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Abstract

Let | be the defining ideal of a smooth complete intersection space @irwdth defining
equations of degreea and b. We use the artial elimination ideals introduced by Mark Green
to show that the lexicographic generic initial ideal bfhas Castelnuovo—Mumford regularity
1+ ab(a — 1)(b — 1)/2 with the exception of the cas® = b = 2, where the regularity is 4.
Note thatab(a — 1)(b — 1)/2 is exactly the number of singular points of a general projectio of
to the plane. Additionally, we show that for any term orderinghe generic initial ideal of a generic
set of points ifP" is ar-segment ideal.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Let S=K[xo, ..., X ] wherek is an algebraically closed field of characteristic zero and
let ¢ be a term ordering 0. Let | C S be a homogeneous ideal. There is a monomial
ideal canonically associated with its generic initial ideal with respect to, denoted by
gin_ (1), or sinply gin, I. In this paper we study lexicographic generic initial ideals of
curves and points via Green’s partial elimination ideals.
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For a snooth complete intersection cun@ in P2, we show that the complexity of
its lexicographic generic initial ideal, as measured by Castelnuovo—Mumford regularity, is
governed by the geometry a generic projection ofC to P2

Theorem 1.1. Let C be a smoth complete intersection of hypersurfaces of degrebs-a
1in IP3. The regularity of the lexicographic generic initial ideal of C is equal to

14 2@-1pb-D if (g b) £ (2,2)

4 if (a,b) = (2,2).

Note that, apart for the exceptional case- b = 2, the regularity of the lexicographic
generic initial ideal is 1+ the number of nodes of the generic projection ®fto P2,
The statement 6fheorem 1.Qgeneralizes Example 6.10 @Green(1998 which treats the
special case whera=b = 3.

Macaulay’s characterization of Hilbert futh@ns, see for instance Theorem 4.2.10 in
Bruns and Herzod1993, implies that any ideall is generated in degrees bounded by
the largest degree of a generator of the corresponding lex-segme@i)Létuch nore
is true—Bigatti (1993, Hulett (1993 and Padue (1999 showed he Betti numbers of
J are bounded by those of L&X). Let | be the ideal ofC in Theorem 1.1For such
an ideall one can compute the largest degree of a generator afl eXhis has been
done, for instance, by Bayer in his Ph.D. thesis (Proposition in 1. Bager 1982 and
by Chardin ad Moreno-Sociag2002, and it turns out to bé‘%b(b‘l) + ab. So the
lexicographic generic initial ideal imheorem 1.1s not equal to the lex-segment ideal but
nearly achieves the worst-case regularityifs Hilbert function. Moreover, as shown in
Bermejo and Lejene-Jalabert1999, the extremal bound can only be achieve€ifies
in a plane.

We also study the generic initial ideals of finite sets of points. Surprisingly, wh&na
set of generic points its generic initial ideal isiaftial segment

Theorem 1.2. Let | be tte ideal of s generic points of". Thengin_ | is equal to the
r-segment ideabeg (1) for all term ordersr. In particular, gine, | is a lex-segrantideal.

The genericity required imheorem 1.4s quite explicit: the conclusion holds for a set
X of s points if there is a system of coordinates such that the defining ideéldafes not
contain non-zero forms supported ens monomials. A special case of the result when
7 = revlex is proved ifMarinari and Ramell§1999.

For an introduction to generic initialdeals see Section 15.9 itisenbud(1995. Here
we just recall:

Theorem 1.3 (Galligo, Bayer-Stillmaj Given a homogeneous ideal | and a term
ordering r on the monomials of ,Shere exists a dese open subset \& GL,;1(k) such
thatgin, | :=in.(g- |) is constant over all g U andgin, | is Borekfixed.

Recall also that, in characteristic 0, an idehlis Borel-fixed if it is monomial and
satisfies:

if misamonomial xme J = xjme J, Vj <i.
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From this poperty one easily shows that the regularity of a Borel-fixed idbas
the maximum degree of a minimal generator. A minimal resolution of such an ideal was
constructed irEliahou and Kervair¢1990.

As 7 variesover allterm oderings, both the regularity and the minimal number of
generators of ginl may vary greatly. The generic initial ideals with respect to the reverse
lexicographic (revlex) term ordering have the minimum level of complexity possible.

Theorem 1.4 (Bayer and Stillman198%. If | is a homogeneous ideal of, &nd J =
ginrev|exl then

regl = regJ = max degree of a mimal geneator of J

The paper is organized as follows. Bection 2 we set upnotation and review
terminology. We introduce partial elimination ideals, their basic properties, and algorithms
for their computation irBection 3We foas on the case of complete intersection curves in
Section 4and on the case of points 8ection 5

2. Notation and ter minology

Let S = K[Xo, ..., X ] wherek is an algebraically closed field of characteristic zero.
Denote bym the irrelevant mgimal ideal of S. For anelemenix = («o, ..., o) € N1
we let x* denotexy®---x'". In this section we briefly recall notions related to term
orderings and Castelnuovo—Mumford regularity. For a comprehensive introduction to
general notions related to Grobner basesGeeet al.(1997 andKreuzer and Robbiano
(2000.

Definition 2.1. We say that a tal orderingr on the monomials o8 is aterm oderingif
it is a well-ordering satisfying

X4 > xP = XV x¥ >, x¥ -xP ¥,y e N'TL,

A term orceringt on Sallows us to assign to each non-zero elemert S aninitial
termin, (f) and to any ideal an initial ideal in(1).

In what follows we will work exclusively with homogeneous ideals and we will always
require that the term ordiag is degree compatiblen > n if deg(m) > degn).

The lexicographic and (degree)reverse lexicographicterm oderings feature
prominently in the literature. 1ix* andx? are two monomials of the same degree, then
X% >jex XP if the left-most non-zero entry af — 8 is positive anck® >reyiex X? if the
right-most non-zero entry af — 8 is negative.

Although our primary motivation for studying partial elimination ideals is to understand
lexicographic initial ideals, partial elimination ideals also provide a mechanism for
studying initial ideals with respect to argliminationorder.

Definition 2.2. An elimination orderfor the firstt variables ofSis a term order such
thatif f is a polynomial whose initial term jif f ) does not involve variables, . . ., X;—1,
then f itself does not involve variables, . . ., X;_1.
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As we shall see iProposition 3.4one may use an elimation order for the variabhey
to compute partial elimination ideals.dfis an elimination order foxo, then it is equivalent
to a (1, r) product orderwhich first sorts monomials by powers gf and then sorts the
remairnng variables by an aitsary term orderingp.

We will use the notion ofCastehuovo—Mumford regularitas a rough measure of the
complexity of our computations.

Definition 2.3. Let M be a finitely generated grad&imodule, and let
0— @jS(—aj) — -+ ®j S(—a1j) - &jS(—agj)) > M — 0

be a minimal graded free resolutiondf. We say thatM is d-regularif aj; < d +i forall
i andj, and that theegularity of M, denoted regM, is the least suchthatM is d-regular.

One may also formulate the definition of regularity in terms of vanishings of local
cohomology with respect tm. The vanishing of the zeroth local cohomology group is
related to the notion o$aturationwhich plays an important role in the study of regularity.

Definition 2.4. Let | € S be a homogeneous ideal. Thaturationof |, denotedl S is
defined to bd :s m®. Note thatly = Ijatfor all d > 0. We say that is d-saturated if
| agrees with its saturation in degre®and higher. The minimum degree for whiths
d-saturated is theaturation degre€also thesatiety indexn Green(1998) of I.

3. Partial elimination ideals

Let S = K[Xo, ..., %], and letS = K[xy, ..., % ]. Let T be an arbitray elimination
order onS that eliminates the variabbey and hence induces a term order, denotedd)y
on S. In this section we set up the theory of partial elimination ideals over a polynomial
ring inr 4+ 1 variabks as introduced iGreen(1998. Much of the material irsectons 3.1
and3.2appears either explicitly or implicitly iGreen(1998, but we give proofs here both
to keep the presentation ebntained and to present a more algebraic point of view.

We represent any non-zero polynomifain Sas

1

f=fox§+ fx) "+ + fp

with fi € Sand fo # 0. The polynomialfq is called the initial coefficient off with
respect tokg and is denoted by incogf( f). The integermp is called thexg-degree off and
is denoted by dego(f).

3.1. Definitions and basic facts

In this section we define the partial elimination ideals and describe their basic algebraic
and geometric properties. We begin with the definition:

Definition 3.1 (Definition 6.1 inGreen(1999). Let | be a homogeneous ideal 8 The
p-th partial elimination idealof | is defined to be the ideal

Kp(l) := {incoef(f) | f € | and deg, f = p}U {0}



A.Conca, J. Sidman / Journal of Symbolic Computation 40 (2005) 1023-1038 1027

in the polynomial ringS = K[x, ..., X ].

Itis easy to see that if is homogeneous theli (1) is alsohomogeneous.

In Lemma 3.2we gather together some elementary algebraic facts about the partial
elimination ideals. We leave the proof to the reader. The decomposition bfgiven in
part (1) is one of the motivations for the definition.

Lemma 3.2. Let | be ahomogeneous ideal.

(1) inc | =Y x5 ingg Kp(h. _ _

(2) Taking K, commutes with taking initial ideals: j(in; I') = ing, Kp(l).

(3) The partial eliminationdeals are an ascending chain of ideals, i.e.(lK € Kj;1(1)
for all i.

One exped that ifl is in generic coordinates, then the partial elimination idé&gj¢l )
are already in generic coordinat®soposition 3.3hows thathis is indeed the case.

Proposition 3.3. Let | ¢ S be ahomogeneous ideal. If | is in generic coordinates then
iNg Kp(l) = gin,, Kp(l).

Proof. Let GL; (k) act onSin the usual way and extend this to an actionSin the trivial
fashion by letting elements of GIk) fix xo.

We know that the ideal determines a dense open subdetc GL,;1(k) with the
property thag € U implies that in(gl) = gin, |. We show that for eacty € U thereis a
dense open subset c GL, (k) so that for allh € U’

(1) gin, (Kp(gh) = ing(hKp(gl))
(2) hgis again a germic change of coordinates for

Consider tle smpce Gl (k) x GL;1(K) with projection mapsr; andsw2 onto the first and
second factors, respectively. The map

¢ : GLr (K) x GLry1(k) = GLry1(k)

given by¢ (h, g) = hgis regular. The inverse image &f under the map is a deseopen
subset of Gl (k) x GL;;+1(k). For eachg € U the setW := nl(ngl(g) Nn¢~ 1)) is
a denseopen subset of Gl(k). The elemeng determines a dense open seic GL, (k)
suchthath e V sdisfies (2), i.e., each € V is a set ofgeneric coordinates fd p(gl).
Then anyh € U’ := W NV has the property thdttg is a set ofgeneric coordinates fdr.

For h and g chosen as above, we hak&,(gl) = Kp(hgl). Thus, gqu(Kp(gl))
= ing Kp(hgl). By Lemma3.22), in, Kp(l) = Kp(ing 1), which implies that
gin,, (Kp(@h) = Kpinc(hgl).

Sincehg is again generic, ginl = in; gl = in; hgl. So we have gip(Kp(gl)) =
Kp(in: gl). UsingLemma 3.22) again, we obtain gin(Kp(gl)) = iny, Kp(gl) and this
proves the assertion.[]

The partial elimination ideals of an arbitrary homogeneous itlean be recovered in
an easy way from a Grobner basis foin practice one may want to take(®, r) product
order with the reverse lexicographic ordering on the tagriables in order tominimize
computations.
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Proposition 3.4. Let G be a Grdbner basis for | with respect to an elimination ordering
7. Then he set

= {incoef,(9) | g € G and deg (9) < p}
is a Grobner basis for K(1).

Proof. Note that ifg € | and dego(g) = p then incoef;(g) € Kp(l) by definition.
By Lemma 3.23) we have that the elements@fp are inKp(l). We will show that their
initial terms generate ig Kp(l). Suppose thai is a rmnomlal in the ideal ip, Kp(l).
This implies that there exists € | such thatin, (f) = mx0 and hence there exisse G
such that in; (9)| in; (). Seth = incoef(g). It follows that deg, g < p, so thath € Gy,
andinghjm. O

By part (3) of Lemma 3.2we know that the subscheme cut out by theh patial
elimination ideal is contained in the subscheme defined byphel)-th patial elimination
ideal. The following result gives the precise relationship between the partial elimination
ideals and the geometry of the projection map finto P 1.

Theorem 3.5 (Proposition 6.2 inGreen(1998). Let Z be a reluced subscheme Bf not
containing[1:0:---: 0] andlet | = 1 (Z) be the homogeneous ideal of [zt

n:P > p-1

be the projection from the poifit : 0: - - - : 0]. Settheoretically, Ky (1) is the deal of
zen(2)|In @] > p},

where|7~1(z)| denotes the length of the scheme-theoretic fiber above p

Proof. We prove the theorem by reducing to the affine case. We begin by introducing

somenotation. If J € Sis ahomogeneous ideal, Igfy,, denote its dehomogenization in
k[Xo X1 Xr]

XXX

To show thak p(1) cuts out thg p+ 1)-fold points set-theoteally it suffices to show
that Kp (1)) cuts out thg p + 1)-fold points in each of the standard affine open patches

of 't fori = 1,...,r. If we consider the ideallx) < k[32, i‘(l, e ]With the term
ordering induced b)t in the natural way on the monomials i€, X x. , then by

Lemma 4.8.3 irHaiman(2001), Kp(l(x)) is set-theoretically the ideal of the + 1)-fold
points lying in this affine patch.
It remains for us tshow that forany =1, ...,r,

Kp(Dx) = Kp(lx))-

Itis clear thatk p(1)(x) S Kp(l(x)). For the opposite inclusion, note th§i{ appears in
the dechomogenization of a monomiead precisely as many times ag appears irm, and
apply the definitions. (J

In the stuation of Theorem 3.5wecan see thato(1) is in fact radical. The idedo(1)
is just equal td N S. On theother hand, the highet (1) need not be radical evenlifis
a prime canplete intersection of codimensioni2 generic coordinates; séexample 4.3
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3.2. Partial elimination ideals for codimensi@tomplete intersection

Let
f=x3+ fxd ™+ + fa_ixo + fa
and
g=x3+ g+ -+ go_1%0 + Gb
wherefy, ..., faandgs, ..., ga are indeterminates.
We wish to dscribe the partial elimination ideals of the idéal, generated byf and
gin S = K[Xo, . .., Xr] after specializing thef; and theg; to homogeneous elements of

S=K[x3,..., X ] of degrea.

As we saw inSection 3.1the pattial elimination ideals of an arbitrary homogeneous
ideal I can be recovered from a Grébner basisif@and, vice versa, give information on
that Grobner basis. In this section we discuss a result of Eisenbud and Green showing that
Kp(lab) is generated by the minors of a truncation of the Sylvester matrix as long as the
forms f andg are generic enough. Boitheorem 3.6andLemma 3.7are well-known to
experts, but we give proofs for completeness.

Theorem 3.6 (Proposition 6.8(3in Green(1998). Assume that the fand the g are
independent indeterminates and thakm < b. Let

Rzk[flaa fa,glan-,gb,XO],

where k is anarbitrary field. DefineSyIp(f, g) to be the maix consistirg of thefirst
a+ b — p rows of he Sylvester matrix of f and g, i.e.

1 0 0 10 0

f1 1 0 o 1 0
Syly(f, 9) = fa fa_1 - 1 1

0 fo . 0 g :

: - fapa Do Qe p—1

O 0 fa_p O 0 gb_p

Then the deal Ky(f,g) C R is gemrated by the maximal minors of the matrix

Proof. Let R<t denote the vector space of polynomialsRrwith deg, < t. To conpute
Kp(f, 9) we want to find allA, B € R suchthat

Af +Bg=cox + clxc’,)_1 + -+ Cp_1X0 + Cp. (1)

with ¢ € k[f1,..., fa,01,..., Op]. Note that it suffices to find alA, B satisfying the
Eq. (1) wheredeg, A <b — 1 anddeg, B <a— 1.
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The matrix Sy} (f, g) gives alinear map

R<b-1® Rea—1 — Reatb-1/(L X0, ... X§ .
The kernel of Sy,;+1( f, g) consists of the set of aflA, B) € R<p—1 & R<a—_1 that satisfy
Eq. (1). The image of ker Sy, 1 (f, g) under Sy} (f, g) is exactly the set

{Cox§ | Cox§ + c1xy "+ -+ + cp_1xo + p € (. Q).

We will show that the maximal minors of Syif,g) generate the image of
ker Syl,,1(f, 9) under the map Syl f, g) as long as Sy, (f, g) drops rank in the
expected codimension. The proof that Sy{(f, g) does indeed drop rank in codimension
p + 2 will be given inLemma 3.7

If Sylp,1(f, 9) drops rank in the expected codimension, then sifRcés Cohen—
Macaulay we conclude that the Buchsbaum—-Rim complex resolves the cokernel of
Sylp41(f, 9). (SeeEisenbud 1999 A2.6 for detals.)

Using the Buchsbaum-Rimomplex we can give explicit formulas for elements of
kerSyIp+1(f, g) indexed byT < {1,...,a + b} with |[T| = a + b — p. Define
Sylp+1( f,g)" to be the(a+b — p— 1) x (a+ b — p) matix consisting of all of the
columns of Sy}, 1 (f, g) indexed by elements &f. Define Wy to be the vedr of length
a+ b whosei-th entry is 0 ifi ¢ T and sigri) det Sy}, 1(f, 9T ifi € T where
sign(i) = 1 if the number of elements of less than is even, and-1 if the number of
elements ofT less than is odd. The Buchsbaum—Rim complex is a resolution precisely
when the vector®Vr generate the kernel of %{Al( f,0).

Finally, we apply Syl,(f, g) to the element§Vr constructed above. The dot product
of Wr with each of the firsa + b — p — 1 rows of Syb( f, g) is zero sinceNy is in the
kernel of Sy}, ;1 (f, g). The dot product of\r with the last row is just the expansion of
the maximaminor of Syl,(f, g) corresponding to the columns indexed byy this final
row. Therefore,

Sylp(f.9) - Wr = detSyl(f, g)"x}. O

Lemma3.7. If fi and g are independent indeterminates and<p a < b the marix
Syl,(f, g) drops rank in the expected codimension- .

Proof. We will show that the set where SMf, g) fails to have maximal rank, that is,
where dimker Syl,(f,g) > p + 1, has codimensiomp + 1 in the spce of all f and

g where thef; and g; take values irk. The result follows if we can show that for any
specialization of the indeterminatésandg; to values ink, dimy ker Syl,(f, g) > p+1

if andonly if f andg have a common factor of degreet 1.

It is clear that if f and g have a common factor of degrep + 1 then
dimy ker Syl,(f, g) > p + 1, since ve can use thép + 1) common factors to construct
(p+ 1) syzygies onf andg with distinct degrees.

To prove the other direction, we will use induction pnSuppose thap = 0. Then

dimg ker Syp(f,g) > 0
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if and only if Reg f, g) = 0. It is well-known (seeCox et al.(1997) that Regf, g) = O if
and only if f andg have a common factor of degree at least one.

We treat the case whene > 0. Our assumption implies that we can fipdt+ 1 linearly
independent elementé\o, Bo), ..., (Ap, Bp) of the kernel of Sy,;(f, g). Since

p—1

Aof +Bog,..., Apf + Bpg e spanl,..., x5 ),

there is a nontrivial linear relatioh_ A; (A; f + Big) = 0. Hence,f andg must have a
common factor so that = (x — «) f’ andg = (x — «)g’. By induction, we will be done
if we can show that the dimension of

{(A, B) € kiXol<b—2 ® kIXol<a—2 | Af’ + Bg € spanl, xo, ..., x) )}

is > p. But, we can assume (after reordering and cancelling leading terms) that far
degA; < b —2anddegB; < a — 2. Consequently, for > 1,

A '+ Big e spail xo,...,x* 2. O
Note that the firsb rows of Syl,(f, g) contain constants. Ret¢&he following fact:

Lemma 3.8 (pg. 10 inBruns and Vette(1988). Suppose that M= (m; j) is a p x ¢
matrix with entries in a commutative ring. If gy is a unit, then the ideal generated by
the maximal minors of M is theme as the ideal generated by the maximal minors of the
(p—121 x (g— 1) matrix N with entries

ni,jzmi,j—mp,jmi,qmp}} l<i<p-1 1<j<q-1

We have thedllowing:

Corollary 3.9 (See the Remark Following Proposition 6.9Gneen(1998). Let a < b
and assume that thg &nd g are sufficiently general homogeneous polynomials of degree
i invariables x, ..., X . Assume also that g a.

(1) The ideal of maximal minors o8yl (f, g) is always ontained in K (f, g). It has the
expected codimension, p 1, if p <r — 1.
(2) Assume p<r — 2. Then ve have:
(@) Kp(f, ) is equal to the ideal of maximal minors 81, (f, ).
(b) Kp(f, 0) is also the idal generated by the maximal minors of a matrix of size
(a— p) x awhose(i, j)-th entryis eitherO or has degree b-i — j.
(©) regKp(f, @) =ab+ (* 5™ — (*31) + p@a— p-1).

Proof. Let R = K[f1,..., fa, 01,..., Ob, X0l Where thef; andg; are indeterminates as
in Theorem 3.6Gererators forKp(f, g) as an ideal inR also generate the-th patial
elimination ideal of the ideal generated byandg in the ringR®kK[x1, . . ., X ], whichwe
will denote byK y(f, 9) ® K[X4, ..., Xr]. An elementary argument shows thapifi- 1 <,
then for sufficietly general formsfi, g; € k[xy, ..., x ], the specialization of the matrix
Syl,(f, g) still drops rank in the expected codimension.

Thus, (1) and (2, a) follow from the proof dheorem 3.@and fromLemma 3.7 Part
(b) of (2) follows from (2, a) and from iterated use loémma 3.8 Findly (2, c) follows
from (2, b) and fromLemma 3.11 [
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Remark 3.10. The above corollary is sharp in the sense that, in gen¢rah( f, g) strictly
contains the ideal of maximal minors of &yj(f, g). For insance, one can check with
CoCoA that th$ hgpens it =3 anda =b = 4.

Lemma 3.11. Let X = (hjj ) be an mx n matrix of brms wthm < n. Assume @, ..., am
and by, ..., by are integers such thateghijj) = & + bj > Owheneer hyj # 0. Assume
that the ideal |, of maximal minors of X has the expected codimensiermm+ 1. Then

reglm =Y & + ) bj + (max@) — 1)(n —m.
i j

Proof. The Eagon—Northcott complex gives a resolutiongfvhich is minimal since the

entries of the matrices in the resolution are (up to sign) the entriesarid 0. Keeping

track of the shift®ne obtains the formula above. The same formula can be derived from the

result @runs and Herzodl 992 Corollary 1.5). Another formula for the regularity appears

in Budur et al.(2004. O

In particular we have:

Corollary 3.12. Let | be the deal of a smooth complete intersection CPihdefined by
two formsf and g of degrees,® > 1. Assume that | is in generic coordinates. We have:

(a) K1(f, g) is equal to the ideal of maximal minors 8§l ( f, g) and has codimensiaa
in K[X1, X2, X3].

(b) Ko(f, g) contains the ideal of maximal minors 8kl,(f, g) and both ideals have
codimensiorB in K[X1, X2, X3].

Proof. We will use a geometric argument to show that ff and g are in sufficiently
general coordinates, then $¢f, g) has codimension 2 and Syff, g) has codimension 3
in K[x1, X2, x3]. Sincethese odimensions are the expected values for those determinantal
ideals, the conclusion will follow bZorollary 3.9.

Recall the classical fact that a generiojection of a smooth irreducible curve B¢
has only nodes as singulargigSee Theorem [V.3.10 ifartdhorne(1977.) It follows
that after a generichmnge of coordinates, the image of the projection from the point
[1:0:0: 0] will have only nodes as singularities. As a consequence, we see that for each
pointq e P2, the fiber d the projection of the curveC will contain at nost two points,
and the set of) with 7 ~1(q) = 2 is finite. In other words, deg g¢d (Xo, 9), 9(Xo, q)) < 2
and equality holds for only finitely mang. From the poof of Lemma 3.7 we can see
Syl (f, @) drops rank a if and only if f (xo, g) andg(Xo, q) have a common factor of
degree> p + 1. Therefore, we see that Syif, g) drops rank at a finite set of points and
and Sy( f, g) does not drop rank at any pointitf. [

4. The lexicographic gin of a complete intersection curvein P3

Let I5p be a codimension 2 complete intersection ideal in the polynomial irg
K[Xo, X1, X2, X3] defined by two forms of degreesb > 1. LetC = V (la,p) be the curve
in P3 defined byla p. We will assume thaC is snooth and in generic coordinates. In other
words, we asume that, p is prime, that the singular locus &/ 14 consists solely of the
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homogeneous maximal ideal and thab is in generic oordinates. We have th& has
degreeab and genusib(a + b — 4)/2 + 1. From Theorem 3.5ve know thatKo(la p) is
the radical ideal of the projection : C — P? from the point{1: 0: 0 : 0]. SinceC is in
generic coordinates by assumption, the projectias generic. Proposition 4.1describes
additional numerical data associated witfC).

Proposition 4.1. The idal Ko(lap) iS generated by aingle polynomial of degree ab. It
cuts out a degree ab curve with @&-— 1)(b — 1)/2 nodes.

Proof. We already know thaKo(lap) is the radical ideal ofr (C) which hasdegreeab.
So it remains to show that(C) hasab(a — 1)(b — 1)/2 nodes.

Since a general projection of any spaceveuhas only nodes as singularities, we have
thatz (C) is a plane curve with only nodes as singularities. Sidée the normalization of
7(C) andC has genusb(a+ b —4)/2+ 1, #(C) has

(ab—1(ab-2) B <ab(a+b—4) +1) _a(@—1b(b-1)

2 2 2
nodes (see Remark 3.11.1Harthorne(1977). O

Already, we can begin to desie thegenerators of gigx la b:

Corollary 4.2. The dealginiex la,» contains )ﬁ_‘b and this is the only generator that is not
divisible by x.

Proof. The generators of gig 1a» are elements oxg ginex Kp(la,p) for various p. So
clearly, the generators of giq Ko(la,p) are the only generators of ginla p Not containing
a factor ofxp. But Ko(la,p) is principal,generated by a form of degres in generic
coordinates. The leading term of such a formi!g. O

We are eady to prove the main result of the paper:

Proof (Theorem 1.1). Setl = lap, Kp = Kp(l). By virtue of Lemma 3.2and since
X§ € giney | we have
a
ginlex I = Z X(E)ginlex Kp'
p=0

From Proposition 4..wve know that gin., Ko = (be). The proof consists of three steps.
First, we conpute the regularity of gip, K1 explicitly. Then we show that the regularity of
Qiney Kp— p < 14-reggine, K1 for 2 < p < a— 1. Finally, we will show that gine, | ac-
tually requires a geerator of degreéa(a— Db(b—1)+ 1, which will complete the proof.

By Corollary 3.12we have thaK; is the ideal of maimal minors of a matrix of size
(a— 1) x awhoseij entry has degreb + i — j. The restution of K1 is given by the
Hilbert—Burch complex. It is then easy to determine the degrd€;dfom the numerical
data of the resolution. We obtain thidt is unmixed and of degre%a(a — Dbb - 1).
We alsoknow that the radical oK1 is the ideal of definition o%a(a — 1)b(b — 1) points.
It follows thatK itself is the radical ideal defininéa(a — 1)b(b — 1) points. We can
conclude fromCorollary 5.3that reg gin, (K1) = %a(a — Db(b - 1).
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We now pove that forp > 1, the degrees of the generators@’fgimex Kp are bounded
above by 14reg gine, K1, that s, by 1+%a(a— 1)b(b—1). This willimply that reg ging, |
is maxab, 1+ 3a(@— b(b — 1)).

From Corollay 3.142) we have that the ideal, say, of the maimal minors of
Syl (f, g) is Artinian (i.e. K[x1, X2, x3]/J is Artinian) and is contained iK» and thatJ
is contained inK , for p > 1. The regularity ofin Artinian idealD is given by the smallest
k such tfat thek-th power of the maximal ideal is contained in the idBahnd hence does
notchange when passing to the initial ideal. It follows that reggik, < regJ for every
p > 1. So the generators olf gine, Kp are in degrees: p + regJ. Taking inb consid-
eration thatk, = (1), it is enough to show that red < %a(a —Dbb-1)+1—-p
forall p = 2,...,a— 1. So we may assuma > 2 and wehave to sbw that
regd < %a(a— 1)b(b— 1) + 2 —a. To conmpute the regularity od we first usd.emma 3.8
to get rid of the units in the matrix defining and then we uséemma 3.11 We get
regd) = ab+ (3,1 — (*3}) +2(a - 3).

So it remains to show that

e (432) () rra-9 = o229

that is
1/2a%b? — 1/2a’b — 1/2ab? — 1/2ab—a+7>0

forall 3 < a < b. Thisis a sinple calculus exercise.

To finish theproof, we will show that ifm is a minimal generator of gjg, K1, of degree
%a(a — 1b(b — 1), thenxom is a minimal generator of gjg I. If Xom is not a minimal
generator of gig, |, then it must be divisible by some monomiathat is a minimal gen-
erator of gif, |. This implies than | xom and thain must be in gi, Ko. However, this
means thah | mandn € ging, K1 sinceKo € Kj. This contradicts our choice ofi as a
minimal generator. We conclude thgfm must ke a minmal generator of gig, 1. O

Example 4.3. One can check (using CoCoA, for instance) that (x3 — yZ2, y® — 7%t)
defines an irreducible corfgie intersection curv€ with just one singular point and that
K1(gl) with g a gereric change of coordinates is not radical. Inddégigl) has degree

18 and it defines only 11 points, namely the 11 singular points of the generic projection of
C to P2. In thiscase, the regularity of gjf (1) is 16 andnot 19 as in the smooth case.

5. Theregularity of ginsof points
SetS = K[Xo, ..., X ]. We start vith the following well-known lemma:

Lemma5.1. Let | be ahomogeneous ideal of S such thai $ias Krull dimensioril and
degS/1) = e. Setc=min{j|dim[S/l]; = e foralli > j}. Thenreg(l) < maxe, c}.

Proof. Let J be the satwation of I. Then S/J is a one-dimensinal CM (Cohen—
Macaulay) algebra. It is well-known and easy to see thatyeg< degS/J) = e and
dim[S/J]; = eforalli > e — 1. Let p denote the saturation degree (satiety index) of



A. Conca, J. Sidman / Journal of Symbolic Computation 40 (2005) 1023—-1038 1035

I, i.e. theleastj suchthatl; = J for alli > j. From the clracterization of regularity
in terms of local cohomology it follows immediately that K¢y = maxreg(J), p}. To
conclude, it is enough to show thpt< maxe, c}. If p > ethenl; = J; foralli > p and

Ip—1 € Jp—1. Thus, dimS/I]; = eforalli > panddiniS/I1,-1 > e. Herce p = cand
weare done. [J

Corollary 5.2. Let | be ahomogeneous ideal of S such thatl $ias Krull dimensiori.
Assume that the Hilbert function of | is equal to the Hilbert function of a one-dimensional
CM ideal (e.g. | is an initial ideal of a one-dimensional CM ideal). Theg(l) <
degS/1).

Proof. This follows from Lemma 5.1since the assumption implies that d@il]; =
degS/l) foralli > degS/1)—1. O

Corollary 5.3. Let | be tte ideal of a set X of s points & . Then

regging | =s.

Proof. By Corollay 5.2 we have reggig,| < s. A general projection ofX to P* will
give s distinct points. Ts implies thatx® , is in gine, |. Since we workwith the lex
order,x®_, is a minimal generator of gigg | . [

We want to showiow that for a set of generic points the gin lex and indeed any gin has
a very special form: it is a segment ideal. Consider the polynomial&egk[xo, ..., X]
equipped with a term ordet. Assume thakg >; X1 >; -+ >¢ X;.

Definition 5.4. A vector space/ of forms of degreal is said to be a-segmentf it is
generated by monomials and for every monomiah V and every monomiat of degree
dwithn >; mone hasr e V.

Given anon-negative integar < (”r“d) there exist exatly one r-segment of forms of
degread and of dimension: it is the s@ace generated by thelargest monomials of degree
d with respect tar and it will be denoted by Segd, u). Given ahomogeneous ideélfor
everyd we consider the-segment Segd, dim I4) and define

Seg (1) = &4 Seg (d, dim lg).

By the very definition, Seg ) is a gaded monomial vector space and simple examples
show that Seg(1) is not an ideal in general. But there are important exceptions: Macaulay’s
numerical characterization of Hilbert functio&r(ins and Herzadl993 Theorem 4.2.10)
can be rephrased by saying that for every homogeneouslidbal space Sgg(l) is an
ideal. In the following lemma we collect a few simple facts about segments that will be
used in the proodf thatrestit.

Lemma5.5. Lett be a term order and let M= S, be ar-segmat with dimS,/V < a.
Then QV is ar-segmat with dimS,11/VS =dimS/V.

Proof. Firstobserve that since? ; > xf‘:lj x) for j = 1,...,awe have thak? ; € V
and henceXo, ..., %-1)2 € V. To prove thatV § is a r-segment assume thatis
a monomial of degreex + 1 such hatx;m < n with min V; we have to Bow that
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n eV S. Letk be the largest index such that dividesn, so thatn = xxn;. If k > i then
Xin1 > xkN1 > xim. It follows thatn; > mand henc@é, € V so thain € V §. If, instead,
k < i thenn € (Xo, ..., X —1)"1 which is contained inV § since we lave ®en already
that(Xo, . .., Xr—1)2 is contained inV.

To conclude, it is enough to show that the mapnduced by multiplication by, is
an isomorphism frons,/V to Si11/V S. We show fist thate is injective. If m is a
monomial in& \ V, thenmx ¢ V §. Otherwisemx = nx for somen € V and some
i, and themrm > n, a ontradiction. To prove that is surjective, consider a monomiat
in S+1\ VS. Thenm = x nsince(Xo, . .., X—1)21 c V. Obviously,n ¢ V. So¢ is
surjective. [

Proposition 5.6. Let | be the ideal defining s points, sayiP..., Ps, of P". Assume that
there exists a@ordinate systempx Xy, . .., Xy such hat | does not contain forms of degree
< s aupported on< s nonomials. Thergin, | = Seg (l) for all term orderszt. In
particular ging, | = Sege,(1).

Proof. It is easy to see that thessumption implies that the Hilbert function 8f | is the
expected one, namely dii/1]1g = min(s, (“{d)} for all d. Fix a tem orderz. For a given

d < s consider the seMy of the sméest (with respect ta) min{s, (”rrd)} monomials
of degreed. By assumption these monomials are a basisS in degreed. It follows
immediately that inlqg = Seg(l)q for everyd < s. FromLemma 5.1we know that
in; | does not have generators in degrees. Then in Iy = in; Is§_s foralld > s.
On the other hand, it follows frohemma 5.5that Seg(l)q = Seg(l)sSy—s for all

d > s. We have sen already that inls = Seg (l)s. Therdore we may conclude that
in; Ilg = Seg(l)q also for alld > s. We have shwn that in. | = Seg (l). From this
it follows that gin, | = Seg (I) (see the construction/definition of gin given lisenbud
(1995 Theorem 15.18)). O

We can now prove the main result of this section:

Proof (Theorem 1.2). Let Py, ..., Ps be generic points if®". Fix a cordinate system
onP' and let(ajo, &1, ..., air) be the coordinates d® . It is enough to show that the
assumption ofProposition 5.610lds (in the given coordinates) for a generic choice of the
ajj . For anyd < s consider thes x (”rrd) mattix Xq whose rows are indexed by the points,
the columns by the monomials of degrdeand whosej -th entry is obtained by evaluating

the j-th monomial at thé-th point. The assumption éfroposition 5.6s equivalent to the

fact that any maximal minor dfq is non-zero fod < s. If we considerthea;j as variables

over some basfield then gery minor of X is anon-zero polynomial in the;j since no
cancellation can occur in the expansion. So these are finitely many non-trivial polynomial
conditions on the coordinates of the point&.]

As we have already said, the genericity condition requirethiaorem 1.2mplies that
the Hilbert function of the idedl of s points of P' is given & the expected one:

dim[S/1]j = min <s, <r :_ J))
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One may wonder whether it is enough to assume that the Hilbert function is generic
to conclude that gipl is Seg (1) for an ideal of points. The next example answers this
question.

Example5.7. (a) Consider the idedl of 7 points of P? with generic Hilbert function.

The ideall contains 3 quadrics. If the 3 quadrics have a common linear factor, then
gin(l2) is Xo(Xo, X1, X2) N0 matter what the term order is. So in particular, gig! is

not Seg.ex(1) in degree 2. Explicitly, one can take the seven points with coordinates
(0,0,0,1),(0,0,1,1),(0,0,2,1), (0,1,0, 1), (0,1,1,1), (0, 2,0, 1), (1,0,0, 1).

(b) Consider the 10 points d#® with coodinates(a, b, ¢, 1) wherea, b, ¢ are non-
negative itegers witha + b 4+ ¢ < 2 and letl be the corresponding ideal. One can check
with (and even without) the help of a computer algebra system that the 10 points have the
generic Hilbert function and that any generic projectiofagives 10 points on a cubic.
This, in turn, implies that gig, | contains<3 while Seg, (1) does not contain it.

The next example shows that, even for Hilbert functions of generic poirig,ithe
segmentdeals are special among the Borel-fixed ideals.

Example5.8. Consider the ideal of seven generic points ift2. The Hibert function
of S/1'is(1,3,6,7,7,7,...). There are xactly eight Borel-fixeddeals with this Hilbert
function, they are:

D) (X3, x2y, x%z, xy®, xy?z, xyB, x2, y"), lex

(2) (x3,x%y, x%z, xy3, xy?z, xyZ, y%), (6,2, 1)
3) (X3, x2y, x%z, xy3, xy?z, y°), 4,2,1)
@) (3, x%y, x?z, xy®, y*),

(5) (x3, X2y, xy?, x222, xyZ, x2,y"),

6) (X3, x%y, xy?, x?z%, xyZ, yb),

() (3, X2y, xy?, x2%, y°),

® 3, x%y, xy?, y9) revlex.

The ideals (1)—(3) and (8) are segments (with respect to the term order or weight
indicated on the right) while the remaining four are non-segments. Let us check, for
instance, that (4) is not a segment. Suppose, by contradiction, it is a segment with respect
to a term order. Then sincex?z is in andxy? is out, we havex?z >, xy? and hence
xz >, y2. We deluce thaxy?z >, y* But sincey* is in then alsay?z must be in and
this is a contradiction. Summg up, among the eight Borel-fixed ideals only (1)—(3) and
(8) are gins ofl.
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