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Abstract A graded K -algebra R has property Np if it is generated in degree 1, has
relations in degree 2 and the syzygies of order ≤ p on the relations are linear. The
Green–Lazarsfeld index of R is the largest p such that it satisfies the property Np.
Our main results assert that (under a mild assumption on the base field) the cth
Veronese subring of a polynomial ring has Green–Lazarsfeld index ≥ c + 1. The
same conclusion also holds for an arbitrary standard graded algebra, provided c � 0.

1 Introduction

A classical problem in algebraic geometry and commutative algebra is the study of
the equations defining projective varieties and of their syzygies. Green and Lazarsfeld
[18,19] introduced the property Np for a graded ring as an indication of the presence of
simple syzygies. Let us recall the definition. A finitely generated N-graded K -algebra
R = ⊕i Ri over a field K satisfies property N0 if R is generated (as a K -algebra)
in degree 1. Then R can be presented as a quotient of a standard graded polynomial
ring S and one says that R satisfies property Np for some p > 0 if βS

i, j (R) = 0 for
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762 W. Bruns et al.

j > i + 1 and 1 ≤ i ≤ p. Here βS
i, j (R) denote the graded Betti numbers of R over S.

For example, property N1 means that R is defined by quadrics, N3 means that R is
defined by quadrics and that the first and second syzygies of the quadrics are linear.
We define the Green–Lazarsfeld index of R, denoted by index(R), to be the largest p
such that R has Np, with index(R) = ∞ if R satisfies Np for every p. It is, in general,
very difficult to determine the precise value of the Green–Lazarsfeld index. Important
conjectures, such as Green’s conjecture on the syzygies of canonical curves [14, Chap.
9], predict the value of the Green–Lazarsfeld index for certain families of varieties.

The goal of this paper is to study the Green–Lazarsfeld index of the Veronese
embeddings vc : Pn−1 → P

N of degree c of projective spaces and, more generally,
of the Veronese embeddings of arbitrary varieties. Let S denote the polynomial ring
in n variables over the field K . The coordinate ring of the image of vc is the Veronese
subring S(c) = ⊕

i∈N Sic of S. If n ≤ 2 or c ≤ 2 then S(c) is a determinantal ring
whose resolution is well understood and the Green–Lazarsfeld index can be easily
deduced. If n = 2 then S(c) is resolved by the Eagon–Northcott complex and so
index(S(c)) = ∞. The resolution of S(2) in characteristic 0 is described by Jozefiak
et al. in [22]; it follows that index(S(2)) = 5 if n > 3 and index(S(2)) = ∞ if n ≤ 3.
For n ≤ 6 Andersen [1] proved that index(S(2)) is independent on char K , but for
n > 6 and char K = 5 she proved that index(S(2)) = 4.

For n > 2 and c > 2 it is known that

c ≤ index(S(c)) ≤ 3c − 3. (1)

The lower bound is due to Green [17] (and holds for any c and n). Ottaviani and
Paoletti [23] established the upper bound in characteristic 0. They also showed that
index(S(c)) = 3c− 3 for n = 3 and conjectured that index(S(c)) = 3c− 3 holds true
for arbitrary n ≥ 3; see also Weyman [28, Proposition 7.2.8]. For n = 4 and c = 3
it is indeed the case [23, Lemma 3.3]. In their interesting paper [13] Eisenbud et al.
reproved some of these statements using different methods. Rubei [27] proved that
index(S(3)) ≥ 4 if char K = 0. Our main results are the following:

(i) c + 1 ≤ index(S(c)) if char K = 0 or > c + 1; see Corollary 4.2.
(ii) If R is a quotient of S then index(R(c)) ≥ index(S(c)) for every c ≥ slopeS(R);

see Theorem 5.2. In particular, if R is Koszul then index(R(c)) ≥ index(S(c))

for every c ≥ 2

Furthermore we give characteristic free proofs of the bounds (1) and of the equality
for n = 3; see Theorem 4.7. Our approach is based on the study of the Koszul complex
associated to the cth power of the maximal ideal. Let R be a standard graded K -algebra
with maximal homogeneous ideal m. Let K (mc, R) denote the Koszul complex asso-
ciated to mc, Zt (m

c, R) the module of cycles of homological degree t and Ht (m
c, R)

the corresponding homology module. In Sect. 2 we study the homological invariants
of Zt (m

c, R). Among other facts, we prove, in a surprisingly simple way, a general-
ization of Green’s theorem [17, Theorem 2.2] to arbitrary standard graded algebras;
see Corollary 2.5. If R is a polynomial ring (or just a Koszul ring), then it follows that
the regularity of Zt (m

c, R) is ≤ t (c + 1); see Proposition 2.4.
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Koszul homology and syzygies of Veronese subalgebras 763

In Sect. 3 we investigate more closely the modules Zt (m
c, S) in the case of a

polynomial ring S. Lemma 3.4 describes certain cycles which then are used to prove a
vanishing statement in Theorem 3.6. In Sect. 4 we improve the lower bound (1) by one,
see Corollary 4.2. Proposition 4.4 states a duality of Avramov–Golod type, which is the
algebraic counterpart of Serre duality. The duality is then used to establish Ottaviani
and Paoletti’s upper bound index(S(c)) ≤ 3c− 3 in arbitrary characteristic (Theorem
4.7). We also show that for n = 3 one gets index(S(c)) = 3c− 3 independently of the
characteristic; see Theorem 4.7.

In Sect. 5 we take R to be a quotient of a Koszul algebra D and prove that for
every c ≥ slopeD(R) we have index(R(c)) ≥ index(D(c)); see Theorem 5.2. Here
slopeD(R) = sup{t D

i (R)/ i : i ≥ 1} where t D
i (R) is the largest degree of an i th

syzygy of R over D. In particular, slopeD(R) = 2 if R is Koszul (Avramov et al. [4])
and, when D = S is a polynomial ring, slopeS(R) ≤ a if the defining ideal of R has a
Gröbner basis of elements of degree ≤ a. Similar results have been obtained by Park
[24] under some restrictive assumptions. In the last section we discuss multigraded
variants of the results presented.

2 General bounds

In this section we consider a standard graded K -algebra R with maximal homoge-
neous ideal m, which is a quotient of a polynomial ring S, say R = S/I where I is
homogeneous (and may contain elements of degree 1). For a finitely generated graded
R-module M let β R

i, j (M) = dimK TorR
i (M, K ) j be the graded Betti numbers of M

over R. We define the number

t R
i (M) = max{ j ∈ Z : β R

i, j (M) 	= 0},

if TorR
i (M, K ) 	= 0 and t R

i (M) = −∞ otherwise. The (relative) regularity of M over
R is given by

regR(M) = sup{t R
i (M)− i : i ∈ N}

and the Castelnuovo–Mumford regularity of M is

reg(M) = regS(M) = sup{t S
i (M)− i : i ∈ N};

it has also the cohomological interpretation

reg(M) = max{ j : Hi
m(M) j−i 	= 0 for some i ∈ N}

where Hi
m(M) denotes the i th local cohomology module of M . One defines the slope

of M over R by

slopeR(M) = sup

{
t R
i (M)− t R

0 (M)

i
: i ∈ N, i > 0

}

,
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764 W. Bruns et al.

and the Backelin rate of R by

Rate(R) = slopeR(m) = sup

{
t R
i (K )− 1

i − 1
: i ∈ N, i > 1

}

.

The Backelin rate measures the deviation from being Koszul: in general, Rate(R) ≥ 1,
and R is Koszul if and only if Rate(R) = 1. Finally, the Green–Lazarsfeld index of R
is given by

index(R) = sup{p ∈ N : t S
i (R) ≤ i + 1 for every i ≤ p}.

It is the largest non-negative integer p such that R satisfies the property Np. Note that
we have index(R) = ∞ if and only if reg(R) ≤ 1, that is, the defining ideal of R has
a 2-linear resolution. On the other hand, index(R) ≥ 1 if and only if R is defined by
quadrics. In general, reg(M) and slopeR(M) are finite (see [4]) while regR(M) can be
infinite. However, regR(M) is finite if R is Koszul, see Avramov and Eisenbud [5].

Remark 2.1 The invariants reg(M) and index(R) are defined in terms of a presenta-
tion of R as a quotient of a polynomial ring but do not depend on it. The assertion
is a consequence of the following formula which is obtained, for example, from the
graded analogue of [3, Theorem 2.2.3]: if x ∈ R1 and x M = 0, then

βR
i, j (M) = β

R/(x)
i, j (M)+ β

R/(x)
i−1, j−1(M).

We record basic properties of these invariants. The modules are graded and finitely
generated and the homomorphisms are of degree 0.

Lemma 2.2 Let R be a standard graded K -algebra, N and M j , j ∈ N, be R-modules
and i ∈ N.

(a) Let

0→ M1 → M2 → M3 → 0

be an exact sequence. Then

t R
i (M1) ≤ max{t R

i (M2), t R
i+1(M3)},

t R
i (M2) ≤ max{t R

i (M1), t R
i (M3)},

t R
i (M3) ≤ max{t R

i (M2), t R
i−1(M1)}.

(b) Let

· · · → Mk+1 → Mk → Mk−1 → · · · → M1 → M0 → N → 0

be an exact complex. Then

t R
i (N ) ≤ max{t R

i− j (M j ) : j = 0, . . . , i}
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and

regR(N ) ≤ sup{regR(M j )− j : j ≥ 0}.

(c) If N vanishes in degree > a then t R
i (N ) ≤ t R

i (K )+ a.
(d) Let J be a homogeneous ideal of R. If regR(R/J ) = 0, then

index(R/J ) ≥ index(R).

Proof To prove (a) one just considers the long exact homology sequence for
TorR(·, K ). For (b) one uses induction on i and applies (a). Part (c) is proved by
induction on a − min{ j : N j 	= 0}. For (d) one applies (c) to the minimal free reso-
lution of R/J as an R-module. For every i one gets t S

i (R/J ) ≤ max{t S
i− j (R(− j)) :

j = 0, . . . i}. But we have t S
i− j (R(− j))= t S

i− j (R)+ j . If i≤ index(R) then t S
i− j (R) ≤

i− j+1. It follows that t S
i (R/J ) ≤ i+1 for every i ≤ index(R). Hence index(R/J ) ≥

index(R). 
�
Let M be an R-module and let K (mc, M) be the graded Koszul complex associated

to the cth power of the maximal ideal of R. Let Zi (m
c, M), Bi (m

c, M), Hi (m
c, M)

denote the i th cycles, boundaries and homology of K (mc, M), respectively. We have:

Lemma 2.3 Set Zi = Zi (m
c, M). For every a ≥ 0 and i ≥ 0 we have:

t R
a (Zi+1) ≤ max

{
t R
a (M)+ (i + 1)c,

t R
a+1(Zi ),

t R
0 (Zi )+ c + (a + 1) Rate(R)

}
.

Proof Set Bi = Bi (m
c, M) and Hi = Hi (m

c, M). Recall that mc Hi = 0 and hence
Hi vanishes in degrees > t0(Zi )+ c − 1. It follows from Lemma 2.2(c) that

t R
a (Hi ) ≤ t R

0 (Zi )+ c − 1+ t R
a (K ).

The short exact sequences

0→ Bi → Zi → Hi → 0

and

0→ Zi+1 → Ki+1 → Bi → 0

now imply that

t R
a (Zi+1) ≤ max{t R

a (M)+ (i + 1)c, t R
a+1(Bi )}

≤ max{t R
a (M)+ (i + 1)c, t R

a+1(Zi ), t R
a+2(Hi )}

≤ max{t R
a (M)+ (i + 1)c, t R

a+1(Zi ), t R
0 (Zi )+ c − 1+ t R

a+2(K )}.
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Since, by the very definition, t R
a+2(K ) ≤ 1 + (a + 1) Rate(R) the desired result

follows. 
�
Lemma 2.3 allows us to bound t R

a (Zi ) inductively in terms of the various t R
j (M)

and of Rate(R):

Proposition 2.4 Set Zi = Zi (m
c, M).

(a) Assume c ≥ slopeR(M). Then for all a, i ∈ N we have

t R
a (Zi ) ≤ t R

0 (M)+ ic +max{a slopeR(M), (a + i) Rate(R)}.

In particular, slopeR(Zi ) ≤ max{slopeR M, (1+ i) Rate(R)}.
(b) Assume R is Koszul, i.e., Rate(R) = 1. Then for all a, i ∈ N we have

t R
a (Zi ) ≤ a + i(c + 1)+ regR(M).

In particular, regR(Zi ) ≤ i(c + 1)+ regR(M).

Proof To show (a) one uses that t R
a (M) ≤ t R

0 (M)+a slopeR(M) in combination with
Lemma 2.3 and induction on i . For (b) one observes that t R

a (M) ≤ a + regR(M) in
combination with Lemma 2.3 and induction on i . 
�

In particular, we have the following corollary that generalizes Green’s theorem [17,
Theorem 2.2] to arbitrary standard graded K -algebras.

Corollary 2.5 Set Zi = Zi (m
c, R). Then:

(a) t R
0 (Zi ) ≤ ic +min{i Rate(R), i + reg(R)}.

(b) Hi (m
c, R)ic+ j = 0 for every j ≥ min{i Rate(R), i + reg(R)} + c.

Proof To prove (a) one notes that setting M = R and a = 0 in Proposition 2.4 (a)
one has t R

0 (Zi ) ≤ ic + i Rate(R). Then one considers R as an S-module and sets
M = R and a = 0 in Proposition 2.4 (b). One has t S

0 (Zi ) ≤ i(c + 1) + reg(R).
Since t S

0 (Zi ) = t R
0 (Zi ) we are done. To prove (b) one uses (a) and the fact that

mc Hi (m
c, R) = 0. 
�

3 Koszul cycles

In this section we concentrate our attention on the Koszul complex K (mc) = K (mc, S)

where S = K [X1, . . . , Xn] is a standard graded polynomial ring over a field K
and m = (X1, . . . , Xn) is its maximal homogeneous ideal. The Koszul complex
K (mc) is indeed an S-algebra, namely the exterior algebra S⊗K

∧.
Sc ∼= ∧.

F
where F is the free S-module of rank equal to dimK Sc =

(n−1+c
n−1

)
. The differen-

tial of K (mc) is denoted by ∂; it is an antiderivation of degree −1. We consider the
cycles Zt (m

c, S), simply denoted by Zt (m
c), of the Koszul complex K (mc), and the

S-subalgebra Z(mc) =⊕
t Zt (m

c) of K (mc).
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Koszul homology and syzygies of Veronese subalgebras 767

For f1, . . . , ft ∈ Sc and g ∈ S we set

g[ f1, . . . , ft ] = g⊗ f1 ∧ · · · ∧ ft ∈ Kt (m
c).

The elements [u1, . . . , ut ] for distinct monomials u1, u2, . . . , ut of degree c (ordered
in some way) form a basis of Kt (m

c) as an S-module. We call them monomial free
generators of Kt (m

c). The elements v[u1, . . . , ut ], where u1, u2, . . . , ut are distinct
monomials of degree c and v is a monomial of arbitrary degree, form a basis of the
K -vector space Kt (m

c). They are called monomials of Kt (m
c). Evidently K (mc) is a

Z-graded complex, but it is also Z
n-graded with the following assignment of degrees:

deg v[u1, . . . , ut ] = α where vu1 · · · ut = Xα .
Every element z ∈ Kt (m

c) can be written uniquely as a linear combination

z =
∑

fi [ui1, . . . , uit ]

of monomial free generators [ui1, . . . , uit ] with coefficients fi ∈ S. We call fi the
coefficient of [ui1, . . . , uit ] in z. Note that z is Z-homogenous of degree ct + j if
every fi is homogeneous of degree j . In this case z has coefficients of degree j . Note
also that z is homogeneous of degree α ∈ Z

n in the Z
n-grading if for every i one has

fi = λivi such that λi ∈ K and vi is a monomial with vi ui1 · · · uit = Xα . Given
z ∈ K (mc) and a monomial v[u1, . . . , ut ] we say that v[u1, . . . , ut ] appears in z
if it has a non-zero coefficient in the representation of z as K -linear combination of
monomials of K (mc). An immediate consequence of Proposition 2.4 is:

Lemma 3.1 We have reg(Zt (m
c)) ≤ t (c + 1). In particular, Zt (m

c) is generated by
elements of degree ≤ t (c + 1).

Remark 3.2 It is easy to see and well known that Z1(m
c) is generated by the elements

Xi [X j b] − X j [Xi b] where b is a monomial of degree c − 1.

We write Z1(m
c)t for

∧t Z1(m
c) ⊂ Zt (m

c), and similarly for other products.

Theorem 3.3 For every t the module Zt (m
c)/Z1(m

c)t is generated in degree
< t (c + 1).

Proof The assertion is proved by induction on t . For t = 1 there is nothing to do. By
induction it is enough to verify that Zt (m

c)/Z1(m
c)Zt−1(m

c) is generated in degree
< t (c+ 1). Since Zt (m

c) is Z
n-graded and generated in degree≤ t (c+ 1), it suffices

to show that every Z
n-graded element f ∈ Zt (m

c) of total degree t (c + 1) can be
written modulo Z1(m

c)Zt−1(m
c) as a multiple of an element in Zt (m

c) of total degree
< t (c+1). Let α ∈ Z

n be the Z
n-degree of f . Permuting the coordinates if necessary,

we may assume αn > 0.
Let u ∈ S be a monomial of degree c with Xn | u. We write f = a + b[u] with

a ∈ Kt (m
c) and b ∈ Kt−1(m

c) such that a, b involve only free generators [u1, . . . , us]
(s = t, t − 1) with ui 	= u for all i . Since

0 = ∂( f ) = ∂(a)+ ∂(b)[u] ± bu
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it follows that ∂(b) = 0, i.e., b ∈ Zt−1(m
c). Note that b has coefficients of degree t .

Since Zt−1(m
c) is generated by elements with coefficients of degree ≤ t − 1 we may

write

b =
s∑

j=1

λ jv j z j (2)

where λ j ∈ K , z j ∈ Zt−1(m
c) and the v j are monomials of positive degree.

Let λ jv j z j be a summand in (2). If Xn does not divide v j , then choose i < n such
that Xi | v j . We set z′ = Xi [u]− Xn[u′] ∈ Z1(m

c) where u′ = u Xi/Xn , and subtract
from f the element

λ j
v j

Xi
z j z
′ ∈ Zt−1(m

c)Z1(m
c).

Repeating this procedure for each λ jv j z j in (2) such that Xn does not divide v j we
obtain a cycle f1 ∈ Zt (m

c) of degree α such that

(i) f = f1 mod Z1(m
c)Zt−1(m

c);
(ii) if a monomial v[u1, . . . , ut ] appears in f1 and u ∈ {u1, . . . , ut }, then Xn | v.

We repeat the described procedure for each monomial u of degree c with Xn|u. We
end up with an element f2 ∈ Zt (m

c) of degree α such that

(iii) f = f2 mod Z1(m
c)Zt−1(m

c);
(iv) if a monomial v[u1, . . . , ut ] appears in f2 and Xn | u1 · · · ut , then Xn | v.

Note that if v[u1, . . . , ut ] appears in f2 and Xn � u1 · · · ut , then Xn | v by degree
reasons. Hence for every monomial v[u1, . . . , ut ] appearing in f2 we have Xn | v.
Therefore f2 = Xng, and g ∈ Zt (m

c) has degree < t (c + 1). This completes the
proof. 
�

Next we describe some cycles which are needed in the following. For t ∈ N, t ≥ 1
let St be the group of permutations of {1, . . . , t}.
Lemma 3.4 Let s, t be integers such that 1 ≤ s ≤ c and t > 0. Let a1, a2 . . . , at+1 ∈
S be monomials of degree s and b1, b2 . . . , bt ∈ S monomials of degree c − s. Then

∑

σ∈St+1

(−1)σ aσ(t+1)[b1aσ(1), b2aσ(2), . . . , bt aσ(t)] (3)

belongs to Zt (m
c).

Proof We apply the differential of K (mc) to (3) and observe that for distinct integers
j1, j2, . . . , ji−1, ji+1, . . . , jt in the range of 1 to t + 1 the free generator

[b1a j1 , b2a j2 , . . . , bi−1a ji−1 , bi+1a ji+1 . . . , bt ait ]

appears twice in the image. The coefficients differ just by−1 because the correspond-
ing permutations differ by a transposition. Thus the element in (3) is indeed a cycle.


�
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Remark 3.5 (a) Of course, it may happen that a cycle described in Lemma 3.4 is
identically 0. But for t = 1 and s = 1 these cycles take the form

Xi [bX j ] − X j [bXi ],

and, as said already in Remark 3.2, they generate Z1(m
c). For s = c the cycles in

Lemma 3.4 are the boundaries of Kt (m
c) (multiplied by t !). Hence for c = 1 the

cycles in 3.4 generate the algebra Z(m). So there is some evidence that the cycles
in Lemma 3.4 might generate Z(mc) in general.

(b) For n = 3, c = 2, t = 2 and s = 1 with ai = Xi for i = 1, 2, 3 and bi = Xi for
i = 1, 2 the cycle in (3) is

0

+ X3[X2
1, X2

2] − X2[X2
1, X2 X3] −

︷ ︸︸ ︷
X3[X1 X2, X1 X2]

+ X1[X1 X2, X2 X3] + X2[X1 X3, X1 X2] − X1[X1 X3, X2
2],

a non-zero element in Z2(m
2).

Let Bi (m
c) ⊂ Zi (m

c) denote the S-module of boundaries in Ki (m
c).

Theorem 3.6 We have

(c + 1)!mc−1 Z1(m
c)c ⊂ Bc(m

c).

Proof For a monomial b ∈ S of degree c − 1 and variables Xi , X j we set

zb(Xi , X j ) = Xi [bX j ] − X j [bXi ].

As observed in Remark 3.2, the elements zb(Xi , X j ) generate Z1(m
c). Let a, b ∈ S

be monomials of degree c − 1. We note that

azb(Xi , X j )+ bza(Xi , X j ) = ∂
([aXi , bX j ] + [bXi , aX j ]

) ∈ B1(m
c),

that is,

azb(Xi , X j ) = −bza(Xi , X j ) mod B1(m
c). (4)

Let b1, . . . , bc+1 ∈ S be monomials of degree c − 1, and let Xi j ∈ {X1, . . . , Xn}
for i = 1, . . . , c and j = 0, 1 be variables. By construction, the elements

f = bc+1

c∏

i=1

zbi (Xi0, Xi1) ∈ Zc(m
c)

generate mc−1 Z1(m
c)c. We have to show that (c + 1)! f ∈ Bc(m

c).
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Let σ ∈ Sc+1 be an arbitrary permutation. From Eq. (4) and from the inclusion
B1(m

c)Zc−1(m
c) ⊂ Bc(m

c) it follows that

f = (−1)σ bσ(c+1)

c∏

i=1

zbσ(i) (Xi0, Xi1) mod Bc(m
c).

Hence

(c + 1)! f =
∑

σ∈Sc+1

(−1)σ bσ(c+1)

c∏

i=1

zbσ(i) (Xi0, Xi1) mod Bc(m
c). (5)

In the right-hand side of (5) we replace zbσ(i) (Xi0, Xi1) with Xi0[bσ(i) Xi1]−Xi1[bσ(i)

Xi0], then expand the product and collect the multiples of X1 j1 · · · Xcjc for j =
( j1, . . . , jc) ∈ {0, 1}c. We can rewrite Eq. (5) as

(c + 1)! f =
∑

j∈{0,1}c
(−1) j1+···+ jc X1 j1 · · · Xcjc W j mod Bc(m

c), (6)

where

W j =
∑

σ∈Sc+1

(−1)σ bσ(c+1)[X1i1 bσ(1), . . . , Xcic bσ(c)]

with ik = 1− jk for k = 1, . . . , c. Lemma 3.4 yields W j ∈ Zc(m
c). Since mc Zc(m

c) ⊂
Bc(m

c) we get

X1 j1 · · · Xcjc W j = 0 mod Bc(m
c).

Thus Eq. (6) implies (c + 1)! f ∈ Bc(m
c) as desired. 
�

As a consequence we obtain:

Corollary 3.7 The homology Ht (m
c)tc+ j vanishes if j ≥ t + c. If t ≥ c and the

characteristic of K is either 0 or > c + 1, then Ht (m
c)tc+ j = 0 for j ≥ t + c − 1.

Proof The first statement is a special case of Corollary 2.5. For the second, set j =
t + c − 1. We have to prove that Ht (m

c)tc+ j = 0. Theorem 3.3 implies that Zt (m
c)

is generated by some elements zi of degree < t (c + 1) and by some elements wi

of Z1(m
c)t of degree t (c + 1). Hence an element f ∈ Zt (m

c)tc+ j can be written
as f = ∑

ai zi +∑
biwi with ai ∈ mc and bi ∈ mc−1 by degree reasons. Now∑

ai zi ∈ mc Zt (m
c) ⊂ Bt (m

c). In view of Theorem 3.6 we furthermore have

∑
biwi ∈ mc−1 Z1(m

c)t=mc−1 Z1(m
c)c Z1(m

c)t−c ⊂ Bc(m
c)Z1(m

c)t−c⊂ Bt (m
c).

Summing up, f ∈ Bt (m
c) and hence Ht (m

c)tc+ j = 0. 
�
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Remark 3.8 The coefficient (c+ 1)! in Theorem 3.6 and the assumption on the char-
acteristic in Corollary 3.7 are necessary. For n = 7, c = 2 and char K = 3 we
have checked that mZ1(m

2)2 	⊂ B2(m
2) and that dim H2(m

2)7 = 1. More precisely,
H2(m

2) has dimension 1 in the multidegree (1, 1, 1, 1, 1, 1, 1) if char K = 3.

Another consequence of Theorem 3.6 is the following:

Corollary 3.9 Assume char K is 0 or > c+1. Then reg Zt+1(m
c) ≤ (t+1)(c+1)−1

for every t ≥ c. In particular, Z1(m
c)c+1 ⊂ mZc+1(m

c).

Proof To prove the first assertion, let us denote by Zt the module Zt (m
c) and similarly

for Bt , Ht and Kt . The short exact sequences

0→ Bt → Zt → Ht → 0 and 0→ Zt+1 → Kt+1 → Bt → 0

imply that reg(Zt+1) ≤ max{reg(Zt ) + 1, reg(Ht ) + 2}. Using Lemma 3.1 and
Corollary 3.7 one obtains reg(Zt+1) ≤ (t + 1)(c + 1) − 1 for every t ≥ c. The
second assertion follows immediately from the first. 
�

4 The Green–Lazarsfeld index of Veronese subrings of polynomial rings

Again we consider a standard graded K -algebra R of the form R = S/I where K is
a field, S = K [X1, . . . , Xn] is a polynomial ring over K graded by deg(Xi ) = 1 and
I ⊂ S is a graded ideal.

Given c ∈ N, c ≥ 1 and 0 ≤ k < c, we set

VR(c, k) =
⊕

i∈N
Rk+ic.

Observe that R(c) = VR(c, 0) is the usual cth Veronese subring of R, and that the
VR(c, k) are R(c)-modules known as the Veronese modules of R. For a finitely gener-
ated graded R-module M we similarly define

M (c) =
⊕

i∈Z
Mic.

We consider R(c) as a standard graded K -algebra with homogeneous component of
degree i equal to Ric, and M (c) as a graded R(c)-module with homogeneous compo-
nents Mic. The grading of the R(c)-module VR(c, k) is given by VR(c, k)i = Rk+ic. In
particular, the latter modules are all generated in degree 0 with respect to this grading.

Let T = Sym(Rc) be the symmetric algebra on vector space Rc, that is,

T = K [Yu : u ∈ Bc]

where Bc is any K -basis of Rc. When R = S the basis Bc can be taken as the set of
monomials of degree c. The canonical map T → R(c) is surjective, and the modules
VR(c, k) are also finitely generated graded T -modules (generated in degree 0).
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With the notation of the preceding sections we have:

Lemma 4.1 For i ∈ N, j ∈ Z and 0 ≤ k < c we have

βT
i, j (VR(c, k)) = dimK Hi (m

c, R) jc+k .

Proof Let K (T1) be the Koszul complex (of T -modules) associated to the elements
Yu with u ∈ Bc. We observe that

βT
i, j (VR(c, k)) = TorT

i (K , VR(c, k)) j = dimK Hi (K (T1))⊗T VR(c, k)) j .

But the last homology is Hi (m
c) jc+k , the i th homology of the complex K (mc) jc+k .


�
Lemma 4.1 and Corollary 3.7 imply:

Corollary 4.2 For all integers i ≥ 0 and k = 0, . . . , c − 1 we have

tT
i (VS(c, k)) < 1+ i + i − k

c
.

If K has characteristic 0 or > c + 1 and i ≥ c, then

tT
i (VS(c, k)) < 1+ i + i − k − 1

c
.

Remark 4.3 Let S = K [X1, . . . , Xn]. Andersen [1] proved that the graded Betti num-
bers βT

i j (S(2)) do not depend on the characteristic of K if i ≤ 4 or if i = 5 and n ≤ 6.

She also proved that, for n ≥ 7, one has βT
5,7(S(2)) 	= 0 in characteristic 5 while

βT
5,7(S(2)) = 0 in characteristic 0. Thus, for n ≥ 7 one has

index(S(2)) =
{

5, char K = 0,

4, char K = 5.

Also note that already β2,3(VS(2, 1)) depends on the characteristic if n ≥ 7, as follows
from the data in Remark 3.8.

We now record a duality on H(mc). It can be seen as an Avramov–Golod type
duality (see [8, Theorem 3.4.5]) or as an algebraic version of Serre duality.

Proposition 4.4 Let N = (n+c−1
c

)
. Then

dimK Hi (m
c) j = dimK HN−n−i (m

c)Nc−n− j , i, j ∈ Z, i, j ≥ 0.

Proof For this proof (and only here) we consider the grading on the polynomial ring
T = K [Yu : u ∈ S monomial, deg u = c] in which Yu has degree c. The polynomial
ring S in its standard grading is a finitely generated graded T -module as usual.
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Note that the canonical module of S is ωS = S(−n), and that the canonical module
of T is ωT = T (−Nc). Recall that

Ext j
T (S, T (−Nc)) =

{
0 if j < N − n,

S(−n) if j = N − n.

(See, e.g., [8, Theorem 3.3.7 and Theorem 3.3.10].) Let F be a minimal graded
free T -resolution of S. Computing Exti

T (S, T (−Nc)) via HomT (F, T (−Nc)), the
minimal graded free T -resolution of S(−n), we see immediately that βT

i, j (S) =
βT

N−n−i,Nc− j (S(−n)). Then

dimK Hi (m
c) j = βT

i, j (S)

= βT
N−n−i,Nc−n− j (S) = dimK HN−n−i (m

c)Nc−n− j .


�
Example 4.5 Let char K = 0. Computer algebra systems as CoCoA [10], Macaulay
2 [16] or Singular [20] can easily compute the following diagram for dimK H(m3) in
the case n = 3:

0 1 2 3 4 5 6 7
0 1 – – – – – – – ←
1 3 15 21 – – – – –
2 6 49 105 147 105 21 – –
3 0 27 105 189 189 105 27 – ←
4 – 0 21 105 147 105 49 6
5 – – 0 0 – 21 15 3
6 – – – 0 0 – – 1 ←

The (i, j)-entry of the table is dimK Hi (m
c)ic+ j and “–” indicates that entry is 0. By

selecting the rows whose indices are multiples of c = 3 (those marked by the arrows
in the diagram) one gets the Betti diagram of S(3). Green’s theorem [17, Theorem
2.2] implies the vanishing in the positions of the boldface zeros and below. Our result
implies the vanishing in the positions of the non-bold zeros and below. (Also see
Weyman [28, Example 7.2.7] for the case n = c = 3.)

Using the duality we prove the upper bound for index(S(c)) due to Ottaviani and
Paoletti [23] (in arbitrary characteristic). To this end we need a variation of [25,
Corollary 2.10].

Proposition 4.6 Let (ei : i = 1, . . . , m) be a basis of the vector space
∧t Sc (thus

m = (N
t

)
with N = (n−1+c

n−1

)
). Let

z =
m∑

i=1

fi ei
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be a non-zero element in Zt (m
c). Then the K -vector space generated by the coefficients

fi of z has dimension ≥ t + 1.

Proof Since the K -vector space dimension of the space of coefficients does not depend
on the basis, it is enough to prove the assertion for the monomial basis (ei ). We use
induction on t .

The case t = 0 is obvious. So assume t > 0. Fix a term order, for example the
lexicographic term order, on S. Let C(z) denote the vector space generated by the
coefficients of z. As already discussed in the proof of Theorem 3.3, for every mono-
mial u of degree c we may write z = a + b[u] with b ∈ Zt−1(m

c). Choose u to be
the largest monomial (with respect to the term order) such that the corresponding b is
non-zero. By induction dimK C(b) ≥ t and C(b) ⊂ C(z).

If C(b) 	= C(z) then clearly dimK C(z) ≥ t + 1. If instead C(b) = C(z), then
C(a) ⊂ C(b). Let v be the largest monomial appearing in the elements of C(b). The
inclusion C(a) ⊂ C(b) implies that every monomial appearing in the elements of
C(a) is ≤ v. But ∂(a)± bu = 0 and hence C(∂(a)) = C(bu) = uC(b). The mono-
mial vu appears in C(bu). Every monomial in C(∂(a)) is of the form wu1 where w is
a monomial appearing in C(a) and u1 is a monomial of degree c which is an “exterior”
factor of some free generator appearing in z. By construction w ≤ v and u1 < u. It
follows that wu1 	= vu, a contradiction with C(∂(a)) = uC(b). 
�
Theorem 4.7 For n ≥ 3 and c ≥ 3 one has index(S(c)) ≤ 3c− 3, and equality holds
for n = 3.

Proof We first consider the case n = 3. By an inspection of the Hilbert function
of (the Cohen–Macaulay ring) S(c) one sees immediately that reg S(c) ≤ 2, that is,
t T
i (S(c)) ≤ i + 2 for every i ≥ 0. From Theorem 4.1 and Proposition 4.4 we have

βT
i, j (S(c)) = dimK Hi (m

c) jc = dimK HN−3−i (m
c)Nc−3− jc.

Therefore t T
i (S(c)) ≤ i + 1 if and only if

HN−3−i (m
c)(N−3−i)c+c−3 = 0,

and, since the boundaries have coefficients of degree ≥ c, this is equivalent to

Z N−3−i (m
c)(N−3−i)c+c−3 = 0.

So we have to analyze the cycles in Z N−3−i (m
c) with coefficients of degree c − 3.

It follows from Proposition 4.6 that

N − 3− i + 1 ≤ dimK Sc−3 =
(

c − 1

2

)

if there exists a non-zero cycle z ∈ Z N−3−i (m
c) with coefficients of degree c − 3.

Thus there are no cycles in that degree if N − 3− i ≥ (c−1
2

)
. Hence

t T
i (S(c)) ≤ i + 1 for 0 ≤ i ≤ 3c − 3,
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that is, index(S(c)) ≥ 3c−3. It remains to show that S(c) does not satisfy the property
N3c−2. We have to find a non-zero cycle in Z j (m

c) with coefficients of degree c − 3
where j = N − 3 − i . Note that j = (c−1

2

) − 1 and so j + 1 = dim Sc−3. Take the
monomials u′1, . . . , u′j+1 of degree c−3 and set uk = u′k X1 X2 X3 for k = 1, . . . , j+1.
Then

w = ∂([u1, . . . , u j+1]) ∈ Z j (m
c)

is non-zero boundary with coefficients of degree c. But we can divide each coefficient
of w by X1 X2 X3 to obtain a non-zero cycle z ∈ Z j (m

c) with coefficients of degree
c−3. It follows that S(c) does not satisfy the property N3c−2. This concludes the proof
for n = 3.

Now let n > 3. Recall that Hi (m
c) is multigraded. For a vector a = (a1, . . . , an) ∈

N
n with ai = 0 for i > 3 let b = (a1, a2, a3). We may identify

Hi (m
c)a = Hi (m

c
3)b

where Hi (m
c
3) is the corresponding Koszul homology in 3 variables. Since for n = 3

the cth Veronese does not satisfy N3c−2 it follows that the same is true for all n ≥ 3,
proving that index(S(c)) ≤ 3c − 3. 
�
Remark 4.8 It is well-known that reg S(c) ≤ n−1 in general, i.e., ti (S(c)) ≤ i+n−1.
Analogously to the proof of Theorem 4.7 one can determine the largest i such that
ti (S(c)) < i +n−1. Again this is determined by elements in Zi (m

c) with coefficients
of degree c − n. It remains to count the monomials of S in that degree. For example,
for c ≥ n = 4 one obtains ti (S(c)) < i + 3 if and only if i ≤ 2c2 − 2.

5 The Green–Lazarsfeld index of Veronese subrings of standard graded rings

Let D be a Koszul K -algebra and I be a homogeneous ideal of D. Set R = D/I . We
want to relate the Green–Lazarsfeld index of R(c) to that of D(c). For a polynomial
ring S Aramova et al. proved in [2, Theorem 2.1] that the Veronese modules VS(c, k)

have a linear resolution over the Veronese ring S(c). We show that this property holds
for Koszul algebras in general.

Lemma 5.1 Assume D is a Koszul algebra and, for a given c, let T = Sym(Dc) be
the symmetric algebra of Dc.

(a) The Veronese module VD(c, k) has a linear resolution as a D(c)-module.
(b) For every k = 0, . . . , c − 1 we have

tT
i (VD(c, k)) ≤ t T

i (D(c)).

Proof (a) Let m denote the homogeneous maximal ideal of D, and set A = D(c) and
Vk = VD(c, k). We prove by induction on i that t A

i (Vk) ≤ i for all i and k. For i = 0
the assertion is obvious and it is so for k = 0 and i ≥ 0, too. Assume that i > 0.
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The ideal mk is generated in degree k and, since D is Koszul, it has a linear resolution
over D. Shifting that resolution by k, we obtain a complex

· · · → Fi → Fi−1 → · · · → F1 → F0 → 0

resolving mk(k) and such that Fi = D(−i)βi . Applying the exact functor ( )(c) to it
we get an exact complex of A-modules

· · · → F (c)
i → F (c)

i−1 → · · · → F (c)
1 → Aβ0 → Vk → 0.

Note that D(− j)(c) = Ve(−� j/c�) where e = c� j/c� − j . Therefore F (c)
j =

Ve j (−� j/c�)β j where e j = c� j/c� − j . Applying Lemma 2.2 (b) to the complex
above we have

t A
i (Vk) ≤ max{t A

i− j (Ve j )+ � j/c� : j = 0, . . . , i}.

Obviously t A
i (Ve0) = t A

i (A) = −∞ and, by induction, t A
i− j (Ve j ) ≤ i − j for j =

1, . . . , i . Therefore

t A
i (Vk) ≤ max{i − j + � j/c� : j = 1, . . . , i} = i

and this concludes the proof of (a). For (b) we may apply Lemma 2.2(b) to the minimal
A-free resolution of Vk and to get the desired inequality. 
�

Now we prove the main result of this section.

Theorem 5.2 Assume D is a Koszul algebra and R = D/I . Let c ≥ slopeD(R). Then
index(R(c)) ≥ index(D(c)).

Proof To prove the statement we set A = D(c) and B = R(c). By virtue of Lemma 2.2
(d) it is enough to show that regA(B) = 0. Let

· · · → Fp → · · · → F1 → F0 → R→ 0

be the minimal graded free resolution of R over D. Since ( )(c) is an exact functor, we
obtain an exact complex of finitely generated graded A-modules

· · · → F (c)
p → · · · → F (c)

1 → F (c)
0 → B → 0. (7)

Hence by virtue of Lemma 2.2 (b) we have

regA(B) ≤ max{regA(F (c)
i )− i : i ≥ 0}.

Note that D(−k)(c) = VD(c, e)(−�k/c�) where e = c�k/c� − k. Hence, by virtue of
Lemma 5.1, regA(D(−k)(c)) = �k/c�. Therefore, since Fi =⊕

k∈Z S(−k)β
D
ik (R) we
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get regA(F (c)
i ) = �t D

i (R)/c�. Summing up,

regA(B) ≤ max{�t D
i (R)/c� − i : i ≥ 0}.

If c ≥ slopeD(R), then t D
i (R) ≤ ci and hence regA(B) = 0. This concludes the

proof. 
�
As a corollary we have:

Corollary 5.3 Let S be a polynomial ring and R = S/I a standard graded algebra
quotient of it and let c ≥ slopeS(R). Then index(R(c)) ≥ index(S(c)). In particular,

(a) index(R(c)) ≥ c. Furthermore, if K has characteristic 0 or > c+1, then we have
index(R(c)) ≥ c + 1.

(b) If dim R1 = 3, then index(R(c)) ≥ 3c − 3.

Note that slopeS(R) = 2 if R is Koszul; see [4]. Furthermore slopeS(R) ≤ a if R
is defined by either a complete intersection of elements of degree≤ a or by a Gröbner
basis of elements of degree ≤ a.

Remark 5.4 Sometimes the bound in Theorem 5.2 can be improved by a more careful
argumentation. Let R = S/I and let T be the symmetric algebra of Sc. For instance,
using the argument of the proof of Theorem 5.2 one shows that

t T
i (R(c)) ≤ max{t T

i− j (S(c))+ �t S
j (R)/c�} : j = 0, 1, . . . , i}.

It follows that index(R(c)) ≥ p if c ≥ p and index(R) ≥ p, a result proved by Rubei
in [26]. It is very easy to show that R(c) is defined by quadrics, i.e. index(R(c)) ≥ 1
provided c ≥ t S

1 (R)/2. Similarly, one can prove that index(R(c)) ≥ p if

c ≥ max{p, max{t S
j (R)/j : j = 1, . . . , p − 1}, t S

p (R)/(p + 1)}.

Remark 5.5 (a) Let us say that a positively graded K -algebra is almost standard if
R is Noetherian and a finitely generated module over K [R1]. If K is infinite, then
this property is equivalent to the existence of a Noether normalization generated
by elements of degree 1. Galliego and Purnaprajna [15, Theorem 1.3] proved a
general result on the property Np of Veronese subalgebras of almost standard
K -algebras R of depth ≥ 2 over fields of characteristic 0: R(c) has Np for all
c ≥ max{reg(R)+ p − 1, reg(R), p}. If reg(R) ≥ 1 and p ≥ 1, this amounts to
the property Nc−reg(R)+1 of R(c) for all c ≥ reg(R). Thus Theorem 5.2 gives a
stronger result for standard graded algebras.

(b) Eisenbud et al. [12] proved that the Veronese subalgebras R(c) of standard graded
K -algebra R are defined by an ideals with Gröbner bases of degree 2 for all
c ≥ (reg(R)+ 1)/2. It follows that these algebras are Koszul.

(c) If R is almost standard and Cohen–Macaulay, then R(c) is defined by an ideal with
a Gröbner bases of degree 2 for every c ≥ reg(R). See Bruns et al. [7, Theorem
1.4.1] or Bruns and Gubeladze [6, Theorem 7.41].
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6 The multigraded case

The results presented in this paper have natural extensions to the multigraded case.
Here we just formulate the main statements. Detailed proofs will be given in the
forthcoming article [9]. Suppose S = K [X (1), . . . , X (m)] is a Z

m-graded polyno-
mial ring in which each X (i) is the set of variables of degree ei ∈ Z

m . For a vector
c ∈ (c1, . . . , cm) ∈ N

m+ consider the cth diagonal subring S(c) = ⊕i∈N Sic, the coor-
dinate ring of the corresponding Segre–Veronese embedding. The following result
improves the bound of Hering et al. [21] by one:

Theorem 6.1 With the notation above one has: min(c) ≤ index(S(c)). Moreover, we
have min(c)+ 1 ≤ index(S(c)) if char K = 0 or char K > 1+min(c).

Similarly one has the multigraded analog of Theorem 5.2. Here one uses the fact,
proved in [11], given any Z

m-graded standard graded algebra quotient of S then if
the c j ’s are big enough (in terms of the multigraded Betti numbers of R over S) then
regS(c) (R(c)) = 0.

Proposition 6.2 Assume that for all j = 1 . . . , m one has c j ≥ max{α j/ i : i > 0,

α ∈ Z
m and βS

i,α(R) 	= 0, } then index(R(c)) ≥ index(S(c)).
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