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1 Introduction

This is a chapter on commutative Koszul algebras and Castelnuovo–Mumford
regularities. Koszul algebras, originally introduced by Priddy [48], are graded
K-algebras R whose residue field K has a linear free resolution as an R-module.
Here linear means that the nonzero entries of the matrices describing the maps in the
resolution have degree 1. For example, over the symmetric algebra S D SymK.V /

of a finite dimensional K-vector space V , the residue field K , is resolved by the
Koszul complex which is linear. Similarly, for the exterior algebra

V
K V the residue

field K is resolved by the Cartan complex which is also linear. In this chapter we
deal mainly with standard graded commutative K-algebras, that is, quotient rings
of the polynomial ring S by homogeneous ideals. The (absolute) Castelnuovo–
Mumford regularity regS .M / is, after Krull dimension and multiplicity, perhaps
the most important invariant of a finitely generated graded S -module M , as it
controls the vanishing of both syzygies and the local cohomology modules of M .
By definition, regS .M / is the least integer r such that the i th syzygy module of
M is generated in degrees � r C i for every i . By local duality, regS .M / can be
characterized also as the least number r such that the local cohomology module
H i

mS
.M / vanishes in degrees > r � i for every i . Analogously when R D S=I is a

standard graded K-algebra and M is a finitely generated graded R-module one can
define the relative Castelnuovo–Mumford regularity as the least integer r such that
the i th syzygy module over R of M is generated in degrees � r C i for every i .
The main difference between the relative and the absolute regularity is that over R

most of the resolutions are infinite, that is, there are infinitely many syzygy modules,
and hence it is not at all clear whether regR.M / is finite. Avramov, Eisenbud and
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Peeva gave in [5, 6] a beautiful characterization of the Koszul property in terms of
the relative regularity: R is Koszul iff regR.M / is finite for every M iff regR.K/ is
finite.

From certain point of views, Koszul algebras behave homologically as polyno-
mial rings. For instance regR.M / can be characterized in terms of regularity of
truncated submodules (see Proposition 8). On the other hand, “bad” homological
behaviors may occur over Koszul algebras. For instance, modules might have
irrational Poincaŕe series over Koszul algebras. Furthermore, Koszul algebras
appear quite frequently among the rings that are classically studied in commu-
tative algebra, algebraic geometry and combinatorial commutative algebra. This
mixture of similarities and differences with the polynomial ring and their frequent
appearance in classical constructions are some of the reasons that make Koszul
algebras fascinating, studied and beloved by commutative algebraists and algebraic
geometers. In few words, a homological life is worth living in a Koszul algebra.
Of course there are other reasons for the popularity of Koszul algebras in the
commutative and noncommutative setting, as, for instance, Koszul duality, a
phenomenon that generalizes the duality between the symmetric and the exterior
algebra (see [13, 14, 50]).

The structure of this chapter is the following. Section 2 contains the charac-
terization, due to Avramov, Eisenbud and Peeva, of Koszul algebras in terms
of the finiteness of the regularity of modules (see Theorem 7). It contains also
the definition of G-quadratic and LG-quadratic algebras and some fundamental
questions concerning the relationships between these notions and the syzygies of
Koszul algebras (see Questions 12 and 14).

In Sect. 3 we present three elementary but powerful methods for proving that
an algebra is Koszul: the existence of a Gröbner basis of quadrics, the transfer of
Koszulness to quotient rings and Koszul filtrations. To illustrate these methods we
apply them to Veronese algebras and Veronese modules. We prove that Veronese
subalgebras of Koszul algebras are Koszul and that high-enough Veronese subalge-
bras of any algebra are Koszul. These and related results were proved originally in
[3, 11, 12, 25, 32].

Section 4 is devoted to two very strong versions of Koszulness: universally
Koszul [21] and absolutely Koszul [43]. An algebra R is universally Koszul if
for every ideal I � R generated by elements of degree 1 one has regR.I / D 1.
Given a graded R-module M and i 2 Z one defines Mhii as the submodule
of M generated by the homogeneous component Mi of degree i of M . The R-
module M is componentwise linear if regR.Mhii/ D i for every i with Mi ¤ 0.
The K-algebra R is absolutely Koszul if any finitely generated graded R-module
M has a componentwise linear i th syzygy module for some i � 0. Two major
achievements are the complete characterization of the Cohen–Macaulay domains
that are universally Koszul (see [21] or Theorem 4) and the description of two
classes of absolutely Koszul algebras (see [43] or Theorem 10). We also present
some questions related to these notions, in particular Questions 13 and 14.

In Sect. 5 we discuss some problems regarding the regularity of modules over
Koszul algebras. Some are of computational nature, for instance Question 12,
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and others are suggested by the analogy with the polynomial ring, for example,
Question 9. This section contains also some original results, in particular Proposi-
tion 5 and Theorem 11, motivating the questions presented.

Finally Sect. 6 contains a discussion on local variants of the notion of Koszul
algebra and the definition of Koszul modules. A local ring .R; m; K/ is called a
Koszul ring if the associated graded ring grm.R/ is Koszul as a graded K-algebra.
The ring R is called Fröberg if its Poincaré series equals to HR.�z/�1, where
HR.z/ denotes the Hilbert series of R. Any Koszul ring is Fröberg. The converse
holds in the graded setting and is unknown in the local case (see Question 5).
Large classes of local rings of almost minimal multiplicity are Koszul. In [41] and
[43] a characterization of Koszulness of graded algebras is obtained in terms of
the finiteness of the linear defect of the residue field (see Proposition 12). It is an
open problem whether the same characterization holds in the local case too (see
Question 13).

2 Generalities

Let K be a field and R be a (commutative) standard graded K-algebra, that is, a K-
algebra with a decomposition R D ˚i2NRi (as an Abelian group) such that R0 D
K , R1 is a finite dimensional K-vector space and Ri Rj D RiCj for every i; j 2 N.
Let S be the symmetric algebra over K of R1. One has an induced surjection

S D SymK.R1/ ! R (1)

of standard graded K-algebras. We call Eq. (1) the canonical presentation of R.
Hence R is isomorphic (as a standard graded K-algebra) to S=I where I is the
kernel of Eq. (1). In particular, I is homogeneous and does not contain elements of
degree 1. We say that I defines R. Choosing a K-basis of R1 the symmetric algebra
S gets identified with the polynomial ring KŒx1; : : : ; xn�, with n D dimK R1,
equipped with its standard graded structure (i.e., deg xi D 1 for every i ). Denote
by mR the maximal homogeneous ideal of R. We may consider K as a graded R-
module via the identification K D R=mR.

Assumption. With the exception of the last section, K-algebras are always as-
sumed to be standard graded, modules and ideals are graded and finitely generated,
and module homomorphisms have degree 0.

For an R-module M D ˚i2ZMi we denote by HF.M; i/ the Hilbert function of
M at i , that is, HF.M; i/ D dimK Mi and by HM .z/ D P

dimK Mizi 2 QŒjzj�Œz�1�

the associated Hilbert series.
Recall that a minimal graded free resolution of M as an R-module, is a complex

of free R-modules

F W � � � ! FiC1

�iC1�! Fi

�i�! Fi�1 ! � � � ! F1

�1�! F0 ! 0
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such that Hi .F/ D 0 for i > 0 and H0.F/ D M , Image �iC1 � mRFi for every i .
Such a resolution exists and it is unique up to an isomorphism of complexes, that is
why we usually talk of “the” minimal free (graded) resolution of M . By definition,
the i th Betti number ˇR

i .M / of M as an R-module is the rank of Fi . Each Fi is
a direct sum of shifted copies of R. The .i; j /th graded Betti number ˇR

ij .M / of
M is the number of copies of R.�j / that appear in Fi . By construction one has
ˇR

i .M / D dimK TorR
i .M; K/ and ˇR

ij .M / D dimK TorR
i .M; K/j . The Poincaré

series of M is defined as

P R
M .z/ D

X

i

ˇR
i .M /zi 2 QŒjzj�;

and its bigraded version is

P R
M .s; z/ D

X

i;j

ˇR
i;j .M /zi sj 2 QŒs�Œjzj�:

We set

tR
i .M / D supfj W ˇR

ij .M / ¤ 0g
where, by convention, tR

i .M / D �1 if Fi D 0. By definition, tR
0 .M / is the largest

degree of a minimal generator of M . Two important invariants that measure the
“growth” of the resolution of M as an R-module are the projective dimension

pdR.M / D supfi W Fi ¤ 0g D sup fi W ˇR
ij .M / ¤ 0 for some j g

and the Castelnuovo–Mumford regularity

regR.M / D supfj � i W ˇR
ij .M / ¤ 0g D supftR

i .M / � i W i 2 Ng:
We may as well consider M as a module over the polynomial ring S via Eq.

(1). The regularity regS .M / of M as an S -module has also a cohomological
interpretation via local duality (see , e.g. [15, 31]). Denoting by H i

mS
.M / the i th

local cohomology module with support on the maximal ideal of S one has

regS .M / D maxfj C i W H i
mS

.M /j ¤ 0g:
Since H i

mR
.M / D H i

mS
.M / for every i , nothing changes if on right-hand side of

the formula above we replace S with R. So regS .M / is in some sense the “absolute”
Castelnuovo–Mumford regularity. Both pdR.M / and regR.M / can be infinite.

Example 1. Let R D KŒx�=.x3/ and M D K . Then F2i D R.�3i/ and F2iC1 D
R.�3i � 1/ so that pdR.M / D 1 and regR.M / D 1.

Note that, in general, regR.M / is finite if pdRM is finite, but, as we will see, not
the other way round.

In the study of minimal free resolutions over R, the resolution KR of the residue
field K as an R-module plays a prominent role. This is because TorR� .M; K/ D
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H�.M ˝ KR/ and hence ˇR
ij .M / D dimK Hi .M ˝ KR/j . A very important role

is played also by the Koszul complex K.mR/ on a minimal system of generators of
the maximal ideal mR of R.

When is pdR.M / finite for every M ? The answer is given by one of the
most classical results in commutative algebra: the Auslander–Buchsbaum–Serre
Theorem. We present here the graded variant of it that can be seen as a strong version
of the Hilbert syzygy theorem.

Theorem 2. The following conditions are equivalent:

(1) pdRM is finite for every R-module M .
(2) pdRK is finite.
(3) R is regular, that is, R is a polynomial ring.

When the conditions hold, then for every M , one has pdRM � pdRK D dim R,
and the Koszul complex K.mR/ resolves K as an R-module, that is, KR Š K.mR/.

Remark 3. The Koszul complex K.mR/ has three important features:

(1) It is finite.
(2) It has an algebra structure. Indeed it is a DG-algebra and this has important

consequences such as the algebra structure on the Koszul cycles and Koszul
homology. See [4] for the definition (and much more) on DG-algebras.

(3) The matrices describing its differentials have nonzero entries only of degree 1.

When R is not a polynomial ring KR does not satisfy condition (1) in Remark 3.
Can KR nevertheless satisfy (2) or (3) of Remark 3?

For (2) the answer is yes: KR has always a DG-algebra structure. Indeed a
theorem, proved independently by Gulliksen and Schoeller (see [4, 6.3.5]), asserts
that KR is obtained by the so-called Tate construction. This procedure starts from
K.mR/ and builds KR by “adjoining variables to kill homology” while preserving
the DG-algebra structure (see [4, 6.3.5]).

Algebras R such that KR satisfies condition (3) in Remark 3 in above are called
Koszul:

Definition 4. The K-algebra R is Koszul if the matrices describing the differentials
of KR have nonzero entries only of degree 1, that is, regR.K/ D 0 or, equivalently,
ˇR

ij .K/ D 0 whenever i ¤ j .

Koszul algebras were originally introduced by Priddy [48] in his study of
homological properties of graded (noncommutative) algebras arising from algebraic
topology, leaving the commutative case “for the interested reader”. In the recent
volume [50] Polishchuk and Positselski present various surprising aspects of
Koszulness. We collect below a list of important facts about Koszul commutative
algebras. We always refer to the canonical presentation Eq. (1) of R. First we
introduce a definition.
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Definition 5. We say that R is G-quadratic if its defining ideal I has a Gröbner
basis of quadrics with respect to some coordinate system of S1 and some term order
� on S .

Remark 6. (1) If R is Koszul, then I is generated by quadrics (i.e., homogeneous
polynomials of degree 2). Indeed, the condition ˇR

2j .K/ D 0 for every j ¤ 2

is equivalent to the fact that I is defined by quadrics. But there are algebras
defined by quadrics that are not Koszul. For example, R D KŒx; y; z; t �=I with
I D .x2; y2; z2; t2; xy C zt/ has ˇR

34.K/ D 5.
(2) If I is generated by monomials of degree 2 with respect to some coordinate

system of S1, then a simple filtration argument that we reproduce in Sect. 3,
(see Theorem 15) shows that R is Koszul in a very strong sense.

(3) If I is generated by a regular sequence of quadrics, then R is Koszul. This
follows from a result of Tate [59] asserting that if R is a complete intersection,
then KR is obtained by K.mR/ by adding polynomial variables in homological
degree 2 to kill H1.K.mR//.

(4) If R is G-quadratic, then R is Koszul. This follows from (2) and from the
standard deformation argument showing that ˇR

ij .K/ � ˇA
ij .K/ with A D

S=in� .I /.
(5) On the other hand there are Koszul algebras that are not G-quadratic. One notes

that an ideal defining a G-quadratic algebra must contain quadrics of “low”
rank. For instance, if R is Artinian and G-quadratic then its defining ideal must
contain the square of a linear form. But most Artinian complete intersection of
quadrics do not contain the square of a linear form. For example, I D .x2 C
yz; y2 C xz; z2 C xy/ � CŒx; y; z� is an Artinian complete intersection not
containing the square of a linear form. Hence I defines a Koszul and not G-
quadratic algebra. See [32] for a general result in this direction.

(6) The Poincaré series P R
K .z/ of K as an R-module can be irrational, see [2].

However, for a Koszul algebra R, one has

P R
K .z/HR.�z/ D 1; (2)

and hence P R
K .z/ is rational. Indeed the equality Eq. (2) turns out to be

equivalent to the Koszul property of R, [37, 1]. A necessary (but not suf-
ficient) numerical condition for R to be Koszul is that the formal power
series 1=HR.�z/ has non-negative coefficients (indeed positive unless R is
a polynomial ring). Another numerical condition is the following: expand
1=HR.�z/ as

…h22NC1.1 C zh/eh

…h22NC2.1 � zh/eh

with eh 2 Z (see [4, 7.1.1]). The numbers eh are the “expected” deviations. If
R is Koszul then eh � 0 for every h, (indeed eh > 0 for every h unless R is a
complete intersection). For example, if H.z/ D 1C4zC5z2, then the coefficient
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of z6 in 1=H.�z/ is negative and the third expected deviation is 0. So for two
reasons an algebra with Hilbert series H.z/, as the one in (1), cannot be Koszul.

The following characterization of the Koszul property in terms of regularity is
formally similar to the Auslander–Buchsbaum–Serre Theorem 2.

Theorem 7 (Avramov–Eisenbud–Peeva). The following conditions are equiva-
lent:

.1/ regR.M / is finite for every R-module M .

.2/ regR.K/ is finite.

.3/ R is Koszul.

Avramov and Eisenbud proved in [5] that every module has finite regularity over
a Koszul algebra. Avramov and Peeva showed in [6] that if regR.K/ is finite then it
must be 0. Indeed they proved a more general result for graded algebras that are not
necessarily standard.

If M is an R-module generated by elements of a given degree, say d , we say that
it has a linear resolution over R if regR.M / D d . For q 2 Z we set Mhqi to be the
submodule of M generated by Mq and set M�q D ˚i�qMi . The module M is said
to be componentwise linear over R if Mhqi has a linear resolution for every q. The
(absolute) regularity of a module can be characterized as follows:

regS.M / D minfq 2 Z W M�q has a linear resolutiong
D minfq � tS

0 .M / W Mhqi has a linear resolutiong
One of the motivations of Avramov and Eisenbud in [5] was to establish a similar

characterization for the relative regularity over a Koszul algebra. They proved:

Proposition 8. Let R be a Koszul algebra and M be an R-module. Then:

regR.M / � regS .M /

and

regR.M / D minfq 2 Z W M�q has a linear R�resolutiong
D minfq � tR

0 .M / W Mhqi has a linear R � resolutiong:

Another invariant that measures the growth of the degrees of the syzygies of a
module is the slope:

slopeR.M / D sup

�
tR
i .M / � tR

0 .M /

i
W i > 0

�

:

A useful feature of the slope is that it is finite (no matter if R is Koszul or not).
Indeed with respect to the canonical presentation Eq. (1), one has

slopeR.M / � maxfslopeS.R/; slopeS .M /g
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(see [8, 1.2]), and the right-hand side is finite since S is a polynomial ring. Backelin
defined in [10] the (Backelin) rate of R to be

Rate.R/ D slopeR.mR/

as a measure of the failure of the Koszul property. By the very definition, one has
Rate.R/ � 1 and R is Koszul if and only if Rate.R/ D 1.

We close the section with a technical lemma:

Lemma 9. (1) Let 0 ! M1 ! M2 ! M3 ! 0 be a short exact sequence of
R-modules. Then one has

regR.M1/ � maxfregR.M2/; regR.M3/ C 1g;
regR.M2/ � maxfregR.M1/; regR.M3/g;
regR.M3/ � maxfregR.M1/ � 1; regR.M2/g:

(2) Let
M W � � � ! Mi ! � � � ! M2 ! M1 ! M0 ! 0

be a complex of R-modules. Set Hi D Hi .M/. Then for every i � 0 one has

tR
i .H0/ � maxfai ; bi g

where ai D maxftR
j .Mi�j / W j D 0; : : : ; ig and bi D maxftR

j .Hi�j �1/ W j D
0; : : : ; i � 2g.

Moreover one has
regR.H0/ � maxfa; bg

where a D supfregR.Mj / � j W j � 0g and b D supfregR.Hj / � .j C1/ W j � 1g.

Proof. (1) follows immediately by considering the long exact sequence obtained by
applying Tor.K; �/. For (2) one breaks the complex into short exact sequences and
proves by induction on i the inequality for tR

i .H0/. Then one deduces the second
inequality by translating the first into a statement about regularities. ut

We collect below some problems about the Koszul property and the existence of
Gröbner bases of quadrics. Let us recall the following.

Definition 10. A K-algebra R is LG-quadratic if there exists a G-quadratic algebra
A and a regular sequence of linear forms y1; : : : ; yc such that R ' A=.y1; : : : ; yc/.

We have the following implications:

G-quadratic ) LG-quadratic ) Koszul ) quadratic (3)

As discussed in Remark 6 the third implication in Eq. (3) is strict. The following
remark, due to Caviglia, in connection with Remark 6(5) shows that also the first
implication in Eq. (3) is strict.
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Remark 11. Any complete intersection R of quadrics is LG-quadratic.
Say R D KŒx1; : : : ; xn�=.q1; : : : ; qm/ then set

A D RŒy1; : : : ; ym�=.y2
1 C q1; : : : ; y2

m C qm/

and note that A is G-quadratic for obvious reasons and y1; : : : ; ym is a regular
sequence in A by codimension considerations.

But we do not know an example of a Koszul algebra that is not LG-quadratic. So
we ask:

Question 12. Is any Koszul algebra LG-quadratic?

Our feeling is that the answer should be negative. But how can we exclude
that a Koszul algebra is LG-quadratic? One can look at the h-vector (i.e., the
numerator of the Hilbert series) since it is invariant under Gröbner deformation and
modifications as the one involved in the definition of LG-quadratic. Alternatively
one can look at syzygies over the polynomial ring because they can only grow under
such operations. These observations lead to a new question:

Question 13. Is the h-vector of any Koszul algebra R the h-vector of an algebra
defined by quadratic monomials? And, if yes, does there exist an algebra A with
quadratic monomial relations, h-vector equal to that of R and satisfying ˇS

ij .R/ �
ˇT

ij .A/ for every i and j ? Here S and T denote the polynomial rings canonically
projecting onto R and A.

A negative answer to Question 13 would imply a negative answer to Question
12. Note that any h-vector of an algebra defined by quadratic monomials is also the
h-vector of an algebra defined by square-free quadratic monomials (by using the
polarization process). The simplicial complexes associated to square-free quadratic
monomial ideals are called flag. There has been a lot of activity concerning
combinatorial properties and characterizations of h-vectors and f -vectors of flag
simplicial complexes, see [28] for recent results and for a survey of what is
known and conjectured. Here we just mention that Frohmader has proved in [39]
a conjecture of Kalai asserting that the f -vectors of flag simplicial complexes are
f -vectors of balanced simplicial complexes.

Regarding the inequality for Betti numbers in Question 13, LG-quadratic
algebras R satisfy the following restrictions:

1. tS
i .R/ � 2i

2. tS
i .R/ < 2i if tS

i�1.R/ < 2.i � 1/

3. tS
i .R/ < 2i if i > dim S � dim R

4. ˇS
i .R/ � �

ˇS
1 .R/

i

�

deduced from the deformation to the (non-minimal) Taylor resolution of quadratic
monomial ideals (see for instance [47, 4.3.2]). As shown in [8] the same restrictions
are satisfied by any Koszul algebra, with the exception of possibly (4). So we ask:
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Question 14. Let R be a Koszul algebra quotient of the polynomial ring S . Is it true

that ˇS
i .R/ � �

ˇS
1 .R/

i

�
?

It can be very difficult to decide whether a given Koszul algebra is G-quadratic.
In the 1990s, Peeva and Sturmfels asked whether the coordinate ring

P V D KŒx3; x2y; x2z; xy2; xz2; y3; y2z; yz2; z3�

of the pinched Veronese is Koszul. For about a decade this was a benchmark
example for testing new techniques for proving Koszulness. In 2009 Caviglia
[18] gave the first proof of the Koszulness of P V . Recently a new one has been
presented in [19] that applies also to a larger family of rings including all the general
projections to P8 of the Veronese surface in P9. The problem remains to decide
whether:

Question 15. Is P V G-quadratic?

The answer is negative if one considers the toric coordinates only (as it can be
checked by computing the associated Gröbner fan using CaTS [1]), but unknown in
general. There are plenty of quadratic monomial ideals defining algebras with the
Hilbert function of P V and larger Betti numbers.

The algebra P V is generated by all monomials in n D 3 variables of degree
d D 3 that are supported on at most s D 2 variables. By varying the indices n; d; s

one gets a family of pinched Veronese algebras P V.n; d; s/, and it is natural to ask:

Question 16. For which values of n; d; s is P V.n; d; s/ quadratic or Koszul?

Not all of them are quadratic, for instance, P V.4; 5; 2/ is not. Questions as
Question 16 are very common in the literature: in a family of algebras one asks
which ones are quadratic or Koszul or if quadratic and Koszul are equivalent
properties for the algebras in the family. For example, in [26, 6.10] the authors ask:

Question 17. Let R be a quadratic Gorenstein algebra with Hilbert series 1 C nz C
nz2 C z3. Is R Koszul?

For n D 3 the answer is obvious as R must be a complete intersection of quadrics
and for n D 4 the answer is positive by [26, 6.15]. See Theorem 12 for results
concerning this family of algebras.

3 How to Prove that an Algebra is Koszul?

To prove that an algebra is Koszul is usually a difficult task. There are examples, due
to Roos, showing that a sort of Murphy’s law (anything that can possibly go wrong,
does) holds in this context. Indeed there exists a family of quadratic algebras R.a/

depending on an integer a > 1 such that the Hilbert series of R.a/ is 1 C 6z C 8z2

for every a. Moreover K has a linear resolution for a steps and a nonlinear syzygy
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in homological position a C 1 (see [51]). So there is no statement of the kind: if R

is an algebra with Hilbert series H then there is a number N depending on H , such
that if the resolution of K over R is linear for N steps, it will be linear forever.

The goal of this section is to present some techniques to prove that an algebra
is Koszul (without pretending they are the most powerful or interesting). For the
sake of illustration we will apply these techniques to discuss the Koszul properties
of Veronese algebras and modules. The material we present is taken from various
sources (see [3, 8, 10–12, 16, 24–27, 32, 42, 58]).

3.1 Gröbner Basis of Quadrics

The simplest way to prove that an algebra is Koszul is to show that it is G-quadratic.
A weak point of this prospective is that Gröbner bases refer to a system of
coordinates and a term order. As said earlier, not all the Koszul algebras are
G-quadratic. On the other hand many of the classical constructions in commutative
algebra and algebraic geometry lead to algebras that have a privileged, say, natural,
system of coordinates. For instance, the coordinate ring of the Grassmannian
comes equipped with the Plücker coordinates. Toric varieties come with their
toric coordinates. So one looks for a Gröbner basis of quadrics with respect to
the natural system of coordinates. It turns out that many of the classical algebras
(Grassmannian, Veronese, Segre, etc..) do have Gröbner bases of quadrics in the
natural system of coordinates. Here we treat in details the Veronese case:

Theorem 1. Let S D KŒx1; : : : ; xn� and c 2 N. Then the Veronese subring S.c/ D
˚j 2NSjc is defined by a Gröbner basis of quadrics.

Proof. For j 2 N denote by Mj the set of monomials of degree j of S . Consider
Tc D SymK.Sc/ D KŒtm W m 2 Mc� and the surjective map ˆ W Tc ! S.c/

of K-algebras with ˆ.tm/ D m for every m 2 Mc . For every monomial m we
set max.m/ D maxfi W xi jmg and min.m/ D minfi W xi jmg. Furthermore for
monomials m1; m2 2 Mc we set m1 � m2 if max.m1/ � min.m2/. Clearly � is a
transitive (but not reflexive) relation. We say that m1; m2 2 Mc are incomparable
if m1 6� m2 and m2 6� m1 and that are comparable otherwise. For a pair of
incomparable elements m1; m2 2 Mc , let m3; m4 2 Mc be the uniquely determined
elements in Mc such that m1m2 D m3m4 and m3 � m4. Set

F.m1; m2/ D tm1 tm2 � tm3 tm4 :

By construction F.m1; m2/ 2 Kerˆ and we claim that the set of the F.m1; m2/’s
is a Gröbner basis of Kerˆ with respect to any term order � of Tc such that
in� .F.m1; m2// D tm1 tm2 . Such a term order exists: order the t 0

ms totally as follows:

tu � tv iff u � v lexicographically
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and then consider the degree reverse lexicographic term order associated to that total
order. Such a term order has the required property as it is easy to see. It remains to
prove that the F.m1; m2/’s form a Gröbner basis of Kerˆ. Set

U D .tm1 tm2 W m1; m2 2 Mc are incomparable/

By construction we have U � in� .Kerˆ/ and we have to prove equality. We do it
by checking that the two associated quotients have the same Hilbert function. The
inequality HF.Tc=Kerˆ; i/ � HF.Tc=U; i/ follows from the inclusion of the ideals.
For the other note that

HF.Tc=in� .Kerˆ/; i/ D HF.Tc=Kerˆ; i/ D HF.S.c/; i / D #Mic

The key observations are:

1. A monomial in the t’s, say tm1 � � � tmi , is not in U if (after a permutation) m1 �
m2 � � � � � mi .

2. Every monomial m 2 Mic has a uniquely determined decomposition m D
m1 � � � mi with m1 � m2 � � � � � mi .

This implies that

HF.Tc=U; i/ � #Mic;

proving the desired assertion. ut

3.2 Transfer of Koszulness

Let A be a K-algebra A and B D A=I a quotient of it. Assume one of the two
algebras is Koszul. What do we need to know about the relationship between A and
B to conclude that the other algebra is Koszul too? Here is an answer:

Theorem 2. Let A be a K-algebra and B be a quotient of A.

(1) If regA.B/ � 1 and A is Koszul, then B is Koszul.
(2) If regA.B/ is finite and B is Koszul, then A is Koszul.

The theorem is a corollary of the following:

Proposition 3. Let A be a K-algebra and B a quotient algebra of A. Let M be a
B-module. Then:

.1/ regA.M / � regB.M / C regA.B/.

.2/ If regA.B/ � 1 then regB.M / � regA.M /.

Proof. One applies Lemma 9(2) to the minimal free resolution F of M as a B-
module and one has:

regA.M / � supfregA.Fj / � j W j � 0g:
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Since regA.Fj / D regA.B/ C tB
j .M /, we can conclude that (1) holds.

For (2) it is enough to prove that the inequality

tB
i .M / � i � maxftA

j .M / � j W j D 0; : : : ; ig

holds for every i . We argue by induction on i ; the case i D 0 is obvious because
tA
0 .M / D tB

0 .M /. Assume i > 0 and take a minimal presentation of M as a
B-module

0 ! N ! F ! M ! 0

where F is B-free. Since tB
i .M / D tB

i�1.N /, by induction we have:

tB
i .M / � i D tB

i�1.N / � i � maxftA
j .N / � j � 1 W j D 0; : : : ; i � 1g

Since tA
j .N / � maxftA

j .F /; tA
j C1.M /g and tA

j .F / D tA
j .B/ C tA

0 .M / � j C 1 C
tA
0 .M / we may conclude that the desired inequality holds. ut

Proof of Theorem 2. (1) Applying Proposition 3(1) with M equal to K one has that
regA.K/ � regA.B/ which is finite by assumption. It follows then from Theorem 7
that A is Koszul. For (2) one applies Proposition 3(2) with M D K , and one gets
regB.K/ � regA.K/ which is 0 by assumption; hence regB.K/ D 0 as required. ut
Lemma 4. Let R be Koszul algebra and M be an R-module. Then

regR.mRM / � regR.M / C 1:

In particular, regR.mu
R/ D u, (unless mu

R D 0) that is, mu
R has a linear resolution

for every u 2 N.

Proof. Apply Lemma 9 to the short exact sequence

0 ! mRM ! M ! M=mRM ! 0

and use the fact that M=mRM is a direct sum of copies of K shifted at most by
�tR

0 .M /. ut
We apply now Theorem 2 to prove that the Veronese subrings of a Koszul algebra

are Koszul.
Let c 2 N and R.c/ D ˚j 2ZRjc be the cth Veronese subalgebra of R. Similarly

one defines M .c/ for every R-module M . The formation of the cth Veronese
submodule is an exact functor from the category of R-modules to the category of
graded R.c/-modules (recall that, by convention, modules are graded and maps are
homogeneous of degree 0). For u D 0; : : : ; c � 1 consider the Veronese submodules
Vu D ˚j 2ZRjcCu. Note that Vu is an R.c/-module generated in degree 0 and that for
a 2 Z one has

R.�a/.c/ D Vu.�da=ce/

where u D 0 if a 	 0 mod.c/ and u D c � r if a 	 r mod.c/ and 0 < r < c.
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Theorem 5. Let R be Koszul. Then R.c/ is Koszul and regR.c/ .Vu/ D 0 for every
u D 0; : : : ; c � 1.

Proof. Set A D R.c/. First we prove that regA.Vu/ D 0 for every u D 0; : : : ; c � 1.
To this end, we prove by induction on i that tA

i .Vu/ � i for every i . The case i D 0

is obvious. So assume i > 0. Let M D mu
R.u/. By Lemma 4 and by construction we

have regR.M / D 0 and M .c/ D Vu. Consider the minimal free resolution F of M

over R and apply the functor �.c/. We get a complex G D F.c/ of A-modules such
that H0.G/ D Vu, Hj .G/ D 0 for j > 0 and Gj D F

.c/
j is a direct sum of copies

of R.�j /.c/. Applying Lemma 9 we get tA
i .Vu/ � maxftA

i�j .Gj / W j D 0; : : : ; ig.

Since G0 is A-free we have tA
i .G0/ D �1. For j > 0 we have R.�j /.c/ D

Vw.�dj=ce/ for some number w with 0 � w < c. Hence, by induction, tA
i�j .Gj / �

i � j C dj=ce � i . Summing up,

tA
i .Vu/ � maxfi � j C dj=ce W j D 1; : : : ; ig D i:

In order to prove that A is Koszul we consider the minimal free resolution F of
K over R and apply �.c/. We get a complex G D F.c/ of A-modules such that
H0.G/ D K , Hj .G/ D 0 for j > 0 and Gj D F

.c/
j is a direct sum of copies of

Vu.�dj=ce/. Hence regA.Gj / D dj=ce and applying Lemma 9 we obtain

regA.K/ � supfdj=ce � j W j � 0g D 0:

ut
We also have:

Theorem 6. Let R be a K-algebra, then the Veronese subalgebra R.c/ is Koszul for
c 
 0. More precisely, if R D A=I with A Koszul, then R.c/ is Koszul for every
c � supftA

i .R/=.1 C i/ W i � 0g.

Proof. Let F be the minimal free resolution of R as an A-module. Set B D A.c/

and note that B is Koszul because of Theorem 5. Then G D F.c/ is a complex of B-
modules such that H0.G/ D R.c/, Hj .G/ D 0 for j > 0. Furthermore Gi D F

.c/
i

is a direct sum of shifted copies of the Veronese submodules Vu. Using Theorem 5
we get the bound regB.Gi / � dtA

i .R/=ce. Applying Lemma 9 we get

regB.R.c// � supfdtA
i .R/=ce � i W i � 0g:

Hence, for c � supftA
i .R/=.1Ci/ W i � 0g one has regB.R.c// � 1 and we conclude

from Theorem 2 that R.c/ is Koszul. ut
Remark 7. (1) Note that the number supftA

i .R/=.1 C i/ W i � 0g in Theorem 6 is
finite. For instance it is less than or equal to .regA.R/ C 1/=2 which is finite
because regA.R/ is finite. Note however that supftA

i .R/=.1C i/ W i � 0g can be
much smaller than .regA.R/ C 1/=2; for instance if R D A=I with I generated



Koszul Algebras and Regularity 299

by a regular sequence of r elements of degree d , then tA
i .R/ D id so that

regA.R/ D r.d � 1/ while supftA
i .R/=.1 C i/ W i � 0g D dr=.r C 1/.

(2) In particular, if we take the canonical presentation R D S=I Eq. (1), then we
have that R.c/ is Koszul if c � supftS

i .R/=.1 C i/ W i � 0g. In [32, 2] it is
proved that if c � .regS .R/ C 1/=2, then R.c/ is even G-quadratic. See [57] for
other interesting results in this direction.

(3) Backelin proved in [10] that R.c/ is Koszul if c � Rate.R/.
(4) The proof of Theorem 6 shows also that regA.c/ .R.c// D 0 if c � slopeA.R/.

3.3 Filtrations

Another tool for proving that an algebra is Koszul is a “divide and conquer” strategy
that can be formulated in various technical forms, depending on the goal one has in
mind. We choose the following:

Definition 8. A Koszul filtration of a K-algebra R is a set F of ideals of R such
that:

(1) Every ideal I 2 F is generated by elements of degree 1.
(2) The zero ideal 0 and the maximal ideal mR are in F .
(3) For every I 2 F , I ¤ 0, there exists J 2 F such that J � I , I=J is cyclic

and Ann.I=J / D J W I 2 F .

By the very definition a Koszul filtration must contain a complete flag of R1, that
is, an increasing sequence I0 D 0 � I1 � � � � � In�1 � In D mR such that Ii is
minimally generated by i elements of degree 1. The case where F consists of just
a single flag deserves a name:

Definition 9. A Gröbner flag for R is a Koszul filtration that consists of a single
complete flag of R1. In other words, F D fI0 D 0 � I1 � � � � � In�1 � In D mRg
with Ii�1 W Ii 2 F for every i .

One has:

Lemma 10. Let F be a Koszul filtration for R. Then one has:

.1/ regR.R=I / D 0 and R=I is Koszul for every I 2 F .

.2/ R is Koszul.

.3/ If F is a Gröbner flag, then R is G-quadratic.

Proof. (1) and (2): One easily proves by induction on i and on the number of
generators of I that tR

i .R=I / � i for every i and I 2 F . This implies that
R is Koszul (take I D mR) and that regR.R=I / D 0, hence R=I is Koszul by
Theorem 2.

(3) We just sketch the argument: let x1; : : : ; xn be a basis for the flag, that is,
F D fI0 D 0 � I1 � � � � � In�1 � In D mRg and Ii D .x1; : : : ; xi / for every i .
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For every i there exists ji � i such that .x1; : : : ; xi / W xiC1 D .x1; : : : ; xji /. For
every i < h � ji the assertion xhxiC1 2 .x1; : : : ; xi / is turned into a quadratic
equation in the defining ideal of R. The claim is that these quadratic equations
form a Gröbner basis with respect to a term order that selects xhxiC1 as leading
monomial. To prove the claim one shows that the identified monomials define an
algebra, call it A, whose Hilbert function equals that of R. This is done by showing
that the numbers j1; : : : ; jn associated to the flag of R determine the Hilbert function
of R and then by showing that also A has a Gröbner flag with associated numbers
j1; : : : ; jn. ut

There are Koszul algebras without Koszul filtrations and G-quadratic algebras
without Gröbner flags see the examples given in [26, pp. 100 and 101]. Families
of algebras having Koszul filtrations or Gröbner flags are described in [26]. For
instance, it is proved that the coordinate ring of a set of at most 2n points in Pn in
general linear position has a Gröbner flag, and that the general Gorenstein Artinian
algebra with socle in degree 3 has a Koszul filtration. The results for points in [26]
generalize results of [27,44] and are generalized in [49]. Filtrations of more general
type are used in [24] to control the Backelin rate of coordinate rings of sets of points
in the projective space.

The following notion is very natural for algebras with privileged coordinate
systems (e.g. in the toric case).

Definition 11. An algebra R is said to be strongly Koszul if there exists a basis X

of R1 such that for every Y � X and for every x 2 X n Y there exists Z � X such
that .Y / W x D .Z/.

Our definition of strongly Koszul is slightly different than the one given in [42].
In [42] it is assumed that the basis X of R1 is totally ordered, and in the definition
one adds the requirement that x is larger than every element in Y .

Remark 12. If R is strongly Koszul with respect to a basis X of R1, then the set
f.Y / W Y � Xg is obviously a Koszul filtration.

We have:

Theorem 13. Let R D S=I with S D KŒx1; : : : ; xn� and I � S an ideal generated
by monomials of degrees � d . Then R.c/ is strongly Koszul for every c � d � 1.

Proof. In the proof we use the following basic facts:

Fact (1): If m1; : : : ; mt ; m are monomials of S , then .m1; : : : ; mt / WS m is generated
by the monomials mi= gcd.mi ; m/ for i D 1; : : : ; t:

Fact (2): If T is an algebra and A D T .c/, then for every ideal I � A and f 2 A

one has IT \ A D I and .IT WT f / \ A D I WA f .

The first is an elementary and well-know, property of monomials; the second
holds true because A is a direct summand of T .

Let A D R.c/. Let X be the set of the residue classes in R of the monomials of
degree c that are not in I . Clearly X is a basis of A1. Let Y � X and z 2 X n Y ,
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say Y D f Nm1; : : : ; Nmvg and z D Nm. We have to compute .Y / WA z. To this end let
us consider J D .I C .m1; : : : ; mv// WS m and note that J D I C H with H

a monomial ideal generated in degrees � c. Then .Y / WA z D . Nm W m 2 H n
I is a monomial of degree c/. ut

Let us single out two interesting special cases:

Theorem 14. Let SDKŒx1; : : : ; xn�. Then S.c/ is strongly Koszul for every c 2 N.

Theorem 15. Let S D KŒx1; : : : ; xn� and let I � S be an ideal generated by
monomials of degree 2. Then S=I is strongly Koszul.

Given a Koszul filtration F for an algebra R we may also look at modules having
a filtration compatible with F . This leads us to the following:

Definition 16. Let R be an algebra with a Koszul filtration F . Let M be an R-
module. We say that M has linear quotients with respect to F if M is minimally
generated by elements m1; : : : ; mv such that hm1; : : : ; mi�1i WR mi 2 F for i D
1; : : : ; v.

One easily deduces:

Lemma 17. Let R be an algebra with a Koszul filtration F and M an R-module
with linear quotients with respect to F . Then regR.M / D tR

0 .M /.

As an example we have:

Proposition 18. Let S D KŒx1; : : : ; xn� and I be a monomial ideal generated in
degree � d . Consider R D S=I and the Veronese ring R.c/ equipped with the
Koszul filtration described in the proof of Theorem 13. For every u D 0; : : : ; c � 1

the Veronese module Vu D ˚j RuCjc has linear quotients with respect to F .

The proof is easy, again, based on Fact (1) in the proof of Theorem 13. In
particular, this gives another proof of the fact that the Veronese modules Vu have
a linear R.c/-resolution.

The results and the proofs presented for Veronese rings and Veronese modules
have their analogous in the multigraded setting (see [25]). For later applications we
mention explicitly one case.

Let S D KŒx1; : : : ; xn; y1; : : : ; ym� with Z2-grading induced by the assignment
deg.xi / D .1; 0/ and deg.yi / D .0; 1/. For every c D .c1; c2/ we look at the
diagonal subalgebra S� D ˚a2�Sa where � D fic W i 2 Zg. The algebra S� is
nothing but the Segre product of the c1th Veronese ring of KŒx1; : : : ; xn� and the
c2th Veronese ring of KŒy1; : : : ; ym�. We have:

Proposition 19. For every .a; b/ 2 Z2 the S�-submodule of S generated by S.a;b/

has a linear resolution.



302 A. Conca et al.

4 Absolutely and Universally

We have discussed in the previous sections some notions, such as being G-quadratic,
strongly Koszul, having a Koszul filtration or a Gröbner flag that imply Koszulness.
In this section we discuss two variants of the Koszul property: universally Koszul
and absolutely Koszul.

4.1 Universally Koszul

When looking for a Koszul filtration, among the many families of ideals of linear
forms one can take the set of all ideals of linear forms. This leads to the following
definition:

Definition 1. Let R be a K-algebra and set

L .R/ D fI � R W I ideal generated by elements of degree 1g:

We say that R is universally Koszul if the following equivalent conditions hold:

(1) L .R/ is a Koszul filtration of R.
(2) regR.R=I / D 0 for every I 2 L .R/.
(3) For every I 2 L .R/ and x 2 R1 n I , one has I W x 2 L .R/.

That the three conditions are indeed equivalent is easy to see (see [21, 1.4]). In
[21, 2.4] it is proved that:

Theorem 2. Let S D KŒx1; : : : ; xn� and m 2 N. If m � n=2, then a generic space
of quadrics of codimension m in the vector space of quadrics defines a universally
Koszul algebra.

One should compare the result above with the following:

Theorem 3. Let S D KŒx1; : : : ; xn� and m 2 N.

.1/ A generic space of quadrics of codimension m defines a Koszul algebra if m �
n2=4.

.2/ A generic space of quadrics of codimension m defines an algebra with a
Gröbner flag if m � n � 1.

For (1) see [27, 3.4], for (2) [20, 10]. Fröberg and Löfwall proved in [38] that,
apart from spaces of quadrics of codimension � n2=4, the only generic spaces
of quadrics defining Koszul algebras are the complete intersections. Returning to
universally Koszul algebras, in [21] it is also proved that:

Theorem 4. Let R be a Cohen–Macaulay domain K-algebra with K algebraically
closed of characteristic 0. Then R is universally Koszul if and only if R is a
polynomial extension of one of the following algebras:
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.1/ The coordinate ring of a quadric hypersurface.

.2/ The coordinate ring of a rational normal curve, that is, KŒx; y�.c/ for some c.

.3/ The coordinate ring of a rational normal scroll of type .c; c/, that is, the Segre
product of KŒx; y�.c/ with KŒs; t �.

.4/ The coordinate ring of the Veronese surface in P5, that is, KŒx; y; z�.2/ .

4.2 Absolutely Koszul

Let FR
M be the minimal free resolution of a graded module M over R. One defines

a mR-filtration on FR
M whose associated graded complex lin.FR

M / has, in the graded
case, a very elementary description. The complex lin.FR

M / is obtained from FM

by replacing with 0 all entries of degree > 1 in the matrices representing the
homomorphisms. In the local case the definition of lin.FR

M / is more complicated
(see Sect. 6 for details). One defines

ldR.M / D supfi W Hi .lin.FR
M // ¤ 0g: (4)

Denote by �R
i .M / the i th syzygy module of a module M over R. It is proved in

Römer PhD thesis and also in [43] that:

Proposition 5. Assume R is Koszul. Then:

.1/ M is componentwise linear iff ldR.M / D 0.

.2/ ldR.M / D inffi W �i .M / is componentwise linearg.

.3/ If �R
i .M / is componentwise linear then �R

iC1.M / is componentwise linear.

Iyengar and Römer introduced in [43] the following notion:

Definition 6. A K-algebra R is said to be absolutely Koszul if ldR.M / is finite for
every module M .

It is shown in [41] that:

Proposition 7. If ldR.M / is finite, then regR.M / is finite as well. Furthermore the
Poincaré series PM .z/ of M is rational and its “denominator” only depends on R.

One obtains the following characterization of the Koszul property:

Corollary 8. Let R be a K-algebra. Then R is Koszul if and only if ldR.K/ is finite.
In particular, if R is absolutely Koszul then R is Koszul.

On the other hand there are Koszul algebras that are not absolutely Koszul.

Example 9. The algebra

R D KŒx1; x2; x3; y1; y2; y3�=.x1; x2; x3/2 C .y1; y2; y3/2
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is Koszul but not absolutely Koszul because there are R-modules with non-rational
Poincaré series. This and other examples of “bad” Koszul algebras are discussed by
Roos in [52].

One also has [41, 5.10].

Theorem 10. Let R D S=I with S D KŒx1; : : : ; xn�. Then R is absolutely Koszul
if either R is a complete intersection of quadrics or regS .R/ D 1.

There is however an important difference between the two cases [41, 6.2, 6.7]:

Remark 11. When regS .R/ D 1 one has ldR.M / � 2 dim R for every M and
even ldR.M / � dim R is furthermore R is Cohen–Macaulay. But when R if a
complete intersection of quadrics of codimension > 1 (or more generally when R

is Gorenstein of with socle in degree > 1) one has supM ldR.M / D 1.

Another important contribution is the following:

Theorem 12. Let R be a Gorenstein Artinian algebra with Hilbert function 1 C
nz C nz2 C z3 and n > 2. Then:

.1/ If there exist x; y 2 R1 such that 0 W x D .y/ and 0 W y D .x/ (an exact pair
of zero-divisors in the terminology of [40]), then R has a Koszul filtration and
it is absolutely Koszul.

.2/ If R is generic then it has an exact pair of zero-divisors.

See [26, 2.13,6.3] for the statement on Koszul filtration in (1) and for (2) and see
[40, 3.3] for the absolutely Koszulness.

What are the relationships between the properties discussed in this and the earlier
sections? Here are some questions:

Question 13. (1) Strongly Koszul ) G-quadratic?
(2) Universally Koszul ) G-quadratic?
(3) Universally Koszul ) absolutely Koszul?

Question 13 (1) is mentioned in [42, p. 166] in the toric setting. Another
interesting question is:

Question 14. What is the behavior of absolutely Koszul algebras under standard
algebra operations (e.g. forming Veronese subalgebras or Segre and fiber products)?

The same question for universally Koszul algebras is discussed in [21] and for
strongly Koszul in [42]. Note however that in [42] the authors deal mainly with toric
algebras and their toric coordinates. Universally Koszul algebras with monomial
relations have been classified in [22]. We may ask:

Question 15. Is it possible to classify absolutely Koszul algebras defined by
monomials?
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5 Regularity and Koszulness

We list in this section some facts and some questions that we like concerning Koszul
algebras and regularity. We observe the following.

Remark 1. Regularity over the polynomial ring S behaves quite well with respect
to products of ideals and modules:

(1) regS .I uM / is a linear function in u for large u (see [29, 45, 60]).
(2) regS .IM / � regS .M / C regS.I / (does not hold in general but it) holds

provided dim S=I � 1, [23].
(3) More generally,

regS .TorS
i .N; M // � regS .M / C regS .N / C i

provided the Krull dimension of TorS
1 .N; M / is � 1, [17, 33].

(4) regS .I1 � � � Id / D d for ideals Ii generated in degree 1, [23]

where M; N are S -modules and I; Ii are ideals of S .

What happens if we replace in Remark 1 the polynomial ring S with a Koszul
algebra R and consider regularity over R? Trung and Wang proved in [60] that
regS.I uM / is asymptotically a linear function in u when I is an ideal of R and M

is a R-module. If R is Koszul, regR.I uM / � regS .I uM /, and hence regR.I uM / is
bounded above by a linear function in u.

Question 2. Let R be a Koszul algebra I � R an ideal and M an R-module. Is
regR.I uM / a linear function in u for large u?

The following examples show that statements (2) and (3) in Remark 1 do not
hold over Koszul algebras.

Example 3. Let R D QŒx; y; z; t �=.x2Cy2; z2Ct2/. With I D .x; z/ and J D .y; t/

one has regR.I / D 1, regR.J / D 1 because x; z and y; t are regular sequences on
R, dim R=I D 0 and regR.IJ / D 3.

Example 4. Let R D KŒx; y�=.x2 C y2/. Let M D R=.x/ and N D R=.y/ and
note that regR.M / D 0, regR.N / D 0 because x and y are non-zero divisors in R

while TorR
1 .M; N / D H1.x; y; R/ D K.�2/.

Nevertheless statements (2), (3) of Remark 1 might hold for special type of
ideals/modules over special type of Koszul algebras. For example, one has:

Proposition 5. Let R be a Cohen–Macaulay K-algebra with regS .R/ D 1, let I be
an ideal generated in degree 1 such that dim R=I � 1 and M an R-module. Then
regR.IM / � regR.M / C 1. In particular, regR.I / D 1.

Proof. We may assume K is infinite. The short exact sequence

0 ! IM ! M ! M=IM ! 0
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implies that regR.IM / � maxfregR.M /; regR.M=IM /C1g. It is therefore enough
to prove that regR.M=IM / � regR.M /. Then let J � I be an ideal generated by
a maximal regular sequence of elements of degree 1 and set A D R=J . Since
regR.A/ D 0 and since M=IM is an A-module, by virtue of Proposition 3, we
have regR.M=IM / � regA.M=IM /. By construction, A is Cohen–Macaulay of
dimension � 1 and has regularity 1 over the polynomial ring projecting onto it.
So, by Lemma 14 we have regA.M=IM / D maxftA

0 .M=IM /; tA
1 .M=IM / � 1g.

Summing up, since tA
0 .M=IM / D tR

0 .M /, it is enough to prove tA
1 .M=IM / �

regR.M / C 1. Now we look at

0 ! IM=JM ! M=JM ! M=IM ! 0

that gives tA
1 .M=IM / � maxftA

1 .M=JM /; tA
0 .IM=JM /g. Being tA

0 .IM=JM / �
tR
0 .M / C 1 � regR.M / C 1, it remains to prove that tA

1 .M=JM / � regR.M / C 1,
and this follows from the right exactness of the tensor product. ut

The following example shows that the assumption dim R=I � 1 in Proposition
5 is essential.

Example 6. The algebra R D KŒx; y; z; t �=.xy; yz; zt/ is Cohen–Macaulay of
dimension 2 and regS .R/ D 1. The ideal I D .y � z/ has regR.I / D 2 and
dim R=I D 2.

Example 3 shows also that statement (4) of Remark 1 does not hold over a
Koszul algebra even if we assume that each Ii is an ideal of regularity 1 and of
finite projective dimension. Statement (4) of Remark 1 might be true if one assumes
that the ideals Ii belongs to a Koszul filtration. We give a couple of examples in this
direction:

Proposition 7. Let S D KŒx1; : : : ; xn�, R D S=I with I generated by monomials
of degree 2. Let X D f Nx1; : : : ; Nxng and F D f.Y / W Y � Xg. Let I1; : : : ; Id 2 F .
Then regR.I1 � � � Id / D d unless I1 � � � Id D 0.

Proof. First we observe the following. Let m1; : : : ; mt be monomials of degree
d and J D .m1; : : : ; mt/. Assume that they have linear quotients (in S ), that is,
.m1; : : : ; mi�1/ WS mi is generated by variables for every i . Fact (1) in the proof of
Theorem 13 implies that JR has linear quotients with respect to the Koszul filtration
F of R. By Lemma 17 we have that regR.JR/ D d (unless JR D 0). Now the
desired result follows because products of ideals of variables have linear quotients
in S by [23, 5.4]. ut

Example 4.3 in [23] shows that the inequality regR.IM / � regR.M / C regR.I /

does not even hold over a K-algebra R with a Koszul filtration F , I 2 F and
M an R-module with linear quotient with respect to F . The following are natural
questions:

Question 8. Let R be an algebra with a Koszul filtration F . Is it true that
regR.I1 � � � Id / D d for every I1; : : : ; Id 2 F whenever the product is non-zero?
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In view of the analogy with statement (4) of Remark 1 the following special case
deserves attention:

Question 9. Let R be a universally Koszul algebra. Is it true that regR.I1 � � � Id / D
d for every I1; : : : ; Id ideals of R generated in degree 1 (whenever the product is
non-zero)?

Remark 10. In a universally Koszul algebra a product of elements of degree 1 has a
linear annihilator. This can be easily shown by induction on the number of factors.
Hence, the answer to Question 9 is positive if each Ii is principal.

We are able to answer Question 8 in the following cases:

Theorem 11. Products of ideals of linear forms have linear resolutions over the
following rings:

.1/ R is Cohen–Macaulay with dim R � 1 and regS .R/ D 1.

.2/ R D KŒx; y; z�=.q/ with deg q D 2.

.3/ R D KŒx; y�.c/ with c 2 N>0.

.4/ R D KŒx; y; z�.2/ .

.5/ R D KŒx; y� � KŒs; t � (� denotes the Segre product).

Proof. The rings in the list are Cohen–Macaulay with regS.R/ D 1. Let I1; : : : ; Id

be ideals generated by linear forms. We prove by induction on d that regR.I1 � � �
Id / D d . The case d D 1 follows because the rings in the list are universally
Koszul. If for one of the Ii we have dim R=Ii � 1 then we may use Proposition 5
and conclude by induction. Hence we may assume dim R=Ii � 2 for every i . For
the ring (1) and (3) (which is a 2-dimensional domain) we are done. In the case (2),
the only case left is when the Ii are principal. But then we may conclude by virtue
of Remark 10. In cases (3) and (4) we have that dim R=Ii D 2 for each i , that is,
heightIi D 1. If one of the Ii is principal, then we are done by induction (because
the R is a domain). Denote by A either KŒx; y; z� in case (3) or KŒx; y; s; t � in case
(4). Since R is a direct summand of A we have IA \ R D I for every ideal I

of R. It follows that height.Ii A/ D 1 for every i and hence there exist non-units
fi 2 A such that Ii A � .fi /. In case (3) we have that each fi must have degree
1 in A and Ii A D .f1/J1 with J1 an ideal generated by linear forms of A. Hence
I1I2 D .f1f2/H where H D J1J2 is an ideal generated by linear forms of R. Hence
we are done because one of the factor is principal. In case (4) we have that each fi is
either a linear form in x; y or a linear form in s; t . If one of the fi ’s is a linear form in
x; y and another one is a linear form in s; t we can proceed as in the case (3). So we
are left with the case that every fi is a linear form in, say, x and y and Ii D .fi /Ji

with Ji generated by linear forms in z; t . Since none of the Ii is principal we have
that Ji D .z; t/ for every i . Hence I1 � � � Id is generated by .

Qd
iD1 fi /.z; t/d and it

isomorphic to the R-submodule of A generated by its component of degree .0; d/.
That such a module has a linear resolution over R follows from Proposition 19. ut
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We state now a very basic question of computational nature.

Question 12. Let R be a Koszul algebra and M an R-module. How does one
compute regR.M /? Can one do it algorithmically?

Few comments concerning Question 12. We assume to be able to compute
syzygies over R and so to be able to compute the first steps of the resolution of
a R-module M . Let S ! R the canonical presentation Eq. (1) of R. We know
that regR.M / � regS .M / and regS.M / can be computed algorithmically because
pdS.M / is finite. A special but already interesting case of Question 12 is:

Question 13. Let R be a Koszul algebra and M an R-module generated in degree
0, with M1 ¤ 0 and Mi D 0 for i > 1. Can one decide algorithmically whether
regR.M / D 0 or regR.M / D 1?

Set
rR.M / D minfi 2 N W tR

i .M / � i D regR.M /g:
So rR.M / is the first homological position where the regularity of M is attained.
If one knows rR.M / or a upper bound r � rR.M / for it, then one can compute
regR.M / by computing the first r steps of the resolution of M . Note that

rR.M / � ldR.M /

because regR.N / D tR
0 .N / if N is componentwise linear. One has:

Lemma 14. Let R be a K-algebra with regS .R/ D 1. Then rR.M / � 2 dim R

for every M , that is, the regularity of any R-module is attained within the first
2 dim R steps of the resolution. If furthermore R is Cohen–Macaulay, rR.M / �
dim R � depthM .

The first assertion follows from Remark 11; the second is proved by a simple
induction on depthM .

Note that the i th syzygy module of M cannot have a free summand if i > dim R

by [30, 0.1] and so
tR
j C1.M / > tR

j .M / if j > dim R:

Unfortunately there is no hope to get a bound for rR.M / just in terms of
invariants of R for general Koszul algebras. The argument of [41, 6.7] that shows
that if R is a Gorenstein algebra with socle degree > 1 then sup ldR.M / D 1
shows also that supM rR.M / D 1. For instance, over R D KŒx; y�=.x2; y2/ let
Mn be the dual of the nth syzygy module �R

n .K/ shifted by n. One has that Mn is
generated be in degree 0, regR.Mn/ D 1 and rR.Mn/ D n. On the other hand, the
number of generators of Mn is n. So we ask:

Question 15. Let R be a Koszul algebra. Can one bound rR.M / in terms of
invariants of R and “computable” invariants of M such as its Hilbert series or its
Betti numbers over S?

The questions above make sense also over special families of Koszul rings. For
instance, there has been a lot of activity to understand resolutions of modules over
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short rings, that is, rings with m3
R D 0 or m4

R D 0, both in the graded and local
case (see [7,9,40]). It would be very interesting to answer Questions 12, 13, and 15
for short rings.

6 Local Variants

This section is concerned with “Koszul-like” behaviors of local rings and their
modules.

Assumption: From now on, when not explicitly said, R is assumed to be a local
or graded ring with maximal ideal m and residue field K D R=m. Moreover all
modules and ideals are finitely generated, and homogeneous in the graded case.

We define the associated graded ring to R with respect to the m-adic filtration

G D grm.R/ D ˚i�0mi =miC1:

The Hilbert series and the Poincaré series of R are

HR.z/ D HG.z/ D
X

i�0

dim.mi =miC1/zi and PR.z/ D
X

i�0

dim TorR
i .K; K/zi :

6.1 Koszul Rings

Following Fröberg [35] we extend the definition of Koszul ring to the local case as
follows:

Definition 1. The ring R is Koszul if its associated graded ring G is a Koszul
algebra (in the graded sense), that is, R is Koszul if K has a linear resolution as
a G-module.

As it is said in Remark 6 (6) in the graded setting the Koszul property holds
equivalent to the following relation between the Poincaré series of K and the Hilbert
series of R:

P R
K .z/HR.�z/ D 1: (5)

The following definition is due to Fitzgerald [34]:

Definition 2. The ring R is Fröberg if the relation Eq. (5) is verified.

We want to explain why every Koszul ring is Fröberg. To this end we need to
introduce few definitions.

Let A be a regular local ring with maximal ideal mA and let I be an ideal of A

such that I � m2
A. Set R D A=I . Then G ' S=I � where S is the polynomial ring
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and I � is the homogeneous ideal generated by the initial forms f � of the elements
f 2 I .

Definition 3. (1) A subset ff1; : : : ; ft g of I is a standard basis of I if I � D
.f �

1 ; : : : ; f �
t /I

(2) The ideal I is d -isomultiple if I � is generated in degree d:

If ff1; : : : ; ft g is a standard basis of I , then I D .f1; : : : ; ft /: See [53] for more
details on d -isomultiple ideals. Notice that by Remark 6 (1) we have

R Koszul H) I is 2-isomultiple:

Obviously the converse does not hold true because a quadratic K-algebra is not
necessarily Koszul.

We now explore the connection between Koszul and Fröberg rings. By definition
HR.z/ D HG.z/; and

P R
K .z/ � P G

K .z/

(see, e.g. [36, 4]). Conditions are known under which ˇR
i .K/ D ˇG

i .K/; for
instance, this happens if

tG
i .K/ D maxfj W ˇG

ij .K/ ¤ 0g � minfj W ˇG
iC1j .K/ ¤ 0g for every i I (6)

see [36, 4]. This is the case if K has a linear resolution as a G-module. Hence,

Proposition 4. If R is Koszul, then R is Fröberg.

Proof. By definition, HR.z/ D HG.z/. If R is a Koszul ring, then G is Koszul, in
particular P G

K .z/HG.�z/ D 1: The result follows because the graded resolution of
K as a G-module is linear and hence Eq. (6) and therefore P R

K .z/ D P G
K .z/. ut

Since in the graded case R is Fröberg iff it is Koszul, it is natural to ask the
following question.

Question 5. Is a Fröberg (local) ring Koszul?

We give a positive answer to this question for a special class of rings. If f is a
non-zero element of R, denote by v.f / D v the valuation of f; that is the largest
integer such that f 2 mv:

Proposition 6. Let I be an ideal generated by a regular sequence in a regular local
ring A. The following facts are equivalent:

.1/ A=I is Koszul.

.2/ A=I is Fröberg.

.3/ I is 2-isomultiple.

Proof. By Proposition 4 we know (1) implies (2). We prove that (2) implies (3).
Let I D .f1; : : : ; fr / with v.fi / D vi � 2: By [59] we have P

A=I
K .z/ D .1 C

z/n=.1 � z2/r . Since A=I is Fröberg, one has that HA=I .z/ D .1 � z2/r=.1 � z/n;
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in particular the multiplicity of A=I is 2r . From [53, 1.8], it follows that vi D 2

for every i D 1; : : : ; r and f �
1 ; : : : ; f �

r is a regular sequence in G. Hence I � D
.f �

1 ; : : : ; f �
r /; so I is 2-isomultiple. If we assume (3), then G is a graded quadratic

complete intersection, hence P G
K .z/HG.�z/ D 1 and since G is graded this implies

that G is Koszul. ut
Next example is interesting to better understand what happens in case the regular

sequence is not 2-isomultiple.

Example 7. Consider Is D .x2 � ys; xy/ � A D KŒŒx; y�� where s is an integer
� 2: Then, as we have seen before, P

A=I
K .z/ D .1 C z/2=.1 � z2/2 and it does not

depend on s: On the contrary the Hilbert series depends on s; precisely HA=I .z/ D
1C2zCPs

iD2 zi : It follows that A=I is Koszul (hence Fröberg) if and only if s D 2

if and only if I is 2-isomultiple. In fact if s > 2; then I �
s D .x2; xy; ysC1/ is not

quadratic.

In the following we denote by e.M / the multiplicity (or degree) of an R-module
M and by �.M / its minimal number of generators. Let R be a Cohen–Macaulay
ring. Abhyankar proved that e.R/ � h C 1 and h D �.m/ � dim R is the so-called
embedding codimension. If equality holds R is said to be of minimal multiplicity.

Proposition 8. Let R be a Cohen–Macaulay ring of multiplicity e and Cohen–
Macaulay type � . If one of the following conditions holds:

.1/ e D h C 1

.2/ e D h C 2 and � < h

then R is a Koszul ring.

Proof. In both cases the associated graded ring is Cohen–Macaulay and quadratic
(see [53, 3.3, 3.10]). We may assume that the residue field is infinite; hence
there exist x�

1 ; : : : ; x�
d filter regular sequence in G and it is enough to prove that

G=.x�
1 ; : : : ; x�

d / ' grm=.x1;:::;xd /.R=.x1; : : : ; xd // is Koszul (see, e.g. [43, 2.13]).
Hence the problem is reduced to an Artinian quadratic K-algebra with �.m/ D
h > 1 and dimK m2 � 1, and the result follows (see [34] or [20]). ut
Remark 9. (1) There are Cohen–Macaulay rings R with e D h C 2 and � D h

whose associated graded ring G is not quadratic, hence not Koszul. For example
this is the case if R D kŒŒt5; t6; t13; t14��; where e D h C 2 D 3 C 2 D 5 and
� D 3:

(2) Let R be Artinian of multiplicity e D h C 3. Then R is stretched if its Hilbert
function is 1 C hz C z2 C z3; and short if its Hilbert function is 1 C hz C 2z2

(for details see [54]). For example, if R is Gorenstein, then R is stretched.
Sally classified, up to analytic isomorphism, the Artinian local rings which
are stretched in terms of the multiplicity and the Cohen–Macaulay type. As
a consequence one verifies that if R is stretched of multiplicity � h C 3; then
I � is never quadratic, hence R is never Koszul. If R is short, then R is Koszul if
and only if G is quadratic. In fact, by a result in Backelin’s PhD thesis (see also
[20]), if dimK G2 D 2 and G is quadratic, then G is Koszul, so R is Koszul.
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6.2 Koszul Modules and Linear Defect

Koszul modules have been introduced in [41]. Let us recall the definition.
Consider .FR

M ; ı/ a minimal free resolution of M as an R-module. The property
ı.FR

M / � mFR
M (the minimality) allows us to form for every j � 0 a complex

linj .FR
M / W 0 ! Fj

mFj

! � � � ! mj �i Fi

mj �iC1Fi

! � � � ! mj F0

mj C1F0

! 0

of K-vector spaces. Denoting lin.FR
M / D ˚j �0linj .FR

M /, one has that lin.FR
M / is a

complex of free graded modules over G D grm.R/ whose i th free module is

˚j mj �i Fi =mj �iC1Fi D grm.Fi /.�i/ D G.�i/ ˝K Fi =mFi :

By construction the differentials can be described by matrices of linear forms.

Accordingly with the definition given by Herzog and Iyengar in [41]:

Definition 10. M is a Koszul module if Hi .linj .FR
M // D 0 for every i > 0 and

j � 0, that is, Hi .lin.FR
M // D 0 for every i > 0.

Remark 11. Notice that, if R is graded, the K-algebras G and R are naturally
isomorphic. In particular lin.FR

M / coincides with the complex already defined in
Sect. 4.2. This is why lin.FR

M / is called the linear part of FR
M .

As in the graded case (see Eq. (4)), one defines the linear defect of M over R:

ldR.M / D supfi W Hi .lin.FR
M // ¤ 0g: (7)

The linear defect gives a measure of how far is lin.FR
M / from being a resolution

of grm.M / D ˚j �0mj M=mj C1M: By the uniqueness of minimal free resolution,
up to isomorphism of complexes, one has that ldR.M / does not depend on FR

M ;

but only on the module M: When ldR.M / < 1, we say that in the minimal free
resolution the linear part predominates.

Koszul modules have appeared previously in the literature under the name
“modules with linear resolution” in [56] and “weakly Koszul” in [46].

By definition R is Koszul as an R-module because it is R-free. But, accordingly
with Definition 1, R is a Koszul ring if and only if K is a Koszul R-module. We
have:

R is a Koszul ring ” K is a Koszul R-module ” K is a Koszul G-module.

If R is a graded K-algebra, Corollary 8 in particular says that R is a Koszul ring
if K has finite linear defect or equivalently K is a Koszul module. By [41, 1.13] and
[43, 3.4] one gets the following result, that is, the analogous of Theorem 7, with the
regularity replaced by the linear defect.
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Proposition 12. Let R be a graded K-algebra. The following facts are
equivalent:

.1/ R is Koszul.

.2/ ldR.K/ D 0.

.3/ ldR.K/ < 1.

.4/ There exists a Koszul Cohen–Macaulay R-module M with �.M / D e.M /.

.5/ Every Cohen–Macaulay R-module M with �.M / D e.M / is Koszul.

In [43] the modules verifying �.M / D e.M / are named modules of minimal
degree. When R itself is Cohen–Macaulay, the maximal Cohen–Macaulay modules
of minimal degree are precisely the so-called Ulrich modules. Cohen–Macaulay
modules of minimal degree exist over any local ring, for example, the residue field
is one.

The following question appears in [41, 1.14].

Question 13. Let R be a local ring. If ldR.K/ < 1, then is ldR.K/ D 0?

To answer Question 13 one has to compare lin.FR
K/ and lin.FG

K/. From a minimal
free resolution of K as a G-module we can build up a free resolution (not necessarily
minimal) of K as an R-module. In some cases the process for getting the minimal
free resolution is under control via special cancellations (see [55, 3.1]), but in
general it is a difficult task.

We may define absolutely Koszul local rings exactly as in the graded case.
A positive answer to Question 13 would give a positive answer to the following:

Question 14. Let R be an absolutely Koszul local ring. Is R Koszul?

Acknowledgements We thank Rasoul Ahangari, Lucho Avramov, Giulio Caviglia, Ralf Fröberg,
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3. Aramova, A., Bărcănescu, Ş., Herzog, J.: On the rate of relative Veronese submodules. Rev.

Roumaine Math. Pures Appl. 40, 243–251 (1995)
4. Avramov, L.L.: Infinite free resolutions. Six lectures on commutative algebra (Bellaterra,

1996). In: Progress in Mathematics, vol. 166, pp. 1–118. Birkhäuser, Basel (1998)
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38. Fröberg, R., Löfwall, C.: Koszul homology and Lie algebras with application to generic forms
and points. Homology Homotopy Appl. 4, 227–258 (2002)

39. Frohmader, A.: Face vectors of flag complexes. Israel J. Math. 164, 153–164 (2008)
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