiplication,

Ri ×Rj → Rd.

One keeps track of this multiplication in a matrix whose rows are indexed by the
monomials of Ri (say in the lexicographic order) and whose columns are indexed by
the monomials of Rj . In each place of the matrix one enters a new variable Ya where
a is the multiindex of length d corresponding to the monomial which is the result of
multiplying the appropriate row monomial by the appropriate column monomial.

The resulting matrix of variables is denoted by Cat(i, j;n) and called the (i, j)-
catalecticant matrix of R.

The size of this matrix is
(
n+i−1

i

)
×

(
n+j−1

j

)
and the entries of the matrix are

variables taken from the polynomial ring k[Ya] in
(
n+d−1

d

)
variables, where d = i + j.

In this paper we are concerned with the special case i = j and n = 3. The
matrix Cat(t, t; 3) has size

(
t+2
2

)
×

(
t+2
2

)
and it is a symmetric matrix with entries in
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a polynomial ring in
(
2t+2

2

)
variables. It is a matrix of indeterminates but it is not

generic since the same variable can be repeated in the matrix.
For example Cat(1, 1; 3) is the matrix

Cat(1, 1; 3) =

 Y200 Y110 Y101

Y110 Y020 Y011

Y101 Y011 Y002


which is the generic symmetric 3× 3 matrix. But Cat(2, 2; 3) is not the generic sym-
metric 6× 6 matrix, namely

Cat(2, 2; 3) =



Y400 Y310 Y301 Y220 Y211 Y202

Y310 Y220 Y211 Y130 Y121 Y112

Y301 Y211 Y202 Y121 Y112 Y103

Y220 Y130 Y121 Y040 Y031 Y022

Y211 Y121 Y112 Y031 Y022 Y013

Y202 Y112 Y103 Y022 Y013 Y004


For every positive integer t and any integer s such that 0 ≤ s <

(
t+2
2

)
, we can

consider the ideal Is+1,t generated by the (s + 1) × (s + 1) minors of Cat(t, t; 3). It
defines the rank ≤ s locus of the matrix Cat(t, t; 3) in the projective space PN where
N =

(
2t+2

2

)
− 1. This projective variety is denoted by Vs,t and it is not empty if s ≥ 1.

When s and t vary, we get the catalecticant varieties we refer to in the title.
It is well known that the codimension of the ideal generated by the m×m minors of

a generic symmetric q×q matrix is
(
q−m+2

2

)
. Hence the codimension of Vs,t is bounded

above by

codimVs,t ≤ min
{(

2t + 2
2

)
− 1,

((
t+2
2

)
− (s + 1) + 2

2

)}
= min

{(
2t + 2

2

)
− 1,

(
s̃ + 1

2

)}
where we let

s̃ :=
(

t + 2
2

)
− s.

Notice that, since s <
(
t+2
2

)
, we have s̃ ≥ 1. Further

dim Vs,t =
(

2t + 2
2

)
− 1− codimVs,t ≥ max

{
0,

(
2t + 2

2

)
− 1−

(
s̃ + 1

2

)}
.

Hence we will say that

exdimVs,t := max
{

0,

(
2t + 2

2

)
− 1−

(
s̃ + 1

2

)}
is the expected dimension of Vs,t.



The dimension of certain catalecticant varieties 115

In [4] Diesel made the conjecture that dim Vs,t = exdimVs,t if s ≥
(
t+1
2

)
or equiv-

alently s̃ ≤ t + 1.

The conjecture as stated is false, as shown by Y. Cho and B. Jung in [2]. In this
paper we give a numerical criterion for the equality dim Vs,t = exdimVs,t : we fix t and
we determine an integer N = N(t) such that Vs,t has the expected dimension if and
only if s̃ ≤ N.

We describe now the contents of this paper. First we remark in Section 2 that the
locus Vs,t is the union of certain (smooth) irreducible varieties Gor(T ) parametrizing
graded artinian quotients of k[X1, X2, X3] having Hilbert Function T.

In a previous article [3] we had given a compact formula for the dimension of
Gor(T ), and here we manipulate this formula to prove in Theorem 2.4 that dim Vs,t =
max{ρ(Γ)}, where Γ runs among the codimension two artinian Hilbert Functions of
socle degree at most t and multiplicity s, and where, for Γ = {a0, · · · , at}, we define

ρ(Γ) := 2s−
t−2∑
i=0

ai(ai+2 − ai+1) + 2at−1at −
at(at + 3)

2
.

Using this formula, in Section 3, we first prove (Corollary 3.4) that if Vs,t has the
expected dimension then, for every integer a ≥ 1 such that

(
a+2
2

)
≤ s̃, we must have

s̃ ≤ ft(a) where

ft(X) =
16tX + X4 + 6X3 + 11X2 + 30X + 8

4(X + 1)(X + 2)
.

This inequality is proved by looking at some special codimension two artinian Hilbert
Functions Γa which we call towers and which are defined, in the case s̃ ≤ t + 1, for
every non negative integer a such that

(
a+2
2

)
≤ s̃.

The last part of this section is devoted to prove that the converse of the above
Corollary holds, namely that Vs,t has the expected dimension if and only if s̃ ≤ ft(a)
for every a ≥ 1 such that

(
a+2
2

)
≤ s̃ (Theorem 3.11).

This is an easy consequence of the more subtle result of this paper (Theorem 3.9)
which states that, in the case s̃ ≤ min {t, 2t

3 + 4}, the dimension of Vs,t, which is the
maximum of the integers ρ(Γ), is achieved on one of the towers.

In the last section of the paper, we study the behavior of the rational function
ft(X) in order to determine explicitly the integer N(t). More precisely, we prove in
Theorem 4.2 that if t ≤ 42 then N(t) = 2t+7

3 , while in Theorem 4.6 we prove that if
t ≥ 43 then N(t) = ft(ā) where ā is the integer defined by the inequalities w(a) < t ≤
w(a + 1), with

w(X) :=
X4 + 4X3 + 5X2 − 10X + 16

8(X − 2)
.
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2. A new formula for dim Vs,t

In this section we first recall that Vs,t is the union of certain (smooth) irredu-
cible varieties Gor(T ) parametrizing graded artinian quotients of k[X1, X2, X3] having
Hilbert Function T. Hence its dimension is the dimension of its biggest irreducible
components. Using a compact formula for the dimension of Gor(T ) proved in [3], we
get a new formula for dimVs,t which will be crucial for the main result of the paper.

Let j ≥ 2 and T = (1, h1, . . . , hj−1, 1) be a symmetric sequence of integers with
h1 ≤ 3. We say that T is a Gorenstein sequence if T is the Hilbert function of a
standard Gorenstein Artinian graded algebra A = k[X1, X2, X3]/I. The integer j is
called the socle degree of T.

Given a Gorenstein sequence T of socle degree j, let us consider the ideal

IT :=
j−1∑
i=1

Ihi+1(Cat(i, j − i; 3))

in the polynomial ring k[Ya] with
(
j+2
2

)
variables. This ideal defines a variety in

P(j+2
2 )−1 which is denoted by Gor≤(T ).
It is clear that

Gor≤(T ) =
{

P ∈ P(j+2
2 )−1 | rankP Cat(i, j − i; 3) ≤ hi, i = 1, . . . , j − 1

}
.

We can think of P(j+2
2 )−1 as P(Sj) where S = k[Y1, Y2, Y3] and we identify the

points of P(j+2
2 )−1 with the corresponding forms of degree j in S.

Recall that every form F of degree j in k[Y1, Y2, Y3] corresponds, up to scalars, to
an artinian Gorenstein graded algebra A = k[X1, X2, X3]/IF of socle degree j, through
the so called inverse system of Macaulay. Further, if A = R/IF is the Gorenstein
algebra corresponding to the form F , the Hilbert function of A is given by the formula

HA(i) = rankF Cat(i, j − i; 3)

for every i ≥ 0. This crucial result is due to Macaulay and a proof can be found in [5]
Lemma 2.14.

Hence the elements of Gor≤(T ) can be identified with Gorenstein Artinian graded
algebras A = k[X1, X2, X3]/I with socle degree j and Hilbert function HA ≤ T , where
the inequality is coefficientwise.

We can partially order the Gorenstein sequences of socle degree j coefficientwise.
If T ′ ≤ T , then IT ⊆ IT ′ so that

Gor≤(T ′) ⊆ Gor≤(T ).

Hence, given a Gorenstein sequence T , we can consider the open subset Gor(T ) of
Gor≤(T ) defined as

Gor(T ) := Gor≤(T )
∖ ⋃

T ′<T

Gor≤(T ′).
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We clearly have

Gor(T ) = {F ∈ P(Sj) | rankF Cat(i, j − i; 3) = hi, i = 1, . . . , j − 1} .

Hence we can say that Gor(T ) parametrizes Artinian Gorenstein graded algebra A =
k[X1, X2, X3]/I with socle degree j and Hilbert function HA = T.

In [4] Diesel proved that Gor(T ) is irreducible for every Gorenstein sequence T.

Given the positive integer t, let 1 ≤ s <
(
t+2
2

)
. We define ∆ to be the set of

sequences T = (1, h1, . . . , h2t−1, 1) which are the Hilbert Functions of Gorenstein Ar-
tinian graded algebras A = k[X1, X2, X3]/I of socle degree 2t and with ht = s.

If we can consider the union of irreducible strata

Us,t := ∪T∈∆Gor(T ), (1)

it is clear that we can describe Us,t as

Us,t =
{
F ∈ P(S2t) | rankF Cat(t, t; 3) = s

}
.

This identifies Us,t as an open subset of Vs,t, which was defined as the rank ≤ s locus
of Cat(t, t; 3) in P(2t+2

2 )−1.

By Lemma 3.5 pg. 75 in [5], Us,t is in fact a dense open subset of Vs,t, hence,
using (1), we get

dim Vs,t = dim Us,t = max
T∈∆

{
dimGor(T )

}
. (2)

We recall here that each Gorenstein sequence T ∈ ∆ is 2t-symmetric in the sense
that, for i ≤ t, h2t−i = hi.

Further, for every T ∈ ∆ we have h1 = 3, save for the sequences of embedding
dimension ≤ 2 which are either (1, 1, · · · , 1, 1) if s = 1, or (1, 2, · · · , s, s, s, · · · , 2, 1) if
2 ≤ s ≤ t + 1.

Later in this section we will give a formula for computing dimGor(T ) for every
Gorenstein sequence T of embedding dimension 3, but let us first consider the case of
embedding dimension ≤ 2.

It is clear that a graded algebra A = k[X1, X2, X3]/I has embedding dimension
≤ 2 if and only if I is a complete intersection ideal generated by three forms of degree
1, s, 2t− s + 2.

If s = 1, I is a complete intersection of forms of degree 1, 1, 2t + 1. Hence
dimGor(T ) equals the dimension of the Grassmannian Gr(2, 3) of 2-dimensional linear
subspaces of the 3-dimensional vector space k[X1, X2, X3]1. Hence

dimGor(T ) = dim Gr(2, 3) = 2, (3)

(this is case 6 in Section 4.6 of Diesel paper [4]).
If s = t + 1, then I is a complete intersection of forms of degree 1, t + 1, t + 1, and

it is clear that

dimGor(T ) = dim Gr(1, 3) + dim Gr(2, s + 1) = 2s

(this is case 3 in Section 4.6 of Diesel paper [4]).
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Finally, if 2 ≤ s ≤ t, we have

dimGor(T ) = dimGr(1, 3) + dim Gr(1, s + 1) + dim Gr(1, 2t− s + 3− (2t− 2s + 3))

where the last summand is like that because, if F is a form of degree s in two variables,
then dim(F )2t−s+2 = 2t− 2s + 3. Thus, if 2 ≤ s ≤ t, we get

dimGor(T ) = 2 + s + (s− 1) = 2s + 1 (4)

(this is case 5 in Section 4.6 of Diesel paper [4]).

We can use these results to compute dim V1,t and dim V2,t for every t. Namely if
s = 1, then ∆ = {(1, 1, · · · , 1, 1)} so that, by (1) and (3), we get

dim V1,t = 2.

If s = 2, then ∆ = {(1, 2, · · · , 2, 1)} so that, by (1) and (4), we get

dim V2,t = 5.

We give now an easy formula for dimGor(T ) when T is a Gorenstein sequence of
socle degree 2t such that h1 = 3 and ht = s.

For a general Gorenstein sequence T of socle degree j ≥ 2, Kleppe proved in [6]
that Gor(T ) is smooth; hence the dimension of Gor(T ) is equal to the dimension of
the tangent space to Gor(T ) in any point. We may apply Theorem 3.9 in [5] to get

dimGor(T ) = HR/I2(j)− 1 = HI/I2(j)

for every ideal I such that A := k[X1, X2, X3]/I is Gorenstein and HA = T. If we write
the Hilbert series of A as

PA(z) = h(z) = 1 + h1z + h2z
2 + . . . + hj−2z

j−2 + hj−1z
j−1 + zj ,

we proved in [3] Theorem 4.1 that the Hilbert Series of I/I2 is

PI/I2(z) = (1 + z)3h(z2)/2− (1− z)3h(z)2/2− zj+3h(z).

Hence dimGor(T ) is equal to the coefficient of zj in the polynomial

(1 + z)3h(z2)− (1− z)3h(z)2

2
.

In the case j = 2t, the coefficient of z2t in (1+z)3h(z2)
2 is

ht + 3ht−1

2
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and that of z2t in
(1− z)3h(z)2

2
=

(1− z)h(z)
2

(1− z)2h(z)
2

is
2t∑

i=0

aib2t−i

2

where we let ∑
aiz

i := (1− z)h(z),
∑

biz
i := (1− z)2h(z)

to be the first and second difference of h(z).
Summing up we get

dimGor(T ) =
ht + 3ht−1 −

∑2t
i=0 aib2t−i

2
.

In the case ht = s, we have at = s− ht−1 so that

ht + 3ht−1 = s + 3(s− at) = 4s− 3at.

As we have seen before, h(z) is 2t-symmetric, hence (1 − z)h(z) is (2t + 1)-
antisymmetric and (1− z)2h(z) is (2t + 2)-symmetric. This means

at+k = −at+1−k, bj = b2t+2−j .

We get

dimGor(T ) =
4s− 3at −

∑t
i=0 aibi+2 +

∑2t
i=t+1 a2t+1−ib2t−i

2
.

It is easy to see that we have

aj+1bj + aj−1bj+1 = aj(aj+1 − aj−1)

for every j ≥ 1, so that

t∑
i=0

aibi+2 −
2t∑

i=t+1

a2t+1−ib2t−i

=
t∑

i=0

aibi+2 −
2t−1∑

i=t+1

a2t−i(a2t−i+1 − a2t−i−1) +
2t−1∑

i=t+1

a2t−i−1b2t−i+1 − a1b0

=
t∑

i=0

aibi+2 − at−1at + a0a1 +
t−2∑
i=0

aibi+2 − a1b0

=2
t−2∑
i=0

aibi+2 + at−1bt+1 + atbt+2 − at−1at

=2
t−2∑
i=0

aibi+2 − 4at−1at + a2
t .

By easy computation, we get from the above formula the following result:
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Proposition 2.1

Let T = {1, 3, h2, . . . , h2t−2, 3, 1} be a Gorenstein sequence of socle degree 2t and

with ht = s; let ai := hi − hi−1 for every i. Then

dimGor(T ) = 2s−
t−2∑
i=0

ai(ai+2 − ai+1) + 2at−1at −
at(at + 3)

2
.

We recall now that Stanley proved in [7] that a symmetric sequence of socle
degree 2t, say {1, 3, . . . , hi, . . . , 3, 1}, is a Gorenstein sequence if and only if half of its
first difference (1, 2, h2 − 3, . . . , ht − ht−1) is a codimension two admissible sequence,
which means a sequence which is the Hilbert function of an Artinian graded algebra
k[X1, X2]/J of embedding dimension two and socle degree at most t.

Notice that if we let as before ai := hi − hi−1, then
∑t

i=o ai = ht.

We can easily describe the codimension two admissible sequences of socle degree
at most t. They are sequences Γ = (a0 = 1, a1 = 2, . . . , at) of t+1 non negative integers
with the property that for some integer m, 2 ≤ m ≤ t + 1

1) ai = i + 1 for 0 ≤ i ≤ m− 1,

2) 0 ≤ ai+1 ≤ ai for m− 1 ≤ i ≤ t.

The integer m is called the initial degree of Γ.

Definition 2.2. We say that a sequence Γ = (a0 = 1, 2, . . . , at) is in Vs,t and, by
abuse of notation, we write Γ ∈ Vs,t, if Γ verifies the above conditions 1) and 2) and
moreover has multiplicity s, which means

∑
ai = s.

For Γ ∈ Vs,t we define

ρ(Γ) := 2s−
t−2∑
i=0

ai(ai+2 − ai+1) + 2at−1at −
at(at + 3)

2
.

Using Proposition 2.1 we can prove now the following well known lemma.

Lemma 2.3

Let 1 ≤ s ≤
(
t+1
2

)
. Then dim Vs,t ≥ 3s− 1.

Proof. If s = 1, 2 we have already seen that dim Vs,t = 3s − 1. Let 3 ≤ s ≤
(
t+1
2

)
.

It is clear that there exists an integer m such that
(
m+1

2

)
≤ s <

(
m+2

2

)
; this forces

2 ≤ m ≤ t and m = t if and only if s =
(
t+1
2

)
.

Let us consider the sequence

Γ :=
0 1 . . . m-1 m m+1 . . . t
1 2 . . . m s−

(
m+1

2

)
0 . . . 0
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Since 0 ≤ s−
(
m+1

2

)
≤ m + 1, we get Γ ∈ Vs,t and

ρ(Γ) = 2s−

m−2∑
j=1

j + (m− 1)
(

s−
(

m + 1
2

)
−m

)
+ m

((
m + 1

2

)
− s

) = 3s− 1.

By (2) and Proposition 2.1 we get dim Vs,t ≥ ρ(Γ) = 3s − 1 and the conclusion
follows. �

A corollary of this easy result is the following crucial formula for dim Vs,t.

Theorem 2.4

Let t ≥ 2 and 3 ≤ s <
(
t+2
2

)
; then

dim Vs,t = max
{
ρ(Γ)

}
,

where the maximum is over the sequences Γ ∈ Vs,t as described in Definition 2.2.

Proof. If s ≥ t + 2 the result is clear because for every T ∈ ∆ we have h1 = 3. If
s ≤ t + 1 then s ≤

(
t+1
2

)
and the conclusion follows by the Lemma because the unique

sequence in ∆ with h1 ≤ 2 is T = (1, 2, . . . , s − 1, s, . . . , s, s − 1, . . . , 2, 1) for which
dimGor(T ) ≤ 2s + 1 < 3s− 1, as we have pointed out before. �

For example, if s̃ = 1, then s =
(
t+2
2

)
− 1 and Vs,t is an hypersurface in P(2t+2

2 )−1.

Hence we have

dim Vs,t =
(

2t + 2
2

)
− 2 = 2t2 + 3t− 1

which is the expected dimension. Let us compute dim Vs,t when t ≥ 2 by using
Theorem 2.4. It is clear that s ≥ t + 2 and the unique sequence in Vs,t is

Γ := (1, 2, . . . , t, t).

We have

ρ(Γ) = 2s− [1 + 2 + . . . + (t− 2)] + 2t2 − t(t + 3)
2

= 2
(

t + 2
2

)
− 2−

(
t− 1

2

)
+ 2t2 − t(t + 3)

2
= 2t2 + 3t− 1.

If t = 1, then s = 2 and the hypersurface V2,1 is the zero locus of the determinant
of the generic symmetric 3× 3 matrix, namely the secant line variety to the Veronese
surface in P5.

Also the case s̃ = 2, 3, 4 are easy to handle. If s̃ = 2 and t = 1, then s = 1 and
dim V1,1 = 2 which is the expected dimension. If t ≥ 2, then s =

(
t+2
2

)
− 2 ≥ t + 2. It

is clear that there is a unique sequence in Vs,t and it is

Γ = (1, 2, . . . , t, t− 1).
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We have

ρ(Γ) = 2s− [1 + 2 + . . . + (t− 2)− (t− 1)] + 2t(t− 1)− (t− 1)(t + 2)
2

= 2t2 + 3t− 3.

The expected dimension is(
2t + 2

2

)
− 1− 3 = 2t2 + 3t− 3.

If t = 1, then s = 1 and the surface V1,1 is the zero locus of the ideal generated by the
2×2 minors of the generic symmetric 3×3 matrix, namely the Veronese surface in P5.

In the case s̃ = 3 we have s =
(
t+2
2

)
− 3 so that t ≥ 2; if t = 2, then s = 3 and

dim V3,2 = 8. This is the expected dimension.
If t ≥ 3, we have two sequences in Vs,t, namely

Γ = (1, 2, . . . , t− 1, t, t− 2), Λ = (1, 2, . . . , t− 1, t− 1, t− 1).

We have
ρ(Γ) = 2t2 + 3t− 6, ρ(Λ) = 2t2 + t− 4,

hence dim Vs,t = 2t2 + 3t− 6. The expected dimension is(
2t + 2

2

)
− 1− 6 = 2t2 + 3t− 6.

Finally in the case s̃ = 4, we have s =
(
t+2
2

)
− 4 so that t ≥ 2; if t = 2, then s = 2

and dim V2,2 = 5. The expected dimension is 4 so that this is the first example where
the dimension is bigger than the expected dimension.

If t ≥ 3, we have two sequences in Vs,t, namely

Γ = (1, 2, . . . , t− 1, t, t− 3), Λ = (1, 2, . . . , t− 1, t− 1, t− 2).

By easy computation we get

ρ(Γ) = 2t2 + 3t− 10 > ρ(Λ) = 2t2 + t− 5,

hence dim Vs,t = 2t2 + 3t− 10, which is the expected dimension.
Let us consider the case t = 2. We have seen that dim V1,2 = 2, dim V2,2 = 5,

dim V3,2 = 8, dim V4,2 = 11 (s̃ = 2), dim V5,2 = 13 (s̃ = 1). Hence Vs,2 has the
expected dimension if and only if s ≥ 3. This is the kind of result we are looking for
when t ≥ 3.

3. The main result

In this section we focus on some special sequences Γa ∈ Vs,t which are defined, in the
case s̃ ≤ t + 1, for every non negative integer a such that

(
a+2
2

)
≤ s̃. These sequences
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will be called the towers for Vs,t; their relevance will be clear when we prove that, in
the case s̃ ≤ min(t, 3t

3 + 4), the maximum of the integers ρ(Γ), which is the dimension
of Vs,t, is achieved on one of the towers.

As a consequence we will get an explicit criterion for Vs,t having the expected
dimension.

In the following, to avoid trivial cases already considered, we assume that t ≥ 3
and s is an integer such that 3 ≤ s <

(
t+2
2

)
. First of all we prove that s̃ ≤ t + 1 is a

necessary condition for Vs,t to have the expected dimension.

Proposition 3.1

If s̃ ≥ t + 2, then dim Vs,t > exdim Vs,t.

Proof. We have s̃ ≥ t + 2 so that s ≤
(
t+1
2

)
− 1, hence, by Lemma 2.3, we get

dim Vs,t ≥ 3s− 1.

We claim that 3s− 1 is strictly bigger than the expected dimension, namely

3s− 1 > max
{

0,

(
2t + 2

2

)
− 1−

(
s̃ + 1

2

)}
.

We have

3s− 1 >

(
2t + 2

2

)
− 1−

(
s̃ + 1

2

)
if and only if

s̃2 − 5s̃ + 4− t2 + 3t > 0.

Since s̃ ≥ t + 2, we must prove that

t + 2 >
5 +

√
9 + 4t2 − 12t

2

which is equivalent to 8(t− 1) > 0. The conclusion follows. �

A consequence of this result is that, when s̃ ≥ t+2, one should better take 3s− 1
for the expected dimension of Vs,t. Namely in the paper [2] some instances where
dim Vs,t = 3s − 1 are presented. For example it is shown that this is the case when
t ≥ 9 and t + 1 ≤ s ≤ 4t− 3.

We used Theorem 2.4 for computing dim Vs,t in the case t = 17 and s = 150
(s̃ = 21). We got dim V150,17 = 459 > 3s − 1 = 449, but of course here s = 150 >

4t− 3 = 65.

It would be interesting to determine, in the case s̃ ≥ t + 2 (s ≤
(
t+1
2

)
), when

dim Vs,t = 3s− 1.

We remark that if s̃ = t + 1, then 3s− 1 =
(
2t+2

2

)
− 1−

(
s̃+1
2

)
.

We also notice that if s̃ ≤ t + 1, then exdimVs,t =
(
2t+2

2

)
− 1−

(
s̃+1
2

)
.

If s̃ ≤ t + 1 and a ≥ 0 is an integer such that
(
a+2
2

)
≤ s̃, then

(
a+2
2

)
≤ t + 1 so

that a ≤ t− 2. Since t− a ≥ t + 1− s̃ +
(
a+1
2

)
, the sequence
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Γa :=
0 1 . . . t-a-1 . . . t-1 t
1 2 . . . t-a . . . t-a t+1-s̃ +

(
a+1
2

)
is in Vs,t. In particular Γ0 is always in Vs,t, because s̃ ≥ 1.

Definition 3.2. Let s̃ ≤ t + 1. For every non negative integer a such that
(
a+2
2

)
≤ s̃,

let Γa to be the sequence

Γa :=
0 1 . . . t-a-1 . . . t-1 t
1 2 . . . t-a . . . t-a t+1-s̃ +

(
a+1
2

)
Such a sequence is in Vs,t and is called a tower for Vs,t.

For example, if t = 12 and s̃ = 10, then s = 81 and the towers for V81,12 are the
following four sequences:

0 1 . . . 7 8 9 10 11 12
Γ0 1 2 . . . 8 9 10 11 12 3
Γ1 1 2 . . . 8 9 10 11 11 4
Γ2 1 2 . . . 8 9 10 10 10 6
Γ3 1 2 . . . 8 9 9 9 9 9

We always have

ρ(Γ0) = 2s−
[(

t− 1
2

)
+ (t− 1)(1− s̃)

]
+ 2t(t + 1− s̃)− (t + 1− s̃)(t + 4− s̃)

2

= 2t2 + 3t−
(

s̃ + 1
2

)
=

(
2t + 2

2

)
− 1−

(
s̃ + 1

2

)
,

hence
exdimVs,t = ρ(Γ0).

This proves that Diesel conjecture, even if not true, is consistent. This was already
remarked by Diesel in [4], pg. 385.

In the following we will use the equality:

ρ(Γ0) =
(

2t + 2
2

)
− 1−

(
s̃ + 1

2

)
= 2s + t2 − 2 + 3s̃/2− s̃2/2. (5)

which is easy to prove.

To compute the difference ρ(Γa) − ρ(Γ0) for a ≥ 1, we need to introduce the
following functions

D(X) :=
X4 + 6X3 + 11X2 + 30X + 8

4
,
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and for every positive integer t

ft(X) :=
4Xt + D(X)

(X + 1)(X + 2)
=

16tX + X4 + 6X3 + 11X2 + 30X + 8
4(X + 1)(X + 2)

. (6)

Lemma 3.3

Let Γa be a tower for Vs,t with a ≥ 1; then

ρ(Γa)− ρ(Γ0) =
(

a + 2
2

)[
s̃− ft(a)

]
.

Proof. If we let r := t + 1− s̃ +
(
a+1
2

)
, we have

ρ(Γa) = 2s−
[(

t− a− 1
2

)
+ (t− a)(r − t + a)

]
+ 2r(t− a)− r(r + 3)

2

= 2s−
(

t− a− 1
2

)
+ (t− a)2 + r(t− a)− r(r + 3)

2
.

When we use the equality r := t + 1− s̃ +
(
a+1
2

)
, we get

ρ(Γa) = 2s− a4

8
− 3a3

4
− 11a2

8
− 15a

4
+ t2 − 2at +

a2s̃

2
+

3as̃

2
− s̃2

2
+

5s̃

2
− 3.

Hence, by (5), we get

ρ(Γa)− ρ(Γ0) = −a4

8
− 3a3

4
− 11a2

8
− 15a

4
− 2at +

a2s̃

2
+

3as̃

2
+ s̃− 1

=
(

a + 2
2

)
s̃− 2at− a4 + 6a3 + 11a2 + 30a + 8

8

=
(

a + 2
2

)
s̃−

[
2at +

D(a)
2

]
=

(
a + 2

2

)[
s̃− ft(a)

]
. �

As a trivial consequence of the above lemma, we get a necessary condition for Vs,t

having the expected dimension.

Corollary 3.4

If Vs,t has the expected dimension, then for every a ≥ 1 such that
(
a+2
2

)
≤ s̃, we

have

s̃ ≤ ft(a).
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Proof. By assumption dim Vs,t = exdimVs,t = ρ(Γ0), so that by Theorem 2.4 ρ(Γa) ≤
ρ(Γ0) for every tower Γa. The conclusion follows by the lemma. �

Thus, for example, V15,5 cannot have the expected dimension because s̃ = 6 and(
1+2
2

)
= 3 ≤ s̃ = 6, but f5(1) = 17/3 < 6.

We want to prove now that the converse of the above statement holds. This will
be a consequence of the fact that when s̃ ≤ min(t, 2t

3 + 4) then dim Vs,t is achieved on
a tower.

We will prove this last result by using the following strategy. Starting from a
sequence in Vs,t we will reach a tower along a path of sequences in Vs,t in such a way
that, at each step, the function ρ does not decrease. We need some preparatory result.

Proposition 3.5

Let Γ = (. . . , d, a, b, c) be a sequence in Vs,t such that c > 0 and a 6= b < t. Then

Λ = (. . . , d, a, b + 1, c− 1) is in Vs,t. Further, if s̃ ≤ (2/3)t + 4, then

ρ(Λ) ≥ ρ(Γ).

Proof. If a < b, then a = t− 1 and b = t. Hence a > b so that Λ ∈ Vs,t.

It is clear that for a suitable integer K we can write

ρ(Λ)− ρ(Γ) =

{
2s−

[
K + d(b + 1− a) + a(c− 1− b− 1)

]
+ 2(b + 1)(c− 1)− (c− 1)(c + 2)

2

}

−

{
2s−

[
K + d(b− a) + a(c− b)

]
+ 2bc− c(c + 3)

2

}
= 2a− 2b + 3c− d− 1.

We let j := t− d, hence j ≥ 2 since d ≤ t− 2. We clearly have

s ≤
(

t− 2
2

)
+ d + a + b + c =

(
t− 2

2

)
+ t− j + a + b + c

so that, with the assumption s̃ ≤ (2/3)t + 4, we get

(2/3)t + 4 ≥ s̃ =
(

t + 2
2

)
− s ≥

(
t + 2

2

)
−

(
t− 2

2

)
− t + j − (a + b + c),

which implies

t ≤ 3(a + b + c)− 3j + 18
7

. (7)

But b + 1 ≤ a ≤ t− 1, hence

a ≤ t− 1 ≤ 3(a + b + c)− 3j + 18− 7
7

≤ 3(2a + c− 1)− 3j + 11
7
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which implies
a ≤ 3c− 3j + 8. (8)

We need to prove
t− j ≤ 2a− 2b + 3c− 1.

By (7) we have

t− j ≤ 3(a + b + c)− 3j + 18− 7j

7
,

so that we only need to prove

17b ≤ 11a + 18c + 10j − 25.

But b ≤ a− 1, hence

17b ≤ 17(a− 1) = 11a + 6a− 17 ≤ 11a + 6(3c− 3j + 8)− 17 = 11a + 18c− 18j + 31,

where the inequality follows by (8).
It remains to prove that

11a + 18c− 18j + 31 ≤ 11a + 18c + 10j − 25.

But this is equivalent to 56 ≤ 28j which is true because j ≥ 2. �

The assumption s̃ ≤ (2/3)t + 4 in the above Proposition is crucial.
Let t = 13, s = 92 so that s̃ = 13 ≤ t but s̃ = 13 > (2/3)t + 4 = 38/3. With

Γ = (. . . , 10, 11, 12, 11, 3) and Λ = (. . . , 10, 11, 12, 12, 2), we have ρ(Γ) = 293 and
ρ(Λ) = 292.

Lemma 3.6

Let us assume r ≥ 2, s̃ ≤ t, and suppose that the sequence

Γ :=
. . . t-r . . . t-1 t

. . . b . . . b c

is in ∈ Vs,t. Then

3b ≥ t +
(

r + 1
2

)
.

Proof. Since s̃ ≤ t, c ≤ b and at−r−1 ≤ t− r, we have(
t + 1

2

)
< s ≤

(
t− r + 1

2

)
+ rb + c ≤

(
t− r + 1

2

)
+ (r + 1)b

hence

(r + 1)b ≥
(

t + 1
2

)
+ 1−

(
t− r + 1

2

)
= rt−

(
r

2

)
+ 1. (9)
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On the other hand, at−r = b ≤ t− r + 1 so that

(r + 1)(t− r + 1) ≥ (r + 1)b ≥ rt−
(

r

2

)
+ 1

which implies

t ≥
(

r + 1
2

)
.

By (9), we must prove
rt−

(
r
2

)
+ 1

r + 1
≥

t +
(
r+1
2

)
3

.

We have
rt−

(
r
2

)
+ 1

r + 1
−

t +
(
r+1
2

)
3

=
t(4r − 2)− (r3 + 5r2 − 2r − 6)

6(r + 1)

so that, since t ≥
(
r+1
2

)
, we only need to prove that(

r + 1
2

)
≥ r3 + 5r2 − 2r − 6

4r − 2
.

This is equivalent to
r3 − 4r2 + r + 6 ≥ 0

so that the conclusion follows because r ≥ 2 and

r3 − 4r2 + r + 6 = (r − 2)(r − 3)(r + 1). �

The assumption s̃ ≤ t in the Lemma is essential. If t = 5 and s̃ = 6, we get s = 15
and (1, 2, 3, 3, 3, 3) ∈ V15,5 but 9 < 5 +

(
4
2

)
= 11.

Proposition 3.7

Let r ≥ 2 and let

Γ :=
. . . t-r-2 t-r-1 t-r . . . t-1 t

. . . d a b . . . b c

If Γ ∈ Vs,t, s̃ ≤ t, b < a and c ≥ b− 2, then the sequence

Λ :=
. . . t-r-2 t-r-1 t-r . . . t-1 t

. . . d a b+1 . . . b+1 c-r

is in Vs,t and

ρ(Λ) ≥ ρ(Γ).
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Proof. In order to prove that Λ ∈ Vs,t, we only need to prove that c ≥ r. But if c < r
the sequence

. . . t-r-2 t-r-1 t-r . . . t-r+c-1 t-r+c . . . t-1 t

. . . d a b+1 . . . b+1 b . . . b 0

would be in Vs,t, a contradiction to the assumption s >
(
t+1
2

)
.

It is clear that for a suitable integer K we have

ρ(Λ) = 2s− [K + d(b + 1− a) + (b + 1)(c− r − b− 1)]

+ 2(b + 1)(c− r)− (c− r)(c− r + 3)
2

ρ(Γ) = 2s− [K + d(b− a) + b(c− b)] + 2bc− c(c + 3)
2

.

An easy computation shows that ρ(Λ)− ρ(Γ) = −d + b(2− r) + c(r + 1)−
(
r
2

)
+ 1,

hence we need to prove

b(2− r) + c(r + 1)−
(

r

2

)
+ 1 ≥ d.

Since c ≥ b− 2 and d ≤ t− r − 1, it is enough to prove that

3b− 2(r + 1)−
(

r

2

)
+ 1 ≥ t− r − 1

which is the same as

3b ≥ t− r − 1 + 2(r + 1) +
(

r

2

)
− 1 = t +

(
r + 1

2

)
.

This is true by the above lemma. �

The assumption c ≥ b − 2 in the above Proposition is crucial. Let t = 22 and
s = 254 so that s̃ = 22. If Γ = (. . . , 19, 20, 19, 19, 6) and Λ = (. . . , 19, 20, 20, 20, 4),
then ρ(Γ) = 804, while ρ(Λ) = 803.

Lemma 3.8
Let r ≥ 2 and

Γ :=
. . . t-r-3 t-r-2 t-r-1 t-r . . . t-1 t

. . . e d a b . . . b c

If Γ ∈ Vs,t, a 6= b 6= c and b ≤ t− r, then

Λ :=
. . . t-r-3 t-r-2 t-r-1 t-r . . . t-1 t

. . . e d a-1 b . . . b c+1

is in Vs,t and
ρ(Λ)− ρ(Γ) = e− d + b− c− 2.
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Proof. If a < b, then a = t− r and b = t− r +1, a contradiction. Hence a > b. Further
b ≥ c, so that c < b. This proves that Λ ∈ Vs,t.

For a suitable integer K we can write

ρ(Λ) = 2s− [K + e(a− 1− d) + d(b− a + 1) + b(c + 1− b)]

+ 2b(c + 1)− (c + 1)(c + 4)
2

ρ(Γ) = 2s− [K + e(a− d) + d(b− a) + b(c− b)] + 2bc− c(c + 3)
2

.

An easy computation shows that

ρ(Λ)− ρ(Γ) = e− d + b− c− 2. �

We are ready to prove the main result of the paper.

Theorem 3.9

If s̃ ≤ min{t, 2t
3 + 4}, then

dim Vs,t = max {ρ(Γa)}

where the maximum is over the towers for Vs,t.

Proof. By Theorem 2.4 we know that dim Vs,t = maxΓ∈Vs,t
{ρ(Γ)}, hence it suffices

to show that, given a sequence Γ ∈ Vs,t, one can find a tower Γa for Vs,t such that
ρ(Γa) ≥ ρ(Γ).

Let Γ = (. . . , n, b,m) be an element of Vs,t. If n < b then n = t − 1, b = t and
Γ = Γ0. Hence we may assume that n ≥ b so that b < t; since s >

(
t+1
2

)
we have also

m > 0. If b < n, by Proposition 3.5 the sequence Λ = (. . . , n, b + 1,m − 1) is in Vs,t

and ρ(Λ) ≥ ρ(Γ). Going on in this way, we may assume that

Γ :=
. . . t-r-3 t-r-2 t-r-1 t-r . . . t-1 t
. . . e d a b . . . b c

with r ≥ 2 and a 6= b.

If a < b, then a = t− r, b = t− r + 1 and Γ = Γr−1 is a tower. So let a > b, which
implies also b ≤ t− r. If c ≥ b− 2, by Proposition 3.7, the sequence

N :=
. . . t-r-1 t-r . . . t-1 t
. . . a b+1 . . . b+1 c-r

is in Vs,t and ρ(N) ≥ ρ(Γ).
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Otherwise, c ≤ b− 3 so that

e− d + b− c− 2 ≥ e− d + c + 3− c− 2 = e− d + 1 ≥ 0

and by Lemma 3.8 the sequence

M :=
. . . t-r-3 t-r-2 t-r-1 t-r . . . t-1 t
. . . e d a-1 b . . . b c+1

is in Vs,t and ρ(M) ≥ ρ(Γ).
In both cases we moved from Γ to a sequence in Vs,t with the property that the

difference between the integer in position t− r− 1 and that in position t− r decreases
by one. It is now clear that, after a finite number of steps, we will reach a tower Γa

for Vs,t such that ρ(Γa) ≥ ρ(Γ). �

We made some computations with CoCoa when t ≤ 72 and s̃ ≤ t and it turns out
that only 16 cases do not verify the conclusion of the theorem. The case corresponding
to the smallest value of t is t = 13, s̃ = 13, so that s = 92. We have dim V92,13 = ρ(Γ)
where Γ = (. . . , 10, 11, 12, 11, 3) is obviously not a tower.

The case corresponding to the highest value of t is t = 25, s̃ = 21, so that s = 330.

We have dim V330,25 = ρ(Γ) where Γ = (. . . , 22, 23, 24, 23, 7) is not a tower.
We remark that, if s̃ ≤ t, there is no counterexample to the equality dim Vs,t =

max{ρ(Γa)}.
Hence we make the following conjecture:

Conjecture 3.10

If t ≥ 26 and s̃ ≤ t, then

dim Vs,t = max{ρ(Γa)}

where the maximum is over the towers for Vs,t.

As a consequence of the above theorem, we can prove the converse of Corollary 3.4.

Theorem 3.11

Let ft(X) be the rational function defined as in (6). Then Vs,t has the expected

dimension if and only if

s̃ ≤ ft(a)

for every integer a ≥ 1 such that
(
a+2
2

)
≤ s̃.
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Proof. We need only to prove the “if”part of the theorem. We have already seen that
if s̃ ≤ 2 then Vs,t has the expected dimension. Hence let s̃ ≥ 3. Then

(
1+2
2

)
= 3 ≤ s̃ so

that
s̃ ≤ ft(1) =

2t + 7
3

≤ 2t

3
+ 4.

It is clear that s̃ ≤ 2t+7
3 does imply s̃ ≤ t unless t = 2, 3, 4 and s̃ = t + 1, cases

in which it is easy to check that Vs,t has the expected dimension by using Theorem
2.3. Hence we may assume s̃ ≤ min{t, 2t

3 + 4} and apply the above theorem to get
dim Vs,t = max{ρ(Γa)}.

Now the assumption s̃ ≤ ft(a) for every a ≥ 1 such that
(
a+2
2

)
≤ s̃, implies by

Lemma 3.3 that ρ(Γa) ≤ ρ(Γ0) for every tower for Vs,t. Hence

dim Vs,t = ρ(Γ0) = exdimVs,t

and the conclusion follows. �

This theorem is quite effective if we know t and s. For example if t = 36 and
s̃ = 26, then we get s =

(
38
2

)
− 26 = 677. We have

(
a+2
2

)
≤ s̃ = 26 if and only if a ≤ 5;

by using the table at the end of the paper, we see that

f36(1) =
79
3

> 26, f36(2) =
83
3

> 26, f36(3) =
271
10

> 26,

f36(4) =
406
15

> 26, f36(5) =
586
21

> 26,

so that V677,36 has the expected dimension.
With the same t = 36, if we let s̃ = 27, then s = 676 and we have

(
1+2
2

)
= 3 ≤ s̃.

Since f36(1) = 79
3 < 27, V676,36 has not the expected dimension.

However, a natural and more difficult question is the following: for which s does
Vs,36 have the expected dimension? Of course we can apply the above theorem, but
this need a lot of computations because s must range from 1 to 703.

In the next section we will find the right answer: Vs,36 has the expected dimension
if and only if s ≥ 677 (s̃ ≤ 26).

4. The conclusion

In this last section, we want to improve Theorem 3.11 in order to give a complete
answer to the following problem: given the generic catalecticant matrix Cat(t, t; 3), for
which s the ideal generated by the s + 1 minors has the expected codimension ?

It is clear that we need a deeper knowledge of the rational function

ft(X) =
16tX + X4 + 6X3 + 11X2 + 30X + 8

4(X + 1)(X + 2)
.

We recall, see (6), that we can write

ft(X) :=
4Xt + D(X)

(X + 1)(X + 2)
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where

D(X) :=
X4 + 6X3 + 11X2 + 30X + 8

4
.

Let us start with the following remark.

Lemma 4.1

We have ft(1) ≤ ft(a) for every a ≥ 1 if and only if t ≤ 41.

Proof. We have
ft(1) =

2t + 7
3

, ft(2) =
2t + 11

3
so that ft(1) ≤ ft(a) for every a ≥ 1 if and only if ft(1) ≤ ft(a) for every a ≥ 3.

We have

ft(a)− ft(1) =
4at + D(a)

(a + 1)(a + 2)
− 2t + 7

3
≥ 0

if and only if
3(4at + D(a)) ≥ (2t + 7)(a + 1)(a + 2)

if and only if

t [2(a + 1)(a + 2)− 12a] ≤ 3D(a)− 7(a + 1)(a + 2)

if and only if
t [2(a− 1)(a− 2)] ≤ 3D(a)− 7(a + 1)(a + 2).

Hence ft(1) ≤ ft(a) for every a ≥ 3 if and only if

t ≤ 3D(a)− 7(a + 1)(a + 2)
2(a− 1)(a− 2)

=
3a3 + 21a2 + 26a + 32

8(a− 2)
.

Now it is easy to see that the rational function

g(X) :=
3X3 + 21X2 + 26X + 32

8(X − 2)
,

verifies

g(3) = 95/2 = 47, .. g(4) = 83/2 = 41, 5 g(5) = 531/12 = 44, ..

and is strictly increasing for X ≥ 4. The conclusion follows. �

This result is no more true if t = 42, since we have

f42(1) = 91/3 > f42(4) = 454/15.

This lemma gives already the solution of our problem for small values of t.

Theorem 4.2

If t ≤ 42, then Vs,t has the expected dimension if and only if s̃ ≤ 2t+7
3 .
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Proof. Let Vs,t have the expected dimension. If s̃ ≤ 2, then s̃ ≤ 2t+7
3 ; hence we may

assume s̃ ≥ 3 =
(
1+2
2

)
. By Theorem 3.11 we get s̃ ≤ ft(1) = 2t+7

3 as required.
As for the converse, we have s̃ ≤ 2t+7

3 = ft(1), hence if t ≤ 41, by the above
lemma we get s̃ ≤ ft(a) for every a ≥ 1. The conclusion follows by Theorem 3.11.

If t = 42, we have s̃ ≤ 2t+7
3 = 91/3 so that s̃ ≤ 30. As in the above lemma we

have

f42(a) = 30 + 1/3 +
2(a− 1)(a− 2)(g(a)− 42)

3(a + 1)(a + 2)
.

Since g(X) is strictly increasing for X ≥ 4 and g(5) ≥ 42, we have g(a) ≥ 42 for every
a ≥ 5 so that f42(a) ≥ 30 for every a ≥ 5. Since f42(3) = 30.7, and f42(4) = 30.2, we
get s̃ ≤ ft(a) for every a ≥ 1 and the conclusion follows again by Theorem 3.11. �

This result proves for example that Vs,36 has the expected dimension if and only
if s̃ ≤ 79

3 = 26, 3.., as announced at the end of Section 3.

Unfortunately, the above theorem does not hold if t = 43. With such t we have
2t+7

3 = 86+7
3 = 31. If we take s̃ = 31 we get

(
4+2
2

)
= 15 ≤ s̃, so that Γ4 is a tower.

Since s̃− f43(4) = 31− 154/5 = 1/5, by Lemma 3.3 we get ρ(Γ4) > ρ(Γ0) so that

dim Vs,t ≥ ρ(Γ4) > ρ(Γ0) = exdimVs,t.

We come now to the general case.

Lemma 4.3

Let t be a positive integer and a ≥ 3. We have

ft(a− 1) ≥ ft(a) ⇐⇒ t ≥ aD(a)− (a + 2)D(a− 1)
4(a− 2)

ft(a + 1) ≥ ft(a) ⇐⇒ t ≤ (a + 1)D(a + 1)− (a + 3)D(a)
4(a− 1)

and equality holds on the left if and only if it holds on the right.

Proof. We have ft(a− 1) ≥ ft(a) if and only if

4(a− 1)t + D(a− 1)
a(a + 1)

≥ 4at + D(a)
(a + 1)(a + 2)

if and only if
4(a− 1)t + D(a− 1)

a
≥ 4at + D(a)

(a + 2)

if and only if
4(a + 2)(a− 1)t + (a + 2)D(a− 1) ≥ 4a2t + aD(a)

if and only if
4t(a− 2) ≥ aD(a)− (a + 2)D(a− 1)
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if and only if

t ≥ aD(a)− (a + 2)D(a− 1)
4(a− 2)

.

The second assertion follows in the same way. �

Now we remark that for every a ≥ 3 we have

aD(a)− (a + 2)D(a− 1)
4(a− 2)

=
a4 + 4a3 + 5a2 − 10a + 16

8(a− 2)
.

Hence if we consider the rational function

w(X) :=
X4 + 4X3 + 5X2 − 10X + 16

8(X − 2)
, (10)

we have

ft(a− 1) ≥ ft(a) ⇐⇒ t ≥ w(a)

ft(a + 1) ≥ ft(a) ⇐⇒ t ≤ w(a + 1)

and the equality holds on the left if and only if it holds on the right.

It is easy to see that for X ≥ 3 the function w(X) is strictly increasing and
w(3) = 55/2.

This means that, if t ≥ 28, then t > w(3) and we can find an integer a ≥ 3 such
that

w(a) < t ≤ w(a + 1).

We thus have the following result:

Lemma 4.4

If t ≥ 28, there exists an integer a ≥ 3, such that

ft(a− 1) > ft(a) ≤ ft(a + 1).

We prove now that the integer a verifies the inequality(
a + 2

2

)
≤ ft(a).

This will be a consequence of the following lemma.

Lemma 4.5

If a ≥ 3 and w(a) ≤ t, then (
a + 2

2

)
≤ ft(a).
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Proof. We must prove that

4at + D(a)
(a + 1)(a + 2)

≥
(

a + 2
2

)
.

Since w(a) ≤ t, we only need to prove that

4aw(a) + D(a)
(a + 1)(a + 2)

≥
(

a + 2
2

)
.

This is true if and only if

4aaD(a)−(a+2)D(a−1)
4(a−2) + D(a)

(a + 1)(a + 2)
≥

(
a + 2

2

)

if and only if

a2D(a)− a(a + 2)D(a− 1) + (a− 2)D(a)
(a + 1)(a + 2)(a− 2)

≥
(

a + 2
2

)

if and only if

(a2 + a− 2)D(a)− a(a + 2)D(a− 1) ≥ (a− 2)(a + 1)(a + 2)
(

a + 2
2

)

if and only if

(a− 1)D(a)− aD(a− 1) ≥ (a− 2)(a + 1)2(a + 2)
2

.

An easy computation shows that this is equivalent to a4 +2a3 +3a2 +10a ≥ 0, so that
the conclusion follows. �

We come prove now to the main result of this section.

Theorem 4.6

Let ft(X) and w(X) be the rational functions defined as in (6) and (10) respec-

tively. If t ≥ 43, and we let a be the unique integer such that

w(a) < t ≤ w(a + 1),

then Vs,t has the expected dimension if and only if s̃ ≤ ft(a).
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Proof. If Vs,t has the expected dimension and, by contradiction, s̃ > ft(a), from the
above lemma we get

(
a+2
2

)
≤ ft(a) < s̃, which is absurd by Theorem 3.11.

Let us prove that s̃ ≤ ft(a) implies Vs,t having the expected dimension. By
Theorem 3.11 it is enough to show that

ft(a) = min
a≥1

ft(a).

Since t ≥ 43, by Lemma 4.1 we have ft(2) ≥ ft(1) > ft(a) for some integer a ≥ 3.

Hence it is enough to prove
ft(a) = min

a≥3
ft(a).

Now we remark that

lim
a→+∞

D(a)
(a + 1)(a + 2)

= +∞,

hence, since for every t and a ≥ 1 we have

ft(a) =
4at + D(a)

(a + 1)(a + 2)
≥ D(a)

(a + 1)(a + 2)
,

there exists an integer m such that

ft(a) ≥ ft(a)

for every a ≥ m. If m = 3 we are done; so let m ≥ 4 and

ft(m− 1) < ft(a) ≤ ft(m).

If we would have

ft(2) ≤ ft(3) ≤ . . . ≤ ft(m− 2) ≤ ft(m− 1)

then ft(1) = mina≥1 ft(a), and t ≤ 41 by Lemma 4.1. Thus there exists an integer j,
3 ≤ j ≤ m− 1 such that

ft(j − 1) > ft(j) ≤ . . . ≤ ft(m− 1) < ft(a) ≤ ft(m).

By Lemma 4.3, we get
w(j) < t ≤ w(j + 1),

so that
w(j) < t ≤ w(a + 1), w(a) < t ≤ w(j + 1).

Since w(X) is strictly increasing for X ≥ 3, this implies

j < a + 1, a < j + 1.

Thus j = a, a contradiction because ft(j) < ft(a). �
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Here are some of the values of the functions ft(X) and w(X). We have:

ft(1) =
2t + 7

3
, ft(2) =

2t + 11
3

ft(3) =
6t + 55

10
, ft(4) =

8t + 118
15

,

ft(5) =
10t + 226

21
, ft(6) =

12t + 397
28

, ft(7) =
14t + 652

36
,

ft(8) =
16t + 1015

45
, ft(9) =

18t + 1513
55

, ft(10) =
10t + 1088

33
,

ft(11) =
22t + 3037

78
, ft(12) =

24t + 4132
91

, ft(13) =
26t + 5500

105
.

w(3) = 55/2 = 27.5, w(4) = 71/2 = 35.5, w(5) = 152/3 = 50.6,

w(6) = 287/4 = 71.7, w(7) = 991/10 = 99.1, w(8) = 400/3 = 133.3,

w(9) = 1226/7 = 175.1, w(10) = 901/4 = 225.2, w(11) = 5119/18 = 284.3,

w(12) = 3533/10 = 353.3, w(13) = 4760/11 = 432.7, w(14) = 6281/12 = 523.4

For example, if t = 100, then a = 7, so that Vs,100 has the expected dimension if
and only if s̃ ≤ f100(7) = 1400+652

36 = 57.

If t = 500, then a = 13, so that Vs,500 has the expected dimension if and only if
s̃ ≤ f500(13) = (26)(500)+5500

105 = 176, 1.

Some of the results of this paper were conjectured after explicit computations
performed by the computer algebra system CoCoA ([1]).
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