
Math. Z.
DOI 10.1007/s00209-009-0537-4 Mathematische Zeitschrift

Integrally closed and componentwise linear ideals

Aldo Conca · Emanuela De Negri · Maria Evelina Rossi

Received: 19 February 2008 / Accepted: 30 March 2009
© Springer-Verlag 2009

Abstract In a two dimensional regular local ring integrally closed ideals have a unique
factorization property and their associated graded ring is Cohen–Macaulay. In higher dimen-
sion these properties do not hold and the goal of the paper is to identify a subclass of integrally
closed ideals for which they do. We restrict our attention to 0-dimensional homogeneous ide-
als in polynomial rings R of arbitrary dimension. We identify a class of integrally closed
ideals, the Goto-class G∗, which is closed under product and it has a suitable unique factor-
ization property. Ideals in G∗ have a Cohen–Macaulay associated graded ring if either they
are monomial or dim R ≤ 3. Our approach is based on the study of the relationship between
the notions of integrally closed, contracted, full and componentwise linear ideals.

Keywords Integrally closed ideals · Contracted ideals · Componentwise linear ideals ·
Associated graded rings
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1 Introduction

Thanks to the work of Zariski, integrally closed ideals of two-dimensional regular local rings
(R,m) are well-understood. In such rings the product of integrally closed ideals is integrally
closed and there is a unique factorization property for integrally closed ideals into product
of simple integrally closed ideals. In higher dimension, these properties no longer hold, see
the examples in [7,10,23,28]. The identification of analogues of Zariski’s results is an active
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A. Conca et al.

research area. In this direction we mention the work of Cutkosky [7–10], Deligne [13], Hun-
eke [23] and Lipman [28]. Several authors considered other related problems, as for instance
the description of integrally closed ideals I such that I m is integrally closed as well, see
[5,11,12,15–17,21].

In this paper we deal with homogeneous ideals of R = K [x1, . . . , xn], the polynomial
ring over a field K . For an ideal I we denote by o(I ) the order or initial degree of I , by I j

the homogeneous component of degree j of I and by I〈 j〉 the ideal generated by I j . We set
m = (x1, . . . , xn).

Our goal is to identify a class of m-primary integrally closed ideals of R which behaves,
as much as possible, as the class of integrally closed ideals in dimension 2. To this end, we
study the relations between four properties of ideals: (1) being integrally closed, (2) being
componentwise linear, (3) being contracted (from a quadratic extension), (4) being m-full.
It turns out that (1) implies (3), that (2) implies (3) and that (3) implies (4). Also, for ideals
I such that I + (�) = mo(I ) + (�) for some linear form �, one has that (4) implies (2).

We then consider the class C of the m-primary ideals of R satisfying I +(�) = mo(I )+(�)
for some linear form � and having property (4), (equivalently (3) or (2)). Denote by C∗ the
set of the ideals in C that are integrally closed. We prove that C is closed under product and
integral closure, see Proposition 3.5. Further, we prove in Theorem 3.13 that C has a factor-
ization property that looks like Zariski’s factorization for contracted ideals in dimension 2
[33, Appendix 5, Thm.1]. An important role in Zariski’s factorization theorem is played by
the characteristic form g(I ) defined has the GCD of the forms of degree o(I ) in I . Given
I ∈ C for every j ∈ N we define Q j (I ) to be the saturation of I〈 j+o(I )〉. In our context, the
characteristic form is replaced by the ideal Q0(I ).

We show that given I ∈ C, one has I ∈ C∗ iff Im ∈ C∗. But, unfortunately, C∗ is not closed
under product. We then consider the Goto-class G defined as the set of the ideals I ∈ C such
that for every j the primary components of Q j (I ) are powers of (necessarily 1-dimensional)
geometrically prime ideals. Integrally closed complete intersections, characterized by Goto
[18], are in G, see Theorem 4.8. We prove in Proposition 4.6 that G is closed under product
and that it is compatible with the factorization of C. We define G∗ to be the set of the integrally
closed ideals of G. We then show that G∗ is closed under product and has a unique factoriza-
tion property, see Theorem 4.7. The simple elements in G∗ have a “simple” description: up to

a change of coordinates, they are of the form (xd
1 , . . . , xd

n−1, xt
n) for coprime d, t with d < t .

Lipman and Teissier [29] and Huneke [25] proved that integrally closed ideals in two dimen-
sional regular local rings have a Cohen–Macaulay associated graded ring. It is natural to ask
whether the same holds for ideals of G∗. We conclude the paper by showing that if I ∈ G∗
and either I is monomial (e.g. Q0(I ) has at most two minimal primes) or dim R ≤ 3, then the
associated graded ring gr I (R) is Cohen–Macaulay, see Corollary 4.11 and Theorem 4.13.

2 m-full, contracted and componentwise linear ideals

Throughout the paper let R = K [x1, . . . , xn] be a polynomial ring over a field K , and
m = (x1, . . . , xn). All the ideals we deal with are homogeneous (with few exceptions).

Let I be an ideal of R. Denote by µ(I ) the minimum number of generators of I and by
o(I ) the initial degree (or the order) of I , that is the least degree of non-zero elements in I .

In this section we discuss the relations between m-full, contracted and componentwise
linear ideals. First we introduce some notation and recall definitions. Denote by βi j (I ) the
i j th graded Betti number of I as an R-module. The Castelnuovo–Mumford regularity of I
is given by
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reg(I ) = max{ j − i : βi j (I ) �= 0}.
The ideal I has a linear resolution if reg(I ) = o(I ). For general facts on the Castelnuovo–
Mumford regularity and its characterization in terms of local cohomology we refer the reader
to [14]. For every integer j denote by I j the K -vector space of the forms of degree j in I ,
and by I〈 j〉 the ideal generated by the elements of I j . The ideal I〈 j〉 has a linear resolution
for j ≥ reg(I ).

Given two ideals I and J , we set I : J∞ = ∪k I : J k . We denote by I sat the saturation of
I with respect to m, that is

I sat = I : m∞.

For short we will denote the ideal (I〈 j〉)sat by I sat〈 j〉.

Definition 2.1 ([20]) An ideal I ⊂ R is said to be componentwise linear if I〈d〉 has a linear
resolution for every d ∈ N.

For every non-zero linear form � in R we consider the quadratic transform S of R asso-
ciated to �. By definition S = R[m/�] = ∪k∈Nmk/�k .

Definition 2.2 ([20]) An ideal I ⊂ R is said to be contracted (from a quadratic extension)
if there exists a non-zero linear form � in R such that I = IS ∩ R, where S = R[m/�].
Proposition 2.3 Let � be a non-zero linear form in R and I ⊂ R an ideal. Set S = R[m/�]
and J = I S ∩ R. We have:
(1) J = ∪k∈N(I mk : �k).
(2) J is homogeneous.
(3) J j = (I sat〈 j〉 : �∞) j .

Proof (1) follows immediately from the fact that I S = ∪k I mk/�k . Then (2) follows from (1).
To prove (3) consider f ∈ R homogeneous of degree j . We have f ∈ J j iff f �k ∈ (I mk) j+k

for every k � 0. Since (I mk) j+k = (I〈 j〉) j+k we have f ∈ J j iff f �k ∈ I〈 j〉 for every k � 0.
Hence f ∈ J j iff f ∈ I〈 j〉 : �∞ = I sat〈 j〉 : �∞.

In the following we denote by Ass(M) the set of the associated prime ideals of an
R-module M .

Definition 2.4 Let I be an ideal of R. We set

Assc(R/I ) = ∪ j≥o(I ) Ass(R/I〈 j〉).

Lemma 2.5 Let I be an ideal of R with generators in degrees d1, . . . , dp. We have

Assc(R/I ) = Ass(R/I〈d1〉) ∪ · · · ∪ Ass(R/I〈dp〉) ∪ {m}.
In particular, Assc(R/I ) is finite.

Proof The assertion follows immediately by observing that if I has no generators in degree
j + 1, then I〈 j+1〉 = I〈 j〉 ∩ m j+1.

Definition 2.6 Let I be an ideal. We denote by U (I ) the (finite) union of the prime ideals
in Assc(R/I )\{m}.
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Proposition 2.7 Let I be an ideal with generators in degrees d1, . . . , dp with d1 < · · · < dp

and set dp+1 = ∞. The following conditions are equivalent:
(1) I is contracted from R[m/�] for some non-zero linear form �.
(2) I is contracted from R[m/�] for every non-zero linear form � with � �∈ U (I ).
(3) (I sat〈 j〉) j = I j for every j ∈ N.

(4) (I sat〈dk 〉) j = I j for every j with dk ≤ j < dk+1 and k = 1, . . . , p.

Proof Obviously (2) implies (1). That (1) implies (3) follows from I j = (I sat〈 j〉 : �∞) j , which

holds by 2.3, and (I sat〈 j〉 : �∞) j ⊇ (I sat〈 j〉) j ⊇ I j . For (3) implies (2) one notes that if � �∈ U (I ),

then we have I sat〈 j〉 : �∞ = I sat〈 j〉 and by assumption (I sat〈 j〉) j = I j . It follows then from 2.3
that I is contracted from R[m/�]. Finally, that (3) and (4) are equivalent follows from the
observation that if I has no generators in degree j + 1, then I〈 j+1〉 = I〈 j〉 ∩ m j+1 and hence
I sat〈 j+1〉 = I sat〈 j〉.

Proposition 2.8 Every componentwise linear ideal of R is contracted.

Proof Since I is componentwise linear, we have reg(I〈 j〉) = j for every j and hence I j =
(I〈 j〉) j = (I sat〈 j〉) j . The result follows by 2.7 (2).

In dimension 3 or higher contracted ideals need not be componentwise linear.

Example 2.9 (x2
1 , x2

2 ) is contracted but not componentwise linear in K [x1, x2, x3].
The following definition is due to Rees. We adapt it to the graded case.

Definition 2.10 An ideal I ⊂ R is said to be m-full if there exists a non-zero linear form �

in R such that I m : � = I .

Ideals which are m-full are studied in [18,30–32]. It is easy to see that if I is m-full, then
I : � = I : m. Moreover, if I is m-full then I m : � = I holds for a general linear form �.
By 2.3 we have immediately that:

Proposition 2.11 Every contracted ideal of R is m-full.

The following example shows that the converse of 2.11 does not hold.

Example 2.12 The ideal I = (x3
1 , x3

2 , x2
1 x3) + (x1, x2, x3)

4 of K [x1, x2, x3] is m-full. But
I is not contracted and I m is not m-full.

We recall that an element a of R is said to be integral over I if it satisfies an equation of
the form at + r1at−1 + · · · + rt = 0, with ri ∈ I i for every i = 1, . . . , t . The elements of R
which are integral over I form an ideal, the integral closure of I , denoted by I . An ideal is
said to be integrally closed if it coincides with its integral closure.

Proposition 2.13 Let � ∈ R1\U (I ) and S = R[m/�]. Then

I ⊆ I S ∩ R ⊆ I .

Proof By 2.3 we have for every j

(IS ∩ R) j = (I sat〈 j〉) j .

Hence for every f ∈ (I S ∩ R) j we have f mk ⊆ I〈 j〉mk for some k. The “determinant trick”
implies that f ∈ I〈 j〉. In particular, f ∈ I .
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As a corollary we have:

Corollary 2.14 Every integrally closed ideal of R is contracted.

Under the assumption that I is m-primary 2.14 is proved in [11, Lemma 3.3]. Further in
[18, 2.4] it is proved that integrally closed ideals are m-full in a much more general context.
Summing up, we have seen that the following implications hold:

Componentwise linear �⇒ Contracted �⇒ m − full

⇑
Integrally closed

In dimension 2, componentwise linear, contracted and m-full are equivalent properties,
but, as seen in 2.9 and 2.12, in dimension 3 and higher they differ.

For an R-module M we denote by length(M) its length.

Lemma 2.15 Let I be an m-primary, m-full ideal of order d. For every ideal J containing
I and for every � such that I m : � = I one has

µ(I )− µ(J ) = length(mJ/mI + �J ).

It follows that µ(I ) ≥ µ(J ) and, in particular, µ(I ) ≥ µ(md).

Proof See [18, Lemma 2.2. (2)].

One says that I has the Rees property if µ(I ) ≥ µ(J ) for every ideal J ⊇ I . Under the
assumption that I is componentwise linear ideal, the inequality µ(I ) ≥ µ(md) is proved in
[4, 3.4]. A sort of Rees property is still valid for m-full ideals not necessarily m-primary. We
refer to [4, 3.2] for the corresponding result for componentwise linear ideals.

Proposition 2.16 Let I and J be ideals of R. Assume that I is m-full, I ⊆ J and It = Jt

for t � 0. Then µ(I ) ≥ µ(J ).

Proof First we remark that if I is m-full, then I + mt is m-full for every integer t > 0.
Now, since I + mt ⊆ J + mt and I + mt is m-primary and m-full ideal, it follows that
µ(I + mt ) ≥ µ(J + mt ) by 2.15. Since It = Jt for t � 0, the inequality µ(I + mt ) ≥
µ(J + mt ) for t � 0 implies that µ(I ) ≥ µ(J ).

Proposition 2.17 Let I ⊂ R be an ideal of order d and let � be a non-zero linear form.
Assume that I + (�) = md + (�). Then

(1) if I is m-primary, then µ(I ) ≤ µ(md).
(2) I = I〈d〉 + �(I : �).
(3) dim R/I〈d〉 ≤ 1.

Proof (1) If I + (�) = md + (�) holds for a linear form, then it holds for a generic linear
form. Thus we may consider a sequence y1, . . . , yn of generic linear forms in R with
I + (y1) = md + (y1), and set

αi (I ) = length([I + (y1, . . . , yi )] : yi+1/[I + (y1, . . . , yi )]).
By [4, 1.2], we have µ(I ) ≤ ∑n−1

i=0 αi (I ). We remark that α0(I ) = length(I : y1/I ).
By the exact sequence:

0 → I : y1

I
→ R

I
→ R

I
→ R

I + (y1)
→ 0
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it follows that length(I : y1/I ) = length(R/(I + (y1))). Since I + (y1) = md + (y1),
we have α0(I ) = length(R/md + (y1)). Moreover for every integer i ≥ 1 we have
[(y1, . . . , yi )+ I ] : yi+1/[(y1, . . . , yi )+ I ] = [(y1, . . . , yi )+md ] : yi+1/[(y1, . . . , yi )

+md ]. Then αi (I ) = αi (md) and the result follows since
∑n−1

i=0 αi (I ) = ∑n−1
i=0 αi (md)

and
∑n−1

i=0 αi (md) = µ(md).
(2) The inclusion ⊇ is obvious. To prove the other inclusion we note that by assumption

md ⊆ I〈d〉 + (�). Thus I ⊆ md + (�) ⊆ I〈d〉 + (�), in particular I ⊆ I〈d〉 + (�) ∩ I =
I〈d〉 + �(I : �).

(3) By assumption, md ⊆ I〈d〉 + (�), that is m = √
� mod I〈d〉. The conclusion follows

by Krull hauptidealsatz.

We are ready to prove the following theorem.

Theorem 2.18 Let I be an m-primary ideal of order d such that I + (�) = md + (�) for
some non-zero linear form �. The following conditions are equivalent:

(1) µ(I ) = µ(md),
(2) I is m-full,
(3) I is contracted,
(4) I is componentwise linear.

Proof The implications (4) �⇒ (3) �⇒ (2) hold in general by 2.8, 2.11. That (2) implies
(1) follows by 2.17(1) and 2.15. It remains to prove (1) implies (4). We may assume that
I + (�) = md + (�) for a general linear form. With the notation of the proof of 2.17, one
sees that the assumption (1) can be stated as µ(I ) = ∑n−1

i=0 αi (I ). Then by [4, 2.3, 1.5], we
conclude that I is componentwise linear.

In dimension 2 products of contracted ideals are contracted. This is not true in higher
dimension.

Example 2.19 Let R = K [x1, x2, x3], and I = (x2
1 , x1x2

2 , x2
2 x2

3 ). The ideal I is component-
wise linear and hence contracted and m-full. But I 2 is not m-full (therefore not contracted
and not componentwise linear). Take J = I + m5 to get an m-primary example.

The following result will be useful in the next section.

Theorem 2.20 Let I, J be componentwise linear ideals. Let d be the order of I and assume
that dim R/I〈d〉 ≤ 1. Then I J is componentwise linear.

Proof First assume that I is generated in degree d . One has (I J )d+s = Id Js for every s ∈ N.
Now since dim R/I〈d〉 ≤ 1, by [2, 2.5], reg(I〈d〉 J〈s〉) = d + s. Hence I J is componentwise
linear.

Assume now that I has generators in various degrees. Let y1, . . . , yn be a generic sequence
of linear forms. For 1 ≤ p ≤ n denote by H1(y1, . . . , yp, R/I J ) the first homology of the
Koszul complex of R/I J with respect to y1, . . . , yp . In order to prove that I J is com-
ponentwise linear, by [4, 1.5, 2.2], it suffices to prove that mH1(y1, . . . , yp, R/I J ) = 0
for every p. Since dim R/I〈d〉 ≤ 1 and reg(I〈d〉 + (y1)) ≤ reg(I〈d〉) = d we deduce that
I + (y1) = md + (y1). Consider the Koszul complex:

K : · · · → R(
p
2)

ϕ2→ R p ϕ1→ R.

We have to prove that m(α1, . . . , αp) ∈ Image(ϕ2) + I J R p for every (α1, . . . , αp) ∈ R p

satisfying ϕ1(α1, . . . , αp) ∈ I J .
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Since I + (y1) = md + (y1), then by 2.17(2), we have I = I〈d〉 + y1(I : y1). Thus

I J = [I〈d〉 + y1(I : y1)]J = I〈d〉 J + y1(I : y1)J.

As consequence we may writeα1 y1+α2 y2+· · ·+αp yp = a+by1 with a ∈ I〈d〉 J and b ∈ (I :
y1)J, that is (α1−b)y1+α2 y2+· · ·+αp yp ∈ I〈d〉 J which is componentwise linear by the first
part of the proof, thus m(α1 −b, α2 . . . , αp) ∈ Image(ϕ2)+ I〈d〉 J R p ⊆ Image(ϕ2)+ I J R p .
The conclusion follows by noting that mb ∈ Jm(I : y1) = Jm(I : m) ⊆ J I .

3 The classes C and C∗

In this section we define and study the properties of a class of m-primary ideals of R =
K [x1, . . . , xn] denoted by C and of its subclass C∗. Before giving the formal definition let
us recall few notions that are needed in the sequel. Given an ideal I with dim R/I = t ,
the multiplicity e(R/I ) of R/I is, by definition, (t − 1)! times the leading coefficient of the
Hilbert polynomial of R/I if t > 0 and it is dimK R/I otherwise. In particular, by definition,
we have e(R/R) = 0.

Definition 3.1 We define C to be the class of the ideals I of R of finite colength such that:

(1) I + (�) = mo(I ) + (�) for some non-zero linear form �,
(2) I verifies one of the equivalent conditions of 2.18.

We also set

C∗ = {I ∈ C : I is integrally closed}.
Remark 3.2 (1) In the definition above we say “finite colength” and not simply “m-primary”

because we want C to contain R.
(2) If n = 2, then C is the class of contracted ideals.
(3) It follows from [4, 3.4] that C can be also defined as the class of finite colength ideals I

which are componentwise linear with µ(I ) = µ(mo(I )).

The next example shows that C cannot be defined as the class of “contracted ideals with
µ(I ) = µ(mo(I ))”.

Example 3.3 In K [x1, x2, x3] the ideal I = (x2
1 , x2x3) + m3 is integrally closed, hence

contracted and m-full. Furthermore µ(I ) = µ(m2) . But I �∈ C.

However we have:

Lemma 3.4 Let I be an ideal of R of finite colength and order d. If both I and mI are m-full
and µ(I ) = µ(md), then mI ∈ C.

Proof Since I is m-full and µ(I ) = µ(md), then by 2.15 applied with J = md we deduce
that there exists � such that md+1 + (�) = I m + (�). Since mI is m-full, we conclude that
mI ∈ C.

The class C is closed under the product and the integral closure.

Proposition 3.5 If I, J ∈ C, then I J ∈ C and I ∈ C∗.
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Proof Set d = o(I ) and d1 = o(J ). Choose � such that I + (�) = md + (�) and J + (�) =
md1 + (�). Hence md+d1 + (�) ⊆ I J + (�). Since the opposite inclusion is obvious, one has
md+d1 + (�) = I J + (�). Furthermore by 2.17 the dimension of R/I〈d〉 is ≤ 1. Hence I J
is componentwise linear by 2.20. Hence I J ∈ C. As for I one notes that, by degree reasons,
o(I ) = d and md ⊆ I + (�) ⊆ I + (�). Being integrally closed, I is contracted. It follows
that I ∈ C∗.

Example 2.12 shows that the class defined by the conditions “m-full andµ(I )=µ(mo(I ))”,
which properly contains C, is not closed under the product.

In dimension 2, to every contracted ideal I of order d one associates its characteristic form
g(I )which is, by definition, the GCD of the elements in Id . Zariski proved [33, Appendix 5]
a factorization property for contracted ideals in dimension 2. The factors are characterized by
having pairwise coprime characteristic forms which are powers of irreducible forms. Now
we want to generalize Zariski’s theorem to the class C. To this end we will give another
description of the ideals in it.

Definition 3.6 We denote by A the set of the families Q = {Q j } j∈N of homogeneous ideals
of R satisfying the following conditions:

(1) Q j ⊆ Q j+1 for every j ,
(2) Q j = R for j � 0,
(3) whenever Q j �= R, the ideal Q j is saturated and 1-dimensional (i.e. dim R/Q j = 1).

Given Q = {Qi } ∈ A, let d0 = reg(Q0). For every k ∈ N we set

I (Q, k) = ⊕ j∈N(Q j )d0+k+ j .

We have:

Proposition 3.7 For every Q = {Q j } ∈ A and for every k ∈ N, one has

I (Q, k) ∈ C.
Proof Since Q j ⊆ Q j+1 we have R1 Q j ⊆ Q j+1 and hence R1(Q j )d0+ j+k ⊆
(Q j+1)d0+ j+1+k . This proves that I (Q, k) is an ideal. If Q0 = R, then I (Q, k) = mk

for all k ≥ 0. Assume now that Q0 �= R. Let � be a linear form non-zero-divisor on
R/Q0. Since reg Q0 = d0, the ideal Q0 + (�) is 0-dimensional of regularity d0. It follows
that md0 ⊆ Q0 + (�). Therefore md0+k ⊆ (Q0)〈d0+k〉 + (�) ⊆ I (Q, k) + (�) and hence
md0+k + (�) = I (Q, k) + (�). It remains to prove that I (Q, k) is componentwise linear,
that is, (Q j )〈d0+h〉 has a linear resolution for every h ∈ N. By assumption Q j ⊆ Q j+1 and
they define Cohen–Macaulay rings of the same dimension or are equal to R. It follows that
reg(Q j ) ≥ reg(Q j+1). Hence reg(Q j ) ≤ reg(Q0) = d0 for every j . Then for every h ≥ 0
we have (Q j )〈d0+h〉 has a linear resolution. This proves the assertion.

Given an ideal I in C of order d, for every j ≥ 0, we set

Q j (I ) = (I〈d+ j〉)sat.

Proposition 3.8 Let I ∈ C and d = o(I ). For every j ∈ N set Q(I ) = {Q j (I )} and
d0 = reg(Q0(I )). Then Q(I ) ∈ A and d ≥ d0.

Proof Since I〈d〉 has dimension ≤ 1, then Q j (I ) is saturated of dimension 1 or it is equal
to R. Moreover I〈d+ j〉 R1 ⊆ I〈d+ j+1〉 ⊆ I sat〈d+ j+1〉. Hence Q j (I ) ⊆ Q j+1(I ). We have
d0 = reg(Q0(I )) ≤ reg I〈d〉 = d .
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As a consequence we have:

Theorem 3.9 With the notation of 3.7 and 3.8 the applications

ϕ : A × N −→ C and ψ : C → A × N

defined by ϕ(Q, k) = I (Q, k) and ψ(I ) = (Q(I ), d − d0) are inverse to each other.

Proof That the maps are well-defined follows from 3.7 and 3.8. That are inverse to each
other is a straightforward verification based on the observation that if J is a saturated ideal
generated in degree ≤ t, then J〈t〉 = J ∩ mt and hence J sat〈t〉 = J .

We need to recall now few facts about the ideal transform. Let S = R[m/�] where � is a
non-zero linear form. Clearly mS = (�)S and for every homogeneous element f of degree
d one has f = ( f/�d)�d in S. Hence for every ideal I of order d we have

I S = �d I ′,

where I ′ is an ideal of S. The ideal I ′ is called the ideal transform of I in S.

Proposition 3.10 Let I, J ∈ C with o(I ) ≥ o(J ). The following facts are equivalent:
(1) Q j (I ) = Q j (J ) for every j .
(2) I ms = Jmr for some r, s ∈ N.
(3) I = Jmr where r = o(I )− o(J ).
(4) I ′ = J ′ in S = R[m/�] for every linear form �.
(5) I ′ = J ′ in S = R[m/�] for a linear form � not in U (I ) ∪ U (J ).

Proof Conditions (1), (2) and (3) are equivalent by 3.7, 3.8 and 3.9. That (3) implies (4) is
clear by construction. That (4) implies (5) is obvious. Assume (5) and set r = o(I )− o(J ).
Then I S = �o(I ) I ′ and Jmr S = �r�o(J ) J ′ = I S. Since J ∈ C, we have Jmr ∈ C by 3.5.
Hence I and Jmr are contracted from S. Since they have the same extension, it follows that
I = Jmr .

Definition 3.11 For I, J ∈ C we set I ≡ J if I and J verify the equivalent conditions of 3.10.

In a different setting a similar equivalent relation is introduced in [28].
The extension R → R[m/xn] can be identified with the K -algebra homomorphism φ :

R → R sending xi → xi xn for i = 1, . . . , n − 1 and xn to xn . One has φ( f (x1, . . . , xn)) =
xd

n f (x1, . . . , xn−1, 1) for every form of degree d . Denote by φ′ : R → K [x1, . . . , xn−1]
the dehomogenization map, that is, the K -algebra homomorphism sending xi → xi for
i = 1, . . . , n − 1 and xn to 1. So we have φ( f ) = xd

nφ
′( f ) for every form of degree d .

Let I ∈ C of order d . Let P1, . . . , Pm be the minimal primes of Q0(I ) = I sat〈d〉, necessarily

homogeneous of dimension 1 (with m = 0 if Q0(I ) = R, that is, I = md ). Note that, by con-
struction, I is contracted from any extension R[m/�] with � �∈ ∪Pi . After a change of coor-
dinates, we may assume that xn �∈ ∪m

i=1 Pi and take � = xn . We may write I = ∑
j≥0 I〈 j+d〉

and so

φ(I )R =
∑

j≥0

φ(I〈 j+d〉)R = xd
n

∑

j≥0

φ′(I〈 j+d〉)x j
n .

It follows that

I ′ =
∑

j≥0

φ′(I〈 j+d〉)x j
n
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that is

I ′ =
⎧
⎨

⎩

∑

j

a j x j
n : a j ∈ φ′(I〈 j+d〉)

⎫
⎬

⎭
.

Proposition 3.12 With the notation above, we have:
√

I ′ = ∩m
i=1(φ

′(Pi )R + (xn))

and φ′(Pi )R + (xn) are distinct maximal ideals of R.

Proof By definition, Q j (I ) = I sat〈 j+d〉. Hence for some u ∈ N one has xu
n Q j (I ) ⊆ I〈 j+d〉 ⊆

Q j (I ) which implies

φ′(I〈 j+d〉) = φ′(Q j (I )).

It follows that
I ′ =

∑

j≥0

φ′(Q j (I ))x
j
n . (3.1)

Since Q j (I ) = R for j � 0 we have that x j
n ∈ I ′ for j � 0. As a consequence we have:

√
I ′ = √

φ′(Q0(I ))R + (xn) = √
φ′(Q0(I ))R + (xn)

The known properties of the dehomogenization, see for instance [27, Section 4.3], guarantee
that

√
φ′(Q0(I )) = ∩m

i=1φ
′(Pi ). The rest follows sinceφ′(Pi ), as an ideal of K [x1, . . . , xn−1],

is maximal and φ′(Pi ) �= φ′(Pj ) for i �= j .

The next result generalizes Zariski’s factorization theorem for contracted ideals [33,
Appendix 5, Thm. 1] to the class C. The role played in [33] by the characteristic form is
played here by the ideal Q0(I ). We call Q0(I ) the characteristic ideal of I .

Theorem 3.13 Let I ∈ C and let P1, . . . , Pm be the minimal prime ideals of Q0(I ). We
have:
(1) There exist L1, . . . , Lm ∈ C such that

I ≡ L1L2 · · · Lm

and every Li has a Pi -primary characteristic ideal.
(2) The Li ’s satisfying (1) are uniquely determined by I up to ≡. In particular, Q j (Li ) =

Q j (I )RPi ∩ R.

Proof First we prove that the Li ’s defined as in (2) satisfy (1) and then we prove the unique-
ness of the Li . For i = 1, . . . ,m and j ∈ N set Qi = {Q j (I )RPi ∩ R} j∈N. Then set
Li = I (Qi , 0). By construction, Li ∈ C and Q j (Li ) = Q j (I )RPi ∩ R and hence Q0(Li ) is
Pi -primary. By 3.5 we have L1L2 · · · Lm ∈ C. According to 3.10, to prove (1) it is enough
to show that

I ′ = L ′
1L ′

2 · · · L ′
m (3.2)

in S = R[m/�] for a general linear form �. After a change of coordinates, we may assume
that xn �∈ Pi for every i and hence take � = xn . Using formula (3.1) to describe I ′ and the
L ′

i ’s, (3.2) becomes equivalent to

φ′(Q j (I )) =
∑

∗

m∏

k=1

φ′(Q jk (Lk)) (3.3)
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for all j , where the sum
∑

∗ of the right hand side is extended to all the j1, . . . , jm such that
j1 + j2 + · · · + jm = j . Equivalently,

φ′(Q j (I )) = φ′
(

∑

∗

m∏

k=1

Q jk (Lk)

)

. (3.4)

If we show that:

Claim Q j (I ) is the saturation of
∑

∗
∏m

k=1 Q jk (Lk),
then we are done because two homogeneous ideals with the same saturation become equal
after dehomogenization. To prove the claim we localize

∑
∗
∏m

k=1 Q jk (Lk) at each Pi . What
we get is (

∑
Q ji (Li ))RPi where the sum is exteded to ji ≤ j , that is, Q j (Li )RPi . Since

Q j (Li ) = Q j (I )RPi ∩ R we have Q j (Li )RPi = Q j (I )RPi . This proves the claim. Now
assume that there are other ideals Wi ∈ C such that I ≡ W1 . . .Wm and Q0(Wi ) is Pi -
primary. Then I ′ = W ′

1 . . .W
′
m . Since by Proposition 3.12 the W ′

i are primary to distinct
maximal ideals, we have that I ′ = W ′

1 ∩ · · · ∩ Wm is a primary decomposition. By the
uniqueness of minimal components in primary decompositions, we have W ′

i = L ′
i and hence

Wi ≡ Li as desired.

We present now a formula for the Hilbert series of I in terms of the Hilbert series of the
ideals L1, . . . , Lm appearing in the factorization of Theorem 3.13. If dim R = 2, this has
been already done in [3, 3.10].

Since I is an m-primary ideal, then length(I k/I k+1) is finite for every integer k. The
Hilbert function HFI (k) of I is defined as

HFI (k) = length(I k/I k+1).

The Hilbert series of I is

HSI (z) =
∑

k≥0

HFI (k)z
k .

It is well known that the Hilbert series is of the form

HSI (z) = h0(I )+ h1(I )z + · · · + hs(I )zs

(1 − z)n
,

with hi (I ) ∈ Z for every i , h0(I ) = length(R/I ) and e(I ) = ∑s
i=0 hi (I ) is the multiplicity

of I . By definition, the h-polynomial of I is

hI (z) = h0(I )+ h1(I )z + · · · + hs(I )z
s .

Lemma 3.14 Let I be in C and let I ≡ L1L2 · · · Lm be the factorization of 3.13. One has

length(md/I ) =
m∑

i=1

length(mdi/Li )

where d = o(I ) and di = o(Li ) for every i = 1, . . . ,m.

Proof Since reg Q j (I ) ≤ d , then dimK (Rd+ j/Id+ j ) coincides with the multiplicity of
R/Q j (I ). Hence

length(R/I ) = length(R/md)+
∑

i≥0

e(R/Q j (I )).

123



A. Conca et al.

Thus length(md/I ) = ∑
j≥0 e(R/Q j (I )). Since we know that Q j (I ) = Q j (L1) ∩ · · · ∩

Q j (Lm), the multiplicity formula [1, 4.7.8] implies that e(R/Q j (I )) = ∑m
i=1 e(R/Q j (Li ))

and thus

length(md/I ) =
∑

j≥0

e(R/Q j (I )) =
∑

j≥0

m∑

i=1

e(R/Q j (Li ))

=
m∑

i=1

∑

j≥0

e(R/Q j (Li )) =
m∑

r=1

length(mdr /Lr ).

Proposition 3.15 With the notations of 3.14 we have:

HSI (z) =
m∑

j=1

HSL j (z)+ HSmd (z)−
m∑

j=1

HSmd j (z)

and in particular

e(I ) =
m∑

j=1

e(L j )+ dn −
m∑

j=1

dn
j .

Proof Note that for every integer k the factorization of I k is:

I k ≡ Lk
1 Lk

2 · · · Lk
m

and hence

length(mkd/I k) =
m∑

i=1

length(mkdi/Lk
i ).

To conclude, first rewrite length(mkd/I k) as length(R/I k) − length(R/mkd) and similarly
for the Li ’s and then sum up.

Example 3.16 In K [x, y, z] consider the ideal I = (x3, y3, z3, xy, yz, xz) of C. We have
Q0(I ) = (xy, yz, xz) and Q j (I ) = R for j > 0. It follows from 3.13 that I ≡ L1L2 L3

where L1 = (x2, y, z), L2 = (x, y2, z), L3 = (x, y, z2). To get an equality of ideals, we
have to multiply the left hand side by (x, y, z):

(x, y, z)(x3, y3, z3, xy, yz, xz) = (x2, y, z)(x, y2, z)(x, y, z2).

Taking into account that d = 2, d1 = d2 = d3 = 1 and that the Li ’s are complete intersec-
tions, we may apply 3.15 and get:

HSI (z) = 3
2

(1 − z)3
+ 4 + 4z

(1 − z)3
− 3

1

(1 − z)3

that is

HSI (z) = 7 + 4z

(1 − z)3

The ideal of Example 3.16 appears in [7,28].

Theorem 3.17 Let I ∈ C. Then

(1) mI = mI .
(2) I ∈ C∗ if and only if mI ∈ C∗.
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Proof (1) The inclusion mI ⊆ mI holds in general, see [26, 1.1.3]. Using the character-
ization of integral closure by means of valuations, one shows that

mI : � = I

for every ideal I and general linear form �, see the proof of [25, 3.1,3.3] for details. Since
I ∈ C, then mI + (�) = mo(I )+1 + (�) is integrally closed. Then mI ⊆ mI + (�) =
mI + (�). Hence

mI = (mI + (�)) ∩ mI = mI + �(mI : �) = mI + �I ⊆ mI .

(2) If I ∈ C∗ then (1) implies mI ∈ C∗. Conversely if mI ∈ C∗ then mI : � = mI : � = I .
Since I is m-full, it follows I = I .

Special cases of Theorem 3.17 and Proposition 3.18 appear in [11]. In general, even for a
normal ideal I the product mI need not be integrally closed, see [12, Example 7.1].

Proposition 3.18 We have:
(1) If I ∈ C∗ then I ′ is integrally closed.
(2) If I ′ is integrally closed and I is contracted, then I is integrally closed.

In particular if I ∈ C, then I ∈ C∗ if and only if I ′ is integrally closed.

Proof Since I S = �d I ′ and S is a polynomial ring (hence normal), then (1) follows if we
prove that I S is integrally closed. Consider the integral equation

sm + a1sm−1 + · · · + am = 0

with s ∈ S, ai ∈ (I S)i . For every i = 0, . . . ,m, we may write ai = bi/�
α with bi ∈ I i mα

and α a fixed positive integer. Multiplying by �mα we get an equation among elements of R,
namely

tm + b1tm−1 + · · · + (b2�
α)tm−2 + · · · + (bm/�

α) = 0

where t = s�α and bi�
(i−1)α ∈ I i miα . Since I mα is integrally closed by 3.17, it follows that

t = s�α ∈ I mα . Hence s ∈ I S.
We prove now (2). Let x ∈ R and ai ∈ I i such that

xm + a1xm−1 + · · · + am = 0

and we claim that x ∈ I . Note that ai/�
id ∈ (I ′)i and

(x/�d)m + a1/�
d(x/�d)m−1 + · · · + am/�

dm = 0.

Since I ′ is integrally closed, it follows that x/�d ∈ I ′, that is, x ∈ I S. Since I is contracted
we have x ∈ I .

Theorem 3.19 Given I ∈ C let I ≡ L1L2 · · · Lm be the factorization of 3.13. Then I ∈ C∗
if and only if L j ∈ C∗ for every j = 1, . . . ,m.

Proof Assume that I is integrally closed. By 3.18(1), I ′ = L ′
1 . . . L ′

m is integrally closed.
Since L ′

1, . . . , L ′
m are primary to distinct maximal ideals, by localizing and contracting back

one has that each L ′
i is integrally closed. Hence each Li is integrally closed by 3.18(2).

Conversely if Li is integrally closed for every i = 1, . . . ,m, then L ′
i is integrally closed by

3.18(1). It follows that so is I ′ = L ′
1 . . . L ′

m since L ′
1 . . . L ′

m = L ′
1 ∩ · · · ∩ L ′

m . Finally by
3.18(2) we conclude that I is integrally closed.
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The following examples show that the class C∗ is not closed under product (for n ≥ 3)
and powers (for n ≥ 4):

Example 3.20 (1) The ideals (x, y)3 + (x2z)+ m4 and (x, y)3 + (y2z)+ m4 of K [x, y, z]
are in C∗ but not their product.

(2) The ideal (x2, y3, z7, xy2, xyz2, xz4, yz5, y2z3, yz5) ∩ m7 + m8 of K [x, y, z, t] is in
C∗ but not its square.

Nevertheless, as an immediate consequence of Theorem 3.19, we have:

Corollary 3.21 Let I, J ∈ C∗ such that Q0(I )+ Q0(J ) is m-primary. Then I J ∈ C∗.

Another corollary is:

Corollary 3.22 With the notation of 3.13 we have

I ≡ L1 L2 · · · Lm

and Q0(Li ) is Pi -primary.

Proof Combining [26, Exercise 1.1, p. 20] with 3.17, we get:

I ≡ L1 L2 · · · Lm .

The conclusion follows from 3.19 provided we prove that Q0(Li ) is Pi -primary. So assume
that L ∈ C has order d and Q0(L) is P-primary for some 1-dimensional prime P . Set J = L .
By degree reasons, Jd ⊂ L〈d〉 and L〈d〉 ⊆ √

L〈d〉 = P . Hence J〈d〉 ⊆ P which implies that
Q0(J ) is P-primary.

4 The Goto-classes G and G∗

Consider the following subclass of C:

Definition 4.1 We define the Goto-class G to be the set of the ideals I ∈ C such that:

(1) The minimal primes P1, . . . , Pm of Q0(I ) are geometrically prime, equivalently, each
Pi is generated by n − 1 linearly independent linear forms in R = K [x1, . . . , xn] (e.g.
K is algebraically closed).

(2) For every j ∈ N the primary components of Q j (I ) are powers of the Pi ’s. That is,

Q j (I ) = ∩m
i=1 P

αi j
i

with αi j ∈ N.

Further we set:

G∗ = {I ∈ G : I is integrally closed}.
In dimension two G = C and it coincides with the whole class of contracted ideals. Our

goal is to show that the Goto-classes G and G∗ behave, to a certain extent and respectively,
as the class of contracted ideals and the class of integrally closed ideals in dimension 2. The
factorization in Theorem 3.13 will allow to reduce most of the problems to the case of ideals
in G with a primary characteristic ideal. So we will discuss in some details the properties of
these ideals.
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Let P be a geometrically prime ideal of R of dimension 1. Let L ∈ G of order d such that
Q0(L) is P-primary. Then Q j (L) = Pα j where the α j ’s form a weakly decreasing integral
sequence with α j = 0 for j � 0. Hence L is described by the triplet P, {α j } and d . We
give another description of L that best suits our needs. Indeed, one shows that there exists a
uniquely determined sequence of integers 0 = a0 < a1 < · · · < ad such that

L =
d∑

i=0

Pd−i�ai (4.1)

where � is any linear form not in P . To emphasize the dependence of L on P and the sequence
a0, . . . , ad we will denote L by L(P, a), that is,

L(P, a) =
d∑

i=0

Pd−i�ai . (4.2)

Example 4.2 Let R = K [x1, x2, x3] and P = (x1, x2). Associated with the sequence
α = (5, 3, 3, 2, 0, 0 . . . ) and with d = 6 we have the ideal L whose components are
L6+ j = (Pα j )6+ j for j ≥ 0. We can write L as L(P, a) = ∑

Pd−i xai
3 where a =

(0, 1, 3, 4, 7, 9, 10).

Given two sequences of integers a = (a0, . . . , ad) and b = (b0, . . . , be) we define their
product ab to be the sequence (c0, . . . , cd+e) where c j = min{ar + bs : r + s = j}. Fur-
thermore we denote by a(k) the product of a with itself k times. By the very definition one
has:

L(P, a)L(P, b) = L(P, ab) and L(P, a)k = L(P, a(k))

for every a, b and P . We have:

Proposition 4.3 Let a = (a0, . . . , ad) ∈ Nd+1 be an increasing sequence with a0 = 0.

(1) There exists an increasing sequence a′ = (a′
0, . . . , a′

d) with a′
0 = 0 (uniquely deter-

mined by a) such that for every n > 1 and for every 1-dimensional geometrically prime
ideal P of R = K [x1, . . . , xn] one has L(P, a) = L(P, a′).

(2) The following conditions are equivalent:

(i) L(P, a) is integrally closed for every n > 1 and for every 1-dimensional geo-
metrically prime ideal P of R.

(ii) L(P, a) is integrally closed for some n > 1 and some 1-dimensional geometri-
cally prime ideal P of R.

(iii) a = a′.

Proof (1) Let n > 1 and let P be a 1-dimensional geometrically prime ideal of R. Choosing
bases properly, we may assume that P = (x1, . . . , xn−1) and � = xn so that L(P, a) is a
monomial ideal. The integral closure of a monomial ideal I is the ideal generated by the mono-
mials m such that mk ∈ I k for some k > 0. A monomial m = m1xd− j

n with m1 supported
on x1, . . . , xn−1 satisfies mk = mk

1xkd−k j
n ∈ L(P, a)k iff deg mk

1 = k deg m1 ≥ (a(k))k j iff
deg m1 ≥ (a(k))k j/k. Hence setting

a′
j = min{�(a(k))k j/k� : k > 0}

we get (1). Statement (2) follows immediately from (1).
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Given a 1-dimensional geometrically prime ideal P of R and numbers d, t ∈ N with d ≤ t
we set

JP (d, t) = Pd + mt ,

equivalently

JP (d, t) = (�d
1 , . . . , �

d
n−1, �

t ),

where P = (�1, . . . , �n−1) and � is a linear form not in P . By construction, JP (d, t) ∈ G∗
and its characteristic ideal is Pd unless t = d . Hence JP (d, t) must be of the form L(P, a)
for a sequence a. Indeed a simple computation shows that:

JP (d, t) = L(P, a)

where a = (a0, . . . , ad) with ai = �i t/d� for i = 0, . . . , d .
We say that an ideal I is simple if it cannot be written as a product of proper ideals.

Remark 4.4 It is an easy exercise and part of the folklore of the subject that (xd
1 , xt

2) is simple
in K [x1, x2] iff GCD(d, t) = 1 and that every simple integrally closed ideal of K [x1, x2]
with characteristic form equal to x1 is of the form (xd

1 , xt
2).

Proposition 4.5 Let a = (a0, . . . , ad) ∈ Nd+1 be an increasing sequence with a0 = 0
and P a 1-dimensional geometrically prime ideal of R. Then the following conditions are
equivalent:
(1) L(P, a) is integrally closed, simple and different from m.
(2) there exists t > d such that GCD(d, t) = 1 and L(P, a) = JP (d, t).
(3) there exists t > d such that GCD(d, t) = 1 and ai = �i t/d� for i = 0, . . . , d.

Proof The result follows from 4.3, 4.4 and the following claim:

Claim L(P, a) is integrally closed and simple in R = K [x1, . . . , xn] if and only if L((x1), a)
is integrally closed and simple in K [x1, x2].
To prove the claim assume first that L(P, a) is integrally closed and simple. Then L((x1), a)
is integrally closed by 4.3. If, by contradiction, L((x1), a) is not simple, then L((x1), a) = I J
with I, J integrally closed. Hence I and J are of the form I = L((x1), b) and J = L((x1), c).
It follows that L(P, a) = L(P, b)L(P, c) contradicting the fact that L(P, a) is simple.

Viceversa, assume that L((x1), a) is integrally closed and simple. Then L(P, a) is inte-
grally closed by 4.3. If, by contradiction, L(P, a) is not simple, then L(P, a) = I J with
I, J proper ideals. Since mu ⊂ L(P, a) ⊆ I it follows that

√
I = m and for the same reason√

J = m. After a change of coordinates, we may assume that P = (x1, . . . , xn−1) and
consider the K -algebra homomorphism ψ : R → K [x1, x2] sending xi to x1 for i < n and
xn to x2. We have L((x1), a) = ψ(L(P, a)) = ψ(I )ψ(J ) and ψ(I ) and ψ(J ) are proper
since ψ(I ) ⊆ ψ(m) = (x1, x2) and similarly for ψ(J ). This contradicts the assumptions
and proves the claim.

Next we show that the factorization of Theorem 3.13 restricts to the class G.

Proposition 4.6 We have:
(1) Let I ∈ C be such that the minimal primes of Q0(I ) are geometrically prime. Let

I ≡ L1 · · · Lm be the factorization of 3.13. Then I ∈ G iff Li ∈ G for every i .
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(2) G is closed under product.
(3) If I ∈ G then I ∈ G∗.

Proof (1) Let {P1, . . . , Pm} the minimal primes of Q0(I ). By 3.13 we know that Q j (I )RPi

= Q j (Li )RPi and this implies the assertion.
(2) Let I, J ∈ G. Set d = o(I ) and c = o(J ). We have to show that for every

P ∈ Min(Q0(I J )) and for every j we have (I J )〈d+c+ j〉 RP is a power of P RP . Note

that (I J )〈d+c+ j〉 = ∑ j
i=0 I〈d+i〉 J〈c+ j−i〉 and that Id+i RP = Pai RP and J〈c+ j−i〉 RP =

Pb j−i RP for non-negative integers ai and bi . It follows that we have (I J )〈d+c+ j〉 RP =
Pt RP where t = min{ai + b j−i : i = 0, . . . , j}.

(3) Let I ≡ L1 · · · Lm be the factorization of 3.13. Then by 3.22 we have I ≡ ∏
i Li .

By (1) it is enough to show that Li ∈ G. We may hence assume that I is of the form
L(P, a). But we have already observed in 4.3 that L(P, a) = L(P, a′), which implies
that L(P, a) ∈ G.

We can state now the main result of the section.

Theorem 4.7 We have:
(1) G∗ is closed under product. In particular, every I ∈ G∗ is normal.
(2) Every I ∈ G∗ has a factorization

I ≡ J1 · · · Jt

where Ji ∈ G∗ is simple and Q0(Ji ) is primary for every i = 1, . . . , t .
(3) In the factorization of (2), the factors Ji are uniquely determined by I up to order.

Moreover, each Ji is of the form JPi (di , ti ) and di < ti with GCD(di , ti ) = 1.

Proof (1) Let I, J ∈ G∗. By 4.6(2) we know that I J ∈ G and we have to prove that I J
is integrally closed. By 3.13, 4.6(1) and 3.19 we have factorizations I ≡ L1 . . . Lm

and J ≡ U1 . . .Ur and the Li and U j belong to G∗. Hence I J ≡ ∏
Li

∏
Ui . If L

and U have P-primary characteristic ideal then the same is true for LU . Hence, the
factors in the (unique) factorization of 3.13 of I J are of the form Li U j (if Li and U j

have P-primary characteristic ideal with respect to the same prime) or Li or U j . By
virtue of 3.19 we may assume right away that I and J have P-primary characteristic
ideal, say I = L(P, a) and J = L(P, b). Then I J = L(P, ab). Since I and J are
integrally closed, the same is true for L((x1), a) and L((x1), b) in K [x1, x2] by 4.3.
As in dimension 2 the product of integrally closed ideals is integrally closed, we have
that L((x1), a)L((x1), b) = L((x1), ab) is integrally closed. By 4.3 it follows that I J
is integrally closed.

(2) By virtue of 4.6 we have I ≡ L1 · · · Lm with Li ∈ G∗ and Q0(Li ) primary. Hence we
may assume that I = L(P, a) for some 1-dimensional geometrically prime ideal P and
a sequence a = (a0, . . . , ad). By Zarisky factorization theorem [33] and 4.4 one has
L((x1), a) = (x1, x2)

c J(x1)(d1, t1) · · · J(x1)(dp, tp)with di < ti and GCD(di , ti ) = 1. It
follows that I = mc JP (d1, t1) · · · JP (dp, tp) and hence I ≡ JP (d1, t1) · · · JP (dp, tp).
The conclusion follows from 4.5.

(3) That the factors of the factorization in (2) are of the form JPi (di , ti ) with di < ti and
GCD(di , ti ) = 1 has been already proved. It remains to prove the uniqueness. Suppose
we have two factorizations of I as in (2). By 4.6 and 3.13 we may assume that the
characteristic form of I is P-primary. Hence we have I ≡ JP (d1, t1) . . . JP (dp, tp)

and I ≡ JP (c1, s1) . . . JP (cq , sq) with di < ti and GCD(di , ti ) = 1 as well as
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ci < si and GCD(ci , si ) = 1. As a consequence we have ma JP (d1, t1) . . . JP (dp, tp) =
mb JP (c1, s1) . . . JP (cq , sq), and it follows that (x1, x2)

a J(x1)(d1, t1) . . . J(x1)(dp, tp) =
(x1, x2)

b J(x1)(c1, s1) . . . J(x1)(cq , sq) in K [x1, x2]. By the uniqueness of the factoriza-
tion of integrally closed ideals in K [x1, x2], we have that p = q and, up to the order,
(di , ti ) = (ci , si ) for i = 1, . . . , p. Hence JP (di , ti ) = JP (ci , si ) for i = 1, . . . , p
proving the assertion.

Remark 4.8 Let I be an m-primary complete intersection ideal of R. Goto proved in [18]
that the following conditions are equivalent:

(1) I is integrally closed.
(2) I is normal.
(3) I = (�1, . . . , �n−1, �

t
n) for linearly independent linear forms �1, . . . , �n and some t > 0.

Complete intersections satisfying these equivalent conditions are called of Goto-type (see
[6]). Note that the ideals of Goto-type are in the Goto-class G, they are exactly the ideals of
type JP (1, t) used above.

Hence, as a consequence of Theorem 4.7, we have:

Corollary 4.9 The product of complete intersections of Goto-type is a normal ideal.

In dimension 2, every integrally closed ideal has a Cohen–Macaulay associated graded
ring (see [25,29]). This is no longer true in higher dimension and not even for normal ideals.
The first examples of normal ideals with non Cohen–Macaulay associated graded ring is
given by a construction of Cutkosky [10]. Later on Huckaba and Huneke [22, Theorem 3.12]
proved that

I = (x4)+ (x, y, z)(y3 + z3)+ (x, y, z)5 ⊆ K [x, y, z]
is normal, but gr I n (R) is not Cohen–Macaulay for every n.

One might, however, ask:

Question 4.10 Let I ∈ G∗. Is gr I (R) Cohen–Macaulay?

We show that Question 4.10 has a positive answer in two cases. The first is the following.

Corollary 4.11 Let I ∈ G∗. Then Rees(I ) is normal. In particular, Rees(I ), equivalently
gr I (R), is Cohen–Macaulay if I is monomial in some system of coordinates (e.g. the char-
acteristic ideal of I has at most 2 minimal primes).

Proof The first assertion follows from 4.7(1). The second follows from the fact that if the
characteristic ideal of I has at most 2 minimal primes, then up to a choice of coordinates, we
may assume that I is monomial. For a monomial ideal I , the normality of Rees(I ) implies
its Cohen–Macaulayness as proved by Hochster [1, 6.3.5].

To show that 4.10 has a positive answer if dim R ≤ 3 we need the following result.

Lemma 4.12 Let I be an m-primary ideal of R = K [x1, . . . , xn]. If gr I (R) is Cohen–
Macaulay, then the degree of its h-polynomial is ≤ n − 1.

Proof Since the ideal I is m-primary, then gr I (R) is Cohen–Macaulay if and only if gr Im
(Rm)

is Cohen–Macaulay; moreover gr I (R) and gr Im
(Rm) have the same Hilbert series. Hence we

may reduce the problem to the local case (see for example Remark 2.2. [3]). Note that if J
is a minimal reduction of I , then the h-polynomial hI (z) = h0(I )+ h1(I )z + · · · + hs(I )zs

coincides with the Hilbert series of the ideal I/J . Now by a consequence of Briancon-Skoda
[26, 11.1.9], we have I n ⊆ J, hence HFI/J (n) = length(I n + J/I n+1 + J ) = hn(I ) = 0
and the result follows.
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Theorem 4.13 Assume that dim R ≤ 3. If I ∈ G∗, then gr I (R) is Cohen–Macaulay.

Proof Consider the factorization I ≡ L1 · · · Lm of 3.13. We know by 3.19 and 4.6 that
Li ∈ G∗. By 3.15 one has hI (z) = ∑m

j=1 hL j (z)+hmd (z)−∑m
j=1 hmd j (z). By 4.11 we know

that grLi
(R) is Cohen–Macaulay for every i = 1, . . . ,m. That grmu (R) is Cohen–Macaulay

for every u is well-know. Thus by 4.12 the degree of hLi (z) ≤ 2 for every i = 1, . . . ,m and
the same is true for hmu (z). It follows that the degree of hI (z) is ≤ 2. Localizing at m we
may assume that R is local. Let J be a minimal reduction of I ; since I is integrally closed,
by [24] we have I 2 ∩ J = J I . Then the result follows by [19, 2.2].
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