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Abstract

Let I be the defining ideal of a smooth complete intersection space curveC with defining
equations of degreesa and b. We use the partial elimination ideals introduced by Mark Green
to show that the lexicographic generic initial ideal ofI has Castelnuovo–Mumford regularity
1 + ab(a − 1)(b − 1)/2 with the exception of the casea = b = 2, where the regularity is 4.
Note thatab(a − 1)(b − 1)/2 is exactly the number of singular points of a general projection ofC
to the plane. Additionally, we show that for any term orderingτ , thegeneric initial ideal of a generic
set of points inPr is aτ -segment ideal.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Let S= k[x0, . . . , xr ] wherek is an algebraically closed field of characteristic zero and
let τ be a term ordering onS. Let I ⊂ S be a homogeneous ideal. There is a monomial
ideal canonically associated withI , its generic initial ideal with respect toτ , denoted by
ginτ (I ), or simply ginτ I . In this paper we study lexicographic generic initial ideals of
curves and points via Green’s partial elimination ideals.
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For a smooth complete intersection curveC in P3, we show that the complexity of
its lexicographic generic initial ideal, as measured by Castelnuovo–Mumford regularity, is
governed by the geometry of a generic projection ofC to P2.

Theorem 1.1. Let C be a smooth complete intersection of hypersurfaces of degrees a, b >

1 in P3. The regularity of the lexicographic generic initial ideal of C is equal to


1 + a(a−1)b(b−1)
2 if (a, b) �= (2, 2)

4 if (a, b) = (2, 2).

Note that, apart for the exceptional casea = b = 2, the regularity of the lexicographic
generic initial ideal is 1+ the number of nodes of the generic projection ofC to P2.

The statement ofTheorem 1.1generalizes Example 6.10 inGreen(1998) which treats the
special case wherea = b = 3.

Macaulay’s characterization of Hilbert functions, see for instance Theorem 4.2.10 in
Bruns and Herzog(1993), implies that any idealJ is generated in degrees bounded by
the largest degree of a generator of the corresponding lex-segment Lex(J). Much more
is true—Bigatti (1993), Hulett (1993) and Pardue (1996) showed the Betti numbers of
J are bounded by those of Lex(J). Let I be the ideal ofC in Theorem 1.1. For such
an ideal I one can compute the largest degree of a generator of Lex(I ). This has been
done, for instance, by Bayer in his Ph.D. thesis (Proposition in II.10.4,Bayer, 1982) and
by Chardin and Moreno-Socías(2002), and it turns out to bea(a−1)b(b−1)

2 + ab. So the
lexicographic generic initial ideal inTheorem 1.1is not equal to the lex-segment ideal but
nearly achieves the worst-case regularity for its Hilbert function. Moreover, as shown in
Bermejo and Lejeune-Jalabert(1999), the extremal bound can only be achieved ifC lies
in a plane.

Wealso study the generic initial ideals of finite sets of points. Surprisingly, whenX is a
set of generic points its generic initial ideal is aninitial segment.

Theorem 1.2. Let I be the ideal of s generic points ofPn. Thenginτ I is equal to the
τ -segment idealSegτ (I ) for all term ordersτ . In particular,ginlex I is a lex-segment ideal.

The genericity required inTheorem 1.2is quite explicit: the conclusion holds for a set
X of s points if there is a system of coordinates such that the defining ideal ofX does not
contain non-zero forms supported on≤ s monomials. A special case of the result when
τ = revlex is proved inMarinari and Ramella(1999).

For an introduction to generic initial ideals see Section 15.9 inEisenbud(1995). Here
we just recall:

Theorem 1.3 (Galligo, Bayer–Stillman). Given a homogeneous ideal I and a term
orderingτ on the monomials of S, there exists a dense open subset U⊆ GLr+1(k) such
thatginτ I := inτ (g · I ) is constant over all g∈ U andginτ I is Borel-fixed.

Recall also that, in characteristic 0, an idealJ is Borel-fixed if it is monomial and
satisfies:

if m is a monomial, xi m ∈ J =⇒ x j m ∈ J, ∀ j ≤ i .
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From this property one easily shows that the regularity of a Borel-fixed idealJ is
the maximum degree of a minimal generator. A minimal resolution of such an ideal was
constructed inEliahou and Kervaire(1990).

As τ variesover all term orderings, both the regularity and the minimal number of
generators of ginτ I may vary greatly. The generic initial ideals with respect to the reverse
lexicographic (revlex) term ordering have the minimum level of complexity possible.

Theorem 1.4 (Bayer and Stillman, 1987). If I is a homogeneous ideal of S, and J =
ginrevlex I then

regI = regJ = max degree of a minimal generator of J.

The paper is organized as follows. InSection 2, we set upnotation and review
terminology. We introduce partial elimination ideals, their basic properties, and algorithms
for their computation inSection 3. We focus on the case of complete intersection curves in
Section 4and on the case of points inSection 5.

2. Notation and terminology

Let S = k[x0, . . . , xr ] wherek is an algebraically closed field of characteristic zero.
Denote bym the irrelevant maximal ideal ofS. For anelementα = (α0, . . . , αr ) ∈ Nr+1

we let xα denotexα0
0 · · · xαr

r . In this section we briefly recall notions related to term
orderings and Castelnuovo–Mumford regularity. For a comprehensive introduction to
general notions related to Gröbner bases seeCox et al.(1997) andKreuzer and Robbiano
(2000).

Definition 2.1. We say that a total orderingτ on the monomials ofS is a term ordering if
it is a well-ordering satisfying

xα >τ xβ ⇒ xγ · xα >τ xγ · xβ ∀, γ ∈ Nr+1.

A term orderingτ on S allows us to assign to each non-zero elementf ∈ S an initial
term inτ ( f ) and to any idealI an initial ideal inτ (I ).

In what follows we will work exclusively with homogeneous ideals and we will always
require that the term ordering is degree compatible:m > n if deg(m) > deg(n).

The lexicographic and (degree)reverse lexicographic term orderings feature
prominently in the literature. Ifxα andxβ are two monomials of the same degree, then
xα >lex xβ if the left-most non-zero entry ofα − β is positive andxα >revlex xβ if the
right-most non-zero entry ofα − β is negative.

Although our primary motivation for studying partial elimination ideals is to understand
lexicographic initial ideals, partial elimination ideals also provide a mechanism for
studying initial ideals with respect to anyeliminationorder.

Definition 2.2. An elimination orderfor the first t variables ofS is a term orderτ such
that if f is a polynomial whose initial term inτ ( f ) does not involve variablesx0, . . . , xt−1,

then f itself does not involve variablesx0, . . . , xt−1.
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As we shall see inProposition 3.4, one may use an elimination order for the variablex0
to compute partial elimination ideals. Ifτ is an elimination order forx0, then it is equivalent
to a (1, r ) product orderwhich first sorts monomials by powers ofx0 and then sorts the
remaining variables by an arbitrary term orderingτ0.

We will use the notion ofCastelnuovo–Mumford regularityas a rough measure of the
complexity of our computations.

Definition 2.3. Let M be a finitely generated gradedS-module, and let

0 → ⊕ j S(−al j ) → · · · ⊕ j S(−a1 j ) → ⊕ j S(−a0 j ) → M → 0

be a minimal graded free resolution ofM. We say thatM is d-regular if ai j ≤ d + i for all
i and j , and that theregularityof M, denoted regM, is the leastd suchthatM is d-regular.

One may also formulate the definition of regularity in terms of vanishings of local
cohomology with respect tom. The vanishing of the zeroth local cohomology group is
related to the notion ofsaturationwhich plays an important role in the study of regularity.

Definition 2.4. Let I ⊆ S be a homogeneous ideal. Thesaturationof I , denotedI sat is
defined to beI :S m∞. Note thatId = I sat

d for all d � 0. We say thatI is d-saturated if
I agrees with its saturation in degreesd and higher. The minimum degree for whichI is
d-saturated is thesaturation degree(also thesatiety indexin Green(1998)) of I .

3. Partial elimination ideals

Let S = k[x0, . . . , xr ], and letS = k[x1, . . . , xr ]. Let τ be an arbitrary elimination
order onS that eliminates the variablex0 and hence induces a term order, denoted byτ0,
on S. In this section we set up the theory of partial elimination ideals over a polynomial
ring in r + 1 variables as introduced inGreen(1998). Much of the material inSections 3.1
and3.2appears either explicitly or implicitly inGreen(1998), but we give proofs here both
to keep the presentation self-contained and to present a more algebraic point of view.

We represent any non-zero polynomialf in S as

f = f0x p
0 + f1x p−1

0 + · · · + f p

with fi ∈ S and f0 �= 0. The polynomialf0 is called the initial coefficient off with
respect tox0 and is denoted by incoefx0( f ). The integerp is called thex0-degree off and
is denoted by degx0

( f ).

3.1. Definitions and basic facts

In this section we define the partial elimination ideals and describe their basic algebraic
and geometric properties. We begin with the definition:

Definition 3.1 (Definition 6.1 inGreen(1998)). Let I be a homogeneous ideal inS. The
p-thpartial elimination idealof I is defined to be the ideal

K p(I ) := {incoef( f ) | f ∈ I and degx0
f = p} ∪ {0}
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in the polynomial ringS = k[x1, . . . , xr ].
It is easy to see that ifI is homogeneous thenK p(I ) is alsohomogeneous.
In Lemma 3.2we gather together some elementary algebraic facts about the partial

elimination ideals. We leave the proof to the reader. The decomposition of inτ I given in
part (1) is one of the motivations for the definition.

Lemma 3.2. Let I be ahomogeneous ideal.

(1) inτ I = ∑
p x p

0 inτ0 K p(I ).
(2) Taking Kp commutes with taking initial ideals: Kp(inτ I ) = inτ0 K p(I ).
(3) The partial elimination ideals are an ascending chain of ideals, i.e., Ki (I ) ⊆ Ki+1(I )

for all i .

One expects that if I is in generic coordinates, then the partial elimination idealsK p(I )
are already in generic coordinates.Proposition 3.3shows that this is indeed the case.

Proposition 3.3. Let I ⊂ S be ahomogeneous ideal. If I is in generic coordinates then
inτ0 K p(I ) = ginτ0

K p(I ).

Proof. Let GLr (k) act onS in the usual way and extend this to an action onS in the trivial
fashion by letting elements of GLr (k) fix x0.

We know that the idealI determines a dense open subsetU ⊂ GLr+1(k) with the
property thatg ∈ U implies that inτ (gI ) = ginτ I . We show that for eachg ∈ U there is a
dense open subsetU ′ ⊂ GLr (k) so that for allh ∈ U ′

(1) ginτ0
(K p(gI )) = inτ0(hKp(gI ))

(2) hg is again a generic change of coordinates forI .

Consider the space GLr (k) × GLr+1(k) with projection mapsπ1 andπ2 onto the first and
second factors, respectively. The map

φ : GLr (k) × GLr+1(k) → GLr+1(k)

given byφ(h, g) = hg is regular. The inverse image ofU under the mapφ is a denseopen
subset of GLr (k) × GLr+1(k). For eachg ∈ U the setW := π1(π

−1
2 (g) ∩ φ−1(U)) is

a denseopen subset of GLr (k). The elementg determines a dense open setV ⊂ GLr (k)

suchthath ∈ V satisfies (2), i.e., eachh ∈ V is a set ofgeneric coordinates forK p(gI ).
Then anyh ∈ U ′ := W ∩ V has the property thathg is a set ofgeneric coordinates forI .

For h and g chosen as above, we havehKp(gI ) = K p(hgI). Thus, ginτ0
(K p(gI ))

= inτ0 K p(hgI). By Lemma 3.2(2), inτ0 K p(I ) = K p(inτ I ), which implies that
ginτ0

(K p(gI )) = K p inτ (hgI).
Sincehg is again generic, ginτ I = inτ gI = inτ hgI. So we have ginτ0

(K p(gI )) =
K p(inτ gI ). UsingLemma 3.2(2) again, we obtain ginτ0

(K p(gI )) = inτ0 K p(gI ) and this
proves the assertion.�

The partial elimination ideals of an arbitrary homogeneous idealI can be recovered in
an easy way from a Gröbner basis forI . In practice one may want to take a(1, r ) product
order with the reverse lexicographic ordering on the lastr variables in order tominimize
computations.



1028 A. Conca, J. Sidman / Journal of Symbolic Computation 40 (2005) 1023–1038

Proposition 3.4. Let G be a Gröbner basis for I with respect to an elimination ordering
τ . Then the set

Gp = {incoefx0(g) | g ∈ G and degx0
(g) ≤ p}

is a Gröbner basis for Kp(I ).

Proof. Note that if g ∈ I and degx0
(g) = p then incoefx0(g) ∈ K p(I ) by definition.

By Lemma 3.2(3) we have that the elements ofGp are inK p(I ). We will show that their
initial terms generate inτ0 K p(I ). Suppose thatm is a monomial in the ideal inτ0 K p(I ).
This implies that there existsf ∈ I such that inτ ( f ) = mxp

0 and hence there existsg ∈ G
such that inτ (g)| inτ ( f ). Seth = incoefx0(g). It follows that degx0

g ≤ p, so thath ∈ Gp,
and inτ0 h|m. �

By part (3) of Lemma 3.2we know that the subscheme cut out by thep-th partial
elimination ideal is contained in the subscheme defined by the(p−1)-th partial elimination
ideal. The following result gives the precise relationship between the partial elimination
ideals and the geometry of the projection map fromPr to Pr−1.

Theorem 3.5 (Proposition 6.2 inGreen(1998)). Let Z be a reduced subscheme ofPr not
containing[1 : 0 : · · · : 0] and let I = I (Z) be the homogeneous ideal of Z. Let

π : Pr → Pr−1

be the projection from the point[1 : 0 : · · · : 0]. Set-theoretically, Kp(I ) is the ideal of

{z ∈ π(Z) | |π−1(z)| > p},
where|π−1(z)| denotes the length of the scheme-theoretic fiber above p.

Proof. We prove the theorem by reducing to the affine case. We begin by introducing
somenotation. If J ⊆ S is ahomogeneous ideal, letJ(xi ) denote its dehomogenization in
k[ x0

xi
,

x1
xi

, . . . , xr
xi

].
To show thatK p(I ) cuts out the(p + 1)-fold points set-theoretically it suffices to show

that K p(I )(xi ) cuts out the(p + 1)-fold points in each of the standard affine open patches
of Pr−1 for i = 1, . . . , r. If we consider the idealI(xi ) ⊆ k[ x0

xi
,

x1
xi

, . . . , xr
xi

] with the term
ordering induced byτ in the natural way on the monomials inx0

xi
, x1

xi
, . . . , xr

xi
, then by

Lemma 4.8.3 inHaiman(2001), K p(I(xi )) is set-theoretically the ideal of the(p + 1)-fold
points lying in this affine patch.

It remains for us toshow that for anyi = 1, . . . , r,

K p(I )(xi ) = K p(I(xi )).

It is clear thatK p(I )(xi ) ⊆ K p(I(xi )). For the opposite inclusion, note thatx0
xi

appears in
the dehomogenization of a monomialm precisely as many times asx0 appears inm, and
apply the definitions. �

In the situation ofTheorem 3.5, wecan see thatK0(I ) is in fact radical. The idealK0(I )
is just equal toI ∩ S. On theother hand, the higherK p(I ) need not be radical even ifI is
a prime complete intersection of codimension 2in generic coordinates; seeExample 4.3.
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3.2. Partial elimination ideals for codimension2 complete intersection

Let

f = xa
0 + f1xa−1

0 + · · · + fa−1x0 + fa

and

g = xb
0 + g1xb−1

0 + · · · + gb−1x0 + gb

where f1, . . . , fa andg1, . . . , ga are indeterminates.
We wish to describe the partial elimination ideals of the idealIa,b generated byf and

g in S = k[x0, . . . , xr ] after specializing thefi and thegi to homogeneous elements of
S = k[x1, . . . , xr ] of degreei .

As we saw inSection 3.1, the partial elimination ideals of an arbitrary homogeneous
ideal I can be recovered from a Gröbner basis forI and, vice versa, give information on
that Gröbner basis. In this section we discuss a result of Eisenbud and Green showing that
K p(Ia,b) is generated by the minors of a truncation of the Sylvester matrix as long as the
forms f andg are generic enough. BothTheorem 3.6andLemma 3.7are well-known to
experts, but we give proofs for completeness.

Theorem 3.6 (Proposition 6.8(3) in Green(1998)). Assume that the fi and the gj are
independent indeterminates and that p< a ≤ b. Let

R = k[ f1, . . . , fa, g1, . . . , gb, x0],
where k is anarbitrary field. DefineSylp( f, g) to be the matrix consisting of thefirst
a + b − p rows of the Sylvester matrix of f and g, i.e.

Sylp( f, g) =




1 0 0 1 0 0
f1 1 0 g1 1 0
...

...
. . .

...
...

...
. . .

...

fa fa−1
. . . 1

. . . 1

0 fa
. . .

... 0 gb
. . .

...
...

...
. . . fa−p−1

...
...

. . . gb−p−1
0 0 fa−p 0 0 gb−p




.

Then the ideal Kp( f, g) ⊂ R is generated by the maximal minors of the matrix
Sylp( f, g).

Proof. Let R≤t denote the vector space of polynomials inR with degx0 ≤ t . To compute
K p( f, g) we want to find allA, B ∈ R suchthat

A f + Bg = c0x p
0 + c1x p−1

0 + · · · + cp−1x0 + cp. (1)

with ci ∈ k[ f1, . . . , fa, g1, . . . , gb]. Note that it suffices to find allA, B satisfying the
Eq. (1) wheredegx0 A ≤ b − 1 anddegx0 B ≤ a − 1.
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The matrix Sylp( f, g) gives alinear map

R≤b−1 ⊕ R≤a−1 → R≤a+b−1/(1, x0, . . . , x p−1
0 ).

The kernel of Sylp+1( f, g) consists of the set of all(A, B) ∈ R≤b−1 ⊕ R≤a−1 that satisfy
Eq. (1). The image of ker Sylp+1( f, g) under Sylp( f, g) is exactly the set

{c0x p
0 | c0x p

0 + c1x p−1
0 + · · · + cp−1x0 + cp ∈ ( f, g)}.

We will show that the maximal minors of Sylp( f, g) generate the image of
ker Sylp+1( f, g) under the map Sylp( f, g) as long as Sylp+1( f, g) drops rank in the
expected codimension. The proof that Sylp+1( f, g) does indeed drop rank in codimension
p + 2 will be given inLemma 3.7.

If Syl p+1( f, g) drops rank in the expected codimension, then sinceR is Cohen–
Macaulay we conclude that the Buchsbaum–Rim complex resolves the cokernel of
Sylp+1( f, g). (SeeEisenbud(1995) A2.6 for details.)

Using the Buchsbaum–Rim complex we can give explicit formulas for elements of
ker Sylp+1( f, g) indexed byT ⊆ {1, . . . , a + b} with |T | = a + b − p. Define
Sylp+1( f, g)T to be the(a + b − p − 1) × (a + b − p) matrix consisting of all of the
columns of Sylp+1( f, g) indexed by elements ofT. DefineWT to be the vector of length
a + b whosei -th entry is 0 if i /∈ T and sign(i ) det Sylp+1( f, g)T−{i } if i ∈ T where
sign(i ) = 1 if the number of elements ofT less thani is even, and−1 if the number of
elements ofT less thani is odd. The Buchsbaum–Rim complex is a resolution precisely
when the vectorsWT generate the kernel of Sylp+1( f, g).

Finally, we apply Sylp( f, g) to the elementsWT constructed above. The dot product
of WT with each of the firsta + b − p − 1 rows of Sylp( f, g) is zero sinceWT is in the
kernel of Sylp+1( f, g). The dot product ofWT with the last row is just the expansion of
the maximalminor of Sylp( f, g) corresponding to the columns indexed byT by this final
row. Therefore,

Sylp( f, g) · WT = det Sylp( f, g)T x p
0 . �

Lemma 3.7. If f i and gj are independent indeterminates and p< a ≤ b the matrix
Sylp( f, g) drops rank in the expected codimension p+ 1.

Proof. We will show that the set where Sylp( f, g) fails to have maximal rank, that is,
where dimk ker Sylp( f, g) ≥ p + 1, has codimensionp + 1 in the space of all f and
g where the fi and gi take values ink. The result follows if we can show that for any
specialization of the indeterminatesfi andgj to values ink, dimk ker Sylp( f, g) ≥ p + 1
if andonly if f andg have a common factor of degreep + 1.

It is clear that if f and g have a common factor of degreep + 1 then
dimk ker Sylp( f, g) ≥ p + 1, since we can use the(p + 1) common factors to construct
(p + 1) syzygies on f andg with distinct degrees.

To prove the other direction, we will use induction onp. Suppose thatp = 0. Then

dimk ker Syl0( f, g) > 0
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if and only if Res( f, g) = 0. It is well-known (seeCox et al.(1997)) that Res( f, g) = 0 if
and only if f andg have a common factor of degree at least one.

We treat the case wherep > 0. Our assumption implies that we can findp + 1 linearly
independent elements(A0, B0), . . . , (Ap, Bp) of the kernel of Sylp( f, g). Since

A0 f + B0g, . . . , Ap f + Bpg ∈ span(1, . . . , x p−1
0 ),

there is a nontrivial linear relation
∑

λi (Ai f + Bi g) = 0. Hence, f andg must have a
common factor so thatf = (x − α) f ′ andg = (x − α)g′. By induction, we will be done
if we can show that the dimension of

{(A, B) ∈ k[x0]≤b−2 ⊕ k[x0]≤a−2 | Af ′ + Bg′ ∈ span(1, x0, . . . , x p−2
0 )}

is ≥ p. But, we can assume (after reordering and cancelling leading terms) that fori ≥ 1,

degAi ≤ b − 2 anddegBi ≤ a − 2. Consequently, fori ≥ 1,

Ai f ′ + Bi g
′ ∈ span(1, x0, . . . , x p−2

0 ). �

Note that the firstb rows of Sylp( f, g) contain constants. Recall the following fact:

Lemma 3.8 ( pg. 10 inBruns and Vetter(1988)). Suppose that M= (mi, j ) is a p × q
matrix with entries in a commutative ring. If mp,q is a unit, then the ideal generated by
the maximal minors of M is the same as the ideal generated by the maximal minors of the
(p − 1) × (q − 1) matrix N with entries

ni, j = mi, j − mp, j mi,qm−1
p,q 1 ≤ i ≤ p − 1, 1 ≤ j ≤ q − 1.

We have the following:

Corollary 3.9 (See the Remark Following Proposition 6.9 inGreen(1998)). Let a ≤ b
and assume that the fi and gi are sufficiently general homogeneous polynomials of degree
i in variables x1, . . . , xr . Assume also that p< a.

(1) The ideal of maximal minors ofSylp( f, g) is always contained in Kp( f, g). It has the
expected codimension, p+ 1, if p ≤ r − 1.

(2) Assume p≤ r − 2. Then we have:
(a) K p( f, g) is equal to the ideal of maximal minors ofSylp( f, g).
(b) K p( f, g) is also the ideal generated by the maximal minors of a matrix of size

(a − p) × a whose(i , j )-th entryis either0 or has degree b+ i − j .
(c) regK p( f, g) = ab+ (a−p+1

2

) − (a+1
2

) + p(a − p − 1).

Proof. Let R = k[ f1, . . . , fa, g1, . . . , gb, x0] where the fi andgj are indeterminates as
in Theorem 3.6. Generators forK p( f, g) as an ideal inR also generate thep-th partial
elimination ideal of the ideal generated byf andg in the ringR⊗kk[x1, . . . , xr ], which we
will denote byK p( f, g)⊗k[x1, . . . , xr ]. An elementary argument shows that ifp+1 ≤ r,
then for sufficiently general formsfi , gj ∈ k[x1, . . . , xr ], the specialization of the matrix
Sylp( f, g) still drops rank in the expected codimension.

Thus, (1) and (2, a) follow from the proof ofTheorem 3.6and fromLemma 3.7. Part
(b) of (2) follows from (2, a) and from iterated use ofLemma 3.8. Finally (2, c) follows
from (2, b) and fromLemma 3.11. �
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Remark 3.10. The above corollary is sharp in the sense that, in general,Kr−1( f, g) strictly
contains the ideal of maximal minors of Sylr−1( f, g). For instance, one can check with
CoCoA that this happens ifr = 3 anda = b = 4.

Lemma 3.11. Let X = (hi j ) be an m× n matrix of forms with m ≤ n. Assume a1, . . . , am

and b1, . . . , bn are integers such thatdeg(hi j ) = ai + bj > 0 whenever hi j �= 0. Assume
that the ideal Im of maximal minors of X has the expected codimension n− m + 1. Then

regIm =
∑

i

ai +
∑

j

bj + (max(ai ) − 1)(n − m).

Proof. The Eagon–Northcott complex gives a resolution ofIm which is minimal since the
entries of the matrices in the resolution are (up to sign) the entries ofX and 0. Keeping
track of the shiftsone obtains the formula above. The same formula can be derived from the
result (Bruns and Herzog, 1992, Corollary 1.5). Another formula for the regularity appears
in Budur et al.(2004). �

In particular we have:

Corollary 3.12. Let I be the ideal of a smooth complete intersection C inP3 defined by
two forms f and g of degrees a, b > 1. Assume that I is in generic coordinates. We have:

(a) K1( f, g) is equal to the ideal of maximal minors ofSyl1( f, g) and has codimension2
in k[x1, x2, x3].

(b) K2( f, g) contains the ideal of maximal minors ofSyl2( f, g) and both ideals have
codimension3 in k[x1, x2, x3].

Proof. We will use a geometric argument to show that iff and g are in sufficiently
general coordinates, then Syl1( f, g) has codimension 2 and Syl2( f, g) has codimension 3
in k[x1, x2, x3]. Sincethese codimensions are the expected values for those determinantal
ideals, the conclusion will follow byCorollary 3.9.

Recall the classical fact that a generic projection of a smooth irreducible curve inP3

has only nodes as singularities. (See Theorem IV.3.10 inHartshorne(1977).) It follows
that after a generic change of coordinates, the image of the projection from the point
[1 : 0 : 0 : 0] will have only nodes as singularities. As a consequence, we see that for each
point q ∈ P2, the fiber of the projection of the curveC will contain at most two points,
and the set ofq with π−1(q) = 2 is finite. In other words, deg gcd( f (x0, q), g(x0, q)) ≤ 2
and equality holds for only finitely manyq. From the proof of Lemma 3.7, we can see
Sylp( f, g) drops rank atq if and only if f (x0, q) andg(x0, q) have a common factor of
degree≥ p + 1. Therefore, we see that Syl1( f, g) drops rank at a finite set of points and
and Syl2( f, g) does not drop rank at any point inP2. �

4. The lexicographic gin of a complete intersection curve in P3

Let Ia,b be a codimension 2 complete intersection ideal in the polynomial ringS =
k[x0, x1, x2, x3] defined by two forms of degreesa, b > 1. Let C = V(Ia,b) be the curve
in P3 defined byIa,b. We will assume thatC is smooth and in generic coordinates. In other
words, we assume thatIa,b is prime, that the singular locus ofS/Ia,b consists solely of the
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homogeneous maximal ideal and thatIa,b is in generic coordinates. We have thatC has
degreeab and genusab(a + b − 4)/2 + 1. FromTheorem 3.5we know thatK0(Ia,b) is
the radical ideal of the projectionπ : C → P2 from the point[1 : 0 : 0 : 0]. SinceC is in
generic coordinates by assumption, the projectionπ is generic.Proposition 4.1describes
additional numerical data associated withπ(C).

Proposition 4.1. The ideal K0(Ia,b) is generated by asingle polynomial of degree ab. It
cuts out a degree ab curve with ab(a − 1)(b − 1)/2 nodes.

Proof. We already know thatK0(Ia,b) is the radical ideal ofπ(C) which hasdegreeab.
So it remains to show thatπ(C) hasab(a − 1)(b − 1)/2 nodes.

Since a general projection of any space curve has only nodes as singularities, we have
thatπ(C) is a plane curve with only nodes as singularities. SinceC is the normalization of
π(C) andC has genusab(a + b − 4)/2 + 1, π(C) has

(ab− 1)(ab− 2)

2
−

(
ab(a + b − 4)

2
+ 1

)
= a(a − 1)b(b − 1)

2

nodes (see Remark 3.11.1 inHartshorne(1977)). �

Already, we can begin to describe thegenerators of ginlex Ia,b:

Corollary 4.2. The idealginlex Ia,b contains xab
1 and this is the only generator that is not

divisible by x0.

Proof. The generators of ginlex Ia,b are elements ofx p
0 ginlex K p(Ia,b) for various p. So

clearly, the generators of ginlex K0(Ia,b) are the only generators of ginlex Ia,b not containing
a factor of x0. But K0(Ia,b) is principal,generated by a form of degreeab in generic
coordinates. The leading term of such a form isxab

1 . �
We are ready to prove the main result of the paper:

Proof (Theorem 1.1). Set I = Ia,b, K p = K p(I ). By virtue of Lemma 3.2and since
xa

0 ∈ ginlex I we have

ginlex I =
a∑

p=0

x p
0 ginlex K p.

FromProposition 4.1we know that ginlex K0 = (xab
1 ). Theproof consists of three steps.

First, we compute the regularity of ginlex K1 explicitly. Then we show that the regularity of
ginlex K p − p ≤ 1+ regginlex K1 for 2 ≤ p ≤ a−1. Finally, we will show that ginlex I ac-
tually requires a generator of degree12a(a−1)b(b−1)+1, which will complete the proof.

By Corollary 3.12we have thatK1 is the ideal of maximal minors of a matrix of size
(a − 1) × a whosei j entry has degreeb + i − j . The resolution of K1 is given by the
Hilbert–Burch complex. It is then easy to determine the degree ofK1 from the numerical
data of the resolution. We obtain thatK1 is unmixed and of degree12a(a − 1)b(b − 1).
We alsoknow that the radical ofK1 is the ideal of definition of12a(a − 1)b(b − 1) points.
It follows thatK1 itself is the radical ideal defining12a(a − 1)b(b − 1) points. We can
conclude fromCorollary 5.3that reg ginlex(K1) = 1

2a(a − 1)b(b − 1).
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We now prove that forp > 1, the degrees of the generators ofx p
0 ginlex K p are bounded

above by 1+reg ginlex K1, that is, by 1+ 1
2a(a−1)b(b−1). This will imply that reg ginlex I

is max(ab, 1+ 1
2a(a − 1)b(b − 1)).

From Corollary 3.12(2) we have that the ideal, sayJ, of the maximal minors of
Syl2( f, g) is Artinian (i.e.K [x1, x2, x3]/J is Artinian) and is contained inK2 and thatJ
is contained inK p for p > 1. The regularity ofan Artinian idealD is given by the smallest
k such that thek-th power of the maximal ideal is contained in the idealD and hence does
notchange when passing to the initial ideal. It follows that reg ginlex K p ≤ regJ for every
p > 1. So the generators ofx p

0 ginlex K p are in degrees≤ p + regJ. Taking into consid-
eration thatKa = (1), it is enough to show that regJ ≤ 1

2a(a − 1)b(b − 1) + 1 − p
for all p = 2, . . . , a − 1. So we may assumea > 2 and wehave to show that
regJ ≤ 1

2a(a−1)b(b−1)+2−a. To compute the regularity ofJ we first useLemma 3.8
to get rid of the units in the matrix definingJ and then we useLemma 3.11. We get
reg(J) = ab+ (a−1

2

) − (a+1
2

) + 2(a − 3).
So it remains to show that

ab+
(

a − 1

2

)
−

(
a + 1

2

)
+ 2(a − 3) ≤ 1

2
a(a − 1)b(b − 1) + 2 − a

that is

1/2a2b2 − 1/2a2b − 1/2ab2 − 1/2ab− a + 7 ≥ 0

for all 3 ≤ a ≤ b. This is a simple calculus exercise.
To finish theproof, we will show that ifm is a minimal generator of ginlex K1, of degree

1
2a(a − 1)b(b − 1), thenx0m is a minimal generator of ginlex I . If x0m is not a minimal
generator of ginlex I , then it must be divisible by some monomialn that is a minimal gen-
erator of ginlex I . This implies thatn | x0m and thatn must be in ginlex K0. However, this
means thatn | m andn ∈ ginlex K1 sinceK0 ⊆ K1. This contradicts our choice ofm as a
minimal generator. We conclude thatx0m must be a minimal generator of ginlex I . �

Example 4.3. One can check (using CoCoA, for instance) thatI = (x3 − yz2, y3 − z2t)
defines an irreducible complete intersection curveC with just one singular point and that
K1(gI ) with g a generic change of coordinates is not radical. Indeed,K1(gI ) has degree
18 and it defines only 11 points, namely the 11 singular points of the generic projection of
C to P2. In thiscase, the regularity of ginlex(I ) is 16 andnot 19 as in the smooth case.

5. The regularity of gins of points

SetS= k[x0, . . . , xr ]. We start with the following well-known lemma:

Lemma 5.1. Let I be ahomogeneous ideal of S such that S/I has Krull dimension1 and
deg(S/I ) = e. Set c= min{ j | dim[S/I ]i = e forall i ≥ j }. Thenreg(I ) ≤ max{e, c}.
Proof. Let J be the saturation of I . Then S/J is a one-dimensional CM (Cohen–
Macaulay) algebra. It is well-known and easy to see that reg(J) ≤ deg(S/J) = e and
dim[S/J]i = e for all i ≥ e − 1. Let p denote the saturation degree (satiety index) of
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I , i.e. theleast j suchthat Ii = Ji for all i ≥ j . From the characterization of regularity
in terms of local cohomology it follows immediately that reg(I ) = max{reg(J), p}. To
conclude, it is enough to show thatp ≤ max{e, c}. If p > e then Ii = Ji for all i ≥ p and
I p−1 � Jp−1. Thus, dim[S/I ]i = e for all i ≥ p and dim[S/I ]p−1 > e. Hence p = c and
we are done. �

Corollary 5.2. Let I be ahomogeneous ideal of S such that S/I has Krull dimension1.
Assume that the Hilbert function of I is equal to the Hilbert function of a one-dimensional
CM ideal (e.g. I is an initial ideal of a one-dimensional CM ideal). Thenreg(I ) ≤
deg(S/I ).

Proof. This follows from Lemma 5.1since the assumption implies that dim[S/I ]i =
deg(S/I ) for all i ≥ deg(S/I ) − 1. �

Corollary 5.3. Let I be the ideal of a set X of s points ofPr . Then

reg ginlex I = s.

Proof. By Corollary 5.2 we have reg ginlex I ≤ s. A general projection ofX to P1 will
give s distinct points. This implies thatxs

r−1 is in ginlex I . Since we workwith the lex
order,xs

r−1 is a minimal generator of ginlex I . �

We want to shownow that for a set of generic points the gin lex and indeed any gin has
a very special form: it is a segment ideal. Consider the polynomial ringS = k[x0, . . . , xr ]
equipped with a term orderτ . Assume thatx0 >τ x1 >τ · · · >τ xr .

Definition 5.4. A vector spaceV of forms of degreed is said to be aτ -segmentif it is
generated by monomials and for every monomialm in V and every monomialn of degree
d with n >τ m one hasn ∈ V .

Given anon-negative integeru ≤ (r+d
r

)
there exists exactly oneτ -segment of forms of

degreed and of dimensionu: it is the space generated by theu largest monomials of degree
d with respect toτ and it will be denoted by Segτ (d, u). Given ahomogeneous idealI for
everyd we consider theτ -segment Segτ (d, dim Id) and define

Segτ (I ) = ⊕d Segτ (d, dim Id).

By the very definition, Segτ (I ) is a graded monomial vector space and simple examples
show that Segτ (I ) is not an ideal in general. But there are important exceptions: Macaulay’s
numerical characterization of Hilbert functions (Bruns and Herzog, 1993, Theorem 4.2.10)
can be rephrased by saying that for every homogeneous idealI the space Seglex(I ) is an
ideal. In the following lemma we collect a few simple facts about segments that will be
used in the proofof thatresult.

Lemma 5.5. Let τ be a term order and let V⊂ Sa be aτ -segment with dim Sa/V ≤ a.
Then S1V is aτ -segment with dim Sa+1/V S1 = dim Sa/V .

Proof. First observe that sincexa
r−1 > xa− j

r−1 x j
r for j = 1, . . . , a we have thatxa

r−1 ∈ V
and hence(x0, . . . , xr−1)

a ⊆ V . To prove thatV S1 is a τ -segment assume thatn is
a monomial of degreea + 1 such that xi m < n with m in V ; we have to show that
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n ∈ V S1. Let k be the largest index such thatxk dividesn, so thatn = xkn1. If k ≥ i then
xi n1 ≥ xkn1 > xi m. It follows thatn1 > m and hencen1 ∈ V so thatn ∈ V S1. If, instead,
k < i thenn ∈ (x0, . . . , xr−1)

a+1 which is contained inV S1 since we have seen already
that(x0, . . . , xr−1)

a is contained inV .
To conclude, it is enough to show that the mapφ induced by multiplication byxr is

an isomorphism fromSa/V to Sa+1/V S1. We show first thatφ is injective. If m is a
monomial inSa \ V, thenmxr �∈ V S1. Otherwise,mxr = nxi for somen ∈ V and some
i , and thenm > n, a contradiction. To prove thatφ is surjective, consider a monomialm
in Sa+1 \ V S1. Thenm = xr n since(x0, . . . , xr−1)

a+1 ⊂ V S1. Obviously,n �∈ V . Soφ is
surjective. �

Proposition 5.6. Let I be the ideal defining s points, say P1, . . . , Ps, of Pr . Assume that
there exists a coordinate system x0, x1, . . . , xr such that I does not contain forms of degree
≤ s supported on≤ s monomials. Thenginτ I = Segτ (I ) for all term ordersτ . In
particular ginlex I = Seglex(I ).

Proof. It is easy to see that the assumption implies that the Hilbert function ofS/I is the
expected one, namely dim[S/I ]d = min{s, (r+d

r

)} for all d. Fix a term orderτ . For a given

d ≤ s consider the setMd of the smallest (with respect toτ ) min{s, (r+d
r

)} monomials
of degreed. By assumption these monomials are a basis ofS/I in degreed. It follows
immediately that inτ Id = Segτ (I )d for everyd ≤ s. From Lemma 5.1we know that
inτ I does not have generators in degree≥ s. Then inτ Id = inτ IsSd−s for all d ≥ s.
On the other hand, it follows fromLemma 5.5that Segτ (I )d = Segτ (I )sSd−s for all
d ≥ s. We have seen already that inτ Is = Segτ (I )s. Therefore we may conclude that
inτ Id = Segτ (I )d also for alld ≥ s. We have shown that inτ I = Segτ (I ). From this
it follows that ginτ I = Segτ (I ) (see the construction/definition of gin given inEisenbud
(1995, Theorem 15.18)). �

We can now prove the main result of this section:

Proof (Theorem 1.2). Let P1, . . . , Ps be generic points inPr . Fix a coordinate system
on Pr and let(ai0, ai1, . . . , air ) be the coordinates ofPi . It is enough to show that the
assumption ofProposition 5.6holds (in the given coordinates) for a generic choice of the
ai j . For anyd ≤ s consider thes× (r+d

r

)
matrix Xd whose rows are indexed by the points,

the columns by the monomials of degreed and whosei j -th entry is obtained by evaluating
the j -th monomial at thei -th point. The assumption ofProposition 5.6is equivalent to the
fact that any maximal minor ofXd is non-zero ford ≤ s. If we considertheai j as variables
over some base field then every minor of Xd is a non-zero polynomial in theai j since no
cancellation can occur in the expansion. So these are finitely many non-trivial polynomial
conditions on the coordinates of the points.�

As we have already said, the genericity condition required inTheorem 1.2implies that
the Hilbert function of the idealI of s points ofPr is given is the expected one:

dim[S/I ] j = min

(
s,

(
r + j

r

))
.
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One may wonder whether it is enough to assume that the Hilbert function is generic
to conclude that ginτ I is Segτ (I ) for an ideal of points. The next example answers this
question.

Example 5.7. (a) Consider the idealI of 7 points ofP3 with generic Hilbert function.
The ideal I contains 3 quadrics. If the 3 quadrics have a common linear factor, then
gin(I2) is x0(x0, x1, x2) no matter what the term order is. So in particular, ginrevlex I is
not Segrevlex(I ) in degree 2. Explicitly, one can take the seven points with coordinates
(0, 0, 0, 1), (0, 0, 1, 1), (0, 0, 2, 1), (0, 1, 0, 1), (0, 1, 1, 1), (0, 2, 0, 1), (1, 0, 0, 1).

(b) Consider the 10 points ofP3 with coordinates(a, b, c, 1) wherea, b, c are non-
negative integers witha + b + c ≤ 2 and letI be the corresponding ideal. One can check
with (and even without) the help of a computer algebra system that the 10 points have the
generic Hilbert function and that any generic projection toP2 gives 10 points on a cubic.
This, in turn, implies that ginlex I containsx3

2 while Seglex(I ) does not contain it.

The next example shows that, even for Hilbert functions of generic points inP2, the
segment ideals are special among the Borel-fixed ideals.

Example 5.8. Consider the idealI of seven generic points inP2. The Hilbert function
of S/I is (1, 3, 6, 7, 7, 7, . . .). There are exactly eight Borel-fixedideals with this Hilbert
function, they are:

(1) (x3, x2y, x2z, xy3, xy2z, xyz3, xz5, y7), lex
(2) (x3, x2y, x2z, xy3, xy2z, xyz3, y6), (6, 2, 1)

(3) (x3, x2y, x2z, xy3, xy2z, y5), (4, 2, 1)

(4) (x3, x2y, x2z, xy3, y4),

(5) (x3, x2y, xy2, x2z2, xyz3, xz5, y7),

(6) (x3, x2y, xy2, x2z2, xyz3, y6),

(7) (x3, x2y, xy2, x2z2, y5),

(8) (x3, x2y, xy2, y4) revlex.

The ideals (1)–(3) and (8) are segments (with respect to the term order or weight
indicated on the right) while the remaining four are non-segments. Let us check, for
instance, that (4) is not a segment. Suppose, by contradiction, it is a segment with respect
to a term orderτ. Then sincex2z is in andxy2 is out, we havex2z >τ xy2 and hence
xz >τ y2. We deduce thatxy2z >τ y4. But sincey4 is in then alsoxy2z must be in and
this is a contradiction. Summing up, among the eight Borel-fixed ideals only (1)–(3) and
(8) are gins ofI .
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