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1. Introduction

The study of the ideals in a regular local ring(R,m) of dimension 2 has a long an
important tradition dating back to the fundamental work of Zariski [ZS]. More recent con
tributions are due to several authors including Cutkosky, Huneke, Lipman, Rees, Sal
Teissier among others, see [C1,C2,H,HS,L,LT,R]. One of the main result in this set
the unique factorization theorem for complete (i.e., integrally closed) ideals proved
inally by Zariski [ZS, Theorem 3, Appendix 5]. It asserts that any complete ideal ca
factorized as a product of simple complete ideals in a unique way (up to the order
factors). By definition, an ideal is simple if it cannot be written as a product of two pr
ideals. Another important property of a complete idealI is that its reduction number is
which in turns implies that the associated graded ring grI (R) is Cohen–Macaulay and it
Hilbert series is well-understood; this is due to Lipman and Teissier [LT], see also [H

The class of contracted ideals plays an important role in the original work of Za
as well as in the work of Huneke [H]. An idealI of R is contracted ifI = R ∩ IR[m/x]
for somex ∈ m \ m2. Any complete ideal is contracted but not the other way round.
associated graded ring grI (R) of a contracted idealI need not be Cohen–Macaulay and
Hilbert series can be very complicated.
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Our goal is to study depth, Hilbert function, and defining equations of the various g
rings (Rees algebra, associated graded ring and fiber cone) of homogeneousm-primary
contracted ideals in the polynomial ringR = k[x, y] over an algebraically closed fieldk of
characteristic 0.

In Section 3 we present several equivalent characterizations of contracted ideals in th
graded and local case. The main result of this section is Theorem 3.12. It asserts that
depth of grI (R) is equal to the minimum of depthgrI ′SN

(SN), whereS = R[m/x], I ′ is the
transform ofI andN varies in the set of maximal ideals ofS containingI ′.

An important invariant of a contracted idealI of order (i.e., initial degree)d is the so-
called characteristic form. In the graded setting the characteristic form ofI is GCD(Id),
whereId denotes the homogeneous component of degreed of I . The more general con
tracted ideals are those with a square-free (i.e., no multiple factors) characteristic form. On
the other hand, the more special contracted ideals are those whose characteristic form
power of a linear form; these ideals are the so-called lex-segment ideals. The lex-se
ideals are in bijective correspondence with the Hilbert functions (in the graded sen
graded ideals so that to specify a lex-segment ideal is equivalent to specify a Hilber
tion.

In the graded setting Zariski’s factorization theorem for contracted ideals ([ZS, T
rem 1, Appendix 5] or Theorem 3.8) says that any contracted idealI can be written as
a product of lex-segment idealsI = mcL1 · · ·Lk . Here eachLi is a lex-segment mono
mial ideal with respect to an appropriate system of coordinatesxi, yi which depends oni.
FurthermoreLi has exactly one generator in its initial degree which is a power ofxi .

As a consequence of Theorem 3.12 we have that the depth of grI (R) is equal to the
minimum of the depth of grLi

(R) (see Corollary 3.14). We can also express the Hilb
series ofI in terms of the Hilbert series of theLi ’s and of the characteristic form ofI (see
Proposition 3.10).

For a contracted ideal with a square-free characteristic form we show in Theorem
that the Rees algebraR(I), the associated graded ring grI (R) and the fiber coneF(I) are
all Cohen–Macaulay with expected defining equations in the sense of [Vas] and [MU
FurthermoreR(I) is normal, the fiber coneF(I) is reduced and we determine explicit
the Hilbert function of grI (R).

Section 3 ends with a statement and a conjecture on the coefficients of theh-vector
of a contracted ideal. Denote byhi(I) the ith coefficient of theh-vector of I and by
µ(I) the minimal number of generators ofI. We show that for any contracted (or mon
mial) idealI one hash1(I) � (µ(I)+ 1)µ(I)/2 (Proposition 3.18) and we conjecture th
h2(I) � 0.

Sections 4 and 5 are devoted to the study of the lex-segment ideals. This c
important since, as we said above, information about the associated graded ring of
tracted idealI can be derived from information about the associated graded rings o
lex-segment ideals appearing in the Zariski’s factorization ofI. Another motivation for
studying the associated graded rings of lex-segment ideals comes from Section 2. Th
proved that ifI is any ideal and in(I) is its initial ideal with respect to some term order th
HI(n) � Hin(I )(n) for all n provided depthgrin(I )(R) > 0. In two variables initial ideals in
generic coordinates are lex-segment ideals. We detect several classes of lex-segme
for which the associated graded ring is Cohen–Macaulay or at least has positive dep
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In particular, consider the lex-segment idealL associated with the Hilbert function of a
ideal generated by generic formsf1, . . . , fs ; equivalently, setL = in((f1, . . . , fs)), where
the formsfi are generic and in generic coordinates. We show that depthgrL(R) > 0 (see
Theorem 5.3). Furthermore grL(R) is Cohen–Macaulay if the formsfi have all the same
degree. In Section 6 we describe the defining equations of the Rees algebra of
classes of lex-segment ideals.

Some of the results and the examples presented in this paper have been inspired a
suggested by computations performed by the computer algebra system CoCoA [C
particular, we have made extensive use of the local algebra package.

2. Initial ideals and associated graded rings

Let R be a regular local ring of dimensiond , with maximal idealm and residue
field k, or, alternatively, letR = k[x1, . . . , xd ] be a polynomial ring over a fieldk, and
m = (x1, . . . , xd). Throughout the paper we assume thatk = R/m is algebraically closed
of characteristic 0. Moreover, letI be anm-primary ideal. For every integern, the length
λ(R/In+1) of R/In+1 as R-module is finite. Forn � 0, λ(R/In+1) is a polynomial
HPI (n) of degreed in n. The polynomial HPI (n) is called the Hilbert–Samuel polyno
mial of I and one has

HPI (n) = e(I)

d! nd + lower degree terms.

In particular,e(I) is the ordinary multiplicity of the associated graded ring grI (R) to I ,

grI (R) =
⊕
n�0

In/In+1.

The Hilbert function HFI (n) of I is defined as

HFI (n) = λ
(
In/In+1)

and it is by definition the Hilbert function of grI (R). The Hilbert series ofI is

HSI (z) =
∑
n�0

HFI (n)zn.

It is well known that the Hilbert series is of the form

HSI (z) = h0(I) + h1(I)z + · · · + hs(I)zs

(1− z)d
,

with hi(I) ∈ Z for everyi, h0(I) = λ(R/I) and
∑s

i=0 hi(I) = e(I).

In the local case, most important tools for studying the associated graded ring are
mal reductions and superficial elements. Those tools are not available in the non-loc
so we need to pass to the localization.
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Lemma 2.1. Let S be a flat extension of a ringR and letI ⊂ R be an ideal. Suppose th
S/IS � R/I asR-modules. Then

grI (R) � grIS(S).

Proof. It is enough to prove thatIn/In+1 � InS/In+1S asR-modules. SinceS is a flat
extension ofR, one has

InS/In+1S � InS ⊗S S/IS � In ⊗R S ⊗S S/IS � In ⊗R S/IS

� In ⊗R R/I � In/In+1,

and the multiplicative structure is the same.�
Remark 2.2. We apply the above lemma to our setting. The localizationRm is a flat ex-
tension ofR andR/I � Rm/Im. By the above lemma, we get

grI (R) � grIm
(Rm).

In particular, one has HFIm
(n) = HFI (n) and hence HSIm

(z) = HSI (z).

We are interested in studying the behaviour of HFI (n) under Gröbner deformation
In the following we denote byI an m-primary ideal ofR = k[x1, . . . , xd ] with m =
(x1, . . . , xd). We fix a term order onR and consider the initial ideal in(I) of I . Recall
thatλ(R/I) = λ(R/ in(I)).

We want to compare HFI (n) and HFin(I )(n). First note that

e(I) � e
(
in(I)

)
.

This inequality follows easily from the fact that the multiplicities can be read from
leading coefficients of the Hilbert–Samuel polynomials ofI and of in(I). In fact, since
in(I)n ⊆ in(In), we have

λ
(
R/In

)= λ
(
R/ in

(
In
))

� λ
(
R/ in(I)n

)
(1)

and hence forn � 0 we get the required inequality on the multiplicities. Notice tha
[DTVVW, 4.3] equality has been characterized.

As a consequence of the next lemma one has that the same inequality holds
Hilbert function asymptotically, in a more general setting. Moreover, under some assum
tion, the inequality holds from the beginning.

Lemma 2.3. LetJ be anm-primary ideal inR = k[x1, . . . , xd ] and letF = {Fn}n�0 be a
filtration of ideals, such thatJFn ⊆Fn+1 andJ n ⊆Fn for everyn � 0. Then

(1) λ(Fn/Fn+1) � λ(J n/J n+1) for n � 0;
(2) if depthgrJ (R) > 0, thenλ(Fn/Fn+1) � λ(J n/J n+1) for everyn � 0.



A. Conca et al. / Journal of Algebra 284 (2005) 593–626 597

-
l
ation

l

s not
Proof. (1) Since for everyn � 0 we haveJ n ⊆Fn, it is equivalent to prove

λ
(
Fn/J

n
)
� λ
(
Fn+1/J

n+1).
By Remark 2.2, and sinceλ(Fn/Fn+1) = λ(FnRm/Fn+1Rm), we may transfer the prob
lem to the local ringRm, identifyingJ with JRm andFn with FnRm. Leta be a superficia
element forJ and consider the following exact sequence induced by the multiplic
by a:

0 → [(
J n+1 : a)∩Fn

]
/J n →Fn/J

n ·a→Fn+1/J
n+1 →Fn+1/aFn + J n+1 → 0.

Sincea is superficial and regular, one hasJ n+1 : a = J n for n � 0, and this proves (1).
(2) If depth grJ (R) > 0, thena ∈ J/J 2 is regular (see [HM1, 2.1]) andJ n+1 : a = J n

for everyn. This forces the required inequality and concludes the proof.�
As a consequence of the above lemma one has:

Theorem 2.4. Fix any term order onR = k[x1, . . . , xd ], and letI be anm-primary ideal
in R. The following facts hold:

(1) HFI (n) � HFin(I )(n) for n � 0;
(2) if depthgrin(I )(R) > 0, thenHFI (n) � HFin(I )(n) for everyn � 0.

Proof. Sinceλ(R/In) = λ(R/ in(In)) for everyn, one has

HFI (n) = λ
(
In/In+1)= λ

(
in
(
In
)
/ in
(
In+1)).

Now the results follow by applying Lemma 2.3 withJ = in(I) andFn = in(In). Note that
part (1) can also be proved directly from Eq. (1).�

A lex-segment ideal is a monomial idealL such that whenevern,m are monomials
of the same degree withn > m in the lexicographical order thenm ∈ L implies n ∈ L.
Macaulay’s theorem on Hilbert function implies that for every homogeneous idealI there
is a unique lex-segment idealL with dimIs = dimLs for all s. We will denote this idea
by Lex(I). Note however that Lex(I) depends only on the Hilbert function ofI .

The following examples show that the conclusion of part (2) in Theorem 2.4 doe
hold if the depth of grin(I )(R) is 0.

Example 2.5. (a) ConsiderR = Q[x, y] equipped with the lexicographic order, withx > y.
If I = (x5, x4y2, x2y5(x + y), xy8, y10), then in(I) = (x5, x4y2, x3y5, x2y7, xy8, y10). In
this case the associated graded ring to in(I) has depth zero and one has

HSI (z) = 32+ 14z + 6z2 − 2z3

2
, HSin(I )(z) = 32+ 16z + 4z2 − 2z3

2
.

(1− z) (1− z)
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Thus e(I) = e(in(I)), and HFI (n) = HFin(I )(n) for n � 3, but HFI (2) = 130> 128=
HFin(I )(2). Note that in(I) is a lex-segment ideal, thus in particular, it is also the gen
initial ideal of I .

(b) Let

I = (x9, x7y, x6y3, x5y5, x4y12, x3y13, x2y14, xy17, y19)⊆ Q[x, y].
Its generic initial ideal is the lex-segment ideal

L = (x8, x7y2, x6y3, x5y5, x4y12, x3y13, x2y14, xy17, y19).
Notice thatI is contracted, since it has the same number of generators asL (contracted
ideals will be defined and studied in Section 3). In this case as well, depth grL(R) = 0, and
the conclusion of Theorem 2.4(2) fails. In fact, one has

HSI (z) = 85+ 42z + 10z2 − 3z3

(1− z)2 and HSL(z) = 85+ 43z + 7z2 − z3

(1− z)2 ,

thus HFI (2) = 349> 348= HFL(2).

By Theorem 2.4, ink[x, y], one has

λ
(
In/In+1)� λ

(
Lex(I)n/Lex(I)n+1) for everyn � 0.

Such inequality does not hold in 3 or more variables, see the next example.

Example 2.6. Let I = (x2, y2, xy, xz2, yz2, z4) ⊂ Q[x, y, z]. One has Lex(I) = (xz, xy,

x2, yz2, y2z, y3, z4), and

HSI (z) = 8+ 8z

(1− z)3 , HSLex(I )(z) = 8+ 7z

(1− z)3 .

Thus HFI (n) � HFLex(I )(n) for everyn � 1, and alsoe(I) > e(Lex(I)).

In the last part of the section we restrict ourselves to the case of dimension two, a
collect some Cohen–Macaulayness criteria forthe associated graded ring. We recall
following important result.

Proposition 2.7 [HM, Theorem A, Proposition 2.6].Let I be anm-primary ideal of a
regular local ring (R,m) of dimension two andJ a minimal reduction ofI. ThengrI (R)

is Cohen–Macaulay if and only ifI2 = J I.

It follows from [LT, 5.5] and [HS, 3.1] that:

Proposition 2.8. Let I be anm-primary ideal in a regular local ring(R,m) of dimension
two. If I is integrally closed, thengrI (R) is Cohen–Macaulay.
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Proposition 2.7 does not have a corresponding version in the graded case since m
reductions need not exist in that setting. But the next corollary holds both in the grade
in the local setting.

Proposition 2.9. Let I be anm-primary ideal in a regular ringR of dimension two. The
grI (R) is Cohen–Macaulay if and only if

HSI (z) = h0(I) + h1(I)z

(1− z)2 .

Proof. This is a simple consequence of the fact that grI (R) � grIm
(Rm). In fact, by Propo-

sition 2.7, grIm
(Rm) is Cohen–Macaulay if and only ifI2

m = J Im for some reductionJ
of Im. SinceRm is a local Cohen–Macaulay ring, this is equivalent to

HSIm
(z) = h0(I) + h1(I)z

(1− z)2

(see, for example, [GR, 2.5]). The conclusion follows by Remark 2.2.�
We will apply the above criteria for proving the Cohen–Macaulayness of the associa

graded rings of certain classes of monomial ideals.
Let R = k[x, y] and denote bym the ideal(x, y). There are many ways of encoding

m-primary monomial idealI . Among them we choose the following.
Setd = min{j : xj ∈ I }. Then fori = 0, . . . , d we setai(I ) = min{j : xd−iyj ∈ I } and

a(I) = (a0(I), a1(I), . . . , ad(I)
)
.

The sequencea(I) is said to be the column sequence ofI . By the very definition we hav
thata0(I) = 0 and 1� a1(I) � a2(I) � · · · � ad(I). Conversely, any sequence satisfyi
these conditions corresponds to a monomial ideal. For example,

I = (x3, xy3, y5) ←→ a(I) = (0,3,3,5),

I = (x4, x3y, x2y4, xy7, y9) ←→ a(I) = (0,1,4,7,9).

It is easy to see that

λ(R/I) = ∣∣a(I)
∣∣=∑

i

ai(I ).

Note also that the minimal generators ofI are the monomialsxd−iyai(I ) with ai(I ) <

ai+1(I) or i = d .



600 A. Conca et al. / Journal of Algebra 284 (2005) 593–626

to

acted,
e Borel

t

e

Remark 2.10. In two variables, them-primary lex-segment ideals correspond exactly
strictly increasing column sequences. In other words, anym-primary lex-segment idealL
can be written as

L = (xd, xd−1ya1, . . . , xyad−1, yad
)
,

where 0= a0 < a1 < · · · < ad . In particular, the minimal number of generators ofL is
exactly one more than the initial degree. Ideals with this property are called contr
see Section 3. Furthermore, in characteristic 0, the lex-segment ideals are exactly th
fixed ideals and this implies that the generic initial ideal gin(I) of I is equal to Lex(I).

Theb-sequence (or differences sequence) ofI is denoted byb1(I), . . . , bd(I) and de-
fined as

bi(I ) = ai(I ) − ai−1(I).

We will useai for ai(I ) andbi for bi(I ) if there is no confusion.
If I andJ are monomialm-primary ideals, then the column sequence of the producIJ

is given by

ai(IJ ) = min
{
aj (I) + ak(J ): j + k = i

}
.

In particular, the column sequence ofIn is given by

ai

(
In
)= min

{
aj1(I) + · · · + ajn(I ): j1 + · · · + jn = i

}
.

Example 2.11. Let I be a monomial ideal withb-sequenceb1, . . . , bd .

(a) Assumeb1 � b2 � · · · � bd . Then it is easy to see that for everyn ∈ N one has
ai(I

n) = (n − r)aq(I) + raq+1(I), wherei = qn + r with 0 � r < n. Summing up,
we have|a(In)| = n2|a(I)| − (n2)ad(I). It follows that

HSI (z) = λ(R/I) + (λ(R/I) − ad(I))z

(1− z)2
.

Note that by [E, Example 4.22] the idealI is integrally closed.

(b) Assumeb1 � b2 � · · · � bd . Then it is easy to see that for everyn ∈ N one has
ai(I

n) = qad(I) + ar(I), wherei = qd + r with 0 � r < d . Summing up, we hav
|a(In)| = n|a(I)| + (n2)dad(I). It follows that

HSI (z) = λ(R/I) + (dad(I) − λ(R/I))z

(1− z)2
.

Moreover, the idealJ = (xd, yad ) is a minimal reduction ofI , andI2 = J I .

In both cases the associated graded ring ofI is Cohen–Macaulay by 2.9.
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3. Contracted ideals

Let R be either a polynomial ring over a field or a regular local ring. Assume
dimR = 2. Denote bym the (homogeneous) maximal ideal ofR. Most of the results o
this section hold for any infinite base field. But, to avoid endless repetitions, we assk
is algebraically closed of characteristic 0.

Let I ⊂ R be an ideal, homogeneous in the graded case. The ideals we are go
study were introduced by Zariski [ZS]:

Definition 3.1. An idealI ⊂ R is said to be contracted if there exists� ∈ m \ m2 such that
I = IS ∩ R, whereS = R[m/�].

From now on we assume thatI is m-primary. For any non-zeroa in m, the ordero(a) of
a is them-adic valuation ofa, that is, the greatest integern such thata ∈ mn. If o(a) = r,

then we denote bya∗ the initial form ofa in grm(A), that isa∗ = a ∈ mr/mr+1. Denote
by µ(I) the minimum number of generators ofI and byo(I) the order ofI , that is, the
largesth such thatI ⊆ mh. In the graded caseo(I) is simply the least degree of non-ze
elements inI . In the local case, ifI∗ is the homogeneous ideal of grm(R) generated by
the initial forms of the elements ofI , theno(I) is the least degree of an element inI∗. As
in [ZS], we callcharacteristic formthe GCD of the elements of degreeo(I) in I∗. In the
graded case the characteristic form is just the GCD of the elements of degreeo(I) in I.

By the Hilbert–Burch theorem,I is generated by the maximal minors of a(t − 1) × t

matrix, sayX, wheret = µ(I). It follows thatµ(I) � o(I) + 1.

Remark 3.2. In the graded setting, ifg1 � · · · � gt are the degrees of the generators oI

andz1 � · · · � zt−1 the degrees of the syzygies, then theij -entry ofX has degreezi − gj .
Here we use the convention that 0 has any degree. The matrix(uij ), uij = zi −gj , is called
the degree matrix ofI . It is easy to see thatuij must be positive for alli, j with j − i � 1
and thato(I) =∑t−1

i=1 ui,i+1.

We have the following proposition.

Proposition 3.3. The following conditions are equivalent:

(1) I is contracted,
(2) there exists� ∈ m \ m2 such thatI : (�) = I : m,
(3) µ(I) = o(I) + 1.

Furthermore, in the graded case,(1)–(3) are equivalent to any of the following cond
tions:

(4) I is Gotzmann, i.e.,I andLex(I) have the same number of generators,
(5) I is componentwise linear, i.e., the ideal generated by every homogeneous com

of I has a linear resolution,
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(6) for everyh � o(I), the degreeh component ofI has the formIh = fhRh−sh , wherefh

is a homogeneous polynomial of degreesh,
(7) ui,i+1 = 1 for i = 1, . . . ,µ(I) − 1.

Proof. The equivalence between (1)–(3) is proved in [H, 2.1, 2.3] in the local case an
arguments work also in the graded case. In the graded case the equivalence betw
and (7) follows from Remark 3.2. The equivalence of (3) and (4) holds because, obv
o(I) = o(Lex(I)) and any lex-segment ideal in 2 variables satisfies (3), see Remark
That (4) implies (5) is a general fact [HH, Example 1.1b] while that (5) is equivalent
(6) follows from the fact that in two variables the only ideals with linear resolution h
the formf mu, wheref is a form. To conclude, it suffices to show that (6) implies (
where� is any linear form not dividing the characteristic form ofI and this is an eas
check. �
Definition 3.4. An ideal I ⊂ R is said to be contracted fromS = R[m/�] if I = IS ∩ R.
Moreover, we say that� is coprime forI if its initial form in grm(R) does not divide the
characteristic form ofI.

Note that in the graded case, a coprime element forI is just a linear form� not dividing
the GCD of the elements of degreeo(I) of I .

If I is contracted, then conditions (2) and (3) hold true for any� coprime forI . Since
k is infinite, coprime elements forI exist. More generally, given a finite number of ide
one can always find an element which is coprime for any ideal.

By Remark 2.10, the minimum number of generators of any lex-segment idealL is ex-
actly one more than the initial degree; henceL is contracted. Moreover,y + ax is coprime
for L for all a ∈ k.

Remark 3.5. The homogeneous componentIh of a homogeneous contracted idealI has
the formIh = fhRh−sh for all h � o(I). The elementfh is the GCD of the elements inIh.
Furthermore, it dividesfh−1 for all h > o(I). Heresh = degfh is also the dimension o
R/I in degreeh. So we have

λ(R/I) =
(

µ(I)

2

)
+
∑

h�o(I )

sh.

The number of generators ofI in degreeh > o(I) is sh−1 − sh. The lex-segment idea
L = Lex(I) associated withI has the following formLh = xshRh−sh .

Next we give a characterization of contracted ideals in terms of the Hilbert–Burch m
trix:
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Proposition 3.6. LetR = k[x, y] and letd be a positive integer. Letα1, . . . , αd be elements
of the base fieldk and b1, . . . , bd positive integers. Then the ideal generated by thed-
minors of thed × (d + 1) matrix




yb1 x + α1y 0 0 · · · · · · 0
0 yb2 x + α2y 0 · · · · · · 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · 0 ybd x + αdy




is contracted of orderd , andy is coprime forI . Conversely, every contracted idealI of
orderd can be realized, after a change of coordinates, in this way.

Proof. That the ideal of minors of such a matrix is contracted follows directly fr
the definition. Conversely, assume thatI is contracted and letL be its associated lex
segment ideal. Saya = (a0, . . . , ad) is the column sequence ofL. The matrix above with
bi = ai − ai−1 > 0 and all theαi = 0 definesL. On the other hand, for every choice of t
αi we get a contracted ideal with the Hilbert function ofI . We will show that a particula
choice of theαi will define the idealI . By definition,I is determined byd and by the form
fh = GCD(Ih) for h � d . Since we assume thatk is algebraically closed, everyfh is a
product of linear forms. Sincefh+1 dividesfh, we may find linear forms�d−sh+1, . . . , �d

so thatfh =∏d
j=d+1−sh

�j , wheresh = degfh. Take linear forms�1, . . . , �d−sh in any
way. Then take a system of coordinatesx, y so thaty does not divide any of the�i . In other
words, up to irrelevant scalars,�i = x + αiy for all i = 1, . . . , d . We claim that this choice
of theαi works. The degree offh is determined by the Hilbert function. So, it is enough
show thatfh divides everyd-minor of degree� h of the matrix. This is easy to check.�

An important property of contracted ideals is the following:

Proposition 3.7. The product of contracted ideals is contracted.

Proof. The proof given in the local case in [H, 2.6] works also in the graded setting.�
Next we recall Zariski’s factorization theorem for contracted ideals [ZS, Theorem

Appendix 5]:

Theorem 3.8. Let I be a contracted ideal of orderd and characteristic formg of degrees.
Let g = g

β1
1 · · ·gβk

k be the factorization ofg, where thegi are distinct irreducible forms
ThenI has a unique factorization as

I = md−sL1L2 · · ·Lk,

where theLi are contracted ideals with characteristic formgβi .
i
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Since we assume thatk is algebraically closed thegi are indeed linear forms. In th
graded setting it follows that theLi are lex-segment ideals in a system of coordina
with gi as first coordinate. We deduce the following:

Lemma 3.9. In the graded setting and with the notation of Theorem3.8we have

λ(R/I) =
k∑

j=1

λ(R/Lj ) +
(

d + 1

2

)
−

k∑
j=1

(
βj + 1

2

)
.

Proof. The idealsLi can be described quite explicitly in terms of the data ofI : if gi

appears in the GCD ofId+j with exponentβ , then the GCD ofLi in degreeβi + j is
exactlyg

β
i . Then using Remark 3.5, one gets the formula.�

From the factorization ofI given in Theorem 3.8 immediately follows that

In = mn(d−s)Ln
1L

n
2 · · ·Ln

k

is the analogous factorization forIn. Applying Lemma 3.9 toIn, summing up, and usin
the formula

∞∑
n=0

(
(n + 1)γ + 1

2

)
zn = γ (1− z) + γ 2(1+ z)

2(1− z)3 ,

we obtain:

Proposition 3.10. In the graded setting and with the notation of Theorem3.8we have

HSI (z) =
k∑

j=1

HSLj (z) +
(
d+1

2

)+ (d2)z −∑k
j=1

[(βj+1
2

)+ (βj

2

)
z
]

(1− z)2
,

and in particular,

e(I) =
k∑

j=1

e(Lj ) + d2 −
k∑

j=1

β2
j .

Similarly one can write all the coefficients of the Hilbert–Samuel polynomial ofI in
terms of those of theLi .

In this part of the section(R,m) will denote a regular local ring of dimension two andI

anm-primary ideal. We consider a coprime element� for I, and we fix a minimal system
of generators ofm = (x, �).

We define now thetransformof an idealI (not necessarily contracted) inS = R[m/�].
If a is in I andd = o(I) is the order ofI , thena/�d is in S and we may write

IS = �dI ′,
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whereI ′ is an ideal ofS. Such an idealI ′ is called the transform ofI in S.
Notice that if I = (f1, . . . , ft ), then I ′ is generated (not minimally in general) b

f1/�
d, . . . , ft/�

d . If I andJ are two ideals ofR, then(IJ )′ = I ′J ′. In fact, if d = o(I)

ands = o(J ), then(IJ )S = (IS)(JS) = �d�sI ′J ′. Therefore(IJ )S = �d+s(IJ )′, so the
conclusion follows. In particular,(In)′ = (I ′)n for any integern.

If I = md, thenI ′ = S. In particular, ifI = msJ, thenI ′ = J ′ in S.

In the following we always denote byI ′ the transform ofI in S = R[m/�].
We note thatS = R[m/�] = R[x/�] is isomorphic to the ringR[z]/(x − z�). The ring

S is not local and its maximal idealsN which containm are in one-to-one corresponden
with the irreducible polynomialsg in k[z].

We denote byT the localization ofS at one of its maximal idealN . Then T is a
2-dimensional regular local ring called thefirst quadratic transform of R. In algebraic
geometry this construction is the well-known “locally quadratic” transformation of a
gebraic surface, with center at a given simple pointP of the surface.

If I ′ is the transform ofI in S, then(I ′)N = I ′T is the transform ofI in T andIT =
�d(I ′)N if d = o(I). We remark that� is a regular element both inS andT . It is known that
if I is primary form andN is a maximal ideal which containsI ′, then(I ′)N is primary
for N or is a unit ideal. IfI is contracted, then(I ′)N is a unit ideal if and only ifI = md

(see [ZS, Proposition 2 and Corollary, Appendix 5]).
In the following we assumeI is not a power of the maximal ideal. ThenI ′ is a zero-

dimensional ideal ofS which is not necessarily primary. We will denote by Max(I ′) the
set of the maximal ideals associated toI ′. The maximal ideals in Max(I ′) depend on the
characteristic form ofI and on the fieldk.

Denote byT any localization ofS at a maximal idealN ∈ Max(I ′). The following easy
facts will be useful in the proof of Theorem 3.12.

Remark 3.11. Let d = o(I), � be coprime forI , J be a minimal reduction ofI and
S = R[m/�]. The following facts hold:

(1) � is coprime forIn and formsIn for every positive integersn ands. In particular, ifI
is contracted fromS, thenIn andmsIn are contracted fromS.

(2) � is coprime forJ. In fact, there existsn such thatIn+1 = J In and sinceo(J ) = d , to
conclude it is enough to look at the minimal degreend + d part of the correspondin
ideals of the initial forms.

(3) If I is contracted, thenJ I is contracted [H, proof of Theorem 5.1], and by (2) it
contracted fromS.

(4) If J = (a, b) , thenJ ′ = (a/�d, b/�d) is a minimal reduction ofI ′ both inS andT . In
fact, if In+1 = J In, thenIn+1S = J InS. Sinceo(In+1) = o(J In), we have

(I ′)n+1 = J ′(I ′)n.

In particular, from the last equality it follows easily that Max(I ′) = Max(J ′I ′).

We are ready to state the main result of this section.
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Theorem 3.12. Let I be a contracted ideal of a local regular ring(R,m) of dimension
two. With the above notation we have

depthgrI (R) = min
{
depthgrI ′

N
(SN): N ∈ Max(I ′)

}
.

Proof. First we prove that grI (R) is Cohen–Macaulay if and only if grI ′
N
(SN ) is Cohen–

Macaulay for everyN ∈ Max(I ′).
Assume that grI (R) is Cohen–Macaulay and let(a, b) be a minimal reduction ofI.

By Proposition 2.7, we haveI2 = (a, b)I , and in particular,I2S = (a, b)IS. By definition
of the transform of an ideal one has that�2d(I ′)2 = �2d(a, b)′I ′ = �2d(a′, b′)I ′. Since�

is regular inS, it follows that (I ′)2 = (a′, b′)I ′ in S, hence(I ′)2 = (a′, b′)I ′ in T . Thus
grI ′

N
(SN) is Cohen–Macaulay for everyN ∈ Max(I ′).

For the converse let(a, b) be a minimal reduction ofI. Since{a′ = a/�d, b′ = b/�d}
generates a minimal reduction ofI ′ in T , by Proposition 2.7 we get(I ′)2T = (a′, b′)I ′T .

Now, by Remark 3.11(4), we note that Max(I ′) = Max((a′, b′)I ′). Hence the equality is
local on all maximal idealsN which contain(a′, b′)I ′, thus inS

(I ′)2 = (a′, b′)I ′.

It follows that�2d(I ′)2 = �2d(a′, b′)I ′ = �d(a′, b′)�dI ′, that is,

I2S = (a, b)IS.

By Remark 3.11(1) and (3), bothI2 and (a, b)I are contracted fromS, henceI2 =
I2S ∩ R = (a, b)IS ∩ R = (a, b)I . ThereforeI2 = (a, b)I and thus grI (R) is Cohen–
Macaulay. This concludes the proof of the first part of the theorem.

Now it is enough to prove that depthgrI (R) > 0 if and only if depthgrI ′
N
(SN) > 0 for

everyN ∈ Max(I ′). Assume depthgrI (R) > 0. In particular, one has thatIn+1 :R a = In

for everyn � 0 with a superficial forI. Let a′ = a/�d, it is enough to prove that(I ′)n+1 :S
a′ = (I ′)n for every n. In fact, from this it follows thata′ is regular in grI ′

N
(SN) for

every localizationT = SN because(I ′)n+1T :T a′ = ((I ′)n+1 :S a′)N = (I ′)nN = (I ′)nT
for everyn.

Let c/�s be any element ofS, with c ∈ ms . Supposec/�s is in (I ′)n+1 :S a′, that is,
c
�s

a
�d ∈ (I ′)n+1. To prove thatc/�s ∈ (I ′)n we distinguish two cases.
If s � dn, then

�d(n+1) ca

�s+d
∈ �d(n+1)(I ′)n+1 = In+1S,

that is,�dn−sca ∈ In+1S ∩ R = In+1. Thus�dn−sc ∈ In, and

�dn−sc = �dn c

�s
∈ InS = �dn(I ′)n.

Since� is regular inS, it follows thatc/�s ∈ (I ′)n, and this concludes this case.
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Assume now thats > dn and letm = (x, �). Since� is coprime forms−dnIn, there
existsf ∈ ms−dnIn such thatf = xs − p� with p ∈ ms−1. Hence we get that

(
x

�

)s

=
(

p

�s−1

)
+ f

�s
with

f

�s
∈ (I ′)n.

Sincec ∈ ms, we may writec = uxs + q� with u ∈ R, q ∈ ms−1. Now

c

�s
= u

(
x

�

)s

+ q

�s−1 = q + pu

�s−1 + f

�s
.

Hence q+pu

�s−1 ∈ (I ′)n+1 : a′ and we have to prove thatq+pu

�s−1 ∈ (I ′)n. By repeating this
argument, afters − dn steps we are in the already discussed cases < dn.

We now assume that depthgrI ′
N
(SN) > 0 for everyN ∈ Max(I ′) and we have to prov

that depthgrI (R) > 0. We recall that ifJ = (a, b) is a minimal reduction ofI, thenJ ′ =
(a/�d, b/�d) is a minimal reduction ofI ′ in T = SN and, by the assumption, we ma
suppose thata′ = a/�d is regular in grI ′

N
(T ).

Thus(I ′)n+1
N :T a′ = (I ′)nN for everyn � 0 and for everyN ∈ Max(I ′) which implies

(I ′)n+1 :S a′ = (I ′)n because it is a local facton the maximal idealsN ∈ Max(I ′).
We conclude if we prove thatIn+1 : a = In for everyn � 0.

Let b ∈ In+1 :R a, that is,ba ∈ In+1. Sinceo(In+1) = d(n + 1) ando(a) = d , one has
o(b) � dn. Then

ba = �d(n+1) ba

�d(n+1)
= �d(n+1) b

�dn

a

�d
∈ In+1 = �d(n+1)(I ′)n+1,

and since� is regular inS, b
�dn

a
�d ∈ (I ′)n+1, thus b

�dn ∈ (I ′)n. It follows thatb = �dn b
�dn ∈

�dn(I ′)n = InS, and thenb ∈ InS ∩ R = In, sinceIn is contracted fromS. �
Theorem 3.12 can be applied also in the graded setting by localizing. We prese

some corollaries which hold both in the local and in the graded case.

Corollary 3.13. Let I andJ be contracted ideals with coprime characteristic forms. T

depthgrIJ (R) = min
{
depthgrI (R),depthgrJ (R)

}
.

Proof. Note that ifg = g
β1
1 . . . g

βk

k is a factorization in irreducible factors of the charact
istic formg of an idealI, then

Max(I ′) = {(gi/�, �): i = 1, . . . , k
}
,

where� is a coprime element forI. Since the characteristic forms ofI andJ are coprime,
Max(I ′) ∩ Max(J ′) = ∅. Thus(IJ )′N = I ′

N for everyN ∈ Max(I ′) and(IJ )′M = J ′
M for

everyM ∈ Max(J ′). By using twice Theorem 3.12, we have
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depthgrIJ (R) = min
{
depthgrI ′

N
(SN),depthgrJ ′

M
(SM): N ∈ Max(I ′),M ∈ Max(J ′)

}
= min

{
depthgrI (R),depthgrJ (R)

}
. �

In particular:

Corollary 3.14. Consider the factorization of a contracted idealI as in Theorem3.8. Then

depthgrI (R) = min
{
depthgrLi

(R): i = 1, . . . , k
}
.

The above result leads to study the depth ofthe associated graded ring of a lex-segm
ideal. This will be the topic of the next section.

Remark 3.15. Trung and Hoa gave in [TH] a combinatorial characterization of
Cohen–Macaulayness of semigroup rings which can be applied to the study of the Cohe
Macaulay property of the Rees algebra of monomial ideals. In principle their result in
connection with Corollary 3.14 can be used to give combinatorial description o
Cohen–Macaulayness of the associated graded rings of contracted ideals. In practice, ho
ever, we have not been able to obtain such a characterization.

By Corollary 3.14 and Example 2.11, we have

Corollary 3.16. Consider the factorization of a contracted idealI as in Theorem3.8. If
o(Li) � 2 for everyi = 1, . . . , k, thengrI (R) is Cohen–Macaulay.

Consider the Rees algebraR(I) =⊕n∈N In of I , and the fiber coneF(I) = grI (R) ⊗
R/m of I . In the special caseo(Li) = 1, one has the following theorem.

Theorem 3.17. Let I ⊂ R = k[x, y] be a homogeneous contracted ideal witho(I) = d .
Assume that the characteristic form is a square-free polynomial(it has no multiple factors).
Then:

(1) The Rees algebraR(I) is a Cohen–Macaulay normal domain and the defining id
J ofR(I) has the expected form in the sense of[Vas, §8.2]and[MU, 1.2], that is,J is
the ideal of2-minors of a2× (d + 1) matrixH .

(2) The associated graded ringgrI (R) is Cohen–Macaulay with Hilbert series

HSI (z) = λ(R/I) + (d2)z
(1− z)2

.

(3) The fiber coneF(I) is a Cohen–Macaulay reduced ring defined by the2-minors of a
2× d matrix of linear forms. Furthermore,F(I) is a domain if and only ifI = md .

Proof. By Corollary 3.16, grI (R) is Cohen–Macaulay. HenceR(I) is also Cohen–
Macaulay. Since GCD(Id) is square free,I is given by thed-minors of the matrixφ of
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Proposition 3.6 withαi �= αj if i �= j . It follows immediately that the ideal of the entries
φ is m and that the ideal of the(d − 1)-minors ofφ is md−1. By [MU, 1.2], we conclude
that J has the expected form, that is, it is given by the 2-minors of a certain matriH .
We can write down explicitly the matrix. If we presentR(I) asR[t0, . . . , td ]/J by sending
ti to (−1)i times thed-minor of φ obtained by deleting the(i + 1)th column, thenJ is
generated by the 2-minors of the matrix:

H =
(

x α1t1 + yb1−1t0 α2t2 + yb2−1t1 . . . αdtd + ybd−1td−1
−y t1 t2 . . . td

)

By Theorem 3.8,I is a product of complete intersections of order 1. ThusI is integrally
closed. In a two-dimensional regular ring, this is equivalent to the normality ofR(I). This
conclude the proof of part (1). For part (3) one notes that the defining equation ofF(I) are
the 2-minors of the matrix obtained fromH by replacingx andy with 0. The dimension
of F(I) is 2 and the codimension ofF(I) is µ(I) − 2, i.e.,d − 1. SoF(I) is defined
by a determinantal ideal with the expected codimension, thus it is Cohen–Macaulay (s
[BV]). That F(I) is reduced follows by the fact that one of the initial ideals of its defin
ideal is (ti tj : 1 � i < j � d). Finally, if I is not md , then at least one of thebi , say
bk, is > 1 and then some of the generators of the defining ideal ofF(I) have tk as a
factor. ThereforeF(I) is not a domain. Now, ifI = md , thenF(I) is thed th Veronese
algebra ofR, hence a domain. It remains to prove the assertion on HSI (z). Since grI (R) is
Cohen–Macaulay, itsh-vector has length� 1. Obviouslyh0(I) = λ(R/I). Since theLi are
complete intersections andβi = 1, from Proposition 3.10 it follows thath1(I) = (d2). �

In the above theorem it is proved thath1(I) = (d2) for contracted ideal with square fre
characteristic form. In general the following inequalities hold:

Proposition 3.18. Let I ⊂ R = k[x, y] be anm-primary homogeneous ideal. IfI is mono-

mial or contracted, thenh1(I) �
(
µ(I)−1

2

)
ande(I) � λ(R/I) + (µ(I)−1

2

)
.

Proof. In general, one knows thate(I) � h0(I) + h1(I), see [V1, Lemma 1]. So it i
enough to prove the first inequality. By Proposition 3.10, if the inequality holds for
segment ideals, then it holds for contracted ideals. Thus to conclude it is enough to
the first inequality for monomial ideals.

Let I be a monomial ideal, say with associated column sequencea = (a0, . . . , ad) and
differences sequenceb = (b1, . . . , bd). Now one hasµ(I) = |{i: bi > 0}|+1. Suppose tha
one of thebi is > 1, saybk > 1. Setc = (c1, . . . , cd) with ci = bi if i �= k andck = bk − 1.
Denote byf the sequence whose differences sequence isc, i.e.,f0 = 0 andfi =∑i

j=1 cj ,
and byJ the corresponding monomial ideal. In other words,fj = aj if j < k andfj =
aj − 1 if j � k. We claim that

h1(I) � h1(J ). (2)
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To prove this note first that

λ(R/I) − λ(R/J ) =
∑

i

ai −
∑

i

fi = d − k + 1.

Therefore

h1(I) − h1(J ) = λ
(
R/I2)− λ

(
R/J 2)− 3(d − k + 1)

and hence (2) is equivalent to:

λ
(
R/I2)− λ

(
R/J 2)� 3(d − k + 1).

Denote bya(2) andf (2) the column sequences associated withI2 andJ 2, respectively.
Note thata(2)

i = aj + ah for somej andh with 0 � j,h � d andj + h = i. If i � 2k − 1,
then at least one amongj,h is � k and if i � k + d , then bothj,h are� k. It follows that

a
(2)
i �




f
(2)
i , if i = 0, . . . ,2k − 2,

f
(2)
i + 1, if i = 2k − 1, . . . , k + d − 1,

f
(2)
i + 2, if i = k + d, . . . ,2d.

We may conclude that

λ
(
R/I2)− λ

(
R/J 2)= 2d∑

i=0

a
(2)
i −

2d∑
i=0

f
(2)
i � 3(d − k + 1)

as desired. Since the number of generators ofI andJ is, by construction, the same, it
now enough to prove the assertion forJ . Repeating the argument it is enough to prove
statement for a monomial idealH whose differences sequence consists only of 0 an
Such an ideal hasα+1 generators and one generator, namelyyα , of degreeα. In particular,
it is a lex-segment ideal with respect toy, whose differences sequence does not con
0. After exchangingx and y and by applying the same procedure as above toH , one
ends up with a power of the maximal ideal, for which it is easy to see that the ineq
holds. �

One may wonder whether the inequalityh1(I) �
(
µ(I)−1

2

)
holds more generally fo

everym-primary idealI . We believe that this is indeed the case.
In general,h2(I) need not be non-negative for anm-primary idealI . The idealI gen-

erated by 4 generic polynomials of degree 7 and one generic polynomial of degree
for examplex7, y7, x3y4, x6y − xy6, x2y6 − x5y3) hash2(I) = −1. On the other hand
there is some computational evidence that

Conjecture 3.19. For a contracted idealI one hash2(I) � 0.
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Note that, in view of Proposition 3.10, to prove the conjecture one may assume
away thatI is a lex-segment ideal.

4. Lex-segment ideals and depth of the associated graded ring

In this section we study the depth of the associated graded ring of a lex-se
ideal in k[x, y]. This is strongly motivated by Corollary 3.14 which moves the com
tation of the depth of the associated gradedring from contracted ideals to lex-segme
ideals.

We start by giving classes of lex-segment ideals whose associated graded
have positive depth or are Cohen–Macaulay. Notice that we can apply Theore
to such classes since, in our setting, gin(I) is a lex-segment ideal. In the second p
of the section we find new classes of lex-segment ideals whose associated
ring is Cohen–Macaulay by interpreting Theorem 3.12 in the case of lex-seg
ideals.

Let L be a lex-segment ideal inR = k[x, y]. As we have already seen, one has

L = (xd, xd−1ya1, xd−2ya2, . . . , yad
)
,

with 0 = a0 < a1 < a2 < · · · < ad. The sequence(b1, . . . , bd), with bi = ai − ai−1, is the
differences sequence ofL. From now on we may assumead > d , otherwiseL = md and
its associated graded ring is Cohen–Macaulay.

By Proposition 2.7, ifI is anm-primary ideal inR with I2 = J I for a minimal reduction
J of I , then grI (R) is Cohen–Macaulay. We show now that in the class of lex-segm
ideals,L2 = JL for certain kind of (non-minimal) reductionJ , will yield positive depth
for the associated graded ring.

Proposition 4.1. LetL = (xd, . . . , yad ) be a lex-segment ideal. IfL2 = (xd, xd−iyai , yad )L

for somei = 0, . . . , d , thendepthgrL(R) > 0.

Proof. We show thatLn : (xd, yad ) = Ln−1 for all n � 1. For n = 1, it is obvious. Let
n > 1 and assume that the result is true forn − 1. Leth ∈ Ln : (xd, yad ). Without loss of
generality we may assume thath is a monomial. SinceLn = J n−1L, we may write

hxd = (xd
)r1
(
xd−iyai

)r2
(
yad
)r3g1, (3)

hyad = (xd
)s1
(
xd−iyai

)s2
(
yad
)s3g2 (4)

for someg1, g2 ∈ L and
∑

i ri = n− 1 =∑j sj . We need to show thath ∈ Ln−1. If r1 > 0

or s3 > 0, then clearlyh ∈ Ln−1. Supposer1 = s3 = 0. If s2 = 0, thens1 = n−1. Therefore,
x − degh � (n − 1)d so thath ∈ Ln−1. Similarly, if r2 = 0, thenr3 = n − 1. Hencey −
degh � (n − 1)ad so thath ∈ Ln−1. Supposer2 � 1 ands2 � 1. Then from (3) it follows
thaty − degh � ad−i and from (4) it follows thatx − degh � d − i. Therefore,xd−iyai

dividesh. Write h = xd−iyai h1. Then we have
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apply

that a
h1x
d = (xd

)r1
(
xd−iyai

)r2−1(
yad
)r3g1,

h1y
ad = (xd

)s1
(
xd−iyai

)s2−1(
yad
)s3g2.

Thereforeh1 ∈ Ln−1 : (xd, yad ) = Ln−2, by induction hypothesis. Henceh = xd−iyaih1 ∈
Ln−1. ThereforeLn : (xd, yad ) = Ln−1 for all n � 1 and hence depthgrL(R) > 0. �

The following proposition gives a class of lex-segment ideals to which one can
Proposition 4.1:

Proposition 4.2. Let L = (xd, . . . , yad ) be a lex-segment ideal such thatb2 � b3 �
· · · � bd . ThenL2 = (xd, xd−1ya1, yad )L. In particular, depthgrL(R) > 0.

Proof. Set J = (xd, xd−1ya1, yad ). We need to show that for all 0� i � j � d ,
xd−iyai xd−jyaj ∈ JL.

We split the proof into two cases:

Case I. If i +j −1� d , then we show thatx2d−i−jyai+aj = xd−1ya1 ·xd−i−j+1yai+j−1 ·m
for some monomialm.

Consider the following equations:

(1) ai+j−1 − aj = bi+j−1 + bi+j−2 + · · · + bj+1,
(2) ai − a1 = bi + bi−1 + · · · + b2.

Sinceb2 � b3 � · · · � bd , ai −a1 � ai+j−1−aj . Therefore,ai +aj � ai+j−1+a1. Hence,
we may writex2d−i−jyai+aj = xd−1ya1 · xd−i−j+1yai+j−1 · m for some monomialm, so
thatx2d−i−jyai+aj ∈ JL.

Case II. If i + j − 1 > d , thenx2d−i−jyai+aj = xd−k−1yak+1 · yad · m′ for some mono-
mial m′, wherek = i + j − 1− d .

As in Case I, writead − ai andaj − ak+1 as sum ofbl and conclude thatai + aj �
ad +ak+1. Thereforex2d−i−j yai+aj = xd−k−1yak+1 ·yad ·m′, so thatx2d−i−jyai+aj ∈ JL.

Therefore, for all 0� i � j � d , x2d−i−jyai+aj ∈ JL and henceL2 = JL. Now using
Proposition 4.2, we may conclude that depthgrL(R) > 0. �

We apply now the theory developed in Section 3 to lex-segment ideals. Recall
lex-segment idealL = (xd, xd−1ya1, . . . , yad ) is contracted fromS = R[m/y] = R[x/y].

In particular,LS ∩ R = L andLS = ydL′, whereL′ is the monomial ideal ofS gener-
ated by the elements( x

y
)d−iyai−i for everyi = 0, . . . , d .

It will be useful to considerϕ : S = R[x/y] = k[x, y, z]/(x − yz) → P = k[y, z] the
natural ring homomorphism defined by sending the class off (x, y, z) to f (yz, y, z) for
everyf (x, y, z) ∈ k[x, y, z]. It is easy to see thatϕ is an isomorphism. We setT (L) =
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ϕ(L′), so thatT (L) could be identified with a monomial ideal ink[x, y]. Moreover, one
has

grT (L)(P ) � grL′(S).

These facts hold for every contracted ideal, notonly for lex-segment ideals. In practice, t
idealT (L) can be obtained fromL by substitutingx with yz and dividing any generato
by yd, whered = o(L). In the following examples we explain in details the procedure

Example 4.3. Let L = (x4, x3y, x2y3, xy4, y10) ⊂ R = k[x, y]. Note thato(L) = 4. The
transformL′ of L is defined to be the ideal ofS = R[z]/(x − zy) such thatLS = y4L′.
Thus one has

LS = (y4z4, y4z3, y5z2, y5z, y10)S = y4(z4, z3, yz2, yz, y6)S = y4(z3, yz, y6)S,

and via the isomorphismϕ one getsT (L) = (z3, yz, y6) in P = k[y, z].

We remark that in the particular case of a lex-segment idealL, its transformL′ is a
primary ideal forN = (y, x/y) or equivalentlyT (L) is a primary ideal for(y, z). Hence,
by Remark 2.2,

grL′(S) � grL′
N
(SN).

Now we may rephrase Theorem 3.12 in the case of a lex-segment ideal. As a
quence one has that to compute the depth of the associated graded ring ofL one can pass t
the transformT (L) of L, which is in general easier to study. In particular,µ(T (I)) � µ(I)

ande(T (I)) < e(I), see [H, 3.6].

Theorem 4.4. Let L be a lex-segment ideal inR = k[x, y]. With the above notation w
have

depthgrL(R) = depthgrT (L)(P ).

Proof. Since grT (L)(P ) � grL′(S), it suffices to prove that depthgrL(R) = depthgrL′(S).

The idealL is primary for m = (x, y) and L′ is primary for the maximal idealN =
m + (x/y), hence by Remark 2.2, grL(R) � grLm

(Rm) and grL′(S) � grL′
N
(SN). Now

the result follows by using Theorem 3.12.�
As an immediate application of the theorem, we find classes of lex-segment i

whose associated graded ring is Cohen–Macaulay.
First, we want to give an explicit description of the idealT (L), whereL is a lex-segmen

ideal. LetL = (B1, . . . ,Bs+1) be the decomposition of the minimal set of generator
L in subsets of elements of the same degree, that is,Bi is the block of the element
of degreed + i − 1. AssumeBs+1 �= ∅. In Example 4.3 one hasB1 = {x4, x3y}, B2 =
{x2y3, xy4}, B3 = · · · = B6 = ∅, B7 = {y10}.
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|B1| = p1 + 1, |Bi | = pi for i = 2, . . . , s + 1.

Proposition 4.5. With the above notation one has

T (L) = (zd−p1
)+ (zd−(p1+···+pi )yi−1: i � 2, pi �= 0

)
.

Proof. By definition one hasB1 = {xd, . . . , xd−p1yp1} and

Bi = {xd−(p1+···+pi−1+1)yp1+···+pi−1+i , . . . , xd−(p1+···+pi)yp1+···+pi+i−1}
for i � 2. Applying the transform to the elements ofBi , one obtains the set

T (Bi) = {zd−(p1+···+pi−1+1)yi−1, . . . , zd−(p1+···+pi)yi−1},
hence the ideal (

T (Bi)
)= (zd−(p1+···+pi )yi−1)

and this concludes the proof.�
It is natural to ask under which conditions isT (L) a lex-segment ideal. As an ea

consequence of Proposition 4.5,one gets a characterization:

Lemma 4.6. LetL be a lex-segment ideal. ThenT (L) is a lex-segment ideal if and only
one of the following holds:

(1) pi � 1 for everyi � 2;
(2) pi �= 0 for everyi � 2.

Moreover, in case(2) T (L) is a lex-segment ideal with respect toy and its differences
sequence is(ps+1,ps, . . . , p3,p2).

Proof. By Proposition 4.5, one has

T (L) = (zd−p1, zd−(p1+p2)y, zd−(p1+p2+p3)y2, . . . , zd−(p1+···+ps)ys−1, ys
)
.

It is clear thatT (L) is a lex-segment ideal with respect toz if and only if pi � 1 for
everyi � 2. Note that by definition

∑s+1
i=1 pi = d ands + 1 = ad − d + 1, and let rewrite

T (L) as

T (L) = (yad−d , yad−d−1zps+1, . . . , y2zp4+···+ps+1, yzp3+···+ps+1, zp2+···+ps+1
)
.

It follows thatT (L) is a lex-segment ideal with respect toy if and only if pi �= 0 for
everyi � 2. When this is the case the differences sequence is(ps+1,ps, . . . , p3,p2). �
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Remark 4.7. Recall that the differences sequence ofL is (b1, . . . , bd), with bi = ai −ai−1.
Note that the difference between the degree ofxd−iyai and the degree ofxd−i+1yai−1 is
bi − 1. Thus the conditions of the lemma above can be written in terms of thebi . In fact,
condition(1) is equivalent tobi � 2 if bi−1 � 2, that is, the generators ofL of degree> d

have all different degrees. Condition(2) holds if and only ifbi ∈ {1,2} for everyi, that is,
there are generators in every degree betweend andad .

By the above lemma, Example 2.11, and Theorem 4.4, we get new classes
segment ideals with Cohen–Macaulay associated graded ring:

Proposition 4.8. LetL be a lex-segment ideal. Assume that one of the following hold:

(1) 0< p2 � p3 � · · · � ps+1, or
(2) p2 � p3 � · · · � ps+1.

ThengrL(R) is Cohen–Macaulay.

5. Generic forms and lex-segment ideals

Theorem 2.4 points to a question: “find classes of ideals inR such that the associate
graded ring of its initial ideal has positive depth.” It is known that if chark = 0 andI is
an ideal inR = k[x, y], then the generic initial ideal gin(I) is a lex-segment ideal. We sa
that an idealI is a generic ideal if it is generated by generic forms of given degrees a
a lex-segment idealL is generic, if it is the lex-segment ideal of a generic ideal. It is
always true that the associated graded ring of a lex-segment ideal has positive de
Example 2.5(a). In this section we produce a sub-class of the lex-segment ideals,
lex-segment ideals of genericm-primary ideals, with positivedepth associated graded rin
Let I be a genericm-primary ideal inR. We begin with a lemma which will help us i
identifying the structure of a generic lex-segment ideal inR. For a polynomialf (z) =∑

i aiz
i ∈ Z[z], we let|f (z)| =∑i biz

i with bi = ai if a0, . . . , ai > 0 andbi = 0 if aj � 0
for somej � i, and let∆f (z) =∑i (ai − ai−1)z

i .

Proposition 5.1. LetH(z) ∈ Z[z]. Then

H(z) =
∣∣∣∣
∏r+1

i=1(1− zdi )

(1− z)2

∣∣∣∣
for some integersd1, . . . , dr+1, r � 1 if and only if

∆H(z) = 1+ z + · · · + zd1−1 − p1z
d1 − p2z

d1+1 − · · · − psz
d1+s−1 − czd1+s ,

where0 � p1 � p2 � · · · � ps , 0 � c < ps and
∑s

i=1 ps + c = d1.

Proof. Assume thatH(z) has the given form. We induct onr. Let r = 1. Then
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H(z) =
∣∣∣∣ (1− zd1)(1− zd2)

(1− z)2

∣∣∣∣= ∣∣(1+ z + · · · + zd1−1)(1+ z + · · · + zd2−1)∣∣
= 1+ 2z + · · · + d1z

d1−1 + · · · + d1z
d2−1 + (d1 − 1)zd2 + · · · + zd1+d2−2.

Therefore

∆H(z) = 1+ z + · · · + zd1−1 − zd2 − zd2+1 − · · · − zd1+d2−1.

Then

0= p1 = · · · = pd2−d1 < 1 = pd2−d1+1 = · · · = pd2−1.

Also ∑
i

pi = (d1 + d2 − 1) − (d2 − 1) = d1.

Hence the assertion follows.
Now assume thatr > 1 and that the assertion is true for alll < r. Let

H ′(z) =
∣∣∣∣
∏r

i=1(1− zd
i )

(1− z)2

∣∣∣∣.
Then by inductive hypothesis, there existp1, . . . , ps, c such that 0� p1 � · · · � ps; 0 �
c < ps; ∑i pi + c = d1 and∆H ′(z) = 1 + z + · · · + zd1−1 − p1z

d1 − · · · − psz
d1+s−1 −

czd1+s . Therefore, if we writeH ′(z) =∑i aiz
i , then

ai =
{

i + 1, if i = 0,1, . . . , d1 − 1,

d1 −∑i−d1+1
j=1 pj , if d1 � i � d1 + s − 1,

0, if i � d1 + s.

(5)

We have

H(z) =
∣∣∣∣∣

r∏
i=1

(1− zdi )

(1− z)2

(
1− zdr+1

)∣∣∣∣∣= ∣∣H ′(z)
(
1− zdr+1

)∣∣.
If dr+1 > degH ′(z) = d1 + s − 1, then|H ′(z)(1 − zdr+1)| = |H ′(z)| = H ′(z). Therefore
assume thatdr+1 � d1 + s − 1. If we setH ′(z)(1− zdr+1) =∑i biz

i , then

bi =
{

ai, if 0 � i � dr+1 − 1,

ai − (j + 1), if i = dr+1 + j.

Seth = max{i � dr+1: bi > 0}. Therefore,

∣∣H ′(z)
(
1− zdr+1

)∣∣= ∣∣∣∣∑biz
i

∣∣∣∣=
h∑

biz
i =: P(z).
i i=0
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We need to prove that∆P(z) has the required properties. Denote by∆P(z)i , the coefficient
of ∆P(z) in degreei. Then

∆P(z)i =
{

∆H ′(z)i, if i � dr+1 − 1,

∆H ′(z)i − 1, if dr+1 � i � h,

and∆P(z)h+1 = −bh. Then

h∑
i=d1

∆P(z)i + bh =
dr+1−d1∑

i=1

pi +
h−d1+1∑

i=dr+1−d1+1

[pi + 1] + (ah − h + dr+1 − 1)

=
h−d1+1∑

i=1

pi + (h − dr+1 + 1) + ah − (h − dr+1 + 1)

=
h−d1+1∑

i=1

pi + ah = d1

because by Eq. (5) one hasah = d1 −∑h−d1+1
j=1 pj . Therefore∆P(z) = ∆H(z) satisfies

the required properties.
Let

∆H(z) = 1+ z + · · · + zd1−1 − p1z
d1 − · · · − psz

d1+s−1 − czd1+s

with pi and c satisfying the given properties. We prove by induction onps . Suppose
ps = 1. Thenc = 0 and[p1, . . . , ps ] = [0, . . . ,0,1, . . . ,1] for certain number of 0’s, sayl,
and 1’s, saym. Setd2 = d1 + l. Sincel + m = s, we have

degn 0 1 . . . d1 − 1 d1 . . . d2 . . . d1 + d2 − 1

∆H(z)n 1 2 . . . 1 0 . . . −1 . . . −1

Therefore,

H(z) =
∣∣∣∣ (1− zd1)(1− zd2)

(1− z)2

∣∣∣∣.
Now assume thatps > 1 and setj = max{n: pn > pn−1}. Then we have, 1� j � s and
pj = · · · = ps . Sinceps − 1 > 0, there exist non-negative integersq, r such thatc + s −
j + 1 = (ps − 1)q + r with 0 � r < ps − 1.

Define a polynomialH ′(z) ∈ Z[z] such that

∆H ′(z)i =




1, if 0 � i � d1 − 1,

−pi+1, if d1 � i � d1 + j − 2,

−pj + 1, if d1 + j − 1� i � d1 + s − 1+ q,

−r, if i = d1 + s + q,
0, if i > d1 + s + q.
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Then

0 � p1 � · · · � pj−1 � pj − 1 = · · · = pj − 1; 0 � r < pj − 1= ps − 1

and

j−1∑
i=1

pi + (s − j + 1+ q)(pj − 1) + r =
s∑

i=1

pi − (s − j + 1) + q(ps − 1) + r

=
s∑

i=1

pi + c = d1.

Therefore, by induction there existd1 � d2 � · · · � dr such that

H ′(z) =
∣∣∣∣
∏r

i=1(1− zdi )

(1− z)2

∣∣∣∣.
We show thatH(z) = |H ′(z)(1− zd1+j−1)|. Note thatH ′(z)i = H(z)i for i � d1 + j − 2
and H ′(z)i = H(z)i + i − (d1 + j − 2). Therefore[H ′(z)(1 − zd1+j−1)]i = H(z)i for
i � d1+s−1 andH(z)i = 0 for i > d1+s−1. To complete the proof, we need to show t
H ′(z)d1+s−1− (pj −1)− (s −j +2) � 0. SinceH ′(z)d1+s−1 = H(z)d1+s−1+ s −j +1 =
c + s − j + 1, we haveH ′(z)d1+s−1 − (pj − 1) − (s − j + 2) = c − ps < 0. Therefore

H(z) = ∣∣H ′(z)
(
1− zd1+j−1)∣∣. �

Using the above proposition, we describe the structure of generic lex-segment idea
in R. We recall that, given a homogeneous idealI ⊂ R, the Hilbert series HSR/I (z) of R/I

is defined to be
∑

t�0 HFR/I (t)z
t , where HFR/I (t) = dimk(R/I)t is the Hilbert function

of R/I . If dim R/I = 0, then HSR/I (z) is a polynomial.

Proposition 5.2. Let I ⊆ R be an ideal generated byr � 2 generic forms of degree
d1, . . . , dr respectively. Letd = min{di}. Then

(1) the Hilbert series ofR/I is such that

∆HSR/I (z) = 1+ z + · · · + zd−1 − p1z
d − · · · − psz

d+s−1 − czd+s,

with 0� p1 � · · · � ps , 0� c < ps and
∑

i pi + c = d .
(2) Lex(I) = (xd, xdya1, . . . , yad ) such that there arep1 + 1 elements in degreed andpi

elements in degreed + i − 1 for i = 2, . . . , s andc elements in degreed + s.

Proof. (1) The Hilbert series ofR/I is given by

HSR/I (z) =
∣∣∣∣ (1− zd1) · · · (1− zdr )

2

∣∣∣∣,
(1− z)
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for a simple proof of this fact, see [V2, 4.3]. Now the assertion follows directly f
Lemma 5.1.

(2) Since the Lex(I) and I have same Hilbert function, the assertion follo
from (1). �

We set the notation for the rest of the section. LetL = (xd, xd−1ya1, . . . , yad ) be a lex-
segment ideal inR = k[x, y], whereai + 1 � ai+1. Recall the notation set up in Section
let L = (B1, . . . ,Bs+1) be the block decomposition ofL such that|B1| = p1 +1, |Bi | = pi

for i = 2, . . . , s + 1. For the rest of the paper, we set

c = ps+1.

From Proposition 5.2, we have 0� p1 � · · · � ps and 0� c < ps .
Now we proceed to prove that the associated graded rings of generic lex-segment ide

have positive depth. Recall that there are lex-segment ideals whose associated graded r
have depth zero, see Example 2.5.

Theorem 5.3. LetL be a generic lex-segment ideal inR. ThendepthgrL(R) > 0.

Proof. We split the proof into two cases, namelyp2 = 0 andp2 > 0.
Let p2 = 0. Note that, in this case, in degreed , the lex-segment idealL has only one

generator, namelyxd . By Proposition 4.1, it is enough to prove that for somei, L2 =
(xd, xd−iyai , yd)L. Following the notation set up above, fori = 1, . . . , s +1, letBi denote
theith block of elements of degreed + i − 1, of the minimal generating set ofL. Let xpyq

be the last element in the blockBs . Then

Claim. L2 = (xd, xpyq, yad )L.

To prove the claim, we need to show that, for any 1� i � j � d , x2d−i−jyai+aj ∈ JL,
whereJ = (xd, xpyq, yad ). As in the proof of Proposition 4.2, we split the proof of t
claim into different cases.

We first show that ifi + j � d , thenx2d−i−jyai+aj = xd · xd−i−j yai+j · m for some
monomialm. It is enough to prove thatai + aj � ai+j . Let bi = ai − ai−1. Consider the
following equations:

• ai+j − aj = bi+j + bi+j−1 + · · · + bj+1.

• ai = bi + bi−1 + · · · + b1.

Sincep2 = 0, a1 � 2. Also note that sincep2 � p3 � · · · � ps , the number of 2’s ap
pearing in{bi+j , . . . , bj+1} is at most the number of 2’s appearing in{bi, . . . , b1}. Hence
ai � ai+j −aj . Thereforeai +aj � ai+j and hencex2d−i−j yai+aj = xd ·xd−i−j yai+j ·m,
for some monomialm.

Using similar arguments, we can show that

• if d < i+j � d + t , wheret = d −p, thenx2d−i−j yai+aj = xpyq ·xi+j−t yad−i−j+t ·m
for some monomialm, and
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• if i + j > d + t , thenx2d−i−jyai+aj = x2d−i−jyai+j−d · yad · n for some monomialn.

Thereforex2d−i−jyai+aj ∈ JL for all 0 � i � j � d , so thatL2 = JL. Hence, by
Proposition 4.1, depthgrL(R) > 0.

Now let p2 � 1. Note that in this case, there are minimal generators ofL in all degrees
from d to ad . By Lemma 4.6,T (L) is a lex-segment ideal with respect toy in P = k[z, y].
Write

T (L) = (yad−d , yad−d−1zc, yad−d−2zc+ps , . . . , yzc+ps+···+p3, zc+ps+···+p2
)
.

Thenb1 = c andbi = ps−i+2, for i = 2, . . . , s. Hence we haveb2 � b3 � · · · � bs . There-
fore,

(
T (L)

)2 = (ys−1, ys−2zc, zc+ps+···+p2
)
T (L),

by Proposition 4.2. Therefore by Proposition 4.1, depthgrT (L)(P ) > 0 and hence by The
orem 4.4 depthgrL(R) > 0. �
Example 5.4. (a) Let I = (f1, f2, f3) be a generic ideal such that degf1 = 5,
degf2 = 7, degf3 = 8. Then, a computation as in the proof of Proposition 5.1, will g
that∆H = [1,1,1,1,1,0,0,−1,−2,−2]. Therefore the corresponding lex-segment id
is L = (x5, x4y3, x3y5, x2y6, xy8, y9). It can be seen thatL2 = (x5, y9)L and hence
grL(R) is Cohen–Macaulay. In Theorem 6.4 we actually prove that the Rees algebra
such ideals are normal.

(b) Let I = (f1, f2, f3, f4, f5) be a generic ideal such that degf1 = 10, degf2 = 12,
degf3 = 13, degf4 = 15, degf5 = 15. The corresponding lex-segment ideal is

L = (x10, x9y3, x8y5, x7y6, x6y8, x5y9, x4y11, x3y12, x2y13, xy14, y16)
and its Hilbert series is

HSL(z) = 97+ 58z + z3

(1− z)2
.

By Proposition 2.9, one has that depthgrL(R) = 1.

For a generic lex-segment idealL, we have seen that|B1| − 1 � |B2| � · · · � |Bs | and
|Bs+1| < |Bs |, whereL = (B1, . . . ,Bs+1) is a block decomposition ofL. Therefore, in
terms of the number of generators in each degree, there can be an “irregularity”
last block of elements. Since we have shown that the associated graded ring of g
lex-segment ideals have positive depth, it is natural to ask, whether the associated
ring is Cohen–Macaulay when this “irregularity” is removed. In the following theorem, w
answer this question affirmatively.
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Theorem 5.5. Let L be a generic lex-segment ideal inR such thatc = 0. Let J =
(xd−p1yap1 , xd + yad ). ThenL2 = JL and L is integrally closed. In particular,grL(R)

is Cohen–Macaulay.

Proof. Let L = (xd, xd−1ya1, . . . , xyad−1, yad ). Following our previous notation, le
p1 + 1 = |B1| and pi = |Bi | for i = 2, . . . , s. First we prove thatL2 = JL for J =
(xd−p1yap1 , xd + yad ). We show that for 1� i � j � d , x2d−i−jyai+aj ∈ JL. We split
the proof into three cases:

Case I. i + j < p1. Write

x2d−i−jyai+aj = (xd + yad
)(

xd−i−j yai+aj
)− xd−i−j yai+aj +ad .

Note that fori � p1, ai−1 + 1 = ai . Therefore,ai + aj = ai+j , if i + j < p1. Hence
(xd + yad )xd−i−jyai+aj ∈ JL. Now,

xd−i−j yai+aj+ad = (xd−p1yap1
)(

xd−(d−p1+i+j)yai+aj +ad−ap1
)
.

Since the number of minimal generators ofL in each degree in increasing, as argued
the proof of Theorem 5.3, we can show thatai + aj + ad � ad−p1+i+j + ap1. Therefore
(xd−(d−p1+i+j)yai+aj +ad−ap1 ) ∈ L so thatx2d−i−j yai+aj ∈ JL.

Case II. p1 � i + j � d + p1. Writing aj − ap1 and ai+j−p1 − ai as in the proof
of Theorem 5.3, one can easily see that, in this caseai + aj � ap1 + ai+j−p1. Hence
x2d−i−jyai+aj ∈ JL.

Case III. d +p1 < i + j . Then 2d − i − j = d −p1 − k for somek � 1. Therefore we can
write

x2d−i−jyai+aj = (xd + yad
)(

xd−p1−kyai+aj −ad
)− x2d−p1−kyai+aj −ad .

Arguments similar to that of in the proof of Case I will show thatxd−p1−kyai+aj −ad ∈ L

andx2d−p1−kyai+aj−ad ∈ JL. Hencex2d−i−jyai+aj ∈ JL. ThereforeL2 = JL.

Now we proceed to prove thatL is integrally closed. From Corollary 3.14, it follows th
if L hasr generators in the initial degree, thenL = mrN for a lex-segment idealN . It can
easily be seen that ifL is generic, then so isN . Note also that there is only one genera
in the initial degree (i.e.,p1 = 0) andc = 0 for N . We have considered such ideals in
next section. In Theorem 6.4 we have proved that lex-segment ideals withp1 = c = 0 are
integrally closed. ThereforeN is integrally closed. SinceL is a product of power of the
maximal ideal (which is integrally closed) andN , L is integrally closed. Hence grL(R) is
Cohen–Macaulay. �

We end the section with another class of lex-segment ideals whose associated gra
rings are Cohen–Macaulay, namely lex-segment ideals corresponding to ideals genera
by generic forms of equal degree.
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Proposition 5.6. Let I be anm-primary ideal generated by generic forms of equal deg
LetL be the lex-segment ideal corresponding toI . ThengrL(R) is Cohen–Macaulay.

Proof. Let I be generated byr forms of degreed . Then the Hilbert series ofR/I is

HSR/I (z) =
∣∣∣∣ (1− zd)r

(1− z)2

∣∣∣∣.
A direct computation shows that HFR/I (n) = n + 1 for n = 0, . . . , d − 1, and fori � 0

HFR/I (d + i) =
{

d − (r − 1)(i + 1), if d − (r − 1)(i + 1) � 0,

0, otherwise.

Therefore

∆H = [1,1, . . . ,1,−r + 1,−r + 1, . . . ,−r + 1,−c],
where 1 is repeatedd − 1 times,−r + 1 is repeated[d/(r − 1)] times, where[d/(r − 1)]
denotes the largest integer smaller or equal tod/(r − 1), and 0� c < r − 1. Hence the
corresponding lex-segment idealL have r generators in degreed , r − 1 generators in
degreed + j for j = 1, . . . , d +[d/(r −1)]−1 andc generators in degreed +[d/(r −1)].
Thus, by Proposition 4.8, grL(R) is Cohen–Macaulay. �

6. Rees algebras of lex-segment ideals

In this section we study the Rees algebras of lex-segment ideals. For an idealI in a
ring R, the Rees algebraR(I) is defined to be theR-graded algebra

⊕
n�0 In. It can be

identified with theR-subalgebra,R[I t] of R[t] generated byI t , wheret is an indetermi-
nate overR.

Let I = (xd, xd−1ya1, . . . , yad ) be a lex-segment ideal inR = k[x, y]. Consider the
epimorphism ofR-graded algebras

ψ :R[T0, . . . , Td ] −→R(I)

defined by settingψ(Ti) = xd−iyai t and letH = kerψ be the ideal of the presentatio
of R(I). The goal of this section is to describe explicitly a Gröbner basis ofH , for some
of the classes of lex-segment ideals we have considered. We begin by describing
binomials which are not in kerψ .

Lemma 6.1. Let a, b, c, f, g be integers bigger than or equal to0. The idealH does not
contain non-zero elements of the following forms:

T a
i T b

i+1 − ycT
f
j T

g

j+1 with 1 � i, j � d − 1,

yaT bT c − yf T
g with 0 � i, j � d − 1,
i i+1 j
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T a
0 T b

d T l
j − ycT

f
0 T

g
d T h

k with 1 � j �= k � d − 1,0� l, h � 1.

Proof. Suppose thatmi − mj = T a
i T b

i+1 − ycT
f
j T

g
j+1 is in H ; then ψ(T a

i T b
i+1) =

ψ(ycT
f
j T

g

j+1), and by comparing the degrees respectively oft, x one has

{
a + b = f + g,

a(d − i) + b(d − i − 1) = f (d − j) + g(d − j − 1).
(6)

Sincea+b = f +g, ad +bd = f d +gd and thus from(6), it follows thatai+bi+b =
fj + gj + g. Thereforeg − b = (f + g)(i − j).

If i > j , then, sincef + g > 0, g − b > 0. Again from(6), we get thatg − b � f + g,
i.e.,−b � f . Therefore, the only possibility is thatf = b = 0 and hencei = j + 1. This
implies thata = g andc = 0. Hencemi = mj .

If i < j , then one concludes in the same way as before, since one hasb − g = (a + b)×
(j − i).

If i = j , then by(6) one hasb = g, and thereforea = f andc = 0. Again we have
mi = mj .

Identical arguments will show that a non-zero equation of the formyaT b
i T c

i+1 − yf T
g
j ,

with 0 � i, j � d − 1, is not inH .
Suppose now that an element of the formmj − mk = T a

0 T b
d T l

j − ycT
f
0 T

g
d T h

k is in H .
By a degree comparison this implies




a + b + l = f + g + h,

ad + l(d − j) = df + h(d − k),

bad + laj = c + gad + hak.

We distinguish different cases.
If l = h = 0, then one hasa = f , b = g, andc = 0. Thusmj = mk .
If l = 0 andh = 1, then it follows thatad = f d + d − k, that is,(a −f )d = d − k. This

is a contradiction sinced cannot divided − k. If l = 1 andh = 0, one concludes as in th
previous case thatmj = mk.

If l = h = 1, thenad + d − j = f d + d − k, that is,(a −f )d = j − k. This implies that
d dividesj − k and this is a contradiction, since 1� j �= k � d − 1. �

In the following two propositions, we describe explicitly a Gröbner basis for the pr
sentation ideal of Rees algebras of lex-segment ideals with increasing and decreasin
differences sequence, already considered in Example 2.11.

Proposition 6.2. Let I be a lex-segment ideal inR. Suppose that its differences seque
is such thatbi � bi+1 for i = 1, . . . , d − 1. Then the set of elements

{
xTi − ybi Ti−1, i = 1, . . . , d,

T T − ybi−bj T T , i, j ∈ {1, . . . , d}, d � i > j � 1

}

i j−1 i−1 j
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form a Gröbner basis ofH with respect to any term order such that the initial term of a
of the elements above is the term on the left side. Also, the Rees algebraR(L) is normal.

Proof. Let Q be the ideal generated byxTi, i = 1, . . . , d , andTiTj−1, i > j � 1. Since
the binomial relations form a universal Gröbner basis ofH , to prove thatQ = in(H) it
suffices to prove that there are no relations inH involving only monomials which are no
in Q. Note that such monomials are of the formxaT b

0 , yaT b
i T c

i+1, yaT b
i for somea, b, c.

Sinceψ(xaT b
0 ) involves onlyx, it cannot be the term of an element inH . Moreover, if

yaT b
i − ycT e

j is in H , then it is easy to see thatb = e and i = j . From Lemma 6.1 it
follows that the given relations are a Gröbner basis ofH . Note that the initial terms of th
elements of the Gröbner basis are square-free, thus by [St, 13.15] the Rees algebrR(L)

is normal. �
Proposition 6.3. Let L be a lex-segment ideal inR. Suppose that its differences seque
is such thatbi � bi+1 for i = 1, . . . , d − 1. Then the set of elements

{
xTi − ybi Ti−1, i = 1, . . . , d,

TiTj−1 − ybi−bj Ti−1Tj , i, j ∈ {1, . . . , d}, 1 � i < j � d

}

form a Gröbner basis ofH with respect to any term order such that the initial term of a
of the elements above is the term on the left.

Proof. Let Q be the ideal generated byxTi, i = 1, . . . , d , andTiTj−1, 1 � i < j � d . In
particular,T 2

i ∈ Q for i = 1, . . . , d − 1. Thus the monomials which are not inQ are the
ones of the formxaT b

0 , yaT b
0 T c

d T e
j , with 0 < j < d , 0� e � 1, and somea, b, c. Using

Proposition 6.1 and arguing as in Proposition 6.2, one concludes thatQ = in(H). �
It is easy to see that in general a lex-segment idealL as in the proposition above is n

integrally closed, thusR(L) is not normal.
In the following theorem, we obtain the Gröbner basis for the presentation ideal

Rees algebra of another sub-class of generic lex-segment ideal and then use it to p
another class of normal Rees algebras.

Theorem 6.4. Let L be a generic lex-segment ideal inR such thatc = p1 = 0. Then the
set of elements




xTi − ybi Ti−1, i = 1, . . . , d,

TiTj − yαT0Ti+j , 1� i � j < d, 1 � i + j � d andα = ai + aj − ai+j ,

TiTj − yβTi+j−dTd , 1 � i � j < d, d < i + j andβ = ai + aj − (ai+j−d + ad)




form a Gröbner basis forH with respect to any term order such that the initial term
any of the elements in the above set is the term on the left. Also, the Rees algebraR(L) is
normal.
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Proof. Sincec = p1 = 0, it follows from Theorem 5.5 thatL2 = JL for J = (xd, yad ).
Let B denote the set of elements given in the statement of the theorem. We first sho
B is a Gröbner basis forH .

Let Q be the ideal generated byxTi, i = 1, . . . , d andTiTj , 1 � i � j < d . The mono-
mials which are not inQ are of the formxaybT c

0 , yaT b
0 T c

d T e
j , yaT b

i with 0 < j < d, 0 �
i � d and some non-negative integersa, b, c, e. Then, as in the proof of Proposition 6.2,
can easily be seen that in(H) = Q and henceB is a Gröbner basis forH .

Now we prove thatR(I) is normal. SinceR(I) is a semi-group ring, it is enough
prove that for any three monomialsf,g,h ∈ R(I), if for some integerp, f p = gph, then
h = h

p

1 for some monomialh1 ∈ R(I) (see [BH, 6.1.4]). LetS = R[T0, . . . , Td ]. Then
R(I) ∼= S/H . SinceB is a Gröbner basis forH and in(H) = Q, the set

Q′ =



xaybT c
0 , a, b, c � 0,

yaT b
0 T c

d T e
j , 0 < j < d; a, b, c, e � 0,

yaT b
i , a, b � 0; 0 � i � d




form a monomial basis forS/H . Note that any monomial inS/H will be a power of either
of the above forms. Letf,g,h ∈ S/H be monomials such that

f p = gph for somep � 0. (7)

Let f = xaybT c
0 for some integersa, b, c. Then, from (7) and comparing thex and

y degrees ofψ(f ),ψ(g) andψ(h), we can conclude that bothg andh can not contain
Tj for j �= 0. Write g = xa1yb1T

c1
0 . From(7), it follows thata1 � a, b1 � b andc1 � c.

Therefore,h = (xa−a1yb−b1T
c−c1
0 )p. Henceh = h

p
1 , for h1 = xa−a1yb−b1T

c−c1
0 .

Now assume thatf = yaT b
0 T c

d T e
j for some 0< j < d and non-negative intege

a, b, c, e. If g = xa1yb1T
c1
0 . Then comparing thex-degrees, we get thata1 = 0. There-

foreg = yb1T
c1
0 , such thatb1 � a andc1 � b. Thereforeh = (ya−b1T

b−c1
0 T c

d T e
j )p . Hence

h = h
p

1 for h1 = ya−b1T
b−c1
0 T c

d T e
j . Supposeg = ya1T

b1
0 T

c1
d T

e1
i for somei. Then again

from (7), it follows thati = j andh = h
p

1 for h1 = ya−a1T
b1
0 T

c1
d T

e−e1
j .

Let f = yaT b
i for somea, b � 0 and 0� i � d . Then it is obvious from (7) thatg and

h have to be of the same form. Thus, as in the previous cases, we conclude thath = h
p

1 for
someh1.

ThereforeS/H is normal and henceR(L) is normal. �
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