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Abstract We prove regularity bounds for Koszul cycles holding for every ideal of
dimension ≤ 1 in a polynomial ring; see Theorem 3.5. In Theorem 4.7 we generalize
the “c + 1” lower bound for the Green–Lazarsfeld index of Veronese rings proved
in (Bruns et al., arXiv:0902.2431) to the multihomogeneous setting. For the Koszul
complex of the c-th power of the maximal ideal in a Koszul ring we prove that the
cycles of homological degree t and internal degree ≥ t(c + 1) belong to the t-th
power of the module of 1-cycles; see Theorem 5.2.

1 Introduction

The Koszul complex and its homology are central objects in commutative algebra.
Vanishing theorems for Koszul homology are the key to many open questions. The
goal of the paper is the study of regularity bounds for Koszul cycles and Koszul
homology of ideals in standard graded rings. Our original motivation comes from
the study of the syzygies of Veronese varieties and, in particular, the conjecture of
Ottaviani and Paoletti [12] on their Green–Lazarsfeld index, see [4].

In Sect. 2 we fix the notation and describe some canonical maps between mod-
ules of Koszul cycles. Given a standard graded ring R with maximal homogeneous
ideal m, a homogeneous ideal I and a finitely generated graded module M, we let
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Zt(I,M) denote the module of Koszul cycles of homological degree t. Under a mild
assumption, we show in 2.4 that Zs+t(I,M) is a direct summand of Zs(I,N) where
N = Zt(I,M).

Section 3 is devoted to the description of (Castelnuovo–Mumford) regularity
bounds for Koszul cycles and homology. We prove bounds of the following type:

regR(Zt(I,M)) ≤ t(c+1)+ regR(M)+ v (1)

under assumptions on dimM/IM. Here regR(N) denotes the (relative) Castelnuovo–
Mumford regularity of a finitely generated R-module N. Note that regR(N) is the or-
dinary Castelnuovo–Mumford regularity if R is the polynomial ring. Furthermore
it is known that regR(N) is finite if R is a Koszul algebra. If R is Koszul and
dimM/IM = 0, then we prove that (1) holds with v = 0 and where c is such that
mc ⊂ I + Ann(M) and I is generated in degrees ≤ c, see 3.2. In 3.5 we prove that
if R is a polynomial ring of characteristic 0 or big enough and dimM/IM ≤ 1 then
(1) holds with v = 0 and c = regR(I). Furthermore, if R is a polynomial ring and
dimM/IM = 0, then we show in 3.9 that (1) holds with c ≥ the largest degree of a
generator of I and v = dim[R/I]c.

We also give examples showing that the inequality

regR Zt(I,M) ≤ t(regR(I)+1)+ regR(M) (2)

cannot hold in general (i.e. without restriction on the dimension of M/IM). However
(2) holds if R is a polynomial ring, M = R/J and both I and J are strongly stable
monomial ideals, see 3.7 and 3.8. We leave it as an open question whether (2) holds
when M = R and R is a polynomial ring.

In Sect. 4 we prove that, given a vector c = (c1, . . . ,cd)∈Nd
+, the Segre–Veronese

ring associated to c over a field of characteristic 0 or big enough, has a Green–
Lazarsfeld index larger than or equal to min(c) + 1, see 4.7. This result was an-
nounced in [4] and improves the bound of Hering, Schenck and Smith [11] by 1.

In Sect. 5 we analyze the generators of the module Zt = Zt(mc,R) under the as-
sumption that R has characteristic 0 or big enough. If R is Koszul we prove that
Zt/Zt

1 vanishes in degrees ≥ t(c+1), 5.2. Here Zt
1 denotes the image of the canon-

ical map ∧tZ1 → Zt . This allows us to deduce that the c-th Veronese subring of a
polynomial ring S satisfies the property N2c if and only if H1(mc,S)2c = 0, see 5.3.
Finally, we prove that the cycles given in [4] generate Z2; see 5.5.

2 Notation and Generalities

In this section we collect notation and general facts about maps between modules
of Koszul cycles. Let R be a ring, F be a free R-module of rank n, ϕ : F → R
be an R-linear map and M be an R-module. All tensor products are over R. We
consider the Koszul complexes K(ϕ ,R) =

⊕n
t=0 Kt(ϕ,R) =

∧• F and K(ϕ ,M) =⊕n
t=0 Kt(ϕ ,M) =

∧• F ⊗M. The complex K(ϕ,M) can be seen as a module over
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the exterior algebra K(ϕ,R). For a ∈ K(ϕ ,R) and f ∈ K(ϕ,M) the multiplication
will be denoted by a. f . The differential of K(ϕ ,R) and K(ϕ,M) will be denoted
simply by ϕ and it satisfies

ϕ(a. f ) = ϕ(a). f +(−1)sa.ϕ( f )

for all a ∈ Ks(ϕ,R) and f ∈ K(ϕ ,M). We let Zt(ϕ ,M), Bt(ϕ ,M), Ht(ϕ,M) de-
note the cycles, the boundaries and the homology in homological degree t and set
Z(ϕ ,M) = ⊕Zt(ϕ,M), and so on for cycles, boundaries and homology. One knows
that Z(ϕ ,R) is a subalgebra of K(ϕ,R) and that B(ϕ,R) is an ideal of Z(ϕ,R)
so that the homology H(ϕ,R) is itself an algebra. More generally, Z(ϕ,M) is a
Z(ϕ ,R)-module. We let Zs(ϕ,R)Zt(ϕ ,M) denote the image of the multiplication
map Zs(ϕ ,R)⊗Zt(ϕ,M) → Zs+t(ϕ,M). Similarly, Z1(ϕ,R)t will denote the image
of the map

∧t Z1(ϕ,R) → Zt(ϕ,R).
In the graded setting the map ϕ will be assumed to be of degree 0 and F will

be a direct sum of shifted copies of R. In this way the Koszul complex K(ϕ,M)
inherits a graded structure for the map ϕ and the module M. So cycles, boundaries
and homology have an induced graded structure. An index on the left of a graded
module always denotes the selection of the homogeneous component of that degree.
If R is standard graded over a field K with maximal homogeneous ideal m all the
invariants we are going to study depend actually only on the image of ϕ and not on
the map itself as long as kerϕ ⊆ mF . So, if J = Imϕ , we will sometimes denote
K(ϕ ,R) simply by K(J,R) and so on.

Fix a basis of the free module F , say {e1, . . . ,en}. Given I = {i1, . . . , is} ⊂ [n]
with i1 < i2 < · · · < is we write eI for the corresponding basis element ei1 ∧ · · ·∧ eis
of

∧s F . If ϕ(ei) = ui ∈ J we will also use the symbol [ui1 , . . . ,uis ] to denote eI .
For disjoint subsets A,B ⊂ [n] we set ε(A,B) = #{(a,b) ∈ A×B : a > b} and

σ(A,B) = (−1)ε(A,B).

One has
eAeB = σ(A,B)eA∪B.

For further application we record the following:

Lemma 2.1. For disjoint subsets A,B,C of [n] one has

σ(A∪B,C)σ(B,A) = σ(B,A∪C)σ(A,C).

Proof. Just use the fact that ε(A ∪ B,C) = ε(A,C) + ε(B,C) and ε(B,A ∪C) =
ε(B,A)+ ε(B,C). -.

Any element f ∈
∧s F ⊗M can be written uniquely as f = ∑eI ⊗mI with mI ∈ M

where the sum is over the subsets of cardinality s of [n]. If mI = 0 then we will say
that eI does not appear in f . For every f ∈ Ks+t(ϕ ,M) and for every I ⊂ [n] with
s = #I we have a unique decomposition

f = aI + eI .bI (3)
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with aI ∈ Ks+t(ϕ ,M) and bI ∈ Kt(ϕ,M), and, furthermore, eJ does not appear in aI
whenever J ⊃ I and eS does not appear in bI whenever S∩ I 1= /0. With the notation
above we have:

Lemma 2.2. For every f ∈ Ks+t(ϕ ,M) we have:

(a) ∑I eI .bI =
(t+s

s

)
f where ∑I stands for the sum extended to all the subsets I ⊂ [n]

with s = #I.
(b) if f ∈ Zs+t(ϕ,M), then bI ∈ Zt(ϕ,M) for every I with s = #I.

Proof. For (a) one writes f = ∑eJ ⊗mJ with J ⊂ [n] with #J = s + t and mJ ∈ M.
Then one observes that eJ.mJ appears in eI .bI iff I ⊂ J. Hence eJ .mJ appears in
∑I eI .bI exactly

(t+s
s

)
times. For (b) one applies the differential 0 = ϕ( f ) = ϕ(aI)+

ϕ(eI).bI +(−1)seI .ϕ(bI) and since eJ does not appear in ϕ(aI)+ϕ(eI).bI whenever
J ⊇ I then ϕ(bI) must be 0. -.

The multiplication Ks(ϕ,R)⊗Kt(ϕ,M) → Ks+t(ϕ,M) can be interpreted as a
map

Ks(ϕ ,Kt(ϕ,M)) → Ks+t(ϕ,M)

defined by a⊗ f → a. f . Restricting the domain of the map to Ks(ϕ,Zt(ϕ ,M)) we
get a map

Ks(ϕ,Zt(ϕ ,M)) → Ks+t(ϕ,M)

which is indeed a map of complexes. So it induces a map

αt : Zs(ϕ ,Zt(ϕ ,M)) → Zs+t(ϕ,M)

defined by
∑a⊗ f ∈ Zs(ϕ ,Zt(ϕ,M)) → ∑a. f .

Now we define a map

γt : Ks+t(ϕ ,M) → Ks(ϕ,Kt(ϕ ,M))

by the formula
γt( f ) = ∑

I
eI ⊗bI

where the sum is over the I ⊂ [n] with #I = s and bI is determined by the decompo-
sition (3). We claim:

Lemma 2.3. The map γt : K(ϕ ,M) → K(ϕ ,Kt(ϕ,M))[−t] is a map of complexes.

Proof. Since K(ϕ,M) = K(ϕ,R) ⊗ M and we have K(ϕ,Kt(ϕ,M)) = K(ϕ ,
Kt(ϕ ,R))⊗M it is enough to prove the statement in the case M = R. Then it is
enough to check

γt ◦ϕ(eJ) = ϕ ◦ γt(eJ) for every J ⊂ [n] with #J = s+ t.

Note that
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γt(eJ) = ∑σ(A,B)eA ⊗ eB

where the sum is over all the B such that #B = t and A = J \B. Then

ϕ ◦ γt(eJ) = ∑σ(A∪{p},B)σ({p},A)ϕ(ep)eA ⊗ eB

and
γt ◦ϕ(eJ) = ∑σ({p},A∪B)σ(A,B)ϕ(ep)eA ⊗ eB

where in both cases the sum is over all the partitions of J into three parts A,B,{p}
with #B = t. So we have to check that

σ(A∪{p},B)σ({p},A) = σ({p},A∪B)σ(A,B).

This is a special case of 2.1. -.

It follows that γt gives, by restriction, a map

Zs+t(ϕ,M) → Zs(ϕ,Kt(ϕ,M)).

By virtue of 2.2, its image is indeed contained in Zs(ϕ,Zt(ϕ,M)). So we have a map

βt : Zs+t(ϕ ,M) → Zs(ϕ,Zt(ϕ ,M))

and, by virtue of Lemma 2.2, we have

αt ◦βt( f ) =
(

t + s
s

)
f for all f ∈ Zs+t(ϕ ,M).

An immediate consequence:

Lemma 2.4. Assume
(t+s

s

)
is invertible in R. Then Zs+t(ϕ ,M) is a direct summand

of Zs(ϕ ,Zt(ϕ ,M)).

One can easily check that, in the graded setting, the maps described in this section
are graded and of degree 0.

3 Bounds for Koszul Cycles

In this section we consider a field K and a standard graded K-algebra R with maxi-
mal homogeneous ideal m. In other words, R is of the form S/J where S is a poly-
nomial ring over K with the standard grading and J is a homogeneous of S. We will
consider a finitely generated graded R-module M. Let β R

i, j(M) = dimK TorR
i (M,K) j

be the graded Betti numbers of M over R. We define the number

tR
i (M) = max{ j ∈ Z : β R

i, j(M) 1= 0},

whenever TorR
i (M,K) 1= 0 and tR

i (M) = −∞ otherwise. The Castelnuovo–Mumford
regularity of M over R is
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regR(M) = sup{tR
i (M)− i : i ∈ N}.

Recall that R is a Koszul algebra if regR(K) = 0. One knows that regR(M) is finite
for every finitely generated module M if R is a Koszul algebra, see Avramov and
Eisenbud [2]. One says that R has the property Np if its defining ideal J is generated
by quadrics and the syzygies of the quadrics are linear for p− 1 steps, that is, if
tS
i (R)≤ i+1 for i = 1, . . . , p. The Green–Lazarsfeld index of R is the largest number
p such that R has the property Np, that is,

index(R) = max{p : tS
i (R) ≤ i+1 for i = 1, . . . , p}.

Conventions. Just to avoid endless repetitions, throughout this section ideals will
be homogeneous, modules will be finitely generated and graded, linear maps will
be graded of degree 0. Furthermore I will always denote an ideal and M a module
of the current ring. The current ring will be denoted by S if it is the polynomial ring
over a field K or by R if it is a standard graded K-algebra and m will denote its
maximal homogeneous ideal.

We start with a well-known fact that is easy to prove:

Lemma 3.1. One has

I +Ann(M) ⊆ Ann(M/IM) ⊆
√

I +Ann(M).

We have:

Proposition 3.2. Assume R is Koszul and dimM/IM = 0. Let c be the smallest
integer such that mc ⊆ I +Ann(M) and I is generated in degree ≤ c (such a number
c exists by 3.1). Set Zt = Zt(I,M) and Ht = Ht(I,M). Then, for every t,

regR(Zt) ≤ t(c+1)+ regR(M)

and

regR(Ht) ≤ t(c+1)+ regR(M)+ c−1.

Proof. The proof is a slight generalization of the arguments given in [4, Sect. 2].
Set Bt = Bt(I,M) and Kt = Kt(I,R). Note that I + Ann(M) annihilates Ht . Hence
mcHt = 0. It follows that Ht vanishes in degrees ≥ tR

0 (Zt)+c and hence regR(Ht) ≤
tR
0 (Zt)+c−1 ≤ regR(Zt)+c−1. So the second formula follows from the first. The

short exact sequence
0 → Bt → Zt → Ht → 0

gives
regR(Bt) ≤ max{reg(Zt), regR(Ht)+1}≤ regR(Zt)+ c

and
0 → Zt+1 → Kt+1 ⊗M → Bt → 0
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gives

regR(Zt+1) ≤max{regR(Kt+1 ⊗M), regR(Bt)+1}
≤max{(t +1)c+ regR(M), regR(Zt)+ c+1}

Now the statement can be proved by induction on t, the case t = 0 being obvious
since Z0 = M. -.

We single out a special case of 3.2:

Proposition 3.3. Assume that dimS/I = 0. Set Zt = Zt(I,M) and Ht = Zt(I,M).
Then, for every t,

regS(Zt) ≤ t(regS(I)+1)+ regS(M)

and

regS(Ht) ≤ t(regS(I)+1)+ regS(M)+ regS(I)−1.

Proof. The number c of 3.2 is ≤ regS(I). -.

The following remark explains why the assumption on the dimension of S/I is
necessary in 3.3.

Remark 3.4. The module Z1(I,M) sits in the exact sequence:

0 → Z1(I,M) → F ⊗M → IM → 0.

Hence
regS(IM) ≤ max{regS(I)+ regS(M), regS(Z1(I,M))−1}.

There are plenty of examples such that regS(IM) > regS(I)+ regS(M) already when
M = I, see Conca [7] or Sturmfels [13]. Therefore, in these examples, one has
regS(Z1(I,M)) > regS(I)+1+ regS(M).

But using a result of Caviglia [5], see also Eisenbud, Huneke and Ulrich [8], we
are able to show:

Theorem 3.5. Assume that dimM/IM ≤ 1. Assume also that either charK = 0 or
> t. Set Zt = Zt(I,M). Then

regS(Zt) ≤ t(regS(I)+1)+ regS(M)

for every t.

Proof. By induction on t. For t = 1 note that, by [5], we have regS(IM) ≤ regS(I)+
regS(M) and the short exact sequence of 3.4 implies that regS(Z1) ≤ regS(I) +
1 + regS(M). For t > 1, by virtue of 2.4 we have that Zt is a direct summand of
Zt−1(I,Z1). Hence regS(Zt)≤ regS(Zt−1(I,Z1)). Since Ann(Z1)⊇ Ann(M) we have
Ann(Z1)+ I ⊇ Ann(M)+ I and, by 3.1, dimZ1/IZ1 ≤ M/IM ≤ 1. Hence, by induc-
tion, we have
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regS(Zt−1(I,Z1)) ≤ (t −1)(regS(I)+1)+ regS(Z1).

Since regS(Z1) ≤ regS(I) + 1 + regS(M) has been already established, the desired
inequality follows. -.

Question 3.6. (1) Does the inequality in 3.5 hold over a Koszul algebra R? And is
the assumption on the characteristic needed?

(2) Is it true that regS(Zt(I,S)) ≤ t(regS(I)+1) holds for every homogeneous ideal
I ⊂ S?

Since Z1(I,S) is the first syzygy module of I the inequality of 3.6 is actually
an equality for t = 1. An indication that the answer to 3.6(2) might be “yes” for
some classes of ideals is given in 3.7 and 3.8. Recall that a monomial ideal I ⊂
S = K[x1, . . . ,xn] is strongly stable if whenever a monomial m ∈ I is divisible by a
variable xi, then mx j/xi ∈ I for every j < i. In characteristic 0 the strongly stable
ideals are exactly the ideals of S which are fixed by the Borel group of the upper
triangular matrices of GLn(K) acting on S. The Eliahou–Kervaire complex [9] gives
the graded minimal free resolution of strongly stable ideals. For us it is important
to recall that if I is strongly stable then regS(I) is the largest degree of a minimal
generator of I.

Proposition 3.7. Let I ⊂ S be a strongly stable ideal. Set Zt = Zt(I,S). Then Zt is
generated by elements of degree ≤ t(regS(I)+1).

Proof. Set c = regS(I). The idea of the proof follows essentially the argument given
in [4, Theorem 3.3]. We note first that, as we are dealing with a monomial ideal I,
the modules Zt have a natural Zn-graded structure as long as we consider the free
presentation F → I associated with the monomial generators of I. We do a double
induction on n and on t. The case n = 1 is obvious. The case t = 1 is easy and
follows from the description of the (first) syzygies of I given in [9]. By induction
on t it is enough to verify that Zt/Z1Zt−1 is generated in degree < t(c+1). Hence it
suffices to show that every Zn-graded element f ∈ Zt of total degree q ≥ t(c+1) can
be written modulo Z1Zt−1 as a multiple of an element in Zt of total degree < q. Let
α ∈ Zn be the Zn-degree of f . If αn = 0 then we can conclude by induction on n.
Therefore we may assume that αn > 0. Let u ∈ I be a monomial generator of I with
xn | u and [u] the corresponding free generator of F . We have the decomposition

f = a+[u]b

with b∈ Zt−1 and [u] does not appear in a. Note that b has degree q−deg(u)≥ q−c.
Since Zt−1 is generated by elements of degree ≤ (t −1)(c+1) we may write

b =
s

∑
j=1

λ jv jz j (4)

where λ j ∈ K, z j ∈ Zt−1 are Zn graded and the v j are monomials of positive degree.
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Let λ jv jz j be a summand in (4). If xn does not divide v j, then choose i < n such
that xi | v j. Since xiu/xn ∈ I, there exists a monomial generator of I, say u1, such that
u1 | xiu/xn, say u1w = xiu/xn. Set z′ = xi[u]−xnw[u1] ∈ Z1 and subtract the element

λ j
v j

xi
z′z j ∈ Zt−1Z1

from f . Repeating this procedure for each λ jv jz j in (4) such that xn does not divide
v j we obtain a cycle f1 ∈ Zt of degree α such that

(i) f ≡ f1 modZ1Zt−1;
(ii) if v[u1, . . . ,ut ] appears in f1 and u ∈ {u1, . . . ,ut}, then xn | v.

We repeat the described procedure for each monomial generator u ∈ I with xn | u.
We end up with an element f2 ∈ Zt of degree α such that

(iii) f ≡ f2 modZ1Zt−1;
(iv) if v[u1, . . . ,ut ] appears in f2 and xn | u1 · · ·ut , then xn | v.

Note that if v[u1, . . . ,ut ] appears in f2 and xn ! u1 · · ·ut , then xn | v by degree reasons.
Hence for every v[u1, . . . ,ut ] appearing in f2 we have xn | v. Therefore f2 = xng, and
g ∈ Zt has degree < q. This completes the proof. -.

Indeed a much stronger statement holds:

Theorem 3.8. Let I,J be strongly stable ideals of S. Then

regS(Zt(I,S/J)) ≤ t(regS(I)+1)+ regS(S/J)

for every t.

Theorem 3.8 has been proved by Satoshi Murai in collaboration with the second
author and is part of an ongoing project.

The following result, whose proof is surprisingly simple, generalizes Green’s
theorem [10, Theorem 2.16]:

Theorem 3.9. Let I ⊂ S such that dimM/IM = 0. Let c ∈ N be such that I is gen-
erated in degrees ≤ c and set v = dim[S/I]c. Set Zt = Zt(I,M) and Ht = Ht(I,M).
One has

regS(Zt) ≤ t(c+1)+ regS(M)+ v

and

regS(Ht) ≤ t(c+1)+ regS(M)+ v+ c−1

for every t.

Proof. The first inequality can be deduced from the second using the standard short
exact sequences relating Bt ,Zt and Ht . We prove the second inequality by induction
on v. If v = 0 then mc ⊂ I and the assertion has been proved in 3.2. Now let v > 0.
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Observe that Ht is annihilated by I + Ann(M). Hence (by 3.1) dimHt = 0 and its
regularity is the largest degree in which Ht does not vanish. Take f ∈ Sc \ I and
set J = I +( f ). Note that the minimal generators of I are minimal generators of J
and that dim[S/J]c = v− 1. We have a short exact sequence of Koszul homology
[3, 1.6.13]:

Ht+1(J,M) → Ht(−c) → Ht .

By construction Ht(−c) does not vanish in degree regS(Ht)+ c while Ht vanishes
in that degree. It follows that Ht+1(J,M) does not vanish in degree regS(Ht) + c
and hence regS(Ht+1(J,M))≥ regS(Ht)+c. By induction we know that regS(Ht+1(J,
M)) ≤ (t +1)(c+1)+ regS(M)+(v−1)+ c−1. It follows that

regS(Ht)+ c ≤ (t +1)(c+1)+ regS(M)+(v−1)+ c−1,

that is,
regS(Ht) ≤ t(c+1)+ regS(M)+ v+ c−1. -.

Remark 3.10. (a) Let I ⊂ S be the ideal generated by a proper subspace V of forms
of degree c such that Im = mc+1. Then regS(I) = c + 1. Set Zt = Zt(I,S) and v =
dimSc/V . By virtue of 3.3 we have regS(Zt) ≤ t(c + 2) while 3.9 gives regS(Zt) ≤
t(c+1)+v. So for small t the first bound is better than the second and the other way
round for large t.

(b) Since H0 = M/IM, for t = 0 the bound of 3.9 takes the form regS(M/IM) ≤
regS(M)+ v+ c−1. Even the case M = S is interesting: it says that if

√
I = m, I is

generated in degree ≤ c and v = dim[S/I]c then mc+v ⊂ I.

4 Green–Lazarsfeld Index for Segre–Veronese Rings

The goal of this section is to prove a result 4.7 about the Green–Lazarsfeld index of
Segre–Veronese rings which was announced in [4]. We first need to generalize some
results of [4] to the multihomogeneous setting.

Let d ∈ N and m = (m1, . . . ,md)∈ Nd and c = (c1, . . . ,cd)∈ Nd . We consider the
polynomial ring S = K[xi j : 1 ≤ i ≤ d, 1 ≤ j ≤ mi] with the Zd graded structure
induced by assigning degxi j = ei ∈ Zd . Consider the ideals mi = (xi j| j = 1, . . . ,mi)
and

mc =
d

∏
i=1

mci
i .

Then the module of Koszul cycles Zt(mc,S) has a Zd-graded structure and also a
finer Zm = Zm1 × · · ·Zmd -graded structure. We have:

Lemma 4.1. The module Zt(mc,S) is generated by elements that either have Zd-
degree bounded above by the vector t c+(t − 1)∑ei or belong to Ut

i for some i in
{1, . . . ,d} where Ui = Z1(mc,S)c+ei .
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Proof. Set Zt = Zt(mc,S) and give it the natural Zm graded structure. The proof
is a multigraded variant of the argument used above in 3.7. First note that given a
monomial generator u of mc, a variable xi j|u and k such that 1 ≤ k ≤ mi and k 1= j,
the monomial v = uxik/xi j belongs to mc and the element xik[u]− xi j[v] belongs to
Ui. It is well known that these syzygies generate Z1 and that mc has a linear resolu-
tion. Now assume that f ∈ Zt is a Zm-homogeneous element of degree (α1, . . . ,αd),
αi = (αi1, . . . ,αimi) ∈ Zmi . Assume that |αi| ≥ t(ci + 1) for some i, say for i = 1.
We may also assume that α11 1= 0. Using induction on t, the rewriting procedure
described in the proof of 3.7 and the linear syzygies described above, we may write
f = x11gmodU1Zt−1. Since g ∈ Zt , the conclusion follows by induction on t. -.

Next we note that [4, Lemma 3.4] can be extended to the present setting:

Lemma 4.2. Let α ∈ Nd be a vector such that α ≤ c componentwise. Let a1,a2 . . . ,
at+1 be monomials of Zd-degree equal to α and b1,b2 . . . ,bt ∈ S monomials of de-
gree c−α . Then

∑
σ∈St+1

(−1)σ aσ(t+1)[b1aσ(1),b2aσ(2), . . . ,btaσ(t)] (5)

belongs to Zt(mc,S).

Now we prove a multigraded version of [4, Theorem 3.6]:

Lemma 4.3. For every i = 1, . . . ,d let b = c− ei and set Ui = Z1(mc,S)c+ei . Then

(ci +1)!mbUci
i ⊂ mci

i Zci(m
c,S)+Bci(m

c,S).

Proof. Set u = ci and Zu = Zci(m
c,S) and Bu = Bci(m

c,S). The generators of Ui are
of the form

za(y0,y1) = y0[ay1]− y1[ay0]

where a is a monomial of Zd-degree equal to b and y0,y1 ∈ {xi1, . . . ,ximi}. So we
have to take u such elements, say za j(y0 j,y1 j) with j = 1, . . . ,u, another monomial
of degree b, say au+1, and we have to prove that

(u+1)!au+1

u

∏
j=1

za j(y0 j,y1 j) ∈ mu
i Zu +Bu. (6)

The symmetrization argument given in the proof of [4, Theorem 3.6] works in this
case as well to prove that the left hand side of (6) can be rewritten, modulo bound-
aries, as

∑yi11 · · ·yiu,uWi

where i = (i1, . . . , iu) ∈ {0,1}u and Wi are cycles of the type described in 4.2. -.

An Nd-graded K-algebra R =
⊕

α∈Nd Rα is called standard if R0 = K and R is
generated by Rei with i = 1, . . . ,d. Clearly R can be presented as a quotient of an
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Nd-graded polynomial ring S = K[xi j : 1 ≤ i ≤ d, 1 ≤ j ≤ mi] with the Nd-graded
structure induced by assigning degxi j = ei ∈ Zd . Given a vector

c = (c1, . . . ,cd) ∈ Nd ,

we can consider the Segre–Veronese subring of R associated to it, namely

R(c) =
⊕

j∈N
R jc.

Our goal is to study the Green–Lazarsfeld index of R(c). We note that R(c) is a
quotient ring of S(c). Furthermore one has:

Lemma 4.4. (a) regS(c) (R(c)) = 0 for c 7 0.
(b) index(R(c)) ≥ index(S(c)) for c 7 0.

More precisely, both statements hold provided one has ic ≥ α componentwise for
every i ∈ Z and α ∈ Zd such that β S

i,α(R) 1= 0.

Proof. A detailed proof of (a) is given in the bigraded setting by Conca, Herzog,
Trung and Valla [6]. The same argument works as well for multigradings. Then (b)
follows from (a) and [4, Lemma 2.2]. -.

Consider the symmetric algebra T of the K-vector space Sc (i.e. a polynomial
ring of Krull dimension dimK Sc), and the natural surjection T → S(c). The Betti
numbers of S(c) as a T -module can be computed via Koszul homology.

Lemma 4.5. We have
β T

i, j(S
(c)) = Hi(mc,S) jc.

Proof. One notes that S(c) is a direct summand of S and then proceeds as in [4,
Lemma 4.1] -.

So we may reinterpret 4.1 in terms of syzygies of S(c), obtaining:

Corollary 4.6. One has β T
i, j(S

(c)) = 0 provided ( j− i−1)min(c) ≥ i.

Proof. Since mc annihilates Hi(mc,S), it follows from 4.1 that Hi(mc,S)α = 0
for every α ≥ i(c+∑ei) + c componentwise. Replacing α with j c we have that
β T

i, j(S(c)) = 0 if j c ≥ i(c+∑ei)+c which is equivalent to ( j− i−1)min(c)≥ i. -.

In [11] Hering, Schenck and Smith proved that index(S(c))≥min(c). We improve
the bound by one:

Theorem 4.7. One has min(c) ≤ index(S(c)). Moreover, min(c)+ 1 ≤ index(S(c))
if charK = 0 or charK > 1+min(c).

Proof. The first statement is an immediate consequence of 4.6. In fact, if i ≤ min(c)
then ( j− i−1)min(c)≥ i for every j > i+1 and hence, by 4.6, tT

i (S(c)) = i+1. Set
u = min(c). For the second statement, we have to show that Hu+1(mc,S) j c = 0 for
every j > u+2. By virtue of 4.1 we know that Zu+1(mc,S) is generated by:
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(1) elements of degree ≤ (u+1)c+u∑s es and
(2) elements of Uu+1

i where Ui = Z1(mc,S)c+ei and i = 1, . . . ,d; they have degree
(u+1)c+(u+1)ei.

So an element f ∈ Zu+1(mc,S) j c can come from a generator of type (1) by multipli-
cation of elements of degree α ∈ Zd such that

α ≥ j c−(u+1)c+u∑
s

es.

Since j > u+2, we have
α ≥ 2c+u∑

s
es ≥ c .

So f ∈ mcZu+1(mc,S) and f = 0 in homology. Alternatively, f ∈ Zu+1(mc,S) j c can
come from a generator of type (2) by multiplication of elements of degree α ∈ Zd

such that
α = j c−(u+1)c−(u+1)ei ≥ 2c−(u+1)ei.

If ci > u then α ≥ c, and we conclude as above that f = 0 in homology. If, instead,
ci = u, then α ≥ 2c−(ci +1)ei. We have that

f ∈ m2c−(ci+1)eiUci+1
i = mc−cieimc−eiUci

i Ui.

But, assuming K has either characteristic 0 or > u+1, 4.3 implies:

mc−eiUci
i ⊂ mci

i Zci(m
c,S)+Bci(m

c,S).

Hence
f ∈ mcZu(mc,S)Ui +Bci(m

c,S)Ui ⊂ Bci+1(mc,S)

and we conclude that f = 0 in homology. -.

5 Generating Koszul Cycles

In this section we consider the Koszul cycles Zt(I,R) where R is standard graded and
I is a homogeneous ideal. For simplicity, in this section we let Zt denote the cycles
Zt(I,R), and similarly write Bt , Ht and Kt for boundary, homology and components
of the Koszul complex K(I,R). We consider the multiplication map

Zs ⊗Zt → Zs+t (7)

and we want to understand in which degrees it is surjective. Note that the map (7)
has a factorization

Zs ⊗Zt
us,t−→ Zs(I,Zt)

αt−→ Zs+t

where the first map us,t is the canonical one and the second is the map αt described
in Sect. 2.
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Proposition 5.1. Suppose R has characteristic 0 or larger than s+ t. Then:

(1) The multiplication map Zs ⊗Zt → Zs+t is surjective in degree j if the module
TorR

1 (Ks−1/Bs−1,Zt) vanishes in degree j.
(2) If R = K[x1, . . . ,xn] and dimR/I = 0 then the multiplication map Zs⊗Zt → Zs+t

is surjective in degree j for every j ≥ regR Zs + regR Zt . In particular, the map
Zs ⊗Zt → Zs+t is surjective in degree j for every j ≥ (s+ t)(regR(I)+1).

Proof. To prove (1) we note that, as αt is surjective, we may as well consider the
map us,t : Zs ⊗Zt → Zs(ϕ ,Zt). Tensoring

0 → Zs → Ks → Bs−1 → 0

and
0 → Bs−1 → Ks−1 → Ks−1/Bs−1 → 0

with Zt , we have exact sequences

Zs ⊗Zt → Ks ⊗Zt
f→ Bs−1 ⊗Zt → 0

and
TorR

1 (Ks−1/Bs−1,Zt) → Bs−1 ⊗Zt
g→ Ks−1 ⊗Zt .

The composition g ◦ f is the map of the Koszul complex Ks ⊗Zt → Ks−1 ⊗Zt . So
Zs(ϕ ,Zt) = ker(g◦ f ) and the image of us,t is ker f . It follows that us,t is surjective
in degree j iff g is injective in degree j, that is TorR

1 (Ks−1/Bs−1,Zt) vanishes in
degree j.

To prove (2) we first observe, since
√

I = m, one has that (Zt)P is free for every
prime ideal P 1= m. Hence TorR

i (M,Zt) has Krull dimension 0 for every finitely
generated R-module M and every t ≥ 0 and i > 0.

Then we may apply [8, Corollary 3.1] and have that

regR TorR
i (M,Zt) ≤ regR M + regR Zt + i

and in particular

regR TorR
1 (Ks−1/Bs−1,Zt) ≤ regR Ks−1/Bs−1 + regR Zt +1.

But regR Ks−1/Bs−1 = regR Zs −2 and hence

regR TorR
1 (Ks−1/Bs−1,Zt) ≤ regR Zs + regR Zt −1

In other words, TorR
1 (Ks−1/Bs−1,Zt) vanishes in degrees ≥ regR Zs + regR Zt . To-

gether with (1) this concludes the proof of (2). -.

Theorem 5.2. Assume that R is Koszul and K has characteristic 0 or > t and take
I = mc. Then for every t the module Zt/Zt

1 vanishes in degree ≥ t(c+1) and Zt
1 has

an R-linear resolution.
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Proof. We prove the first assertion by induction on t. It is enough to prove that the
multiplication map Z1 ⊗Zt−1 → Zt is surjective in degrees j ≥ tc + t. By virtue of
5.1(1), it is enough to prove that TorR

1 (R/mc,Zt−1) vanishes for j ≥ tc+ t. But since
R/mc vanishes in degree ≥ c, it is easy to see that TorR

1 (R/mc,Zt−1) vanishes in
degrees ≥ tR

1 (Zt−1)+c. We know [4, Proposition 2.4] that regR(Zi)≤ ic+ i for every
i (here we use the fact that R is Koszul). So we have tR

1 (Zt−1)−1≤ (t−1)c+(t−1),
i.e. tR

1 (Zt−1) ≤ (t − 1)c + t. Then we have t1(Zt−1)+ c ≤ (t − 1)c + t + c = tc + t.
This proves the first assertion. For the second, one just notes that regR(Zt) ≤ tc + t
and that Zt

1 coincides with Zt truncated in degree t(c + 1). Therefore Zt
1 must have

an R-linear resolution. -.

We have the following consequence:

Corollary 5.3. Let S = K[x1, . . . ,xn] with charK = 0 or > 2c. One has H1(mc,S)2c =
0 iff index(S(c)) ≥ 2c, i.e. S(c) has the N2c-property.

Proof. By virtue of 5.2 Z2c(mc,S) coincides with Z1(mc,S)2c in degrees ≥ 2c(c +
1). Hence, by assumption, H2c(mc,S) vanishes in degrees ≥ 2c(c+1). This implies
that β T

2c, j(S
(c)) = 0 if jc ≥ 2c(c+1), that is, j ≥ 2c+2. In other words, tT

2c(S
(c)) ≤

2c + 1. Since S(c) is Cohen–Macaulay, one can conclude that tT
i (S(c)) ≤ i + 1 for

i = 1, . . . ,2c, that is, index(S(c)) ≥ 2c. -.

Remark 5.4. The interesting aspect of Corollary 5.3 is that we know explicitly the
generators of Z1(mc,S) and hence the inclusion Z1(mc,S)2c ⊂ B2c boils down to
a quite concrete statement. Unfortunately we have not been able to settle it. Note
also that Ottaviani and Paoletti conjectured that index(S(c)) = 3c−3 apart from few
known exceptions and at least in characteristic 0, see [12] or [4] for the precise
statements. In [4] we have proved that index(S(c)) ≥ c+1.

As we mentioned in [4] there are computational evidences that the cycles of [4,
Lemma 3.4] generate Zt(mc,S). We show below that this is the case for t = 2 and any
c. To this end we recall that for every monomial b of degree c−1 and for variables
x j,xk we have an element zb(x j,xk) = x j[bxk]− xk[bx j] ∈ Z1(mc,S). It is well-know
and easy to see that the elements zb(x j,xk) generate Z1(mc,S). For a monomial a we
set max(a) = max{i : xi|a} and min(a) = min{i : xi|a}. More precisely, the elements
zb(x j,xk) with j < k and max(b)≤ k form a Gröbner basis of Z1(mc,S) with respect
to any term order selecting x j[bxk] as leading term of zb(x j,xk). We have:

Proposition 5.5. If K has characteristic 1= 2 then the module Z2(mc,S) is generated
by two types of elements:

(1) The elements of [4, Lemma 3.4] of degree 2c+1,
(2) and by the elements of Z1(mc,S)2 of degree 2c + 2, that is, the elements of the

form za(xi,x j)zb(xh,xk).

Proof. Consider the map

α1 : Z1(mc,Z1(mc,S)) → Z2(mc,S)
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of Sect. 2. We know that Z2(mc,S) has regularity ≤ 2c + 2 and the only generators
of degree 2c+2 are the elements of (2). So we only need to deal with the elements
of degree 2c +1. To this end we look at the component of degree 2c +1 of α1. Let
a,b be monomials of degree c−1. The element

[axi]⊗ zb(x j,xk)+ [axk]⊗ zb(xi,x j)+ [ax j]⊗ zb(xk,xi) (8)

belong to Z1(mc,Z1(mc,S)) and has degree 2c + 1. The image under α1 of the el-
ements in (8) are exactly the cycles of [4, Lemma 3.4] in Z2(mc,S). Since α1 is
surjective, to complete the proof it is enough to prove the following statement:

Claim. The cycles described in (8) generate Z1(mc,Z1(mc,S)) in degree 2c+1.

Let F ∈ Z1(mc,Z1(mc,S)) be an element of degree 2c + 1. So F is a sum of
elements of the form [u]⊗ f with u a monomial of degree c and f ∈ Z1(mc,S) with
deg( f ) = c + 1. Choose [u] to be the largest in the lexicographic order induced by
x1 > · · · > xn and look at the coefficient f of [u] in F , i.e.

F = [u]⊗ f + sum of terms [v]⊗g with v < u.

Let x j[bxk] be the leading term of f with j < k and max(b) ≤ k. If min(u) < j then
we may add a suitable scalar multiple of (8) to “kill” the leading term of F and we
are done. If instead min(u) ≥ j, then, since

0 = ϕ(F) = u f + sum of terms vg with v < u

we have that x ju[bxk] must cancel, and so x ju = xsv for some v < u in the lex-order.
But this is impossible. -.
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