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Aldo Conca

Introduction

Koszul algebras, introduced by Priddy in [P], are positively graded K-algebras R
whose residue fieldK has a linear free resolution as anR-module. Here linear means
that the non-zero entries of the matrices describing the maps in theR-free resolution
of K have degree 1. For example, if S D KŒx1; : : : ; xn! is the polynomial ring over
a fieldK thenK is resolved by the Koszul complex which is linear. In these lectures
we deal with standard graded commutative K-algebras, that is, quotient rings of
the polynomial ring S by homogeneous ideals. The program of the lectures is the
following:

Lecture 1: Koszul algebras and Castelnuovo–Mumford regularity.
Lecture 2: Bounds for the degrees of the syzygies of Koszul algebras.
Lecture 3: Veronese algebras and algebras associated with collections of hyper-

spaces.

In the first lecture, based on the survey paper [CDR], we present various char-
acterizations of Koszul algebras and strong versions of Koszulness. In the second
lecture we describe recent results, obtained in cooperation with Avramov and
Iyengar [ACI1, ACI2], on the bounds of the degrees of the syzygies of a Koszul
algebra. Finally, the third lecture is devoted to the study of the Koszul property of
Veronese algebras and of algebras associated with collections of hyperspaces and it
is based on the papers [CDR, C].
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1 Koszul Algebras and Castelnuovo–Mumford Regularity

1.1 Notation

Let K be a field and R be a commutative standard graded K-algebra, that is a
K-algebra with a decomposition R D L

i2NRi (as an Abelian group) such that
R0 D K , the vector space R1 has finite dimension and RiRj D RiCj for every
i; j 2 N. Let S be the symmetric algebra of R1 over K . In other words, S is the
polynomial ringKŒx1; : : : ; xn!where n D dimR1 and x1; : : : ; xn is aK-basis ofR1.
One has an induced surjection

S D KŒx1; : : : ; xn!! R (1)

of standard graded K-algebras. We call (1) the canonical presentation of R. Hence
R is isomorphic to S=I where I is the kernel of the map (1). In particular, I is
homogeneous and does not contain elements of degree 1. We say that I defines
R. Denote by mR the maximal homogeneous ideal of R. We may consider K as a
graded R-module via the identification K D R=mR.

Unless otherwise stated, we will always assume that K-algebras are standard
graded, modules and ideals are graded and finitely generated, and module homo-
morphisms have degree 0.

For an R-moduleM D ˚i2ZMi we denote by HF.M; i/ the Hilbert function of
M at i , that is

HF.M; i/ D dimK.Mi/;

and by

HM.z/ D
X

i2Z

dimK.Mi/zi 2 QŒjzj!Œz!1!

the associated Hilbert series.
Given an integer a 2 Z we will denote by M.a/ the graded R-module whose

degree i component is MiCa. In particular R.!j / is a free R-module of rank 1
whose generator has degree j .

A minimal graded free resolution of M as an R-module is a complex of free
R-modules

F W " " "! FiC1
"iC1!! Fi

"i!! Fi!1 ! " " "! F1
"1!! F0 ! 0

such that:

1. Hi.F/ D 0 for i > 0,
2. H0.F/ 'M ,
3. "iC1.FiC1/ # mR Fi for every i .
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Such a resolution exists and it is unique up to an isomorphism of complexes. We
hence call it “the” minimal free (graded) resolution of M .

By definition, the i -th Betti number ˇRi .M/ of M as an R-module is the rank
of Fi . Each Fi is a direct sum of shifted copies of R. The .i; j /-th graded Betti
number ˇRij .M/ of M is the number of copies of R.!j / that appear in Fi . By
construction one has

ˇRi .M/ D dimK TorRi .M;K/

and

ˇRij .M/ D dimK TorRi .M;K/j :

Here and throughout the notes an index on the right of a graded module denotes
the homogeneous component of that degree.

The Poincaré series of M is defined as

PR
M.z/ D

X

i2N

ˇRi .M/zi 2 QŒjzj!;

and its bigraded version is

PR
M.s; z/ D

X

i2N;j2Z

ˇRi;j .M/sj zi 2 QŒs; s!1!Œjzj!:

We set

tRi .M/ D supfj W ˇRij .M/ ¤ 0g

where, by convention, tRi .M/ D !1 if Fi D 0. By definition, tR0 .M/ is the largest
degree of a minimal generator of M . Two important invariants that measure the
“growth” of the resolution of M as an R-module are the projective dimension

pdR.M/ D supfi W Fi ¤ 0g D supfi W ˇRi .M/ ¤ 0g

and the (relative) Castelnuovo–Mumford regularity

regR.M/ D supfj ! i W ˇRij .M/ ¤ 0g D supftRi .M/! i W i 2 Ng:

An R-module M has a linear resolution as an R-module if for some d 2 Z
one has ˇRij .M/ D 0 if j ¤ d C i . Equivalently, M has a linear resolution as an
R-module if it is generated by elements of degree regR.M/.

We may as well consider M as a module over the polynomial ring S via
the map (1). The absolute Castelnuovo–Mumford regularity is, by definition, the
regularity regS .M/ ofM as an S -module. It has also a cohomological interpretation
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via local duality, see for example [EG, Sect. 1] or [BH, 4.3.1]. Denote by Hi
mS
.M/

the i -th local cohomology module with support on the maximal ideal of S . One has
Hi

mS
.M/ D 0 if i < depthM or i > dimM and

regS .M/ D maxfj C i W Hi
mS
.M/j ¤ 0g:

Both pdR.M/ and regR.M/ can be infinite.

Example 1.1. Let R D KŒx!=.xv/ with v > 1. Then the minimal free resolution of
K over R is:

" " "! R.!2v/! R.!v ! 1/! R.!v/! R.!1/! R! 0

where the maps are multiplication by x or xv!1 depending on the parity. Hence
F2i D R.!iv/ and F2iC1 D R.!iv ! 1/ so that pdR.K/ D 1 for every v > 1.
Furthermore regR.K/ D 1 if v > 2 and regR.K/ D 0 if v D 2.

Note that, in general, regR.M/ is finite if pdR.M/ is finite. On the other hand, as
we have seen in the example above, regR.M/ can be finite even when pdR.M/ is
infinite.

In the study of minimal free resolutions over R, the minimal free resolution KR

of the residue field K as an R-module plays a fundamental role. This is because

TorR" .M;K/ D H".M ˝R KR/

and hence

ˇRij .M/ D dimK Hi.M ˝R KR/j :

A very important role is played also by the Koszul complexK.mR/ on a minimal
system of generators of the maximal ideal mR of R. The Koszul complex is the
typical example of a differential graded algebra, DG-algebra for short.

1.2 DG-Algebras

A graded algebra

C D ˚i#0Ci

is graded-commutative if for every a 2 Ci and b 2 Cj one has:

ab D .!1/ijba

and furthermore
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a2 D 0

whenever i is odd.
A DG-algebra is a graded-commutative algebra C D ˚i#0Ci equipped with a

linear differential

@ W C ! C

of degree !1 (i.e. @2 D 0 and @.Ci / # Ci!1) that satisfies the “twisted” Leibniz
rule:

@.ab/ D @.a/b C .!1/ia@.b/

whenever a 2 Ci .
The cycles Z.C/ D ker @, the boundaries B.C / D Image@ and the homology

H.C/ D Z.C/=B.C / of a DG-algebra C inherit the algebra structure from C .
Precisely, Z.C/ is a graded-commutative subalgebra of C , B.C / is a (two-sided)
graded ideal of Z.C/ and hence H.C/ is a (graded-commutative) algebra.

The component of Z.C/ of (homological) degree i is denoted by Zi.C /.
Similarly for the boundaries and the homology.

Given a DG-algebra C and a cycle z 2 Zi .C / there is a canonical way to “kill”
z in homology by adding a “variable” to C preserving the DG-algebra structure. If i
is even then one considersD D C Œe! where e is an exterior variable (hence e2 D 0)
of degree i C 1 and extends the differential by setting @.e/ D z. If i is odd then one
considersD D C Œs! where s is a polynomial variable (or a divided power variable)
of degree i C 1 and extends the differential by setting @.s/ D z. By construction,
the element z 2 Z.C/ $ Z.D/ is now a boundary of the complex D and hence it
is 0 in homology. Furthermore, by construction,Hj .C / D Hj .D/ for j < i . This
process can clearly be iterated. One can, for instance, “kill” all the cycles in a given
homological degree by adding variables.

1.3 Koszul Complex

The Koszul complex can be described in the following way. Let R be any ring and
let I D .a1; : : : ; am/ be an ideal of R. Consider R as a DG-algebra concentrated
in degree 0 and the elements a1; : : : ; am as cycles of that complex. Then we add
exterior variables e1; : : : ; em in degree 1 to R and obtain the DG-algebra

K.I;R/ D RŒe1; : : : ; em! with @.ei / D ai :

This is the Koszul complex associated with the ideal I and coefficients in the ringR.
In other words,K.I;R/ is the exterior algebra

V
Rm equipped with the differential
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induced by @.ei / D ai for i D 1; : : : ; m. If M is an R-module we then set

K.I;M/ D K.I;R/˝R M:

This is the Koszul complex associated with the ideal I with coefficients in M .
Denote by Z.I;M/ the module of cycles of the complex K.I;M/ and similarly
by B.I;M/ its boundaries, by C.I;M/ its cokernel and by H.I;M/ its homology.
We will denote by Ki.I;M/ the component of homological degree i of K.I;M/.
When the coefficients of the Koszul complex are taken in R we use a simplified
notation

K.I/ D K.I;R/; Z.I / D Z.I;R/

and so on.
By definition we have:

H0.I / D R=I and H0.I;M/ D M=IM:

Furthermore H.I/ is a (graded-commutative) algebra and H.I;M/ is a H.I/-
module. In particular, IH.I;M/ D 0.

It is well-known that the Koszul complex K.I/ is acyclic (and hence an R-free
resolution ofR=I ) if (and only if in the local or standard graded setting) the chosen
generators a1; : : : ; am of I form a regular sequence, see [BH, 1.6.14].

When K.I/ is not a free resolution one can nevertheless use the procedure of
adding variables to kill homology degree by degree to obtain from K.I/ a free
resolution of R=I as an R-module with a DG-algebra structure. In the local or
standard graded setting this can be done in the following way.

1. Set T1 D K.I/.
2. Choose a minimal system of generators of H1.T1/ and a set of cycles

z1;1; : : : ; z1;u1 representing them.
3. Add to T1 a set of polynomial variables (or divided powers in positive character-

istic) Y2 D fs2;1; : : : ; s2;u1 g in degree 2 and set

T2 D T1Œs2;1; : : : ; s2;u1 W @.s2;i / D z1;i !:

4. Choose a minimal system of generators of H2.T2/, a set of cycles z2;1; : : : ; z2;u2
representing them.

5. Add to T2 a set of exterior variables Y3 D fe3;1; : : : ; e3;u2g in degree 3 and set

T3 D T2Œe3;1; : : : ; e3;u2 W @.e3;i / D z2;i !

and so on. We obtain a DG-algebra T DRŒY1; Y2; Y3; : : : ! that is an R-free
resolution of R=I which is (essentially) independent on the choices of the minimal
system of generators of Hi.Ti / and of the cycles representing them. It is called the
Tate complex and we will denote it by
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T .R;R=I /:

We refer to [A] for a precise description of the construction and many beautiful
results and questions concerning it. We just give two examples:

Example 1.2. Set R D QŒx!=.xn/, a D Nx and I D .a/. Then T1 D K.I/ D RŒe!
with @.e/ D a and z D an!1e generates the 1-cycles of K.I/. Hence the second
round of Tate construction gives T2 D RŒe; s! with @.s/ D an!1e. It turns out that
T .R;R=I / D RŒe; s! is a minimal resolution of R=I over R:

" " "! Rs2e ! Rs2 ! Rse ! Rs ! Re ! R! 0

where the maps are given, alternatively, by multiplication with a and an!1 up to
non-zero scalars.

Example 1.3. Set R D QŒx; y! and I D .x2; xy/. Then we have T1 D K.I/ D
RŒe1; e2! with @.e1/ D x2 and @.e2/ D xy. The cycle ye1 ! xe2 generates
H1.T1/. Hence the second round of Tate construction gives the DG-algebra T2 D
RŒe1; e2; s1! with @.s1/ D ye1 ! xe2. Now H2.T2/ is generated by e1e2 ! ys1.
Hence the third round of Tate construction gives T3 D RŒe1; e2; s1; e3! with @.e3/ D
e1e2 ! ys1. Hence the beginning of the Tate complex is the following:

" " "! Re3 ˚ Rs1e1 ˚ Rs1e2 ! Rs1 ˚ Re1e2 ! Re2 ˚ Re1 ! R! 0:

Note that the resolution in Example 1.2 is minimal while the one in Example 1.3 is
not.

1.4 Auslander–Buchsbaum–Serre

We return to the graded setting and assume that R is a standard graded K-algebra.
When is pdR.M/ finite for every M ? The answer is given by the Auslander–
Buchsbaum–Serre Theorem, a result that, in the words of Avramov [A1, p. 32],
“really started everything”. The graded variant of it is the following:

Theorem 1.4. The following conditions are equivalent:

(1) pdR.M/ is finite for every R-moduleM ,
(2) pdR.K/ is finite,
(3) the Koszul complex K.mR/ resolves K ,
(4) R is a polynomial ring.

When the conditions hold, then for every M one has pdR.M/ % pdR.K/ D dimR.

Remark 1.5. The Koszul complexK.mR/ has three important features:

(1) it has finite length,
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(2) it has a DG-algebra structure,
(3) the matrices describing its differentials have non-zero entries only of degree 1.

When R is not a polynomial ring the minimal free resolution KR of K as an R-
module does not satisfy condition (1) of Remark 1.5. Can KR nevertheless satisfy
conditions (2) and (3) of Remark 1.5?

For condition (2) the answer is yes: KR has always a DG-algebra structure.
Indeed a theorem, proved independently by Gulliksen and Schoeller, asserts that
KR is obtained by using the Tate construction. Furthermore results of Assmus,
Tate, Gulliksen and Halperin clarify when KR is finitely generated as an R-algebra.
Again, we state the theorem in the graded setting and refer to [A, 6.3.5, 7.3.3, 7.3.4]
for general statements and proofs.

Theorem 1.6. Let R be a standard graded K-algebra. Let T D T .R;K/ D
RŒY1; Y2; Y3; : : : ! be the Tate complex associated with K D R=mR. We have:

(1) T is the minimal graded resolution ofK , i.e. T D KR.
(2) T is finitely generated as an R-algebra if and only if R is a complete

intersection. In that case, T is generated by elements of degree at most 2, i.e.
Yi D ; for i > 2.

(3) If R is not a complete intersection then Yi 6D ; for every i .

AlgebrasR such that KR satisfies condition (3) in Remark 1.5 are called Koszul:

Definition 1.7. The K-algebra R is Koszul if the matrices describing the differen-
tials in the minimal free resolution KR of K as an R-module have non-zero entries
only of degree 1, that is, regR.K/ D 0 or, equivalently, ˇRij .K/ D 0 whenever
i ¤ j .

Koszul algebras were originally introduced by Priddy [P] in his study of
homological properties of graded (non-commutative) algebras, see the volume [PP]
of Polishchuk and Positselski for an overview and surprising aspects of the Koszul
property. We collect below a list of important facts about Koszul commutative
algebras. We always refer to the canonical presentation (1) of R as a quotient of
the polynomial ring S D Sym.R1/ by the homogeneous ideal I . First we introduce
a definition.

Definition 1.8. We say that R is quadratic if its defining ideal I is generated by
quadrics (homogeneous polynomials of degree 2).

Definition 1.9. We say that R is G-quadratic if its defining ideal I has a Gröbner
basis of quadrics with respect to some coordinate system of S1 and some term
order # on S . In other words, R is G-quadratic if there exists a K-basis of S1,
say x1; : : : ; xn and a term order& such that the initial ideal in$.I / of I with respect
to & is generated by monomials of degree 2.
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Remark 1.10. For a standard gradedK-algebraR one has

ˇR2j .K/ D

8
<

:

ˇS1j .R/ if j ¤ 2

ˇS12.R/C
!
n
2

"
if j D 2

and hence the resolution ofK , as an R-module, is linear up to homological position
2 if and only if R is quadratic. In particular, if R is Koszul, then R is quadratic.

On the other hand there are algebras defined by quadrics that are not Koszul. For
example if one takes

R D KŒx; y; z; t !=.x2; y2; z2; t2; xyC zt/

then one has ˇR34.K/ D 5 and hence R is not Koszul.

Remark 1.11. If I is generated by monomials of degree 2with respect to some coor-
dinate system of S1, then a filtration argument, that we reproduce in Theorem 3.12,
shows that R is Koszul. More precisely, for every subset Y of variables R=.Y / has
an R-linear resolution.

Remark 1.12. If I is generated by a regular sequence of quadrics, thenR is Koszul.
This follows from Theorem 1.6 because if R is a complete intersection of quadrics,
then KR is obtained from K.mR/ by adding polynomial variables in homological
degree 2 and internal degree 2 to kill H1.K.mR//. For example, if

R D QŒx1; x2; x3; x4!=.x21 C x22; x3x4/

then the Tate resolution of K over R is the DG-algebra

RŒe1; e2; e3; e4; s1; s2!

with differential induced by @.ei / D xi and @.s1/ D x1e1 C x2e2 and @.s2/ D x3e4.
Here the ei ’s have internal degree 1 and the si ’s have internal degree 2.

Remark 1.13. IfR is G-quadratic, thenR is Koszul. This follows from Remark 1.11
and from the standard deformation argument showing that ˇRij .K/ % ˇAij .K/ with
A D S= in# .I /. For details see, for instance, [BC, Sect. 3].

Remark 1.14. On the other hand there are Koszul algebras that are not G-quadratic.
One notes that an ideal defining a G-quadratic algebra must contain quadrics of
“low” rank. For instance, if R is Artinian and G-quadratic then its defining ideal
must contain the square of a linear form. But most Artinian complete intersections
of quadrics do not contain the square of a linear form. For example, the ideal I D
.x2Cyz; y2Cxz; z2Cxy/ $ S D CŒx; y; z! is a complete intersection not containing
the square of a linear form and S=I is Artinian. Hence S=I is Koszul and not
G-quadratic. See [ERT] for general results in this direction.
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Remark 1.15. The Poincaré series PR
K .z/ of K as an R-module can be irrational

(even for rings with R3 D 0), see [An]. However for a Koszul algebra R one has

PR
K .z/HR.!z/ D 1 (2)

and hence PR
K .z/ is rational. Indeed the equality (2) turns out to be equivalent to the

Koszul property of R, see for instance [F].

Remark 1.16. A necessary (but not sufficient) numerical condition for R to be
Koszul is that the formal power series 1=HR.!z/ has non-negative coefficients
(indeed positive unless R is a polynomial ring). Another numerical condition is
the following. Expand the formal power series 1=HR.!z/ as

…h22NC1.1C zh/e
0
h

…h22NC2.1! zh/e
0
h

with e0h 2 Z. This can be done in a unique way, see [A, 7.1.1]. Furthermore set
eh.R/ D #Yh where Yh is the set of variables that we add at the h-th iteration of the
Tate construction of the minimal free resolution of K over R. The numbers eh.R/
are called the deviations ofR. IfR is Koszul then e0h D eh.R/ for every h and hence
e0h ' 0. More precisely, e0h > 0 for every h unless R is a complete intersection.

For example, the Hilbert function of the ring in Remark 1.10 is

H.z/ D 1C 4zC 5z2:

Expanding the series 1=H.!z/ one sees that the coefficient of z6 is negative.
Furthermore the corresponding e03 is 0. So for two numerical reasons an algebra
with Hilbert series H.z/ cannot be Koszul.

The following characterization of the Koszul property in terms of regularity is
formally similar to the Auslander–Buchsbaum–Serre Theorem 1.4.

Theorem 1.17 (Avramov–Eisenbud–Peeva). The following conditions are equiv-
alent:

(1) regR.M/ is finite for every R-moduleM ,
(2) regR.K/ is finite,
(3) R is Koszul.

Avramov and Eisenbud proved in [AE] that every moduleM has finite regularity
over a Koszul algebraR by showing that regR.M/ % regS .M/. Avramov and Peeva
showed in [AP] that if regR.K/ is finite then it must be 0. Indeed they proved a more
general result for graded algebras that are not necessarily standard.

We collect below further remarks, examples and questions relating the Koszul
property and the existence of Gröbner bases of quadrics in various ways. Let us
recall the following:
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Definition 1.18. A K-algebraR is LG-quadratic (where the L stands for lifting) if
there exist a G-quadratic algebraA and a regular sequence of linear forms y1; : : : ; yc
such that R ' A=.y1; : : : ; yc/.

We have the following implications:

G-quadratic ) LG-quadratic ) Koszul) quadratic (3)

As discussed in Remarks 1.10 and 1.16 the third implication in (3) is strict. The
following remark, due to Caviglia, in connection with Remark 1.14 shows that also
the first implication in (3) is strict.

Remark 1.19. Any complete intersection R of quadrics is LG-quadratic. Say

R D KŒx1; : : : ; xn!=.q1; : : : ; qm/

is a complete intersection of quadrics. Then set

A D RŒy1; : : : ; ym!=.y21 C q1; : : : ; y2m C qm/

and note that A is G-quadratic because the initial ideal of its defining ideal with
respect to a lex term order satisfying yi > xj for every i; j is .y21 ; : : : ; y

2
m/.

Furthermore y1; : : : ; ym is a regular sequence in A because

A=.y1; : : : ; ym/ ' R

and dimA ! dimR D m.

In [Ca1, 1.2.6], [ACI1, 6.4] and [CDR, 12] it is asked whether a Koszul algebra is
also LG-quadratic. The following example gives a negative answer to the question.

Example 1.20. Let

R D KŒa; b; c; d !=.ac; ad; ab ! bd; a2 C bc; b2/:

The Hilbert series of R is

1C 2z! 2z2 ! 2z3 C 2z4

.1 ! z/2
:

Also, R is Koszul as can be shown using a Koszul filtration argument, see Exam-
ple 3.8. The h-polynomial does not change under lifting with regular sequences
of linear forms. Hence to check that R is not LG-quadratic it is enough to check
that there is no algebra with quadratic monomial relations and with h-polynomial
equal to

h.z/ D 1C 2z! 2z2 ! 2z3 C 2z4:
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In general, if J is an ideal in a polynomial ringA not containing linear forms and
the h-polynomial of A=J is 1C h1zC h2z2 C : : : then J has codimension h1 and
exactly

!
h1C1
2

"
! h2 quadratic generators.

Now consider a quadratic monomial ideal J in a polynomial ring A with, say, n
variables such that the h-polynomial of A=J is h.z/.

Such a J must have codimension 2 and 5 generators. So J is generated
by 5 monomials chosen among the generators of .a; b/.a; b; c; d; e; f; g/ where
a; b; : : : ; g are distinct variables. But an exhaustive CoCoA [CoCoA] computation
shows that such a selection does not exist.

An interesting example of LG-quadratic algebra is the following:

Example 1.21. Let

R D KŒa; b; c; d !=.a2 ! bc; d 2; cd; b2; ac; ab/:

The Hilbert series of R is

1C 3z ! 3z3

.1 ! z/
:

The h-polynomial 1 C 3z ! 3z3 is not the h-polynomial of a quadratic mono-
mial ideal in four variables. It is however the h-polynomial of a (unique up to
permutations of the variables) quadratic monomial ideal in five variables, namely
U1 D .a2; b2; ad; cd; be; ce/. In six variables there is another quadratic monomial
ideal with that h-polynomial. It is U2 D .a2; ad; bd; be; ce; cf /. Another one in
seven variables, U3 D .ad; bd; ae; ce; bf ; cg/. And that is all. It turns out that R
is LG-quadratic since it lifts to KŒa; b; c; d; e!=J with

J D .a2 ! bcC be; d 2; cd; b2 C eb; ac; abC ae/

and in$.J / is U1 (up to a permutation of the variables) where& is the rev.lex. order
associated with the total order of the variables e > d > b > c > a.

The ring of Example 1.20 is not LG-quadratic because of the obstruction
in the h-polynomial, i.e., there are no quadratic monomial ideals with that
h-polynomial. It would be interesting to identify a Koszul algebra with a non-
obstructed h-polynomial that is not LG-quadratic.

2 Syzygies of Koszul Algebras

The second lecture is based on the results obtained jointly with Avramov and
Iyengar and published in [ACI1, ACI2].
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Given a standard gradedK-algebraR with presentation

R D S=I

where S D KŒx1; : : : ; xn! and I $ S is a homogeneous ideal, we set

tSi .R/ D supfj W ˇSij .R/ ¤ 0g

i.e., tSi .R/ is the highest degree of a minimal i -th syzygy of R as an S -module. In
particular, tS0 .R/ D 0 and tS1 .R/ equals the highest degree of a minimal generator
of I .

The starting point of the discussion is the following observation.

Remark 2.1. If I is generated by monomials of degree 2, then:

(1) tSi .R/ % 2i for every i ,
(2) regS .R/ % pdS .R/,
(3) if tSi .R/ < 2i for some i then tSiC1.R/ < 2.i C 1/,
(4) tSi .R/ < 2i if i > dimS ! dimR,

(5) ˇSi .R/ %
!
ˇS1 .R/
i

"
,

(6) pdS .R/ % ˇS1 .R/.
These inequalities are deduced from the (non-minimal) Taylor resolution of
quadratic monomial ideals, see for instance [MS, 4.3.2].

Suppose now that, combining and iterating the following operations:

(a) changes of coordinates,
(b) the formation of initial ideals with respect to weights or term orders,
(c) liftings and specializations with regular sequences of degree 1,

the algebra R deforms to an algebra R0 D S 0=J with S 0 a polynomial ring and
J generated by quadratic monomials. Then R satisfies the inequalities (1), (2), (5)
and (6) because the Betti numbers and the ti ’s can only grow passing from R to
R0 and ˇS1 .R/ D ˇS12.R/ equals ˇS

0
1 .R

0/ D ˇS
0

12 .R
0/. This observation suggests the

following question:

Question 2.2. Are the bounds of Remark 2.1 valid for every Koszul algebra?

In [ACI1] we have proved that (1), (2), (3) and (4) hold for every Koszul algebra.
As far as we know it is still open whether (5) and (6) hold as well for Koszul
algebras. The inequality (1) for Koszul algebras [and its immediate consequence
(2)] has a short proof that we present below, see Lemma 2.10.

In [ACI2] stronger limitations for the degrees of the syzygies of Koszul algebras
are described (under mild assumptions on the characteristic of the base field). To
explain the results in [ACI1] and [ACI2] we start from some general considerations
concerning bounds on the ti ’s.

For S D KŒx1; : : : ; xn! and R D S=I (and no assumptions on R), a very basic
question is whether one can bound tSi .R/ only in terms of tS1 .R/ and the index i .
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The answer is negative in this generality, but it is positive if one involves also the
number of variables n. Indeed, in [BM] and [CaS] it is proved that

tSi .R/ % .2tS1 .R//2
n!2 ! 1C i: (4)

Furthermore variations of the Mayr–Meyer ideals define algebras having a doubly
exponential syzygy growth of the kind of the right-hand side of (4) (but with slightly
different coefficients), see [BS,Ko]. So, without any further assumption, one cannot
expect any better bound for the tSi .R/ in terms of tS1 .R/ than the one derived
from (4).

Things change drastically if either R is defined by monomials (i.e. I is a
monomial ideal) or R is Koszul. Under these assumptions we have that:

tSi .R/ % tS1 .R/i (5)

holds for every i . In particular

tSi .R/ % 2i for every i (6)

holds for Koszul algebras since tS1 .R/ D 2.
When R is defined by monomials (5) is derived from the Taylor resolution,

while when R is Koszul (6) is proved by Kempf [K], in [ACI1] and also in
an unpublished manuscript of Backelin (Relations between rates of growth of
homologies, unpublished manuscript, 1988).

One can ask whether the inequalities (5) and (6) are special cases of, or can be
derived from, more general statements. We consider the following generalization
of (5):

tSiCj .R/ % tSi .R/C tSj .R/ for every i and j: (7)

No counterexample is known to us to the validity of (7) for algebras with
monomial relations or for Koszul algebras.

Also, (7) for j D 1 holds for algebras defined by monomials, see [FG, 1.9] where
the statement is proved when R is defined by monomials of degree 2 and [HS] for
the general case. Furthermore in [EHU, 4.1] it is proved that (7) holds for algebras
of Krull dimension at most 1 when i C j D n, see also [Mc] for related results.

Denote by

Z D
M

i#0
Zi D

M

i#0
Zi .mR/;

B D
M

i#0
Bi D

M

i#0
Bi .mR/;
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and by

H D
M

i#0
Hi D

M

i#0
Hi .mR/

the modules of cycles, boundaries and homology of the Koszul complex K.mR/
associated with the maximal homogeneous ideal mR of R. Similarly, Zi .mR;M/
stands for the i -th cycles ofK.mR;M/ D K.mR/˝M and so on. By construction,

tSi .R/ D supfj W .Hi /j ¤ 0g: (8)

For a Koszul algebra R we have shown in [ACI1] that the map

^i H1 ! Hi (9)

induced by the multiplicative structure on H is surjective in degree 2i and higher.
Hence (6) (for Koszul algebras) is an immediate corollary of that assertion. The
inequality (7) would follow from a similar statement regarding the multiplication
map

Hi ˝Hj ! HiCj : (10)

Indeed it would be enough to prove that the map (10) is surjective in degree tSi .R/C
tSj .R/ and higher. Unfortunately we are not able to evaluate directly the cokernel of
the map (10). Instead we can get some information by using the splitting map for
Koszul cycles described originally in [BCR2] and rediscussed in [ACI2] from a
more general perspective. Indeed in [ACI2, 2.2] it is proved that:

Theorem 2.3. Let M be a graded R-module. For even i; j there is a natural map
(of degree 0)

TorR1 .Ci!1; Zj .mR;M//! HiCj .mR;M/=HiHj .mR;M/ (11)

that is surjective provided R has characteristic 0 or large. Here Ci!1 denotes the
cokernel of the Koszul complexK.mR/ in homological position i ! 1.

TakingM D R one obtains a natural map:

TorR1 .Ci!1; Zj / D TorR1 .Bi!1; Bj!1/! HiCj =HiHj

that is surjective in characteristic 0 or large. Note that TorR1 .Bi!1; Bj!1/ is a finite
length module because the Bu’s are free when localized at any non-maximal prime
homogeneous ideal. In particular one has:

Proposition 2.4. Set Tij D TorR1 .Bi!1; Bj!1/. If R has characteristic 0 or large
then

tSiCj .R/ % maxftSi .R/C tSj .R/; regS Tijg (12)
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where

regS Tij D maxfv W .Tij/v ¤ 0g:

In order to evaluate regS Tij we have developed in [ACI2] a long and technically
complicated inductive procedure. The results obtained take a simpler form in
the Cohen–Macaulay case because, under such assumption, the tSi .R/’s form an
increasing sequence. We have:

Theorem 2.5. LetR be a Koszul and Cohen–Macaulay algebra of characteristic 0.
Then

tSiC1.R/ % tSi .R/C t1.R/ D tSi .R/C 2 (13)

and

tSiCj .R/ % maxftSi .R/C tSj .R/; tSi!1.R/C tSj!1.R/C 3g (14)

hold for every i and j .

Furthermore one also deduces:

Theorem 2.6. If R is a Koszul algebra of characteristic 0 satisfying the Green–
Lazarsfeld Np condition for some p > 1 (i.e. ˇSij .R/ D 0 for every i D 1; 2; : : : ; p
and every j > i C 1) then

regS.R/ % 2
#

pdS R
p C 1

$
C 1 (15)

where the “C1” can be omitted if p C 1 divides pdS R.

For more general results the reader can consult [ACI2, Sect. 5].

Remark 2.7. The problem of bounding the regularity of Tor-modules has been
studied in [EHU]. Let S D KŒx1; : : : ; xn!, and let M and N be finitely generated
graded S -modules. It is proved in [EHU] that if dim TorS1 .M;N / % 1, then for every
i one has

regS TorSi .M;N / % regS.M/C regS.N /C i: (16)

Unfortunately, the formula (16) does not hold if we replace the polynomial ring S
with a Koszul ring R. For example with

R D KŒx; y!=.x2 C y2/; M D R=. Nx/ and N D R=. Ny/

one has

regR M D regR N D 0 and TorR1 .M;N / D K.!2/
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so that has regularity

regR TorR1 .M;N / D 2:

Nevertheless variations of (16) (e.g. compute the Tor over R but regularity over S
or add a correction term on the left depending on regS.R/) might hold in general.

The regularity bound in Theorem 2.6 is much weaker than the logarithmic one
obtained by Dao, Huneke and Schweig in [DHS, 4.8]. They showed that an algebra
R with monomial quadratic relations and satisfying the property Np for some p >
1 has a very low regularity compared with its embedding dimension. Their result
asserts that for a given p > 1 there exist fp.x/ 2 RŒx! and ˛p 2 R with ˛p > 1
(which are explicitly given in the paper) such that

regS R % log˛p fp.n/ (17)

holds for every algebra R with quadratic monomial relations such that R has the
propertyNp and has embedding dimension n.

This type of bound cannot hold for Koszul algebras satisfyingNp no matter what
fp.x/ 2 RŒx! and ˛p 2 .1;1/ are. To show this, it is enough to describe a family
of algebras fRp;mg with p;m 2 N and p > 1 such that:

1. the algebra Rp;m is Koszul and satisfies the Np-property,
2. given p, the embedding dimension of Rp;m is a polynomial function of m and

the regularity of Rp;m is linear in m.

For example, let Rp;m be the p-th Veronese subalgebra of a polynomial ring in
pm variables. Then Rp;m is Koszul, it satisfies the Np-property, it has regularity
.p ! 1/m, and has embedding dimension equal to

!
pmCp!1

p

"
, see [BCR1].

Question 2.8. Consider the coordinate ring of the Grassmannian G.2; n/. It is
defined by the Pfaffians of degree 2 (the 4( 4 Pfaffians) in a n( n skew-symmetric
generic matrix. We know that it is Koszul, it satisfies the N2 condition (by work of
Kurano [Ku]), it has regularity n ! 3 and codimension

!
n!2
2

"
. Hence for this family

the codimension is quadratic in the regularity. Does there exist a family like this
(Koszul with the N2 property) such that the codimension is linear in the regularity?

Remark 2.9. If we apply Theorem 2.3 in the case R D S D KŒx1; : : : ; xn! with K
of characteristic 0 or large and M any graded module then we have a surjection

TorS1 .Ci!1; Zj .M//! HiCj .mS ;M/

becauseHi D 0. Here we have set for simplicity Zj .M/ D Zj .mS ;M/. Since

TorS1 .Ci!1; Zi .M// D Hi.mS ;Zj .M//
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we obtain

ˇSi;v.Zj .M// ' ˇSiCj;v.M/ (18)

for all i; j; v and everyM .

We conclude by presenting a short proof of the inequality tSi .R/ % 2i for Koszul
algebras and a related question.

Lemma 2.10. LetR be a Koszul algebra andZi D Zi.mR/ the cycles of the Koszul
complex K.mR;R/ associated with the maximal homogeneous ideal of R. Then
regR.Zi / % 2i for every i . In particular, tSi .R/ % 2i for every i .

Proof. For i > 0 we have short exact sequences:

0! Zi ! Ki ! Bi!1 ! 0

0! Bi!1 ! Zi!1 ! Hi!1 ! 0:

Hence one has:

regR.Zi / D regR.Bi!1/C 1

and

regR.Bi!1/ % maxfregR.Zi!1/; regR.Hi!1/C 1g:

Hence

regR.Zi / % maxfregR.Zi!1/C 1; regR.Hi!1/C 2g:

Since mR Hi!1 D 0 and R is Koszul we have

regR.Hi!1/ D tR0 .Hi!1/ % tR0 .Zi!1/ % regR.Zi!1/:

It follows that

regR.Zi / % maxfregR.Zi!1/C 1; regR.Zi!1/C 2g D regR.Zi!1/C 2:

Since Z0 D R one has regR.Z0/ D 0 and it follows by induction that

regR.Zi / % 2i:

Since

tSi .R/ D tR0 .Hi / % tR0 .Zi / % regR.Zi / % 2i
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we may conclude that

tSi .R/ % 2i:

ut

With the assumptions and notation of Lemma 2.10 one can ask:

Question 2.11. Does the inequality

regR.ZiCj / % regR.Zi /C regR.Zj /

hold for every i; j ?

For similar questions and results the reader can consult [CM].

3 Veronese Rings and Algebras Associated with Families
of Hyperspaces

In the third lecture we present two case studies: the Koszul properties of Veronese
rings and of algebras associated with families of hyperspaces. The material we
present is taken from [ABH, BF, B1, BaM, Ca, CC, CHTV, CTV, CRV, ERT].

3.1 Veronese Rings

We will use the following results whose proofs can be found, for example, in the
survey paper [CDR].

Lemma 3.1. Let R be a standard gradedK-algebra. Let

M W " " "!Mi ! " " "!M2 !M1 !M0 ! 0

be a complex of R-modules. Set Hi D Hi.M/. Then for every i ' 0 one has

tRi .H0/ % maxf˛i ; ˇi g

where ˛i D maxftRj .Mi!j / W j D 0; : : : ; ig and ˇi D maxftRj .Hi!j!1/ W j D 0;
: : : ; i ! 2g. Moreover one has

regR.H0/ % maxf˛; ˇg

where ˛ D supfregR.Mj /!j W j ' 0g and ˇ D supfregR.Hj /! .j C1/ W j ' 1g.
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Theorem 3.2. LetA be a standard gradedK-algebra,J $ A a homogeneous ideal
and B D A=J . Then:

(1) If regA.B/ % 1 and A is Koszul, then B is Koszul.
(2) If regA.B/ is finite and B is Koszul, then A is Koszul.

We apply now Theorem 3.2 to prove that the Veronese subrings of a Koszul
algebra are Koszul.

Let R be a standard gradedK-algebra. Let c 2 N and

R.c/ D ˚j2ZRjc

be the c-th Veronese subalgebra of R. Similarly, given a graded R-module M one
defines

M.c/ D ˚j2ZMjc:

The formation of the c-th Veronese submodule can be seen as an exact functor
from the category of graded R-modules and maps of degree 0 to the category of
graded R.c/-modules and maps of degree 0. For u D 0; : : : ; c ! 1 consider the
Veronese submodules

Vu D ˚j2ZRjcCu

of R. Note that Vu is an R.c/-module generated in degree 0 and that for a 2 Z one
has

R.!a/.c/ D Vu.!da=ce/

where u D 0 if a ) 0 mod.c/ and u D c ! r if a ) r mod.c/ and 0 < r < c.

Theorem 3.3. Let R be a Koszul algebra. Then for every c 2 N one has:

(1) R.c/ is Koszul.
(2) regR.c/ .Vu/ D 0 for every u D 0; : : : ; c ! 1, i.e. the Veronese submodules of R

have a linear resolution over R.c/.

Proof. Denote by A the ring R.c/. We first prove assertion (2). Indeed we prove by
induction on i that tAi .Vu/ % i for every i . There is nothing to prove in the case
i D 0. For i > 0, observe that, since R is Koszul, one has regR m D 1 and by
induction one has that regR mu D u. Now let M D mu

R.u/ so that regR.M/ D 0
and M.c/ D Vu. Consider the minimal free resolution F of M over R and apply the
functor !.c/. We get a complex G D F.c/ of A-modules such that H0.G/ D Vu,
Hj .G/ D 0 for j > 0 and Gj D F

.c/
j is a direct sum of copies of R.!j /.c/.

Applying Lemma 3.1 and the inductive assumption we get tAi .Vu/ % i as required.
To prove that A is Koszul we consider the minimal free resolution F of K over

R and apply !.c/. We get a complex G D F.c/ of A-modules such thatH0.G/ D K ,
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Hj .G/ D 0 for j > 0 and Gj D F
.c/
j is a direct sum of copies of Vu.!dj=ce/.

Hence regA.Gj / D dj=ce and applying Lemma 3.1 we obtain

regA.K/ % supfdj=ce ! j W j ' 0g D 0:

ut

We also have:

Theorem 3.4. Let R be a standard gradedK-algebra. Then:

(1) The Veronese subalgebra R.c/ is Koszul for c * 0:
(2) If R D S=I with S D KŒx1; : : : ; xn!, then R.c/ is Koszul for every c such that

c ' maxftSi .R/=.1C i/ W i ' 0g:

Proof. Let F be the minimal free resolution ofR as an S -module. Set B D S.c/ and
note that B is Koszul because of Theorem 3.3. Then G D F.c/ is a complex of B-
modules such that H0.G/ D R.c/, Hj .G/ D 0 for j > 0. Furthermore Gi D F

.c/
i

is a direct sum of shifted copies of the Veronese submodules Vu. Using Theorem 3.3
we get the bound regB.Gi / % dtAi .R/=ce. Applying Lemma 3.1 we get

regB.R
.c// % maxfdtSi .R/=ce ! i W i ' 0g:

Hence for c ' maxftSi .R/=.1Ci/ W i ' 0g one has regB.R
.c// % 1 and we conclude

from Theorem 3.2 that R.c/ is Koszul. ut

Remark 3.5. (1) In [ERT, 2] it is proved that if c ' .regS .R/C 1/=2, then R.c/ is
even G-quadratic. See [Sh] for other interesting results in this direction.

(2) Backelin proved in [B1] that R.c/ is Koszul if c ' Rate.R/. Here Rate.R/ is
defined as

sup
i>0
f.tRiC1.K/! 1/=ig

and it is finite. It measures the deviation from the Koszul property in the sense
that Rate.R/ ' 1 with equality if and only if R is Koszul.

3.2 Strongly Koszul Algebras

A powerful tool for proving that an algebra is Koszul is a typical “divide and
conquer” strategy that can be formulated in the following way, see [CTV] and
[CRV]:
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Definition 3.6. A Koszul filtration of a K-algebraR is a set F of ideals of R such
that:

(1) Every ideal I 2 F is generated by elements of degree 1.
(2) The zero ideal 0 and the maximal ideal mR are in F .
(3) For every I 2 F , I ¤ 0, there exists J 2 F such that J $ I , I=J is cyclic

and Ann.I=J / D J W I 2 F .

One easily proves:

Lemma 3.7. Let F be a Koszul filtration of a standard gradedK-algebraR. Then
one has:

(1) regR.R=I / D 0 and R=I is Koszul for every I 2 F .
(2) R is Koszul.

Example 3.8. Let

R D KŒa; b; c; d !=.ac; ad; ab ! bd; a2 C bc; b2/:

We have seen in Example 1.20 that R is not LG-quadratic. We show now that R
is Koszul by constructing a Koszul filtration. Indeed, there is a Koszul filtration
based on the given system of coordinates, i.e. a Koszul filtration whose ideals are
generated by residue classes of variables. Here it is:

F D f.a; b; c; d /; .a; c; d /; .c; d /; .a; c/; .c/; .a/; 0g:

To check that it is a Koszul filtration we observe that in R one has:

.a; c; d / W .a; b; c; d / D .a; b; c; d /
.c; d/ W .a; c; d / D .a; b; c; d /
.c/ W .c; d / D .a; c/
.c/ W .a; c/ D .a; c; d /
0 W .a/ D .c; d /
0 W .c/ D .a/

The following notion is very natural for algebras with a canonical coordinate
system (e.g. in the toric case).

Definition 3.9. An algebra R is strongly Koszul if there exists a basis X of R1
such that for every Y $ X and for every x 2 X n Y there exists Z # X such that
.Y / W x D .Z/.

This definition of strongly Koszul is taken from [CDR] and is slightly different
from the one given in [HHR]. In [HHR] it is assumed that the basis X of R1 is
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totally ordered and in the definition one adds the requirement that x is larger than
every element in Y .

Remark 3.10. If R is strongly Koszul with respect to a basis X of R1 then the set
f.Y / W Y # Xg is obviously a Koszul filtration.

We have:

Theorem 3.11. Let R D S=I with S D KŒx1; : : : ; xn! and I $ S be an ideal
generated by monomials of degrees % d . Then R.c/ is strongly Koszul for every
c ' d ! 1.

The proof of Theorem 3.11 is based on the fact that the Veronese ring R.c/ is a
direct summand of R and that computing the colon ideal of monomial ideals in a
polynomial ring is a combinatorial operation. Let us single out an interesting special
case:

Theorem 3.12. Let S D KŒx1; : : : ; xn! and let I $ S be an ideal generated by
monomials of degree 2. Then S=I is strongly Koszul.

The results presented for Veronese rings and Veronese modules have their
analogous in the multigraded setting, see [CHTV]. We discuss below the bigraded
case.

Let

S D KŒx1; : : : ; xn; y1; : : : ; ym!

with Z2-grading induced by the assignment deg.xi / D .1; 0/ and deg.yi / D .0; 1/.
For every c D .c1; c2/ we look at the diagonal subalgebra

S$ D ˚a2$Sa

where

$ D fic W i 2 Zg:

The algebra S$ is nothing but the Segre product of the c1-th Veronese ring of
KŒx1; : : : ; xn! and the c2-th Veronese ring of KŒy1; : : : ; ym!. For a Z2-graded
standard K-algebra R D S=I with I $ S a bigraded ideal we may consider the
associated diagonal algebra

R$ D ˚a2$Ra

and similarly for modules. One has:

Theorem 3.13. (1) For every .a; b/ 2 Z2 the S$-submodule S.!a;!b/$ of S has
a linear resolution.
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(2) For every Z2-standard graded algebra R one has thatR$ is Koszul for “large”
$ (i.e. c1 * 0 and c2 * 0/. One can give explicit bounds in terms of the
bigraded Betti numbers of R as an S -module.

Let I be a homogeneous ideal of S D KŒx1; : : : ; xn! generated by elements
f1; : : : ; fr of degree d . The Rees ring

Rees.I / D
M

i2N

I i D SŒf1t; : : : ; fr t ! $ SŒt !

is a bigradedK-algebra. Its component of degree .i; j / is

Rees.I /.i;j / D .I j /jdCi

It is easy to check that Rees.I / is a standard bigraded algebra. It can be seen as a
quotient ring of SŒy! D SŒy1; : : : ; yr ! bigraded by deg.xi / D .1; 0/ and deg.yi / D
.0; 1/. Then we may apply Theorem 3.13 and we get that

Corollary 3.14. There exist integers c0 and e0 (depending on I ) such that for every
c ' c0 and e ' e0 theK-subalgebra of S generated by the vector space .I e/edCc is
Koszul.

If one has information or bounds on the bigraded resolution of Rees.I / an SŒy!-
module then Corollary 3.14 can be formulated more precisely. One of the few
families of ideals I for which the resolution of Rees.I / is known are the complete
intersections. If f1; : : : ; fr form a regular sequence then

Rees.I / D SŒy!=I2
%
y1 y2 : : : yr
f1 f2 : : : fr

&

and Rees.I / is resolved by the Eagon–Northcott complex. Then applying the
principle described above to this specific case one has:

Theorem 3.15. Let f1; : : : ; fr be a regular sequence of elements of degree d in
S D KŒx1; : : : ; xn! and I D .f1; : : : ; fr /. For c; e 2 N set A D KŒ.I e/edCc!.
Then:

(1) If c ' d=2 then A is quadratic.
(2) if c ' d.r ! 1/=r then A is Koszul.

See [CHTV] for details of the proofs of Theorem 3.15.

Example 3.16. With r D n, d D 2 and fi D x2i for every i D 1; : : : ; n we have
that the toric algebra

KŒxa W a 2 Nn; jaj D 2C c and max.a/ ' 2!

is quadratic for every c and Koszul for c ' 2.n! 1/=n.
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Given integers n; d; s we set

PV.n; d; s/ D KŒxa W a 2 Nn; jaj D d and #fi W ai > 0g % s!:

This is called the pinched Veronese generated by the monomials in n variables, of
total degree d and supported on at most s variables.

Question 3.17. For which values of n; d; s is the algebra PV.n; d; s/ quadratic or
Koszul? Not all of them are quadratic, for instance PV.4; 5; 2/ is defined, according
to CoCoA [CoCoA], by 168 quadrics and 12 cubics.

The algebra of Example 3.16 for c D n! 2 coincides with the pinched Veronese
PV.n; n; n ! 1/. Hence PV.n; n; n ! 1/ is quadratic for every n and Koszul for
n > 3. For n D 3 we have that

PV.3; 3; 2/ D KŒx3; x2y; x2z; xy2; xz2; y3; y2z; yz2; z3!

is quadratic. The argument above does not answer the question whether PV.3; 3; 2/
is a Koszul algebra. This turns out to be a difficult question on its own. In [Ca] and
[CC] it is proved that:

Theorem 3.18. The pinched Veronese PV.3; 3; 2/ is Koszul. The same holds for the
generic projection of the Veronese surface of P9 to P8.

It is not clear whether PV.3; 3; 2/ is G-quadratic. The Koszul property of a toric ring
is equivalent to the Cohen–Macaulay property of intervals of the underlying poset,
see [PRS, 2.2]. Recently Tancer has shown that the intervals of the poset associated
with PV.n; n; n ! 1/ are shellable for n > 3, see [Ta]. It is not clear whether the
same is true for n D 3.

3.3 Koszul Algebras Associated with Hyperspace
Configurations

Another interesting family of Koszul algebras with relations to combinatorics arises
in the following way. Let V D V1; : : : ; Vm be a collection of subspaces of the
space of linear forms in the polynomial ring KŒx1; : : : ; xn!. Denote by A.V / the
K-subalgebra of KŒx1; : : : ; xn! generated by the elements of the product V1 " " "Vm.
We have:

Theorem 3.19. The algebra A.V / is Koszul.

We outline the proof of Theorem 3.19. Denote by R the polynomial ring
KŒx1; : : : ; xn! and set di D dimVi . Consider auxiliary variables y1; : : : ; ym and the
Segre product:

S D KŒyixj W i D 1; : : : ; m; j D 1; : : : ; n!
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of KŒy1; : : : ; ym! with R. Set

B.V / D KŒy1V1; : : : ; ymVm!:

and

T D KŒtij W i D 1; : : : ; m; j D 1; : : : ; n!:

Note that B.V / is a K-subalgebra of S . We give degree ei 2 Zm to yixj and to
tij so that S , T and B.V / are Zm-graded. Let

$ D f.a; a; : : : ; a/ 2 Zm W a 2 Zg:

By construction, the diagonal algebra

B.V /$ D
M

b2Zm
B.V /b

coincides with KŒV1 " " "Vmy1 " " "ym! and hence

B.V /$ D A.V /:

For i D 1; : : : ; m let ffij W j D 1; : : : ; di g be a basis of Vi and complete it
to a basis of R1 with elements ffij W j D di C 1; : : : ; ng (no matter how). Set
T .V / D KŒtij W 1 % i % m; 1 % j % di !. We have presentations:

" W T ! S with tij ! yifij for all i; j

"0 W T .V /! B.V / with tij ! yifij for all i and 1 % j % di

We have:

Lemma 3.20. Suppose that ker"0 has a Gröbner basis (with respect to some term
order >) of elements of degrees bounded above by .1; 1; : : : ; 1/ 2 Zm. Then A.V /
is Koszul.

Proof. Set I D ker"0. Applying $ to the presentation B.V / D T .V /=I we
obtain A.V / D T .V /$=I$. Now T .V /$ is a multiple Segre product and hence
it is strongly Koszul (the argument is similar to the one for the Veronese case) and
by assumption in>.I$/ is generated by a subset of the semigroup generators of
T .V /$. But then T .V /= in>.I$/ is Koszul because of the strongly Koszul property
of T .V /$. Hence T .V /$=I$ is Koszul by Gröbner deformation. ut

Since, by construction, ker"0 D ker" \ T .V /, a Gröbner basis of ker"0 can
be obtained from a lexicographic Gröbner basis of ker" by elimination. Therefore,
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combining this point of view with Lemma 3.20 we have that Theorem 3.19 is a
corollary of:

Lemma 3.21. The ideal ker" has a universal Gröbner basis whose elements have
degrees bounded above by .1; 1; : : : ; 1/ 2 Zm.

Observe that " is a presentation of the Segre product S but with respect to a non-
necessarily monomial basis. Hence ker" is obtained from the ideal I2.t/ of the
2-minors of the m ( n matrix

t D .tij/

by a change of coordinates preserving the Zm-graded structure. Since the Hilbert
function does not change under taking initial ideals, it is enough to prove the
following (very strong) assertion:

Lemma 3.22. Every ideal of T that has the Zm-graded Hilbert function of I2.t/ is
generated in degrees bounded above by .1; 1; : : : ; 1/ 2 Zm.

Lemma 3.22 has been proved by Cartwright and Sturmfels [CS] using multi-
graded generic initial ideals and a result proved in [C]. This approach has been
generalized in [CDG] to identify universal Gröbner bases of ideals of maximal
minors of matrices of linear forms hence generalizing the classical result of
Bernstein, Sturmfels and Zelevinsky [BZ, SZ], see also [K]. In detail, the group
GLn.K/m acts as the group of Zm-gradedK-algebra automorphisms on T by linear
substitution (row by row). An ideal I $ T is Borel-fixed if it is invariant under
the action of the Borel subgroupBn.K/m of GLn.K/m. Here Bn.K/ is the group of
upper triangular matrices. In [CDG] it has been proved that

Lemma 3.23. If J $ T is Borel-fixed and radical then every ideal I with
the Zm-graded Hilbert function of J is generated in degrees bounded above by
.1; 1; : : : ; 1/ 2 Zm.

Summing up, to conclude the proof of Theorem 3.19 it is enough to prove that:

Lemma 3.24. The ideal I2.t/ has the Zm-graded Hilbert function of the radical
and Borel-fixed ideal J generated by the monomials ti1j1 " " " tikjk satisfying the
following conditions:

1 % i1 < " " " < ik % m;
1 % j1; : : : ; jk % n;
j1 C " " "C jk ' nC k:

This is done in [C] by proving that J is indeed the multigraded generic initial
ideal gin.I2.t// of I2.t/. The inclusion J # gin.I2.t// is a consequence of the
following Lemma 3.25. The other inclusion is proved by checking that J is pure
with codimension and degree equal those of I2.t/.
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Lemma 3.25. Let V1; : : : ; Vm be subspaces of the vector space of the linear forms
R1. If

Pm
iD1 dimVi ' n C m then dim

Qm
iD1 Vi <

Qm
iD1 dimVi , i.e. there is a

non-trivial linear relation among the generators of the product
Qm
iD1 Vi obtained

by multiplyingK-bases of the Vi ’s.

One can also prove directly that T=I2.t/ and T=J have the same Zm-graded
Hilbert function in the following way. For every a D .a1; : : : ; am/ 2 Nm we show
that the vector space dimensions of T=I2.t/ and of T=J in multidegree a are equal.
By induction on m we may assume that a has full support, i.e. ai > 0 for all i .
Since T=I2.t/ is the Segre product of KŒy1; : : : ; ym! and KŒx1; : : : ; xn!, a K-basis
of T=I2.t/ in degree a is given by the monomials of the form

Q
yaii p where p is

a monomial in the x’s of degree
P
ai . It follows that the dimension of T=I2.t/ in

degree a equals:

 
n ! 1C a1 C a2 C " " "C am

n ! 1

!
:

Given a monomial p in the tij’s of multidegree a we set Mi.p/ D maxfj W tijjpg. It
is easy to see that:

p 2 J ”
mX

iD1
Mi.p/ ' nCm:

For a fixed c D .c1; : : : ; cm/ 2 f1; : : : ; ngm the cardinality of the set of the
monomials p in the tij’s with degree a and Mi.p/ D ci is given by

mY

iD1

 
ci ! 1C ai ! 1

ci ! 1

!
:

Therefore the dimension of T=J in multidegree a is given by:

X

c

mY

iD1

 
ci ! 1C ai ! 1

ci ! 1

!

where the sum is extended to all the c D .c1; : : : ; cm/ 2 f1; : : : ; ngm with c1 C
" " "C cm < nCm. Replacing n! 1 with n and ci ! 1 with ci , we have to prove the
following identity:

 
nC a1 C a2 C " " "C am

n

!
D
X

c

mY

iD1

 
ci C ai ! 1

ci

!
(19)
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where the sum is extended to all the c D .c1; : : : ; cm/ 2 Nm with c1C " " "C cm % n.
The equality (19) is a specialization (v D m C 1, bi D ai for i D 1; : : : ; m and
bmC1 D 1) of the following identity:

 
nC b1 C b2 C " " "C bv ! 1

n

!
D
X

c

vY

iD1

 
ci C bi ! 1

ci

!
(20)

where the sum is extended to all the c D .c1; : : : ; cv/ 2 Nv with c1C" " "Ccv D n.
Now the identity (20) is easy: both the left and right side of it count the number of

monomials of total degree n in a set of variables which is a disjoint union of subsets
of cardinality b1; b2; : : : ; bv.
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