
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge
Regression

Giacomo Meanti
MaLGa, DIBRIS, UniGe (IT)

Luigi Carratino
MaLGa, DIBRIS, UniGe (IT)

Ernesto De Vito
MaLGa, DIMA, UniGe (IT)

Lorenzo Rosasco
MaLGa, DIBRIS, UniGe (IT) – CBMM, MIT (USA) – IIT Genoa (IT)

Abstract

Kernel methods provide a principled ap-
proach to nonparametric learning. While
their basic implementations scale poorly to
large problems, recent advances showed that
approximate solvers can efficiently handle
massive datasets. A shortcoming of these so-
lutions is that hyperparameter tuning is not
taken care of, and left for the user to per-
form. Hyperparameters are crucial in prac-
tice and the lack of automated tuning greatly
hinders efficiency and usability. In this pa-
per, we work to fill in this gap focusing on
kernel ridge regression based on the Nyström
approximation. After reviewing and con-
trasting a number of hyperparameter tuning
strategies, we propose a complexity regular-
ization criterion based on a data dependent
penalty, and discuss its efficient optimization.
Then, we proceed to a careful and extensive
empirical evaluation highlighting strengths
and weaknesses of the different tuning strate-
gies. Our analysis shows the benefit of the
proposed approach, that we hence incorpo-
rate in a library for large scale kernel meth-
ods to derive adaptively tuned solutions.

1 INTRODUCTION

Learning from finite data requires fitting models of
varying complexity to training data. The problem of
finding the model with the right complexity is referred

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

to as model selection in statistics and more broadly
as hyperparameter tuning in machine learning. The
problem is classical and known to be of utmost im-
portance for machine learning algorithms to perform
well in practice. The literature in statistics is ex-
tensive (Hastie et al., 2009), including a number of
theoretical results (Arlot, 2007; Massart, 2007; Tsy-
bakov, 2003). Hyperparameter (HP) tuning is also at
the core of recent trends such as neural architecture
search (Elsken et al., 2019) or AutoML (Hutter et al.,
2018). In this paper, we consider the question of hy-
perparameter tuning in the context of kernel methods
and specifically kernel ridge regression (KRR) (Smola
and Schölkopf, 2000). Recent advances showed that
kernel methods can be scaled to massive data-sets us-
ing approximate solvers (Chen et al., 2017; Ma and
Belkin, 2019; Meanti et al., 2020). The latter take ad-
vantage of a number of ideas from optimization (Boyd
and Vandenberghe, 2004) and randomized algorithms
(El Alaoui and Mahoney, 2015), and exploit paral-
lel computations with GPUs. While these solutions
open up new possibilities for applying kernel methods,
hyperparameter tuning is notably missing, ultimately
hindering their practical use and efficiency. Indeed,
available solutions which provide hyperparameter tun-
ing are either limited to small data, or are restricted
to very few hyperparameters (Pedregosa et al., 2011;
Steinwart and Thomann, 2017; Suykens et al., 2002).

In this paper we work to fill in this gap. We con-
sider approximate solvers based on the Nyström ap-
proximation and work towards an automated tuning
of the regularization and kernel parameters, as well
as the Nyström centers. On the one hand, we pro-
vide a careful review and extensive empirical compar-
ison for a number of hyperparameter tuning strate-
gies, while discussing their basic theoretical guaran-
tees. On the other hand we propose, and provide
an efficient implementation for, a novel criterion in-
spired by complexity regularization (Bartlett et al.,



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

2002) and based on a data-dependent bound. This
bound treats separately the sources of variance due
to the stochastic nature of the data. In practice, this
results in better stability properties of the correspond-
ing tuning strategy. As a byproduct of our analysis
we complement an existing library for large-scale ker-
nel methods with the possibility to adaptively tune a
large number of hyperparameters. Code is available at
https://github.com/falkonml/falkon.

In Section 2 we introduce the basic ideas behind em-
pirical risk minimization and KRR, as well as hyper-
parameter tuning. In Section 3 we propose our new
criterion, and discuss its efficient implementation in
Section 4. In Section 5 we conduct a thorough experi-
mental study and finally, in Section 6 we provide some
concluding remarks.

2 BACKGROUND

We introduce the problem of learning a model’s param-
eters, which leads to learning of the hyperparameters
and then discuss various objective functions and opti-
mization algorithms which have been proposed for the
task.

2.1 Parameter and Hyperparameter
Learning

Assume we are given a set of measurements
{(xi, yi)}ni=1 ⊂ X × Y related to each other by an un-
known function f∗ : X → Y and corrupted by some
random noise εi with variance σ2.

yi = f∗(xi) + εi. (1)

We wish to approximate the target function f∗ using
a model f : X → Y defined by a set of parameters
which must be learned from the limited measurements
at our disposal. In order for the learning procedure
to succeed, one often assumes that f belongs to some
hypothesis space F , and this space typically depends
on additional hyperparameters θ. Assume we are given
a loss function ` : Y×Y → R; we can learn a model by
fixing the hyperparameters θ and minimizing the loss
over the available training samples:

f̂θ = arg min
f∈Fθ

n∑
i=1

`(f(xi), yi)

In this paper we are concerned with kernel ridge regres-
sion: a specific kind of model where the loss function is
the squared loss `(y, y′) = ‖y−y′‖2 and the hypothesis
space is a reproducing kernel Hilbert space (RKHS)H.
Associated to H is a kernel function kγ : X × X → R
which depends on hyperparameters γ. To ensure that

the minimization problem is well defined we must add
a regularization term controlled by another hyperpa-
rameter λ:

f̂λ,γ = arg min
f∈H

n∑
i=1

‖f(xi)− yi‖2 + λ‖f‖2H.

The solution to this minimization problem is
unique (Caponnetto and De Vito, 2007), but is very
expensive to compute requiring O(n3) operations and
O(n2) space. An approximation to KRR considers
a lower-dimensional subspace Hm ⊂ H as hypothe-
sis space, where Hm is defined from m � n points
Z = {zj}mj=1 ⊂ X (Williams and M. Seeger, 2001).
While the inducing points Z (also known as Nyström
centers) are often picked from the training set with
different sampling schemes (Kumar et al., 2012), they
can also be considered as hyperparameters. In fact
this is common in sparse Gaussian Processes (GPs)
and leads to models with a much smaller number of in-
ducing points (Hensman, Fusi, et al., 2013; Hensman,
Matthews, et al., 2015; Titsias, 2009). Minimizing the
regularized error gives the unique solution

f̂λ,Z,γ =

m∑
j=1

βjkγ(·, zj), with

β = (K>nmKnm + λnKmm)−1K>nmY (2)

with (Knm)i,j = kγ(xi, zj) and (Kmm)i,j = kγ(zi, zj).
The Nyström KRR model (N-KRR) reduces the
computational cost of finding the coefficients to
O(n
√
n log n) when using efficient solvers (Ma and

Belkin, 2019; Meanti et al., 2020; Rudi et al., 2017).

The ideal goal of hyperparameter optimization is to
find a set of hyperparameters θ∗ for which f̂θ∗ min-
imizes the test error (over all unseen samples). By
definition we cannot actually evaluate the test error:
we must use the available data points. Näıvely one
could think of minimizing the training error instead,
but such a scheme inevitably chooses overly complex
models which overfit the training set. Instead it is
necessary to minimize a data-dependent criterion L

θ̂ = arg min
θ
L(f̂θ)

such that complex models are penalized. In practice a
common strategy for choosing L is for its expectation
(with respect to the sampling of the data) to be equal
to, or an upper bound of the test error. In the next
section we will look at instances of L which appear in
the literature and can be readily applied to N-KRR.

2.2 Objective Functions

Validation error A common procedure for HP tun-
ing is to split the available n training samples into two

https://github.com/falkonml/falkon


Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

parts: a training set and a validation set. The first
is used to learn a model f̂θ with fixed hyperparame-
ters θ, while the validation set is used to estimate the
performance of different HP configurations.

LVal(f̂θ) =
1

nval

nval∑
i=1

‖f̂θ(xvali )− yvali ‖2 (3)

By using independent datasets for model training and
HP selection, LVal will be an unbiased estimator of
the test error and it can be proven that its minimizer
is close to θ∗ under certain assumptions (Arlot and

Celisse, 2010). However, since f̂θ has been trained with
ntr < n samples, there is a small bias in the chosen
hyperparameters (Varma and Simon, 2006). Further-
more the variance of the hold-out estimator is typically
very high as it depends on a specific data split. Two
popular alternatives which address this latter point
are k-fold cross-validation (CV) which averages over
k hold-out estimates and leave-one-out CV.

Leave-one-out CV and Generalized CV The
LOOCV estimator is an average of the n estimators
trained on all n−1 sized subsets of the training set and
evaluated on the left out sample. The result is an al-
most unbiased estimate of the expected risk on the full
dataset (Vapnik, 1998). For linear models a computa-
tional shortcut allows to compute the LOOCV esti-
mator by training a single model on the whole dataset
instead of n different ones (Cawley and Talbot, 2004).
In particular in the case of N-KRR we can consider

LLOOCV(f̂θ) =
1

n

n∑
i=1

(
yi − f̂θ(xi)

1−Hii

)2

, (4)

where the so-called hat matrix H is H =
Knm(K>nmKnm + λnKmm)−1Knm.

GCV is an approach proposed in Golub et al. (1979)
to further improve LOOCV’s computational efficiency
and to make it invariant to data rotations:

LGCV(f̂θ) =
1

n

n∑
i=1

(
yi − f̂θ(xi)
1
nTr(I −H)

)2

. (5)

For GCV Cao and Golubev (2006) proved an oracle
inequality which guarantees convergence to the neigh-
borhood of θ∗ when estimating λ for KRR.

Complexity regularization Complexity regular-
ization, or covariance penalties (Efron, 2004; Mallows,
1973) are a general framework for expressing objective
functions as the empirical error plus a penalty term to
avoid overly complex models. For linear models the
trace of the hat matrix acts as penalty against com-
plexity. Applying these principles to N-KRR gives the

objective

LC−Reg(f̂λ,Z,γ) =
1

n
‖f̂λ,Z,γ(X)− Y ‖2

+
2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

(6)

where K̃ = KnmK
†
mmK

>
nm (the Nyström kernel), and

A† denotes the Moore-Penrose inverse of matrix A.
The first term can be interpreted as a proxy to the
bias of the error, and the second as a variance estimate.
For estimating λ in (N-)KRR, Arlot and Bach (2009)
proved an oracle inequality if a precise estimate of the
noise σ2 is available.

Sparse GP Regression (Titsias, 2009) A dif-
ferent approach comes from a Bayesian perspective,
where the equivalent of KRR is Gaussian Process Re-
gression (GPR). Instead of estimating the test error,
HP configurations are scored based on the “probability
of a model given the data” (Rasmussen and Williams,
2006). A fully Bayesian treatment of the hyperparam-
eters allows to write down their posterior distribution,
from which the HP likelihood has the same form of
the marginal likelihood in the model parameter’s pos-
terior. Hence maximizing the (log) marginal likelihood
(MLL) with gradient-based methods is common prac-
tice in GPR.

Like with N-KRR, inducing points are used in GPR
to reduce the computational cost, giving rise to mod-
els such as SoR, DTC, FiTC (Quiñonero-Candela and
Rasmussen, 2005). Here we consider the SGPR model
proposed in Titsias (2009) which treats the inducing
points as variational parameters, and optimizes them
along with the other HPs by maximizing a lower bound
to the MLL. The objective to be minimized is

LSGPR(f̂λ,Z,γ) = log
∣∣∣K̃ + nλI

∣∣∣
+ Y >(K̃ + nλI)−1Y +

1

nλ
Tr
(
K − K̃

)
. (7)

The first term of Eq. (7) penalizes complex models, the
second pushes towards fitting the training set well and
the last term measures how well the inducing points
approximate the full training set. Recently the ap-
proximate MLL was shown to converge to its exact
counterpart (Burt et al., 2020), but we note that this
does not guarantee convergence to the optimal hyper-
parameters.

2.3 Optimization Algorithms

In this section we describe three general approaches for
the optimization of the objectives introduced above.



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

Grid search In settings with few hyperparameters
the most widely used optimization algorithm is grid-
search which tries all possible combinations from a pre-
defined set, choosing the one with the lowest objective
value at the end. Random search (Bergstra and Ben-
gio, 2012) and adaptive grid search (used for SVMs in
Steinwart and Thomann (2017)) improve on this basic
idea, but they also become prohibitively costly with
more than ∼ 5 HPs as the number of combinations to
be tested grows exponentially.

Black-box optimization A more sophisticated
way to approach the problem is to take advantage of
any smoothness in the objective. Sequential model-
based optimization (SMBO) algorithms (Brochu et al.,
2010; Shahriari et al., 2016; Snoek et al., 2012) take
evaluations of the objective function as input, and fit
a Bayesian surrogate model to such values. The sur-
rogate can then be cheaply evaluated on the whole
HP space to suggest the most promising HP values
to explore. These algorithms do not rely on gradient
information so they don’t require the objective to be
differentiable and can be applied for optimization of
discrete HPs. However, while more scalable than grid
search, black-box algorithms become very inefficient in
high (i.e. > 100) dimensions.

Gradient-based methods Scaling up to even
larger hyperparameter spaces requires exploiting the
objective’s local curvature. While the optimization
problem is typically non-convex, gradient descent will
usually reach a good local minimum. When the ob-
jective can be decomposed as a sum over the data-
points SGD can be used, which may provide compu-
tational benefits (e.g. the SVGP objective (Hensman,
Fusi, et al., 2013) is optimized in mini-batches with
SGD). In the context of KRR, gradient-based meth-
ods have been successfully used for HP optimization
with different objective functions (Keerthi et al., 2007;
M. W. Seeger, 2008). Recent extensions to gradient-
based methods have been proposed for those cases
when the trained model cannot be written in closed
form. Either by unrolling the iterative optimization
algorithm (Franceschi et al., 2017; Grazzi et al., 2020;
Maclaurin et al., 2015), or by taking the model at con-
vergence with the help of the implicit function theo-
rem (Pedregosa, 2016; Rajeswaran et al., 2019), it is
then possible to differentiate a simple objective (typ-
ically a hold-out error) through the implicitly defined
trained model. This has proven to be especially useful
for deep neural nets (Lorraine et al., 2020), but is un-
necessary for N-KRR where the trained model can be
easily written in closed form.

Figure 1: Test-error and penalty (λ) as a function
of optimization epoch on the small-HIGGS dataset.
m = 100 centers, d lengthscales and λ were opti-
mized with equal initial conditions. The three unbi-
ased proxy functions lead to overfitting, while SGPR
and the proposed objective do not.

3 HYPERPARAMETER TUNING
FOR NYSTRÖM KRR

The objectives introduced in the previous section can
be applied to HP tuning for kernel methods. Always
keeping in mind efficiency but also usability, our goal
is to come up with an objective and associated opti-
mization algorithm which: 1) can be used to tune the
hyperparameters of Nyström kernel ridge regression
including the inducing points and 2) can be computed
efficiently, even for large scale problems.

To satisfy the first point, an algorithm of the first-
order is needed since the inducing points are typically
between a hundred and a few thousands (each point
being of the same dimension as the data). Regard-
ing the second point we found empirically that the
unbiased objectives are prone to overfitting on certain
datasets. An example of this behavior is shown in Fig-
ure 1 on a small subset of the HIGGS dataset. The
first three objectives (Hold-out, GCV and C-Reg) are
unbiased estimates of the test error, hence it is their
variance which causes overfitting. To mitigate such
possibility in our objective we may look into the dif-
ferent sources of variance: hold-out depends strongly
on which part of the training set is picked for valida-
tion, GCV and C-Reg don’t rely on data splitting but
still suffer from the variance due to the random initial
choice of inducing points.

We set out to devise a new objective in the spirit of
complexity regularization, which is an upper bound on
the test error. A biased estimate – which is therefore
overpenalizing – will be more resistant to noise than
an unbiased one (as was noted in Arlot (2007)), and we
tailor our objective specifically to N-KRR in order to
explicitly take into account the variance from inducing



Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

point selection.

We base our analysis of the N-KRR error in the
fixed design setting, where the points xi ∈ X , i =
(1, . . . , n) are assumed to be fixed, and the stochastic-
ity comes from i.i.d. random variables εi, . . . , εn such
that E[εi] = 0 and E

[
ε>i εi

]
= σ2. Denote the empirical

error of an estimator f ∈ H as L̂(f) = n−1‖f(X)−Y ‖2
and the test error as L(f) = n−1‖f(X)−f∗(X)‖2 (re-
call f∗ from Eq. (1)). Consider inducing points zj and
a subspace of H: Hm = span{kγ(z1, ·), . . . , kγ(zm, ·)},
m � n, and let P be the projection operator with
range Hm. Denote the regularized empirical risk as
L̂λ(f) = L̂(f) + λ‖f‖2H,

Assessing a particular hyperparameter configuration
(λ, Z, γ) requires estimating the expected test error at
the empirical risk minimizer trained with that con-
figuration f̂λ,Z,γ ; the optimal HPs then are found by

(λ, Z, γ)∗ = arg min(λ,Z,γ) L(f̂λ,Z,γ). The following
theorem gives an upper bound on the ideal objective;
a full proof is available in Appendix A.

Theorem 1. Under the assumptions of fixed-design
regression we have that,

E
[
L(f̂λ,Z,γ)

]
≤2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
E
[
L̂(fλ,γ)

]
+ 2E

[
L̂(fλ,γ)

]
(8)

Proof sketch. We decompose the test error expectation
in the following manner

E
[
L(f̂λ,Z,γ)

]
≤ E

[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)︸ ︷︷ ︸

1○

+ L̂(f̂λ,Z,γ) + λ‖f̂λ,Z,γ‖2H − L̂λ(Pfλ,γ)︸ ︷︷ ︸
2○

+ L̂λ(Pfλ,γ)︸ ︷︷ ︸
3○

]

by adding and subtracting L̂(f̂λ,Z,γ), L̂λ(Pfλ,γ) and

summing the positive quantity λ‖f̂λ,Z,γ‖2H. Since

f̂λ,Z,γ is the minimizer of L̂(f̂λ,Z,γ) + λ‖f̂λ,Z,γ‖2H in
the space Hm and since Pfλ,γ ∈ Hm, the second term
is negative and can be discarded.

Term 1○ is the variance of N-KRR and can be com-
puted exactly by noting that

E
[
L̂(f̂λ,Z,γ)

]
= E

[
n−1‖f̂λ,Z,γ(X)− f∗(X)− ε‖2

]
= E

[
L(f̂λ,Z,γ)

]
+ σ2

− 2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
where the first part cancels and we can ignore σ2 which
is fixed and positive. Expanding the inner product and

taking its expectation we are left with

2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
=

2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

which is the effective dimension or the degrees of free-
dom of the hypothesis space Hm, times the noise vari-
ance σ2.

Term 3○ takes into account the difference between esti-
mators in H and in Hm. We begin by upper-bounding
the regularized empirical error of Pfλ,γ with a first
part containing the projection operator and a second
term without P

E
[
L̂(Pfλ,γ) + λ‖Pfλ,γ‖2H

]
≤ E

[
2

n
‖K1/2(I − P )‖2‖fλ,γ‖2 + 2L̂λ(fλ,γ)

]
.

Now ‖K1/2(I − P )‖2 ≤ Tr(K − K̃) the difference be-
tween full and approximate kernels, and ‖fλ,γ‖2 ≤
λ−1L̂λ(fλ,γ) which leads us to the desired upper
bound.

We now make two remarks on computing Eq. (8).

Remark 1. (Computing E
[
L̂λ(fλ,γ)

]
) In the spirit

of complexity regularization we can approximate this
bias term by the empirical risk of N-KRR L̂λ(f̂λ,Z,γ),
so that the final objective will consist of a data-fit term
plus two complexity terms: the effective dimension and
the Nyström approximation error.

Remark 2. (Estimating σ2) Once again following the
principle of overpenalizing rather than risking to over-
fit, we note that in binary classification the variance
of Y is capped at 1 for numerical reasons, while for
regression we can preprocess the data dividing Y by
its standard deviation. Then according to Eq. (1) we
must have that the label standard deviation is greater
than the noise standard deviation hence σ̂2 = 1 ≥ σ2.

Our final objective then has a form which we can com-
pute efficiently

LProp =
2

n
Tr
(

(K̃ + nλI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
L̂λ(f̂λ,Z,γ)

+
2

n
‖f̂λ,Z,γ(X)− Y ‖2 + λ‖f̂λ,Z,γ‖2H. (9)

We make two further remarks on the connections to
the objectives of Section 2.2.

Remark 3. (Similarities with complexity regulariza-
tion) LProp has a similar form to Eq. (6) with an extra
term which corresponds to the variance introduced by
the Nyström centers which we were aiming for (up to
multiplication by the KRR bias).



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

Figure 2: The effect of stochastic trace estimation.
We plot the optimization curves of the exact objec-
tive LProp (Deterministic) and the approximated ob-
jectives with 10, 20 and 100 STE vectors. On the four
datasets we optimized m = 200 centers, λ and γ.

Remark 4. (Similarities with SGPR) Eq. (9) shares
many similarities with the SGPR objective: the log-
determinant is replaced by the model’s effective dimen-
sion – another measure of model complexity – and the
term Tr(K − K̃) is present in both objectives. Fur-
thermore the data-fit term in LSGPR is

Y >(K̃ + nλI)−1Y

=
1

λ
(n−1‖f̂λ,Z,γ(X)− Y ‖2 + λ‖f̂λ,Z,γ‖2H)

=
1

λ
L̂λ(f̂λ,Z,γ)

which is the same as in the proposed objective up to
a factor λ−1.

4 SCALABLE APPROXIMATIONS

Some practical considerations are needed to apply the
objective of Eq. (9) to large-scale datasets – for which
direct computation is not possible due to space or time
constraints. We examine the terms comprising LProp

and discuss their efficient computations. In Figure 2,
we verify that the resulting approximation is close to
the exact objective.

Starting with the last part of the optimization objec-
tive (the one which measures data-fit) we have that

‖f̂λ,Z,γ(X)− Y ‖2 + λ‖f̂λ,Z,γ‖2H

= Y >(I −Knm(

B︷ ︸︸ ︷
K>nmKnm + nλKmm)−1K>nm)Y︸ ︷︷ ︸

=f̂λ,Z,γ(X)

which can be computed quickly using a fast, memory-
efficient N-KRR solver such as Falkon (Meanti et al.,

2020) or EigenPro (Ma and Belkin, 2019). However we
must also compute the objective’s gradients with re-
spect to all HPs, and since efficient solvers proceed by
iterative minimization, such gradients cannot be triv-
ially computed using automatic differentiation, indeed,
it would be in principle possible to unroll the optimiza-
tion loops and differentiate through them, the memory
requirements for this operation would be too high for
large datasets.

Efficient gradients A solution to compute the gra-
dients efficiently is to apply the chain rule by hand
until they can be expressed in terms of matrix vector
products (∇K)v with K any kernel matrix (i.e. Knm

or Kmm) and v a vector. As an example the gradient
of the data-fit term is

∇(Y >KnmB
−1K>nmY ) =

2Y >(∇Knm)B−1K>nmY

− Y >KnmB
−1(∇B)B−1K>nmY

where we can obtain all B−1K>nmY vectors via a non-
differentiable N-KRR solver, and multiply them by the
(differentiable) kernel matrices for which gradients are
required. Computing these elementary operations is
efficient, with essentially the same cost as the forward
pass Kv, and can be done row-wise over K. Block-
wise computations are essential for low memory usage
since kernel matrices tend to be huge but kernel-vector
products are small, and they allow trivial paralleliza-
tion across compute units (CPU cores or GPUs). In
many cases these operations can also be accelerated
using KeOps (Charlier et al., 2021).

The remaining two terms of Eq. (9) are harder to com-

pute. Note that in Tr(K − K̃) we can often ignore
Tr(K) since common kernel functions are trivial when
computed between a point and itself, but more in gen-
eral it only requires evaluating the kernel function n
times. We thus focus on

Tr
(
K̃
)

= Tr
(
KnmK

†
mmK

>
nm

)
(10)

and on the effective dimension

Tr
(

(K̃ + λI)−1K̃
)

= Tr
(
KnmB

−1K>nm
)
. (11)

Both these terms are traces of huge n × n matrices.
By their symmetry we can express them as squared
norms reducing the space requirements to n×m, but
they still remain slow to compute: just the K>nmKnm

term costs more than training a N-KRR model with
the Falkon solver.

Trace estimation A simple approximation can
vastly improve the efficiency of computing Equations



Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

(10), (11), and their gradients: stochastic trace estima-
tion (STE). The Hutchinson estimator (Hutchinson,
1990) approximates Tr(A) by 1

t

∑t
i=1 r

>
i Ari where ri

are zero mean, unit standard deviation random vec-
tors. We can use this to estimate Eq. (11) by run-
ning the Falkon solver with R = [r1, . . . , rt] instead of
the labels Y to obtain (K>nmKnm + λKmm)−1K>nmR,
then multiplying the result by K>nmR and normalizing
by the number of stochastic estimators t. The same
random vectors R can be used to compute K>nmR for
Eq. (10), coupled with the Cholesky decomposition
of Kmm. STE reduces the cost for both terms from
O(nm2) to O(nmt) which is advantageous since t < m.
In Figure 4 we investigate whether the approximate
objective matches the exact one, and how t affects the
approximation. The observed behavior is that as few
as 10 vectors are enough to approximate the full ob-
jective for a large part of the optimization run, but it
can happen that such coarse approximation causes the
loss to diverge. Increasing t to 20 solves the numerical
issues, and on all the datasets tested we found t = 20
to be sufficient.

Alternatively, Eq. (10) can be approximated with a
Nyström-like procedure: taking a random subsam-
ple of size p from the whole dataset, denote Kpm as
the kernel matrix between such p points and the m
Nyström centers; then

Tr
(
KnmK

†
mmK

>
nm

)
≈ n

p
Tr
(
KpmK

†
mmK

>
pm

)
which can be computed in pm2 + m3 operations. By
choosing p ∼ m the runtime is then O(m3), which
does not depend on the dataset size, and is more ef-
ficient than the STE approach. Unfortunately, this
additional Nyström step cannot be effectively applied
for computing Eq. (11) where the inversion of B is the
most time-consuming step.

5 EXPERIMENTS

To validate the objective we are proposing for HP op-
timization of N-KRR models we ran a series of exper-
iments aimed at answering the following questions:

1. Since our objective is an upper-bound on the
test error, is the over-penalization acceptable, and
what are its biases?

2. What is its behavior during gradient-based opti-
mization: does it tend to overfit, does it lead to
accurate models?

3. Does the approximation of Section 4 enable us
to actually tune the hyperparameters on large
datasets?

The first point is a sanity check: would the objective be
a good proxy for the test error in a grid-search scenario

Figure 3: Effectiveness of test error proxies on a grid.
The objective values (log transformed) are plotted
at different λ, γ points for the small-HIGGS dataset.
Lighter points indicate a smaller objective and hence
a better hyperparameter configuration. The minimum
of each objective is denoted by a cross.

over two hyperparameters (λ and γ with the RBF ker-
nel). This doesn’t necessarily transfer to larger HP
spaces, but gives an indication of its qualitative be-
havior. In Figure 3 we compare 5 objective functions
to the test error on such 2D grid. It is clear that the
three functions which are unbiased estimators of the
test error have very similar landscapes. Both SGPR
and the proposed objective instead have the tendency
to overpenalize: SGPR strongly disfavors low values of
λ, while our objective prefers high λ and γ. This lat-
ter feature is associated with simpler models: a high γ
produces smooth functions and a large λ restricts the
size of the hypothesis.

We will see that the subdivision of objective functions
into two distinct groups persists during optimization.
However, in general it will not be true that the un-
biased objectives produce models with lower test er-
ror than the overpenalized ones. The best performing
method is going to depend on the dataset.

Small-scale optimization We used the exact for-
mulas, along with automatic differentiation and the
Adam optimizer to minimize the objectives on 20
datasets taken from the UCI repository, the LibSVM
datasets, or in-house sources (more details on the
datasets in Appendix B). We automated the optimiza-
tion runs as much as possible to avoid having to set
many meta-hyperparameters: fixed learning rate, the
initial value for λ set to 1/n and the initial value
for γ set with the median heuristic (Garreau et al.,
2017). We used early stopping when the objective
values started increasing. The results – shown in
Figure 4 – confirm our previous observations: there



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

Figure 4: Empirical comparison of five objective functions for hyperparameter tuning. On each dataset we
optimized m = 100 Nyström centers, a separate lengthscale for each dimension and λ for 200 epochs with a
learning rate of 0.05 using the Adam optimizer. Also reported is the standard deviation from 5 runs of the same
experiment with a different random seed. Each dataset has its own error metric. Labels of regression datasets
were normalized to have unit standard deviation.

are some datasets (among which small-HIGGS, buzz,
house-electric) on which the unbiased objectives over-
fit the training set while the proposed proxy function
does not. In fact in some cases the hyperparameters
found with our objective are much better than the
ones found, for example, with the C-Reg objective.
On the other hand, there is another group of datasets
(e.g. protein, energy or codrna) where the extra bias of
the proposed objective becomes detrimental as the op-
timization gets stuck into a suboptimal configuration
with higher test error than what would be attainable
with an unbiased objective.

Among the three unbiased objectives, hold-out clearly
performs the worst. This is due to its high variance,
and could be mitigated (at the expense of a higher
computational cost) by using k-fold cross-validation.
The GCV and C-Reg objectives perform similarly to
each other in many cases. Especially in the image
datasets however, GCV overfits more than C-Reg.

SGPR closely matches the proposed objective as it
doesn’t overfit. However, on several datasets it pro-
duces worse HPs than our objective displaying a larger

bias. On the other hand there are other datasets for
which the ranking is reversed, so there is no one clear
winner. We must note however that the SGPR ob-
jective cannot be efficiently computed due to the log-
determinant term, when datasets are large.

Large-scale optimization We tested the perfor-
mance of the proposed objective with STE on three
large-scale datasets, comparing it against two vari-
ational sparse GP solvers (Gardner et al., 2018;
Matthews et al., 2017) which also learn a compact
model with optimized inducing points and a classic
N-KRR model with lots of randomly chosen centers
trained with Falkon. Our tests are all performed
in comparable conditions, details available in Ap-
pendix C. The results in Table 1 tell us that we can
approach (but not quite reach) the performance – both
in terms of speed and accuracy – of a very large model
using a small fraction of the inducing points. They
also support the conclusion that our objective is effec-
tive at optimizing a large number of hyperparameters,
at least on par with methods in the GPR framework.



Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

Table 1: Error and running time of kernel solvers on
large-scale datasets. We compare our objective with
two approximate GPR implementations and hand-
tuned N-KRR (Falkon).

LProp GPyTorch GPFlow Falkon

Flights
n ≈ 106

error 0.794 0.803 0.790 0.758
time(s) 355 1862 1720 245
m 5000 1000 2000 105

Flights-
Cls
n ≈ 106

error 32.2 33.0 32.6 31.5
time(s) 310 1451 627 186
m 5000 1000 2000 105

Higgs
n ≈ 107

error 0.191 0.199 0.196 0.180
time(s) 1244 3171 1457 443
m 5000 1000 2000 105

6 CONCLUSIONS

In this paper, we improved the usability of large scale
kernel methods proposing a gradient-based solution for
tuning a large number of hyperparameters, on large
problems. We incorporate this method into an existing
library for large scale kernel methods with GPUs. We
showed that it is possible to train compact Nyström
KRR models if the centers are allowed to deviate from
the training set, which can speed up inference by or-
ders of magnitude. A future work will be to consider
complex parametrized kernels which allow to improve
the state of the art of kernel-based models on struc-
tured datasets such as those containing images or text.

Acknowledgments

The authors would like to thank the Anonymous Re-
viewers for their helpful comments on trace approx-
imation. Lorenzo Rosasco acknowledges the finan-
cial support of the European Research Council (grant
SLING 819789), the AFOSR projects FA9550-18-
1-7009, FA9550-17-1-0390 and BAA-AFRL-AFOSR-
2016-0007 (European Office of Aerospace Research
and Development), the EU H2020-MSCA-RISE
project NoMADS - DLV-777826, and the Center for
Brains, Minds and Machines (CBMM), funded by NSF
STC award CCF-1231216.

References

Arlot, S. (2007). “Resampling and Model selection”.
PhD thesis. University Paris-Sud (Orsay).

Arlot, S. and F. Bach (2009). “Data-driven calibra-
tion of linear estimators with minimal penalties”.
In: NeurIPS 22.

Arlot, S. and A. Celisse (2010). “A survey of cross-
validation procedures for model selection”. In:
Statistics Surveys 4, pp. 40–79.

Bartlett, P. L., S. Boucheron, and G. Lugosi (2002).
“Model Selection and Error Estimation”. In: Ma-
chine Learning 48.

Bergstra, J. and Y. Bengio (2012). “Random Search
for Hyper-Parameter Optimization”. In: J. Mach.
Learn. Res. 13, pp. 281–305.

Boyd, S. and L. Vandenberghe (2004). Convex Opti-
mization. Cambridge University Press.

Brochu, E., V. M. Cora, and N. de Freitas (2010).
A Tutorial on Bayesian Optimization of Expensive
Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning.
arXiv: 1012.2599.

Burt, D. R., C. E. Rasmussen, and M. van der Wilk
(2020). “Convergence of Sparse Variational Infer-
ence in Gaussian Processes Regression”. In: JMLR
21, pp. 1–63.

Cao, Y. and Y. Golubev (2006). “On oracle inequali-
ties related to smoothing splines”. In: Mathematical
Methods of Statistic 15.4.

Caponnetto, A. and E. De Vito (2007). “Opti-
mal Rates for the Regularized Least-Squares Algo-
rithm”. In: Foundations of Computational Mathe-
matics 7, pp. 331–368.

Cawley, G. C. and N. L. C. Talbot (2004). “Fast ex-
act leave-one-out cross-validation of sparse least-
squares support vector machines”. In: Neural Net-
works 17.10, pp. 1467–1475.

Charlier, B., J. Feydy, J. A. Glaunès, F.-D. Collin,
and G. Durif (2021). “Kernel Operations on the
GPU, with Autodiff, without Memory Overflows”.
In: JMLR 22.74, pp. 1–6.

Chen, J., H. Avron, and V. Sindhwani (2017). “Hier-
archically Compositional Kernels for Scalable Non-
parametric Learning”. In: JMLR 18.1, pp. 2214–
2255.

Efron, B. (2004). “The estimation of prediction error:
covariance penalties and cross-validation”. In: Jour-
nal of the American Statistical Association 99.467,
pp. 619–632.

El Alaoui, A. and M. W. Mahoney (2015). “Fast
randomized kernel methods with statistical guaran-
tees”. In: NeurIPS 28.

Elsken, T., J. H. Metzen, and F. Hutter (2019). “Neu-
ral architecture search: A survey”. In: JMLR 20.1,
pp. 1997–2017.

Franceschi, L., M. Donini, P. Frasconi, and M. Pontil
(2017). “Forward and Reverse Gradient-Based Hy-
perparameter Optimization”. In: ICML 34.

Gardner, J. R., G. Pleiss, D. Bindel, K. Q. Wein-
berger, and A. G. Wilson (2018). “GPyTorch: Black-
box Matrix-Matrix Gaussian Process Inference with
GPU Acceleration”. In: NeurIPS 31.

https://arxiv.org/abs/1012.2599


Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

Garreau, D., W. Jitkrittum, and M. Kanagawa (2017).
Large sample analysis of the median heuristic.
arXiv: 1707.07269.

Golub, G. H., M. Heath, and G. Wahba (1979). “Gen-
eralized Cross-Validation as a Method for Choosing
a Good Ridge Parameter”. In: Technometrics 21.2,
pp. 215–223.

Grazzi, R., L. Franceschi, M. Pontil, and S. Salzo
(2020). “On the Iteration Complexity of Hypergra-
dient Computation”. In: ICML 37.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The
Elements of Statistical Learning. Springer, Berlin.

Hensman, J., N. Fusi, and N. D. Lawrence (2013).
“Gaussian Processes for Big Data”. In: UAI.

Hensman, J., A. Matthews, and Z. Ghahramani
(2015). “Scalable variational Gaussian process clas-
sification”. In: AISTATS. PMLR, pp. 351–360.

Hutchinson, M. F. (1990). “A stochastic estima-
tor of the trace of the influence matrix for
Laplacian smoothing splines”. In: Communications
in Statistics-Simulation and Computation 19.2,
pp. 433–450.

Hutter, F., L. Kotthoff, and J. Vanschoren, eds. (2018).
Automated Machine Learning: Methods, Systems,
Challenges. Springer.

Keerthi, S. S., V. Sindhwani, and O. Chapelle (2007).
“An Efficient Method for Gradient-Based Adap-
tation of Hyperparameters in SVM Models”. In:
NeurIPS 19.

Kumar, S., M. Mohri, and A. Talwalkar (2012). “Sam-
pling Methods for the Nyström Method”. In: JMLR
13, pp. 981–1006.

Lorraine, J., P. Vicol, and D. Duvenaud (2020). “Opti-
mizing Millions of Hyperparameters by Implicit Dif-
ferentiation”. In: AISTATS 23.

Ma, S. and M. Belkin (2019). “Kernel machines that
adapt to GPUs for effective large batch training”.
In: Proceedings of the 2nd Conference on Machine
Learning and Systems.

Maclaurin, D., D. Duvenaud, and R. P. Adams
(2015). “Gradient-Based Hyperparameter Opti-
mization through Reversible Learning”. In: ICML
32.

Mallows, C. L. (1973). “Some comments on Cp”. In:
Technometrics 15.4, pp. 661–675.

Massart, P. (2007). Concentration inequalities and
model selection. Springer, Berlin.

Matthews, A., M. van der Wilk, T. Nickson, K. Fu-
jii, A. Boukouvalas, P. León-Villagrá, Z. Ghahra-
mani, and J. Hensman (2017). “GPflow: A Gaussian
process library using TensorFlow”. In: JMLR 18.40,
pp. 1–6.

Meanti, G., L. Carratino, L. Rosasco, and A. Rudi
(2020). “Kernel methods through the roof: handling
billions of points efficiently”. In: NeurIPS 34.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay (2011). “Scikit-learn: Machine Learning in
Python”. In: JMLR 12, pp. 2825–2830.

Pedregosa, F. (2016). “Hyperparameter optimization
with approximate gradient”. In: ICML 33.

Quiñonero-Candela, J. and C. E. Rasmussen (2005).
“A Unifying View of Sparse Approximate Gaussian
Process Regression”. In: JMLR 6.65, pp. 1939–1959.

Rajeswaran, A., C. Finn, S. M. Kakade, and S. Levine
(2019). “Meta-Learning with Implicit Gradients”.
In: NeurIPS 32, pp. 113–124.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaus-
sian Processes for Machine Learning. MIT Press.

Rudi, A., L. Carratino, and L. Rosasco (2017).
“FALKON: An Optimal Large Scale Kernel
Method”. In: NeurIPS 29.

Seeger, M. W. (2008). “Cross-validation optimization
for large scale structured classification kernel meth-
ods”. In: JMLR 9, pp. 1147–1178.

Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and
N. de Freitas (2016). “Taking the Human Out of
the Loop: A Review of Bayesian Optimization”. In:
Proceedings of the IEEE 104.1, pp. 148–175.

Smola, A. J. and B. Schölkopf (2000). “Sparse Greedy
Matrix Approximation for Machine Learning”. In:
Proceedings of the 17th Conference on Machine
Learning.

Snoek, J., H. Larochelle, and R. P. Adams (2012).
“Practical Bayesian Optimization of Machine Learn-
ing Algorithms”. In: Neurips 25.

Steinwart, I. and P. Thomann (2017). liquidSVM: A
fast and versatile SVM package. arXiv: 1702.06899.

Suykens, J., T. Van Gestel, J. De Brabanter, B. De
Moor, and J. Vandewalle (2002). Least Squares Sup-
port Vector Machines. World Scientific.

Titsias, M. (2009). “Variational Learning of Inducing
Variables in Sparse Gaussian Processes”. In: AIS-
TATS 12.

Tsybakov, A. B. (2003). “Optimal Rates of Aggrega-
tion”. In: Learning Theory and Kernel Machines.
Springer, pp. 303–313.

Vapnik, V. N. (1998). “Statistical Learning Theory”.
In: John Wiley & Sons. Chap. 10.

Varma, S. and R. Simon (2006). “Bias in error esti-
mation when using cross-validation for model selec-
tion”. In: BMC Bioinformatics 91.

Williams, C. K. I. and M. Seeger (2001). “Using the
Nyström Method to Speed Up Kernel Machines”.
In: NeurIPS 13.

https://arxiv.org/abs/1707.07269
https://arxiv.org/abs/1702.06899


Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

Supplementary Material:
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge

Regression

A Full Derivation of a Complexity Penalty for N-KRR

We split the proof of Theorem 1 into a few intermediate steps: after introducing the relevant notation and
definitions we give a few ways in which the Nyström estimator can be expressed, useful in different parts of the
proof. Then we proceed with three more technical lemmas, used later on. We split the main proof into two
parts to handle the two terms of the decomposition introduced in the main text of the paper: Lemma 6 for the
sampling variance and Lemma 7 for the inducing point variance. Finally we restate Theorem 1 for completeness,
whose proof follows directly from the two variance bounds.

A.1 Definitions

Using the same notation as in the main text we are given data {(xi, yi)}ni=1 ⊂ X × Y such that

yi = f∗(xi) + εi

where f∗ : X → Y is an unknown function, and the noise εi is such that E[εi] = 0,E
[
ε2i
]

= σ2. We let H be a
RKHS and its subspace Hm = span{kγ(z1, ·), . . . , kγ(zm, ·)} defined using the inducing points {zj}mj=1 ⊂ X . We
define a few useful operators, for vectors v ∈ Rm and w ∈ Rn:

Φ̃m : H → Rm, Φ̃m = (kγ(z1, ·), . . . , kγ(zm, ·))

Φ̃∗m : Rm → H, Φ̃∗mv =

m∑
j=1

vjkγ(zj , ·)

Φ : H → Rn, Φ = (kγ(x1, ·), . . . , kγ(xn, ·))

Φ∗ : Rn → H, Φ∗w =

n∑
i=1

wjkγ(xi, ·).

Let Σ : H → H = Φ∗Φ be the covariance operator, and K = ΦΦ∗ ∈ Rn×n the kernel operator. Further define
Knm = ΦΦ̃∗m ∈ Rn×m, Kmm = Φ̃mΦ̃∗m ∈ Rm×m, and the approximate kernel K̃ = KnmK

†
mmK

>
nm ∈ Rn×n. The

SVD of the linear operator Φ̃m is
Φ̃m = UΛV ∗

with U : Rk → Rm, Λ the diagonal matrix of singular values sorted in non-decreasing order, V : Rk → H, k ≤ m
such that U∗U = I, V ∗V = I. The projection operator with range Hm is given by P = V V ∗.

The KRR estimator f̂λ,γ is defined as follows,

f̂λ,γ = arg min
f∈H

1

n
‖f(X)− Y ‖2 + λ‖f‖2H.

It can be shown (Caponnetto and De Vito, 2007) that f̂λ,γ is unique and can be expressed in closed form as

f̂λ,γ = Φ∗(K + nλI)−1Y . In the proofs, we will also use the noise-less KRR estimator, denoted by fλ,γ and
defined as,

fλ,γ = arg min
f∈H

1

n
‖f(X)− f∗(X)‖2 + λ‖f‖2H.

This estimator cannot be computed since we don’t have access to f∗, but it is easy to see that

fλ,γ = Φ∗(K + nλI)−1f∗(X).



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

The N-KRR estimator, found by solving

f̂λ,Z,γ = arg min
f∈Hm

1

n
‖f(X)− Y ‖2 + λ‖f‖2H.

is unique, and takes the form (see Rudi, Camoriano, et al. (2015), Lemma 1)

f̂λ,Z,γ = (PΣP + nλI)−1PΦ∗Y

where P is the projection operator with range Hm.

The estimator f̂λ,Z,γ can be characterized in different ways as described next.

A.2 Preliminary Results on the Nyström estimator

The following lemma provides three different formulation of the Nyström estimator. We will use the notation
A† to denote the Moore-Penrose pseudo-inverse of a matrix A.

Lemma 1. (Alternative forms of the Nyström estimator)
The following equalities hold

f̂λ,Z,γ = (PΣP + nλI)−1PΦ∗Y (12)

= V (V ∗ΣV + nλI)−1V ∗Φ∗Y (13)

= Φ̃∗m(K>nmKnm + λnKmm)†K>nmY (14)

This Lemma is a restatement of results already found in the literature (e.g. in Rudi, Carratino, et al. (2017),
Lemmas 2 and 3) which are condensed here with slightly different proofs.

Proof. Going from Eq. (12) to Eq. (13) consists in expanding P = V V ∗ and applying the push-through identity

(PΣP + nλI)−1PΦ∗Y = (V V ∗ΣV V ∗ + nλI)−1V V ∗Φ∗Y

= V (V ∗ΣV V ∗V + nλI)−1V ∗Φ∗Y

= V (V ∗ΣV + nλI)−1V ∗Φ∗Y.

To go from Eq. (14) to Eq. (13) we split the proof into two parts. We first expand Eq. (14) rewriting the kernel
matrices

Φ̃∗m(K>nmKnm + λnKmm)†K>nmY = Φ̃∗m(Φ̃mΦ∗ΦΦ̃∗m + nλΦ̃mΦ̃∗m)†K>nmY

= Φ̃∗m(Φ̃m(Σ + nλI)Φ̃∗m)†K>nmY.

Then, we use some properties of the pseudo-inverse (Ben-Israel and Greville, 2001) to simplify (Φ̃m(Σ+nλI)Φ̃∗m)†,

in particular, using the SVD of Φ̃m, write

(UΛ︸︷︷︸
F

V ∗(Σ + nλI)V︸ ︷︷ ︸
H

ΛU∗︸︷︷︸
F∗

)†.

Since U has orthonormal columns, F † = (UΛ)† = Λ−1U† = Λ−1U∗. A consequence is that (F ∗)† = (ΛU∗)† =
(Λ−1U∗)∗ = UΛ−1. Then we split (FHF ∗)† into the pseudo-inverse of its three components in two steps. Firstly
(HF ∗)† = (F ∗)†H† if H†H = I and (F ∗)(F ∗)† = I:

1. Since H = V ∗(Σ + nλI)V is invertible, H† = H−1 and the first condition is verified.

2. F ∗(F ∗)† = ΛU∗UΛ−1 = I.

Also we have (FHF ∗)† = (HF ∗)†F † if F †F = I and HF ∗(HF ∗)† = I:



Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

1. F †F = Λ−1U∗UΛ = I,

2. HF ∗(HF ∗)† = HF ∗(F ∗)†H† = HH† = I.

The end result of this reasoning is that

(FHF ∗)† = (F ∗)†H−1F † = UΛ−1(V ∗(Σ + nλI)V )−1Λ−1U∗

and hence

Φ̃∗m(K>nmKnm + λnKmm)†K>nmY = V ΛU∗(UΛV ∗(Σ + nλI)V ΛU∗)†UΛV ∗Φ∗Y

= V ΛU∗UΛ−1(V ∗(Σ + nλI)V )−1Λ−1U∗UΛV ∗Φ∗Y

= V (V ∗ΣV + nλI)−1V ∗Φ∗Y

Another useful equivalent form, for the Nyström estimator is given in the following lemma

Lemma 2. Given the kernel matrices Knm ∈ Rn×m, Kmm ∈ Rm×m, and the Nyström kernel K̃ =
KnmK

†
mmK

>
nm ∈ Rn×n, the following holds

(K̃ + nλI)−1K̃ = Knm(K>nmKnm + nλKmm)†K>nm (15)

Proof. We state some facts about the kernel and image of the Nyström feature maps

(ker Φ̃m)⊥ = span{k(z1, ·), . . . , k(zm, ·)} = Im Φ̃∗m

(ker Φ̃∗m)⊥ = Im Φ̃m = ImKmm = (kerKmm)⊥ = W ⊆ Rm.

The space Rm is hence composed of Rm = W ⊕ ker Φ̃∗m. Take a vector v ∈ ker Φ̃∗m. We have that Φ̃∗mv = 0, and

(K>nmKnm + nλKmm)v = Φ̃m(Φ∗Φ + nλI)Φ̃∗mv = 0.

If instead v ∈W , then Φ̃m(Φ∗Φ + nλI)Φ̃∗mv ∈W . Hence we have that

K>nmKnm + nλKmm : W →W

and that Kmm is invertible when restricted to the subspace W , but also K>nmKnm +nλKmm is invertible on W.
Furthermore by the properties of the pseudo-inverse, we have that

(K>nmKnm + nλKmm)(K>nmKnm + nλKmm)† = PW (16)

with PW the projector onto set W .

Furthermore we have the following equalities concerning the projection operator: K†mmKmm = PW , as before;

sinceKnm = ΦΦ̃∗m, KnmPW = ΦΦ̃∗mPW = Knm and similarly its transposeK>nm = Φ̃mΦ∗ hence PWK
>
nm = K>nm.

Using these properties we can say

KnmK
†
mm(K>nmKnm + nλKmm) = KnmK

†
mmK

>
nmKnm + nλKnmK

†
mmKmm

= KnmK
†
mmK

>
nmKnmPW + nλKnmPW

= (KnmK
†
mmK

>
nm + nλI)KnmPW

which implies that

(KnmK
†
mmK

>
nm + nλI)−1KnmK

†
mm(K>nmKnm + nλKmm) = KnmPW .

Multiplying both sides by (K>nmKnm + nλKmm)†, and using Eq. (16)

(KnmK
†
mmK

>
nm + nλI)−1KnmK

†
mmPW = KnmPW (K>nmKnm + nλKmm)† (17)



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

Hence we can write the left-hand side of our statement (Eq. (15)), and use the properties of projection PW and
Eq. (17) to get

(KnmK
†
mmK

>
nm + nλI)−1KnmK

†
mmK

>
nm = (KnmK

†
mmK

>
nm + nλI)−1KnmK

†
mmPWK

>
nm

= KnmPW (K>nmKnm + nλKmm)†K>nm

= Knm(K>nmKnm + nλKmm)†K>nm

which is exactly the right-hand side of our statement.

Finally, the algebraic transformation given in the following lemma allows to go from a form which frequently
appears in proofs involving the Nyström estimator (Tr((I − P )Σ)) to a form which can easily be computed: the
trace difference between the full and the Nyström kernel.

Lemma 3. Let Φ̃m : H → Rm be the kernel feature-map of the inducing points with SVD Φ̃m = UΛV ∗, such
that the projection operator onto Hm can be written P = V V ∗. Also let K̃ = KnmK

†
mmK

>
nm be the Nyström

kernel. Then the following equivalence holds

Tr((I − P )Σ) = Tr
(
K − K̃

)
. (18)

Proof. Note that we can write Kmm = Φ̃mΦ̃∗m = UΛV ∗V ΛU∗ = UΛ2U∗, which is a full-rank factorization since
both UΛ and ΛU> are full-rank. Then we can use the formula for the full-rank factorization of the pseudoinverse
(Ben-Israel and Greville (2001), Chapter 1, Theorem 5, Equation 24) to get

K†mm = (UΛV ∗V ΛU∗)† = (UΛΛU∗)†

= UΛ(ΛU∗UΛ2U∗UΛ)−1ΛU∗

= UΛ−2U∗.

Now we can prove the statement by expanding the left-hand side, and recalling U>U = I

Tr((I − P )Σ) = Tr((I − V V ∗)Σ)

= Tr
(
(I − V (ΛU∗UΛ−2U∗UΛ)V ∗)Φ∗Φ

)
= Tr

(
Φ(I − V ΛU∗(Φ̃mΦ̃∗m)†UΛV ∗)Φ∗

)
= Tr

(
ΦΦ∗ − ΦΦ̃∗m(Φ̃mΦ̃∗m)†Φ̃mΦ∗

)
= Tr

(
K −KnmK

†
mmK

>
nm

)
= Tr

(
K − K̃

)
.

The following two lemmas provide some ancillary results which are used in the proof of the main lemmas below.

Lemma 4. Let P be the projection operator onto Hm, and fλ,γ be the noise-less KRR estimator. Then the
following bound holds

‖Pfλ,γ‖2H ≤ ‖fλ,γ‖2. (19)

Proof. This is a simple application of the definition of operator norm, coupled with the fact that orthogonal
projection operators have eigenvalues which are either 0 or 1 (hence their norm is at most 1).

‖Pfλ,γ‖2H ≤ ‖P‖2‖fλ,γ‖2H
≤ ‖fλ,γ‖2H.



Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

Lemma 5. Recall the notation L̂λ(f) = n−1‖f(X)−Y ‖2 +λ‖f‖2H, and let fλ,γ be the noise-less KRR estimator
as before. Then the following statement holds:

‖fλ,γ‖2H ≤ E

[
L̂λ(fλ,γ)

λ

]
(20)

where the expectation is taken with respect to the noise.

Proof. Recall that in the fixed design setting, given a fixed (i.e. not dependent on the label-noise) estimator, we
always have

E
[
L̂(f)

]
= L(f) + σ2

where σ2 is the label-noise variance.

In our case, noting that L(fλ,γ) is always non-negative

‖fλ,γ‖2H =
λ

λ
‖fλ,γ‖2H

≤ L(fλ,γ) + λ‖fλ,γ‖2H
λ

≤ L(fλ,γ) + σ2 + λ‖fλ,γ‖2H
λ

=
E
[
L̂λ(fλ,γ)

]
λ

.

A.3 Proof of the main Theorem

The proof of Theorem 1 starts from the error decomposition found in Section 3 which we report here:

E
[
L(f̂λ,Z,γ)

]
≤ E

[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)︸ ︷︷ ︸

1○

+ L̂(f̂λ,Z,γ) + λ‖f̂λ,Z,γ‖2H − L̂λ(Pfλ,γ)︸ ︷︷ ︸
2○

+ L̂λ(Pfλ,γ)︸ ︷︷ ︸
3○

]

and proceeds by bounding terms 1○ (see Lemma 6) and 3○ (see Lemma 7). After the two necessary lemmas we
restate the proof of the main theorem which now becomes trivial.

Lemma 6. (Bounding the data-sampling variance)

Denoting by f̂λ,Z,γ the N-KRR estimator, the expected difference between its empirical and test errors can be
calculated exactly:

E
[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)

]
=

2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

with σ2 the noise variance and K̃ the Nyström kernel.

Proof. For the sake of making the proof self-contained we repeat the reasoning of Section 3. Starting with the
expectation of the empirical error we decompose it into the expectation of the test error minus an inner product
term:

E
[
L̂(f̂λ,Z,γ)

]
= E

[
1

n
‖f̂λ,Z,γ(X)− f∗(X)− ε‖2

]
= E

[
L(f̂λ,Z,γ)

]
+ σ2 − 2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
.



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

The σ2 term is fixed for optimization purposes, so we must deal with the inner-product. We use the form of f̂λ,Z,γ
from Eq. (14), Lemma 1, and E[ε] = 0, and to clean the notation we call H := Knm(K>nmKnm +nλKmm)†K>nm:

2

n
E
[
〈f̂λ,Z,γ(X)− f∗(X), ε〉

]
=

2

n
E[〈H(f∗(X) + ε)− f∗(X), ε〉]

=
2

n
E
[
ε>Hε

]
=

2σ2

n
Tr(H),

and using Lemma 2 H can be expressed as (K̃ + nλI)−1K̃.

Going back to the original statement we have

E
[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)

]
= E

[
L(f̂λ,Z,γ)− L(f̂λ,Z,γ) +

2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)]

=
2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

Lemma 7. (Bounding the Nyström variance)
Under the fixed-design assumptions, denote by P the orthogonal projector onto space Hm, by L̂λ(f) the regularized
empirical risk of estimator f , and by fλ,γ ∈ H the noise-less KRR estimator. Then the following upper-bound
holds

E
[
L̂λ(Pfλ,γ)

]
≤ 2

nλ
Tr
(
K − K̃

)
E
[
L̂λ(fλ,γ)

]
+ 2E

[
L̂λ(fλ,γ)

]
. (21)

Proof. Note that for estimators f ∈ H we can always write f(X) = Φf . Hence for the projected KRR estimator
we use that (Pfλ,γ)(X) = ΦPfλ,γ . We start by rewriting the left hand side to obtain a difference between
projected and non-projected terms:

E
[
L̂(Pfλ,γ) + λ‖Pfλ,γ‖2H

]
= E

[
1

n
‖ΦPfλ,γ − f∗(X)− ε‖2 + λ‖Pfλ,γ‖2H

]
= E

[
1

n
‖ΦPfλ,γ − f∗(X)‖2 +

1

n
‖ε‖2 + λ‖Pfλ,γ‖2H

]
= E

[
1

n
‖ΦPfλ,γ − Φfλ,γ + Φfλ,γ − f∗(X)‖2 +

1

n
‖ε‖2 + λ‖Pfλ,γ‖2H

]
≤ E

[
2

n
‖ΦPfλ,γ − Φfλ,γ‖2 +

2

n
‖Φfλ,γ − f∗(X)‖2 +

2

n
‖ε‖2 + 2λ‖Pfλ,γ‖2H

]
where we used the fact that E[ε] = 0, and the triangle inequality in the last step.

By Lemma 4, and the definition of E
[
L̂(f)

]
we have that

E
[

2

n
‖Φfλ,γ − f∗(X)‖2 +

2

n
‖ε‖2 + 2λ‖Pfλ,γ‖2H

]
≤ 2E

[
L̂(fλ,γ)

]
.

Next we use again the definition of operator norm to deal with the difference between projected and non-projected
noise-less KRR estimators:

E
[

2

n
‖ΦPfλ,γ − Φfλ,γ‖2

]
=

2

n
‖Φ(P − I)fλ,γ‖2

≤ 2

n
‖Φ(I − P )‖2‖fλ,γ‖2.

The first part of this latter term is

‖Φ(I − P )‖2 = ‖(I − P )Φ>Φ(I − P )‖ ≤ Tr
(
(I − P )Φ>Φ

)
= Tr((I − P )Σ)



Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

since the trace norm controls the operator norm, and using the cyclic property of the trace and the idempotence

of the projection operator I − P . By Lemma 3 we have that ‖Φ(I − P )‖2 ≤ Tr
(
K − K̃

)
. For the second part

we use Lemma 5 so that

‖fλ,γ‖2 ≤ E

[
L̂λ(fλ,γ)

λ

]
which concludes the proof.

We now have all the ingredients to prove Theorem 1 which we restate below for the reader.

Theorem. (Restated from the main text)
Under the assumptions of fixed-design regression we have that,

E
[
L(f̂λ,Z,γ)

]
≤2σ2

n
Tr
(

(K̃ + λI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
E
[
L̂(fλ,γ)

]
+ 2E

[
L̂(fλ,γ)

]
(22)

Proof. The decomposition is the same:

E
[
L(f̂λ,Z,γ)

]
≤ E

[
L(f̂λ,Z,γ)− L̂(f̂λ,Z,γ)︸ ︷︷ ︸

1○

+ L̂(f̂λ,Z,γ) + λ‖f̂λ,Z,γ‖2H − L̂λ(Pfλ,γ)︸ ︷︷ ︸
2○

+ L̂λ(Pfλ,γ)︸ ︷︷ ︸
3○

]

where 2○ ≤ 0. We may then use Lemma 6 for term 1○ and Lemma 7 for term 3○ to obtain

E
[
L(f̂λ,Z,γ)

]
≤ 2σ2

n
Tr
(

(K̃ + nλI)−1K̃
)

+
2

nλ
Tr
(
K − K̃

)
E
[
L̂λ(fλ,γ)

]
+ 2E

[
L̂λ(fλ,γ)

]
.

B Datasets

We used a range of datasets which represent a wide spectrum of scenarios for which kernel learning can be used.
They can be divided into three groups: medium sized unstructured datasets (both for regression and binary
classification), medium sized image recognition datasets (multiclass classification) and large unstructured datasets
(classification and regression). We applied similar preprocessing steps to all datasets (namely standardization
of the design matrix, standardization of the labels for regression datasets, one-hot encoding of the labels for
multiclass datasets). When an agreed-upon test-set existed we used it (e.g. for MNIST), otherwise we used
random 70/30 or 80/20 train/test set splits, with each experiment repetition using a different split. Below we
provide more details about the datasets used, grouping several of them together if the same procedures apply.
The canonical URLs at which the datasets are available, along with their detailed dimensions and training/test
splits are shown in Table 2

The error metrics used are dataset-dependent, and outlined below. For regression problems we use the RMSE,

defined as
√
n−1

∑n
i=1(yi − f̂(xi))2 and its normalized version the NRMSE:

NRMSE :

∣∣∣∣∣∣
√

1
n

∑n
i=1(yi − f̂(xi))2

1
n

∑n
i=1 yi

∣∣∣∣∣∣.
For classification problems we use the fraction of misclassified examples (c-error), and the area under the curve
(AUC) metric.



Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression

SpaceGA, Abalone, MG, CpuSmall, Energy Small regression datasets between 1385 (MG) and 8192
(CpuSmall) samples, label standardization is performed and error is measured as NRMSE. The predictor matrix
is also standardized.

Road3D, Buzz, Protein, HouseElectric, BlogFeedback Regression datasets of medium to large size
from the UCI ML repositories. We used label standardization for Road3D, BlogFeedback, Buzz and Protein,
and an additional log transformation for HouseElectric. Measured error is NRMSE. The predictor matrix is
standardized.

MNIST, FashionMNIST, SVHN, CIFAR-10 Four standard image recognition datasets. Here the labels
are one-hot encoded (all datasets have 10 classes), and the design matrix is normalized in the 0-1 range. Standard
train/test splits are used.

Chiet A time-series dataset for short-term wind prediction. The labels and predictors are standardized, and
the error is measured with the NRMSE. A fixed split in time is used.

Ictus A dataset simulating brain MRI. Predictors are standardized and a random 80/20 split is used.

Cod-RNA, SVMGuide1, IJCNN1, CovType Four datasets for binary classification ranging between ap-
proximately 3000 points for SvmGuide1 and 5×105 points for CovType. The design matrix is standardized while
the labels are −1 and +1.

Higgs, SmallHiggs HIGGS is a very large binary classification dataset from high energy physics. We took a
small random subsample to generate the SmallHiggs dataset, which has predefined training and test sets. The
design matrix is normalized by the features’ variance. For the HIGGS dataset we measure the error as 1 minus
the AUC.

Flights, Flights-Cls A regression dataset found in the literature (Hensman, Durrande, et al., 2017; Hensman,
Fusi, et al., 2013) which can also be used for binary classification by thresholding the target at 0.

C Experiment Details

All experiments were run on a machine with a single NVIDIA Quadro RTX 6000 GPU, and 256GB of RAM. The
details of all hyperparameters and settings required to reproduce our experiments are provided below. Relevant
code is available in the repository at https://github.com/falkonml/falkon.

C.1 Small scale experiments

We ran the small scale experiments by optimizing the exact formulas for all objectives, computed with Cholesky
decompositions and solutions to triangular systems of equations. We used the Adam optimizer with default
settings and ran it for 200 epochs with a fixed learning rate of 0.05. We optimized m = 100 inducing points
initialized to the a random data subset, used the Gaussian kernel with a separate length-scale for each data-
dimension (the initialization using the median heuristic was the same for each dimension), and the amount of
regularization λ which was initialized to 1/n. The validation set size (for the Hold-out objective) was fixed to
60% of the full training data. While this may seem large, in our setting the size of the hyperparameter space (in
first approximation m × d) is larger than the number of model parameters (m × o where o is the dimension of
the target space Y, most commonly o = 1).

C.2 Large scale experiments

We ran the large-scale experiments for just the LProp objective, while the other performance numbers in Table 1
are taken from Meanti et al. (2020). For our objective we again used the Adam optimizer. For the Flights and
Higgs dataset we trained with learning rate 0.05 for 20 epochs, while we trained Flights-Cls with a smaller learning
rate of 0.02 for 10 epochs. We used the Gaussian kernel with a single length-scale, initialized as in (Meanti et al.,
2020) (Flights σ0 = 1, Flights-Cls σ0 = 1, Higgs σ0 = 4) and λ0 = 1/n. We used t = 20 stochastic trace

https://github.com/falkonml/falkon


Giacomo Meanti, Luigi Carratino, Ernesto De Vito, Lorenzo Rosasco

Table 2: Key details on the datasets used.

n d train/test error

SpaceGA 3107 6 70%/30% NRMSE
Abalone 4177 8 70%/30% NRMSE
MG 1385 6 70%/30% NRMSE
CpuSmall 8192 12 70%/30% NRMSE
Energy 768 8 80%/20% NRMSE
Road3D 434 874 3 70%/30% RMSE
Buzz 2 049 280 11 70%/30% RMSE
Protein 45 730 9 80%/20% NRMSE
BlogFeedback 60 021 280 52 397/7624 RMSE
MNIST 70 000 784 60 000/10 000 10 class c-error
FashionMNIST 70 000 784 60 000/10 000 10 class c-error
SVHN 99 289 1024 73 257/26 032 10 class c-error
CIFAR-10 60 000 1024 50 000/10 000 10 class c-error
Chiet 34 059 144 26 227/7832 NRMSE
Ictus 29 545 992 80%/20% binary c-error
Cod-RNA 331 152 8 59 535/271 617 binary c-error
SVMGuide1 7089 4 3089/4000 binary c-error
IJCNN1 141 691 22 49 990/91 701 binary c-error
CovType 581 012 54 70%/30% binary c-error
SmallHiggs 30 000 28 10 000/20 000 binary c-error
Higgs 1.1×107 20 80%/20% 1 - AUC
Flights 5.93×106 8 66%/34% MSE
Flights-Cls 5.93×106 8 5 829 413/100 000 binary c-error

estimation vectors for all three experiments, sampling them from the standard Gaussian distribution. The STE
vectors were kept fixed throughout optimization. The conjugate gradient tolerance for the Falkon solver was set
to 5×10−4 for Flights-Cls, and 1×10−3 for Flights and Higgs (a higher tolerance corresponds to longer training
time), while we always capped the number of Falkon iterations to 100.

References

Ben-Israel, A. and T. N. E. Greville (2001). Generalized Inverses: Theory and Applications. 2nd ed. Springer.
Caponnetto, A. and E. De Vito (2007). “Optimal Rates for the Regularized Least-Squares Algorithm”. In:

Foundations of Computational Mathematics 7, pp. 331–368.
Hensman, J., N. Durrande, and A. Solin (2017). “Variational Fourier Features for Gaussian Processes”. In: JMLR

18.1, pp. 5537–5588.
Hensman, J., N. Fusi, and N. D. Lawrence (2013). “Gaussian Processes for Big Data”. In: UAI.
Meanti, G., L. Carratino, L. Rosasco, and A. Rudi (2020). “Kernel methods through the roof: handling billions

of points efficiently”. In: NeurIPS 34.
Rudi, A., R. Camoriano, and L. Rosasco (2015). “Less is More: Nyström Computational Regularization”. In:

NeurIPS 28.
Rudi, A., L. Carratino, and L. Rosasco (2017). “FALKON: An Optimal Large Scale Kernel Method”. In: NeurIPS

29.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://archive.ics.uci.edu/ml/machine-learning-databases/00374/
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+(North+Jutland,+Denmark)
https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media
https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure
https://archive.ics.uci.edu/ml/machine-learning-databases/00304/
https://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
http://ufldl.stanford.edu/housenumbers/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://www.transtats.bts.gov/Fields.asp?Table_ID=236

	INTRODUCTION
	BACKGROUND
	Parameter and Hyperparameter Learning
	Objective Functions
	Optimization Algorithms

	HYPERPARAMETER TUNING FOR NYSTRÖM KRR
	SCALABLE APPROXIMATIONS
	EXPERIMENTS
	CONCLUSIONS
	Full Derivation of a Complexity Penalty for N-KRR
	Definitions
	Preliminary Results on the Nyström estimator
	Proof of the main Theorem

	Datasets
	Experiment Details
	Small scale experiments
	Large scale experiments


