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a b s t r a c t

Let R = ⊕i≥0 Ri be an Artinian standard graded K -algebra defined by quadrics. Assume
that dim R2 ≤ 3 and that K is algebraically closed, of characteristic 6= 2. We show that R
is defined by a Gröbner basis of quadrics with, essentially, one exception. The exception is
given by K [x, y, z]/I where I is a complete intersection of three quadrics not containing a
square of a linear form.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A standard graded K -algebra R is an algebra of the form R = K [x1, . . . , xn]/I where K [x1, . . . , xn] is a polynomial ring
over the field K and I is a homogeneous ideal with respect to the grading deg(xi) = 1. The algebra R is said to be quadratic if
I is generated by quadrics (i.e. homogeneous elements of degree 2) and R is said to be Koszul if K admits a free resolution as
an R-module whose maps are given by matrices of linear forms. We say that an algebra R is G-quadratic if its defining ideal
has a Gröbner basis of quadrics with respect to some system of coordinates and some term order. G-quadratic algebras are
Koszul and Koszul algebras are quadratic. Neither of these implications can be reversed in general; see [8].
Given a graded K -algebra R we can consider its trivial fiber extension R′ = R ◦ K [y]/(y)2 where y = y1, . . . , ym is a

set of variables. Here ◦ denotes the fibre product of K -algebras. It is known that the properties of being quadratic, Koszul,
G-quadratic, as well as dim Ri for i > 1 are unaffected by trivial fiber extensions; see [5, Lemma 4], [2, Theorem 4].
Backelin showed in [1, 4.8] that if R = ⊕i≥0 Ri is a quadratic standard graded K -algebra with dim R2 ≤ 2 then R is

Koszul. We have shown in [5] that, under the same assumptions, R is G-quadratic with only one exception (up to trivial fiber
extensions and changes of coordinates) given by the K -algebra K [x, y, z]/(x2, xy, y2 − xz, yz).
The goal of this paper is to prove the following theorem.

Theorem 1.1. Let K be an algebraically closed field of characteristic 6= 2. Let R be a standard graded K-algebrawhich is quadratic,
Artinian and with dim R2 = 3. Then:
(1) R is Koszul, Ri = 0 for i > 3 and dim R3 ≤ 1. Furthermore dim R3 = 1 if and only if R is a trivial fiber extension of K [x, y, z]/I
where I is a complete intersection of three quadrics.

(2) R is G-quadratic iff it is not a trivial fiber extension of K [x, y, z]/I where I is a complete intersection of three quadrics not
containing a square of a linear form. In particular, if R3 = 0, then R is G-quadratic.

We obtain the following corollaries.

Corollary 1.2. Let R be a quadratic Cohen–Macaulay standard graded K-algebra. Denote by (h0, h1, h2, . . .) its h-vector and
assume that h2 = 3. Then:
(1) R is Koszul, hi = 0 for every i > 3 and h3 ≤ 1. Furthermore h3 = 1 if and only if the degree 1 component of the socle of R
has dimension h1 − 3.

(2) If h3 = 0 then R is G-quadratic.
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Corollary 1.3. Let R be a quadratic Cohen–Macaulay algebra. If e(R) ≤ codim(R)+ 4 then R is Koszul.

In 1.3 e(R) denotes the degree or multiplicity of R and codim(R) its codimension. To see that 1.2 follows form 1.1,
one just considers an Artinian reduction of R. But then 1.3 follows from 1.2 in combination with [5, Corollary 9]. In
particular a (non-degenerate) set of at most n + 4 points of Pn defined by quadrics is Koszul, a special case of a recent
conjecture of Polishchuk [10]. Note also that there are non-Koszul quadratic Cohen–Macaulay algebras (even domains) with
e(R) = codim(R)+ 5; see [6, Sect 4].
For standard facts on Gröbner bases we refer the reader to [9] and for standard facts on Cohen–Macaulay rings we refer

the reader to [3]. The results and the examples presented were discovered by extensive computer algebra experiments
performed with CoCoA [4].

2. Proof of the main result

Let K be an algebraically closed field of characteristic not 2. Let R be a standard graded K -algebra. The rank of x ∈ R1,
denoted by rank x, is by definition dim xR1. Note that rank x = 0 for some non-zero x ∈ R1 iff R is a trivial fiber extension.
As we said already, the properties and the invariants under discussion, being quadratic, Koszul, G-quadratic, as well as

dim Ri for i > 1, are unaffected by trivial fiber extensions; see [5, Lemma 4], [2, Theorem 4]. Hence in the proof of 1.1 we
may assume that rank x > 0 for every the non-zero x ∈ R1.
The case n = 3 is easy: R is a complete intersection of three quadrics and 1.1 is proved in [6, Sect 6.1]. It remains to prove:

Proposition 2.1. With the assumption of 1.1, assume further that rank x > 0 for every non-zero x ∈ R1 and that n > 3. It
follows that R is G-quadratic and R3 = 0.

The main technical lemma is:

Lemma 2.2. Under the assumption of Proposition 2.1, let y ∈ R1 with y2 = 0 and set V = {u ∈ R1 : uy = 0}. If one of the
following conditions holds then R is G-quadratic and R3 = 0.
(1) rank y = 3.
(2) rank y = 2 and there exists z ∈ V such that z2 ∈ yR1 and zR1 6⊆ yR1.
(3) rank y = 2 and there exists t ∈ R1 \ V such that t2 ∈ yR1 and tV 6⊆ yR1.
(4) rank y = 1.

In the proofs below, the symbol L∗ denotes a homogeneous polynomial of degree 1 and ∗f means a scalar multiple of the
element f .

Proof. In the four cases the proof is based on the same principle: choose a K -basis of R1 in a suitable way, consider the
associated presentation of R as a quotient of a polynomial ring, translate the assumptions into quadratic equations, check
that the given quadrics already provide enough leading terms to generate all the monomials of degree 3. For simplicity of
notation, we do not distinguish between the elements of R1 and the variables of the polynomial ring thatwe use to present R.
Case (1) is the standard situation; see [5]. Complete y to a basis of R1, say y, x2, . . . , xn. Since y2 = 0 and yR1 = R2, we

have polynomials y2 and xixj − yL∗ in the defining ideal I of R. Then (y)2 + (x2, . . . , xn)2 is contained in the ideal of leading
terms of I with respect the revlex order associated with xi > y. This is enough for concluding that R is G-quadratic and
R3 = 0.
Case (2). Complete y, z to a basis of R1, say y, z, x3, . . . , xn. We have polynomials y2, yz, z2 − yL∗, xixj − L∗y− L∗z in the

defining ideal I of R. It follows that (y, z)2 + (x3, . . . , xn)2 is in the ideal of leading terms of I with respect the revlex order
associated with xi > z > y. This is enough for concluding that R is G-quadratic and R3 = 0.
Case (3). Consider a basis y, z2, . . . , zn−2 of V and complete it with the given t and some other elementw to a basis of R1.

Use the term order revlex y < t < zi < w. Polynomials of the following form are in the defining ideal:

y2, yzi, zizj − yL∗ − tL∗, t2 − yL∗, wzi − yL∗ − tL∗, w2 − yL∗ − tL∗.

Set W = {u ∈ R1 : ut ∈ yR2}. Note that W is a space of dimension n − 1 and contains a linear form which involves w;
otherwise we would have tV ⊆ yR1 which contradicts the assumption of (3). Then a polynomial of the formwt− yL∗ is also
in the defining ideal. The leading term ideal of the defining ideal of R contains (y, z2, . . . , zn−2)2 + (t, w)2. This is enough
for concluding that R is G-quadratic and R3 = 0.
Case (4). We have that R/(y) is Artinian with Hilbert series 1 + (n − 1)x + 2x2 + · · ·. By [5] we know that there exists

t ∈ R1 such that t2 ∈ yR1 and R2 = yR1 + tR1. Complete y and t to a basis of R1 with elements x3, . . . , xn and use the revlex
order associated with y < xi < t . In the defining ideal of Rwe have polynomials

y2, xixj − yL∗ − tL∗, t2 − yL∗

and therefore its initial ideal contains the ideal initial terms (x3, . . . , xn)2+(y2, t2). Furthermore, since yV = 0 in R and V has
dimension n−1,we have initial termsWywhereW is a set of variables of cardinality n−1 containing y. So either all the xi are
inW or t is inW . In the first case the initial term ideal contains (x3, . . . , xn, y)2+ (t2), in the second (x3, . . . , xn)2+ (y, t)2.
In both cases we are done. �
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Another auxiliary fact:

Lemma 2.3. Assume S is a quadratic standard graded K-algebra with Hilbert series 1 + 3x + x2 and z ∈ S1 such that z2 6= 0.
Then there exists u ∈ S1 such that u2 = 0 and uz 6= 0.

Proof. We argue by contradiction. Let v ∈ S1 not a multiple of z. We have equations v2 = az2 and vz = bz2 with a, b ∈ K .
By contradiction, there is no α ∈ K such that (v+αz)2 = 0 and z(v+αz) 6= 0, that is, no α ∈ K such that a+2αb+α2 = 0
and b+ α 6= 0. In other words, α = −b is the only solution of a+ 2αb+ α2 = 0, that is, a = b2. Complete z to a basis of S1
with elements t, w. By the argument above we have the equations

t2 = b2z2, tz = bz2, w2 = c2z2, wz = cz2.

We have also an equationwt = dz2. Since (t+w)2 = (b2+ c2+d)z2 and (t+w)z = (b+ c)z2 the argument above applied
to t + w yields

(b2 + c2 + 2d) = (b+ c)2,

that is d = bc. So the polynomials defining S are

t2 − b2z2, tz − bz2, w2 − c2z2, wz − cz2, wt − bcz2.

These polynomials are contained in the ideal (t − bz, w − cz), contradicting the fact that S is Artinian. �

Now we are ready to prove 2.1:
Proof. Fix K -bases of R1 and R2. The condition y2 = 0 for an element y ∈ R1 is expressed by dim R2 quadratic equations in
the dim R1 coefficients of y. Since dim R1 = n > dim R2 = 3 and K is algebraically closed, there exists y ∈ R1, non-zero,
such that y2 = 0. Further, rank y > 0 by assumption. If rank y = 3 or 1 we conclude by 2.2 Case (1) and Case (4). So we may
assume that rank y = 2. Let V = {u ∈ R1 : uy = 0}; V is a n− 2-dimensional subspace of R1. We discuss three cases:
Case 1: V 2 6⊆ yR1.
Case 2: V 2 ⊆ yR1 and VR1 6⊆ yR1.
Case 3: VR1 ⊆ yR1.
For Case 1 we argue as follows: Let z ∈ V be such that z2 6∈ yR1 (here we use that the characteristic of K is not 2).

Complete y, z to a K -basis of V with elements zi. Since R2/yR1 is one-dimensional, generated by z2, we may replace zi with
zi − ∗z and assume that z2i ∈ yR1. Now, if for some i, ziR1 6⊆ yR1, we end up in case (2) of Lemma 2.2. Hence we have to
discuss the case in which ziR1 ⊆ yR1. In other words, the zi are in the socle of R/(y). Modding out these socle elements we
get an algebra S with Hilbert series 1+ 3x+ x2 and the residue class of z in S satisfies z2 6= 0. So by 2.3 there existsw ∈ R1
such thatwz 6∈ yR1 andw2 ∈ yR1. This is case (3) of 2.2.
Case 2: Take z ∈ V such that zR1 6⊆ yR1 and note that this is case (2) of 2.2.
Case 3: In R/(y) the space V/(y) belongs to the socle. So since R is quadratic and Artinian, the algebra R/(V ) has Hilbert
series 1+ 2x+ x2. For such an algebra it is easy to see that there exist independent linear forms t, w such that t2 = 0 and
w2 = 0. Lifting back to R, we have that a basis of R2 is given by ty, wy, wt and for every z ∈ V not a multiple of ywe get the
equations

y2 = 0, yz = 0, z2 = L1y, t2 = L2y, w2 = L3y, zw = L4y, zt = L5y (2.1)

where the Li are linear forms in t andw, say

Li = λi,1t + λi,2w.

Nowwe look for linear forms of type ` = t + az + by such that `2 = 0. The condition `2 = 0 translates into the polynomial
system{

λ2,1 + 2aλ5,1 + 2b+ a2λ1,1 = 0
λ2,2 + 2aλ5,2 + a2λ1,2 = 0.

Now, assume that

λ1,2 6= 0 or λ5,2 6= 0. (2.2)

Then we can solve the second equation to obtain the value of a and, substituting in the first, we get the value of b. In other
words, assuming (2.2), there exists ` = t + az + by such that `2 = 0 in R. We evaluate now the rank of such an `. We have

`y = ty and `w = tw + aL4y+ bwy (2.3)

and since these two elements of R2 are linearly independent, we can conclude that rank ` ≥ 2. If rank ` = 3 then we are
done by 2.2(1). Hence we may assume that rank ` = 2. This implies that `z and `t are linear combinations of `y and `w.
Now `z = (λ5,2 + aλ1,2)wy+ ∗ty and `t = (λ2,2 + aλ5,2)wy+ ∗ty. Summing up, if rank ` = 2 then

λ5,2 + aλ1,2 = 0 and λ2,2 + aλ5,2 = 0. (2.4)
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In this case, the space V (`) := {u ∈ R1 : u` = 0} contains z + γ y with γ = −λ5,1 − aλ1,1. Note that (z + γ y)2 =
λ1,1ty+ λ1,2wy and we claim that (z + γ y)2 6∈ `R1. If, otherwise, (z + γ y)2 ∈ `R1 then, since the rank ` = 2 and hence the
elements (2.3) are a basis of R1, we must have λ1,2 = 0. By (2.4) it follows that λ5,2 = 0 contradicting the assumption (2.2).
We can conclude that V (`)2 6⊆ `R1. This is Case (1) with ` playing the role of y and we are done. Summing up, if (2.2) holds
thenwe are done because we find an element `with `2 = 0which has either rank 3 or rank 2 and {u ∈ R1 : u` = 0}2 6⊆ `R1.
We can also look for elements of the form ` = w + az + by satisfying `2 = 0. The situation is completely symmetric.

Therefore we get the desired conclusion unless

λ1,2 = 0 and λ5,2 = 0 and λ1,1 = 0 and λ4,1 = 0, (2.5)

that is, Eq. (2.1) takes the form

y2 = 0, yz = 0, z2 = 0, t2 = L2y, w2 = L3y, zw = λ4,2wy, zt = λ5,1ty

for every z ∈ V which is not multiple of y. It follows that z2 = 0 for all the z ∈ V . This implies V 2 = 0 (here we use again
that K has characteristic not 2). In particular we see that the element y1 = z − λ4,2y of V has y21 = 0 and y1V = 0 and
y1w = 0. So rank y1 = 1 and we are done by 2.2(4). �

The following examples show that the cases described in 2.2 do indeed arise in an essential way. By this we mean:

Example 2.4. There are examples where all the elements with `2 = 0 have rank 3. This is the generic situation. In four
variables, an ideal generated by the squares of seven general linear forms has this property. Explicitly, in K [t, z, w, y] the
algebra defined by (y2, z2, w2, t2, (t + z + w + y)2, (t + 2z + 4w + 8y)2, (t + 3z + 9w + 27y)2) has this property.

Example 2.5. There are examples where all the elements with `2 = 0 have rank 2 and (2) does apply. For example, in
K [t, z, w, y] the ideal (y2, yz, z2 − wy, t2, tw,w2 − tz, wz) defines an algebra R with only two elements with `2 = 0,
namely y and t , and both have rank 2. For both y and t one can apply 2.2(2).

Example 2.6. There are examples where all the elements with `2 = 0 have rank 2 and (2) does not apply while 2.2(3) does
apply. The ideal (y2, yz, w2, wz, t2, tz, z2 + ty + wy) defines an algebra with three elements with `2 = 0, namely y, w, t .
They all have rank 2. While y does not fit into 2.2(2) or (3), both t andw satisfy 2.2(3) but not (2).

Example 2.7. There are examples where the elements with `2 = 0 all have rank≤ 2 and for those of rank 2 case (2) or (3)
do not apply. The ideal (y2, zy, z2, t2− ty−2wy, w2−3ty−4wy, tz− ty, wz−2wy) defines an algebra where the elements
with `2 = 0 are the elements of type ay + bz. They all have rank ≤ 2. Those of rank exactly 2 do not fit into 2.2(2) or (3).
Among the elements with the property `2 = 0 there are exactly two elements of rank 1, namely y− z and 2y− z.

3. Nets of conics

Our main result asserts that quadratic Artinian algebras with dim R2 = 3 are Koszul and most of them are G-quadratic.
What about dropping the assumption that they are Artinian? We will discuss in this section the case of quadratic (not
necessarily Artinian) algebras with Hilbert series 1+ 3x+ 3x2 + · · ·. In [2] the authors make a detailed study of the Koszul
property of the quadratic quotients of K [x, y, z]. The most difficult case is that of a quotient defined by three quadrics, that
is, an algebra with Hilbert series 1+ 3x+ 3x2 + · · ·. It turns out that there exist exactly (up to change of coordinates) two
quotients of K [x, y, z] defined by three quadrics that are not Koszul. They are the algebras defined by the ideal number (12)
and number (14) in the list below.
To proceed with the discussion let us recall a few facts. Vector spaces of quadrics of dimension 3 in three variables are

classically called nets of conics. Themain ingredient for the proof of [2, Theorem 1] is a classification result for nets of conics
up to the action of GL3(K). This classification can be found in full detail in the paper of Wall [11] or in an old preprint of
Emsalem and Iarrobino [7]. Over the complex numbers, there are 15 types of nets of conics; fourteen of them are just one
point and one type is one-dimensional. With respect to [11], we have chosen slightly different normal forms to minimize
the total number of terms involved or (as in case 15) to maximize the symmetry. The list of nets of conics is

(1) (x2, xy, y2) (2) (x2, xy, xz) (3) (x2, y2, z2)
(4) (xy, xz, yz) (5) (x2, y2, z2 + xy) (6) (xz, yz, z2 + xy)
(7) (x2, y2, xz) (8) (xy, z2, yz) (9) (x2, y2, xz + yz)
(10) (x2, xz, y2 + yz) (11) (x2, xy+ z2, xz) (12) (x2, xy+ z2, yz)
(13) (x2, yz, y2 + z2 + xy) (14) (xz, y2 + yx, z2 + xy)

and

(15) (x2 + 2jyz, y2 + 2jxz, z2 + 2jxy) with j ∈ C and j3 6= 0, 1,−1/8.

One can then study the G-quadratic property of the quadratic quotients of K [x, y, z], say over C, using the classification.
We skip the uninteresting details. Below we summarize the final result.



1568 A. Conca / Journal of Pure and Applied Algebra 213 (2009) 1564–1568

There are five possible Hilbert series:

(a) 1+ 3x+ 3x2 + x3 (c.i.) (b) (1+ 2x)/(1− x)
(c) (1+ x− 2x2 + x3)/(1− x)2 (d) (1+ 2x− x3)/(1− x)
(e) (1+ 2x− 2x3)/(1− x).

Every net of conics V has a dual net of conics V ∗ (the orthogonal space with respect to partial differentiation). In this
duality, a point (a, b, c) ∈ P2 belongs to the locus defined by V if and only the square of the linear form ax+ by+ cz belongs
to V ∗.
Another interesting aspect of the story is the following. If a net V is generated by the partial derivatives of a cubic f we say

that V is of gradient type. It turns out that ‘‘almost all’’ nets of conics are of gradient type and the corresponding cubic is also
uniquely determined. For instance, the net (15) corresponds to the smooth cubic form in Hesse form f = x3+y3+z3+6jxyz
and the conditions on j guarantee that f is smooth and not in the orbit of the Fermat cubic x3 + y3 + z3.
In the following tablewe show, for every type, its Hilbert series (columnheadH-series), the number of linear formswhose

squares are in the net (column head q), the number of points of the variety defined by the net (column head p), whether it
is Koszul or not (column head Kos), whether it is G-quadratic or not (column head G-quad), the name given by Wall to that
type of net (column head Wall), and whether it is of gradient type (column head ∇).

H-series q p Kos G-quad Wall ∇

(1) (b) ∞ 1 Yes Yes I No
(2) (c) 1 ∞ Yes Yes I* No
(3) (a) 3 0 Yes Yes E Yes
(4) (b) 0 3 Yes Yes E* Yes
(5) (a) 2 0 Yes Yes D No
(6) (d) 0 2 Yes Yes D* Yes
(7) (d) 2 1 Yes Yes G Yes
(8) (b) 1 2 Yes Yes G* No
(9) (d) 2 1 Yes Yes F No
(10) (d) 1 2 Yes Yes F* No
(11) (b) 1 1 Yes Yes H Yes
(12) (e) 1 1 No No C No
(13) (a) 1 0 Yes Yes B No
(14) (e) 0 1 No No B* Yes
(15) (a) 0 0 Yes No A Yes

The star ∗ in Wall’s notation refers to the duality. The types that are G-quadratic are so in the given coordinates with
the exception of (6). Applying the change of coordinates x→ x, y→ x − z, z → x − y, the net (6) becomes generated by
xz − yz, x2 − xy, y2 − yz which is a G-basis. That (12) and (14) are not G-quadratic follows from the fact, proved in [2], that
they are not Koszul. But it follows also from the simple observation that there is no quadratic monomial ideal with Hilbert
series (e).

4. Final remarks

We list some questions which arise from the results presented. Let R be a quadratic standard graded K -algebra which is
not a trivial fiber extension.
(1) Assume dim R1 > dim R2 = 3. Is R G-quadratic?
(2) Assume dim R1 > dim R2 and R3 = 0 (or just that R is Artinian). Is R G-quadratic?

We have seen that the answer to (1) is positive for Artinian algebras. Also, the answer to (2) is positive for ‘‘generic’’
algebras; see [5].
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