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ON THE ATOMIC DECOMPOSITION OF COORBIT SPACES
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ABSTRACT. This paper ist concerned with recent progress in the context of
coorbit space theory. Based on a square integrable group representation, the
coorbit theory provides new families of associated smoothness spaces, where
the smoothness of a function is measured by the decay of the associated voice
transform. Moreover, by discretizing the representation, atomic decomposi-
tions and Banach frames can be constructed. Usually, the whole machinery
works well if the associated reproducing kernel is integrable with respect to
a weighted Haar measure on the group. In recent studies, it has turned out
that to some extent coorbit spaces can still be established if this condition is
violated. In this paper, we clarify in which sense atomic decompositions and
Banach frames for these generalized coorbit spaces can be obtained.

1. INTRODUCTION

This paper is concerned with specific problems arising in the context of signal
analysis. The overall goal in signal analysis is the efficient extraction of the relevant
information one is interested in. For this, the signal—usually modeled as an ele-
ment in a suitable function space—has to be processed, denoised, compressed, etc.
The first step is always to decompose the signal into appropriate building blocks.
This is performed by an associated transform, such as the wavelet transform, the
Gabor transform or the shearlet transform, just to name a few. Which transform
to choose clearly depends on the type of information one wants to extract from
the signal. In recent years, it has turned out that group theory—in particular rep-
resentation theory—acts as a common thread behind many transforms. Indeed,
many transforms are related with square-integrable representations of certain lo-
cally compact groups. For instance, the wavelet transform is associated with the
affine group whereas the Gabor transform stems from the Weyl-Heisenberg group.
We refer e.g., to [12, [13] for details.

This connection with group theory paves the way to the application of another
very important concept, namely coorbit theory. This theory has been developed by
Feichtinger and Grochenig already in the late 1980’s, see [12] 13] [14] 21]. In recent
years, coorbit theory has experienced a real renaissance. Among other things, the
connections to the various shearlet transforms [6] and to the concept of decompo-
sition spaces [28| [I8] have been investigated.

Based on a square integrable group representation, by means of coorbit space
theory it is possible to construct canonical smoothness spaces, the coorbit spaces,
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by collecting all functions for which the associated voice transform has a certain
decay. Moreover, by discretizing the underlying representation, it is possible to
obtain atomic decompositions for the coorbit spaces. Moreover, also Banach frames
can be constructed.

The coorbit space theory is based on certain assumptions. In particular, it is
not enough that the representation is square-integrable, it must also be integrable,
i.e., the reproducing kernel must be contained in a weighted L;-space on the group.
Unfortunately, this condition is restrictive, and even in very simple settings such
as for the case of band-limited functions, it is not satisfied. Nevertheless, in [5], it
has been shown that there is a way out. Instead of using a classical L;-space as
the space of generalized test functions, one can work with the weaker concept of
Fréchet spaces. Then, more or less all the basic steps to establish the associated
coorbit spaces can be performed. We refer to Sect. Rl for brief discussion of this
approach.

However, in [5] one issue remained open, namely the construction of atomic
decompositions for the resulting coorbit spaces. This is exactly the problem we are
concerned with here. As a surprise, it turns out that this part of the coorbit space
theory does not directly carry over to the Fréchet setting. There are two essential
differences: First of all, a synthesis map can be constructed, but only at the price
that the integrability parameters of the discrete norms on the coeflicient spaces and
of the coorbit norms are different. At first sight, this might look strange, but in the
setting of non-integrable kernels this is in a certain sense not too surprising. Indeed,
in the context of coorbit space theory, sooner or later convolution estimates of Young
type have to be employed, which yield bounded mappings between L,-spaces with
different integrability exponents for domain and codomain if the convolution kernel
is not in L;. Concerning the atomic decomposition part, the situation is even
more involved. It turns out that for any element in the coorbit space a suitable
approximation by linear combinations of the atoms can be derived, but at the price
that the weighted sequence norms of the expansion coefficients cannot be uniformly
bounded by the coorbit norm. These results will be stated and proved in Sect. [
see in particular Theorem

Looking at these results, the inclined reader might have the impression that the
authors were simply unable to prove sharper results, whereas such results might
still be true, and provable with a more refined analysis. This might be true, but
only partially. Indeed, in Sect. ] we prove an additional result which shows that,
under some very natural conditions, uniform bounds can only be obtained if the
kernel operator acts as a bounded operator on the weighted L,-spaces, that is,
this additional assumption is necessary for obtaining uniform bounds. These facts
strongly indicate that with the decomposition results stated in Sect. we have
almost reached the ceiling. However, there is still a little bit of flexibility which
we can use to improve our results. Indeed, in Sect. [Bl we prove that if there ex-
ists a second kernel W that satisfies additional smoothness assumptions and acts
as the identity by left and right convolution on the reproducing kernel of the rep-
resentation, then wuniform bounds for both, the synthesis and the analysis part,
can be obtained. Fortunately, in one important practical application given by the
Paley-Wiener spaces such a kernel can be found.

This paper is organized as follows. First of all, in Sect. 2l we recall the construc-
tion of coorbit spaces based on non-integrable kernels. We keep the explanation
2



as short as possible and refer to [5] for further details. Then, in Sect. Bl we pro-
vide first discretization results for the associated coorbit spaces; the main result
is Theorem Then, in Sect. [ we are concerned with ‘negative’ results. In-
deed, in Theorem Il we show that stable decompositions can only be obtained
if the right convolution by the reproducing kernel is bounded on the underlying
L,-spaces. Finally, in Sect. [l we present satisfactory discretization results with the
aid of an additional kernel W. Indeed, in the Theorems and [5.18] respectively,
we show that atomic decompositions and Banach frames with uniform bounds can
be constructed, just as in the context of the classical coorbit theory.

2. AN OVERVIEW

Throughout this paper, G denotes a fixed locally compact second countable group
with left Haar measure B and modular function A. For a definition of these terms,
we refer to [I5]. We simply write fG f(x) dx instead of fG f(x) dB(x) and we denote
by Lo(G) the space of Borel-measurable functions. Given f € Ly(G) the functions
f and f are

fey=r67h F0 = f00.
and for all x € G the left and right regular representations A4 and p act on f as
ANf) =f0y)  aeyeG,
p()f (y) = f(yx) a.ey€G.
Finally, the convolution f % g between f, g € Ly(G) is the function

frgx) = /G FO80 ) dy = /G FO)-A@DO) dy  ae. x€G,

provided that, for almost all x € G, the function y — f(y) - (1(x)g)(y) is integrable.
Furthermore, given two functions f,g € Lyo(G), with slight abuse of notations,
we write

Fog)r, = /G F0R0) dx.

provided that the function fg is integrable.
We fix a continuous weight w : G — (0, o) satisfying

(1a) w(xy) < w(x)w(y),
(1b) w(x) = wx™)
for all x,y € G. As a consequence, it also holds that
(1c) inf w(x) > 1.
xeG
The symmetry (D) can always be satisfied by replacing w with w + w, where the

latter weight is easily seen to still satisfy the submultiplicativity condition (Lal).
For all p € [1, o) define the separable Banach space

Ly (G) = {f € Lo(G) ‘ fG W) F (NP dx < oo}

with norm

71, = [ weoser ax
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and the obvious modifications for L.(G), which however is not separable. When
w =1 we simply write L,(G).

With terminology as in [B] we choose, as a target space for the coorbit space
theory, the following space

T = ﬂ Lp,w(G)-
1<p<eoo

We recall some basic properties of 7,; for proofs we refer to Theorem 4.3 of [5],
which is based on results in [7]. We endow 7, with the (unique) topology such
that a sequence (fu)en in 7, converges to 0 if and only if limy—+el| fullz,,,, =0 for
all 1 < p < co. With this topology, 7, becomes a reflexive Frechét space. The
(anti)-linear dual space of 7,, can be identified with

U, = span U Ly w-1(G)

1<g<oo

under the pairing
@) [owim ac=.p. et fem,

Remark 2.1. The space U, is endowed with one of the following equivalent topolo-
gies, both compatible with the pairing ().
i) The finest topology making the inclusions Ly ,,-1(G) <= U, continuous for all
1<gq <oo.

it) The topology induced by the family of semi-norms (||*|Ip.r) where

l<p<r<oo’

@Iy, = sup {KD, flul | f € To and max{l|flc, .. Iflz,..} <1},
for ® e U,,.

The representation A leaves invariant both 7, and U,,, it acts continuously on
7w, and the contragradient representation ‘A of A , given by

(Ag®, [y = (D, Ag1 [y for ®eU, and feTy,

is simply ‘A = Ajq,, -
Take g € 7,, with g € 7,,. For all f € 7, the convolution f * g is in 7, and the
map
fe=fxg
is continuous from 7, into 7,,. Furthermore, for all ® € U,, the convolution ® * g
is in U,, and the map
O— Oxg

is continuous from U, into U,,.

Take now a (strongly continuous) unitary representation 7 of G acting on a
separable complex Hilbert space H with scalar product (-, -)¢/ linear in the first
entry. We assume that 7 is reproducing, namely there exists a vector u € H such
that the corresponding voice transform

Vv(x) = (v, m(xX)udgy, veH, xeqG,

is an isometry from H into Ly(G). We observe that this implies that V is injective,
whence span {m(x)u},cq is dense in H.
We denote by K the reproducing kernel
(3) K(x) = Vu(x) = {u, m(x)u) g, x€GveH,
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which is a bounded continuous function and enjoys the following basic properties

(4a) K =K,
4b ¢ K(xtx;) >0, Cly...,cn €C, x1,...,x, € G,
J i J
ij=1
(4c) K «K =K € Ly(G).

In general, 7 is not assumed to be irreducible, but the reproducing assumption
implies that u is a cyclic vector. Properties (@) and (@h) uniquely define the rep-
resentation 7 up to a unitary equivalence, see Theorem 3.20 and Proposition 3.35
of [15]. Equation ({d) states that 7 is equivalent to the sub-representation of the
left-regular representation (on L2(G)) having K as a cyclic vector. Conversely, if
a bounded continuous function K satisfies (@al), (D) and ([@d), then there exists a
unique (up to a unitary equivalence) reproducing representation 7 whose reproduc-
ing kernel is K.

For the remainder of the paper, we will always impose the following basic as-
sumption:

Assumption 2.2. We assume K € 7,,, i.e,
(5) KelL,,(G) forall1l <p < oo.
We add some remarks.

Remark 2.3. i) Since w(x) > 1, Assumption ([Bl) implies that K € L,(G) for all
p > 1. If n is irreducible, this last fact gives that V is an isometry up to a
constant, so that n is always a reproducing representation. If m is reducible,
condition (B) is not sufficient to ensure that m is reproducing; however if
K =K =K, then m is always reproducing.

ii) If w=t belongs to Ly(G) for some 1 < q < oo, then Holder’s inequality shows
K € Li(G), but in general K ¢ L1,,(G). However in many interesting exam-
ples w is independent of one or more variables, so that w™' ¢ Ly(G) for all
1<gq<oo.

We now define the test space S, as
(6) Sw={veH|VveL,,(G) foralll<p< o},

which becomes a locally convex topological vector space under the family of semi-
norms

(7) lp,s., = IVviL,.,-
We recall the main properties of S,,.

Theorem 2.4 (Theorem 4.4 of [B]). Under Assumption @), the following hold:

i) the space S, is a reflexive Fréchet space, continuously and densely embedded
mn H;
i) the representation m leaves Sy, invariant and its restriction to S, is a contin-
uous representation;
iii) the space H is continuously and densely embedded into the (anti)-linear dual

S,,, where both spaces are endowed with the weak topology;
5



iv) the restriction of the voice transform V : S,, — Ty, is a topological isomorphism
from S, onto the closed subspace M™ of Ty,, given by

MP ={feTy | f+K=[},

and it intertwines m and A;
v) for every f € Ty, there exists a unique element n(f)u € Sy, such that

(n(fu,v)gy = f F){(m(x)u, vYg dx = f F(xX)Vv(x) dx, veH.
G G
Furthermore, it holds that

Va(fu=f*K,
and the map
Tw 2 fna(fluesS,

is continuous and its restriction to M™ is the inverse of V.
Here and in the following the notation n(f)u is motivated by the following fact.

Remark 2.5. In the framework of abstract harmonic analysis, any function
f € Li1(G) defines a bounded operator n(f) on H, which is weakly given by

vy = fG PO Yy v, v € H,

see for example Sect. 3.2 of [15]. However, if f ¢ L1(G), then in general n(f)v is
well defined only if v = u, where u is an admissible vector for the representation n.

Recalling that the (anti-)dual of 7, is U,, under the pairing (@), we denote by
'V the contragradient map V : U, — S|, given by

(VO V), = (O, V), DeU, veES,.

As usual, we extend the voice transform from H to the (anti-)dual S;, of Sy,
where S,, plays the role of the space of distributions. For all T € S, we set

(8) VeI (x) = (T, n(x)u)s,,, x € G,

which is a continuous function on G by item ) of the previous theorem and (-, -)s,,

’

denotes the pairing between S, and S),, whereas (-, ), is the pairing between 7,
and U,, .

We summarize the main properties of the extended voice transform in the fol-
lowing theorem.

Theorem 2.6 (Theorem 4.4 of [B]). Under assumption (), the following hold:
i) for every ® € U, there exists a unique element m(O)u € S}, such that

(D, v)s,, = / D(x){m(x)u, vygr dx = / D(x)Vv(x)dx, vesS,.
G G
Furthermore, it holds that
Vern(®P)u = @ * K;
ii) for all T € 8}, the voice transform V,T is in U, and satisfies
(9) Vel =V, T =K,

(10) (T,v)s,, = (VeT, V), v ESy;
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iii) the extended voice transform V, is injective, continuous from S, into Uy, (when
both spaces are endowed with the strong topology), its range is the closed sub-
space

(11) MU = (D eU, | DK =D} =span U MErw( G (G)
Pe(l,00)
and it intertwines the contragradient representation of s, and Ajq, ;
iv) the map
MU 3 @ g(Due S,
is the left inverse of V. and coincides with the restriction of the map 'V to
MU namely

(12) Vo('V®) = Vor(@u =D,  De MU,
v) regarding Sy, — H — S, it holds

Sy ={TeS, | Vel €T} ={n(fHu]| feM™}.

Item [ of the previous theorem states that the voice transform of any dis-
tribution T € 8), satisfies the reproducing formula (@) and uniquely defines the
distribution T by means of the reconstruction formula (0, i.e.

T = ‘/G(T, r(x)uys,, w(x)u dx,

where the integral is a Dunford-Pettis integral with respect to the duality between
S,y and S, see, for example, Appendix 3 of [15].

We now fix an exponent r € [1, o), and a w-moderate weight m, i.e. a continuous
function m : G — (0, ) such that

(13) m(xy) < w(x)-m(y) and m(xy) < m(x)-w(y) forall x,yeG.

Remark 2.7. The definition (I3) of a w-moderate weight m is equivalent to the
condition

m(xyz) < w(x)-m(y)-w(z) foralxyzeG
up to the constant w(e).

The result of the following lemma is used multiple times in this paper.

Lemma 2.8. If m is a w-moderate weight on G, then so is m™".

Proof. To prove the estimates in ([[3) for m™! we fix x,y € G, then by the w-
moderateness of m it holds

m(y) = m(x""xy) < w(x™") - m(xy) = w(x) - m(xy),
which implies m(xy)™! < w(x) - m(y)~!. Similarly we observe that
m(x) = m(xyy™") < m(xy) - w(y™) = m(xy) - w(y),
which in turn implies m(xy)™! < m(x)~! - w(y). O

With terminology as in [5], we choose as a model space for the coorbit space
theory, the Banach space Y = L, ,,(G) with r € (1,00). The corresponding coorbit
space is defined as
(14) Co¥)={T €S, | VT €Y}
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endowed with the norm

(15) ITllcor) = IVeTlly-
We summarize the main properties of Co(Y) in the following proposition.

Proposition 2.9. The space Co(Y) is a Banach space invariant under the action
of the contragradient representation of s, . The extended voice transform is an
isometry from Co(Y) onto the A-invariant closed subspace

MY ={FeY|F«K=F}cU,,

and we have

Co(Y) = {n(F)u | F e M"}.

Furthermore
(16) Vrn(F)u = F, FeM?,
(17) a(V.T)u =T, T € Co(Y).

Proof. The proof is essentially an application of Theorem 3.5 in [5]. We first note
that convergence with respect to || - |ly = || - ||z,.,, implies convergence in measure.
Furthermore, since m is w-moderate, it is not hard to see that Y = L, ,»(G) is A-
invariant, and that the restriction of A to Y is a continuous representation of G.
Therefore, we only need to prove that Assumption 5 and Assumption 6 in [5] are
satisfied.

We first show that ¥ ¢ U,,. By ([@3) and (L) we get for any x € G that

(18) m(e) = m(xx™t) < m(x) - w(x™) = m(x) - w(x),

and hence [w(x)]™! - m(e) < m(x), whence ¥ = L, ;y(G) — L,,-1(G) c U, since
r>1.

Since U,, = 7,, under the pairing (), for all F € Y and f € 7, it holds that
Ff € L1(G). In particular, by assumption (&), FK € Li(G) for all F € Y and, by
construction, F Vv € Ly(G) for all v € S,, and F € MY, so that Assumption 5 and
Assumption 6 in [5] hold true. m]

3. DISCRETIZATION

The aim of this section is to establish certain atomic decompositions for the
coorbit spaces described in Sect. 2l In particular, we recall that

(19) Tw = ﬂ Lp,w(G), 7:\,, =U,, = span U Lq’w—l(G)
PpE(L,e) g €(1,00)

and for some 1 <r < oo,

(20) Y = L, n(G).

Proposition 2.9 shows that the correspondence principle holds, i.e., the extended
voice transform V, is an isometry from the associated coorbit space

(21) Co(Lym) :={T €S}, | Ve(T) € L, u(G)}
onto the corresponding reproducing kernel Banach space

(22) Moy = MErm @ =L f e, (G| f+K=f}.
8



Remark 3.1. Assumption [@) on the kernel K and the fact that m is w-moderate
imply that for all f € Ly m(G) the convolution f =K s well-defined; see Proposition

42

In this setting we can characterize the anti-dual M/ ,, of the reproducing kernel
space.

Lemma 3.2. The anti-dual M;,, of M, is canonically isomorphic to
Ly 1 (G)/ M-, where

(23) ME,, = {F € Ly (G) | (F.Fy, =0 for all F e M,,m}

and 1/r+1/r" = 1. Hence, for every I’ € M;’m there is a F € Ly m1(G) such that
[(F) = (F,F)r, for all F € My .

Proof. Since M, »,, is a closed subspace of L, ,,(G), [25, Proposition 1.4] yields that
M|, is canonically isomorphic to L; ,,,(G)/M;:,,,. The claim follows because L, ,,(G)
is canonically isomorphic to L, ,,-1(G). O

Some more preparations are necessary. Given a compact neighborhood Q ¢ G
of e with Q = int Q, the local mazimal function (with respect to the right regular
representation) Mgf of f € Ly(G) is defined by

(24) MOF() = |If - p)xolle., whence M f(x) = M5 F(x™) = I lluon -
Then, for a function space Y on G, we define
(25) M) = {f € Lo(G) | M{f e Y}

Now we define the Q-oscillation of a function f with respect to Q as

(26) osco f(x) := sup |f (ux) = f(x)].

The decay-properties of the Q-oscillation play an important role in view of the
discretization of coorbit spaces. To this end, the following lemma is useful. Since
the proof is a simple generalization of the proof of [2I| Lemma 4.6], it is deferred
to the appendix.

Lemma 3.3. Let w be a weight on G, let p € (1,00), and assume that f : G — C is
continuous and that f € MEO(LP’W) for some compact unit neighborhood Qg with

Qo =int Qp. Then the following hold:

i) lloscg, fllL,, ., < oo
ii) For arbitrary € > 0, there is a unit neighborhood Qs C Qg such that for each
unit neighborhood Q C Q, we have ||osco flL,,, <&. Put briefly,

li = 0.
Qg?e}IIOSCQfIIL,,,W

3.1. An Assumption on the Kernel. From now on we make the following as-
sumption on the reproducing kernel space.

Assumption 3.4. Assumption is satisfied, and span{A(x)K} ec is dense in
M.



This assumption is similar to the density of span {m(x)K}iec in H—which is
equivalent to K being a cyclic vector for the representation 7 on H—and in M7
which is Assumption 3 of [5] and fulfilled in our setting, as can be seen by combining
Theorems [2.4] and

In the following we will denote with RCk the right convolution operator RCk f :=
f * K, where the space on which RCx acts may vary depending of the context.

Before we provide a sufficient condition under which Assumption [3.4] is fulfilled
(see Lemma [B.8]), we need a couple of auxiliary results.

Proposition 3.5. Assume that for all f € L, m(G), f and K are convolvable (in
the sense that f - A(x)K € L1(G) for almost all x € G) and f *K € L, ,»(G), then the
right convolution operator
RCk : Lr,m(G) - Lr,m(G)v RCKf = f * K,

is bounded.

Proof. For r = 2 the result is stated in [22, Proposition 3.10], whose proof holds
true for any p. Indeed, by the closed graph theorem, it is enough to show that
RCk is a closed operator. Take a sequence (f)nen converging to f € L, ,(G) such
that (RCk fi)nenw converges to g € L, ,»(G). By a sharp version of the Riesz-Fischer
theorem, see [I, Theorem 13.6], there exists a positive function g € L, ,(G) such

that, possibly passing twice to a subsequence, there exist two null sets E, F such
that for all ye G\ E and x e G\ F

[ < g(y),
Jim fu(y) = f(0),
Jim RCx f(x) = g(x).

Furthermore, by definition of convolution and possibly re-defining the null set F,
we get that for all x € G\ F and all n € N the mappings

Yy LMKGY), vy g(MK(OTY)
are integrable. Then, given x e G\ F, forally e G\ E

IMKGT 0] < [gMKG™ 0l lim LK™ %) = fK (™ x).

For x € G\ F, the function y — g(y)K(y~'x) is integrable, so that by dominated
convergence we obtain

¢(x) = lim / FIKG ) dy = / FOKG ) dy = f * K(x)
n—e Jg G
so RCk is indeed closed. ]

Proposition 3.6. Denote by r’ the dual exponent 1/r + 1/’ = 1. Assume that the
right convolution operator

RCk : Ly u(G) = Ly (G, RCkf=f=K
is bounded, then

i) the right convolution operator is bounded on Ly, ,-1(G) and it coincides with
the adjoint of RCk;
ii) the operator RCk is a projection from L, ,(G) onto the reproducing kernel
Banach space My .
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Here and in the following, the duality pairing is the sesqui-linear form
(Fo)es = [ SIS f € LnlG) 8 € Lyt s (G,

Proof. Since RCk is a bounded operator on L,,,(G), the adjoint is a bounded op-
erator on L, ,,(G)". Take g € L, ,-1(G) and f € C.(G) C L, »(G), then

(RCig. )1, = (8. RCx f1, = fG 5(x) ( /G f(y)K(y‘lx)dy) dx

- / ( / g(x)K(x-ly)dx)Wdy
G G

= <g * K’f>L2’

where K(y~1x) = K(x~'y). Note that we can interchange the integral by Fubini’s
theorem since

f |g(x>|( f If(y)K(y‘lx)ldy) dx < gl - I1f1 * 1Kl
G G

and |f|*|K| € Ly m(G) by Young’s inequality (81]) with g =1 and p =r, f € L1,m(G)
and g = K € L, ,(G). Note that Fubini’s theorem shows that

/ O - (gl # [KD(y) dy < o0

Since this holds for any f € C.(G), we see |g| * |K| < oo almost everywhere, so that
g and K are convolvable. By density of C.(G) in Ly ,,(G) we get that RCrg = g *K,
so that g * K € L. ,,-1(G). Hence the convolution operator acts continuously on
Ly u-1(G) and it coincides with RCy.

To show the second claim, observe first that for any f € C.(G) C 7, C Ly ,-1(G),
since K € 7, both |f| = |K| and (|f] * |K]) = |K| exist, so that by (77d) of [5] the
convolution is associative and

RC?{f=(f*K)*KZf*(K*K)=f*K=RCKf-
By density, and since RCg is bounded on L,,(G) by assumption, we get that
RC} = RCk and hence Ran RCx € M, . The other inclusion is trivial. O
As a consequence of the above result, we get the following corollary.

Corollary 3.7. Denote by r’ the dual exponent 1/r+1/r" =1 and assume that the
right convolution operator RCg is bounded on L, ,,(G). The sesqui-linear pairing
on Co(Ly,m) X Co(Lys 1) given by

<T, T/>Co(Lr,m) = <VeT, VeT/>L2
is such that the linear map
T' - (T - (T, T’)co<Lr,m))
s an isomorphism of Co(L, ,,-1) onto the anti-linear dual of Co(L; ).

Proof. We identify Co(L, ;) with M, ,,, by the extended voice transform V., so that
the pairing becomes

(Fog)in = /G PR dr  f € My g € My,

11



Since g € L, ,,-1(G), clearly f — (f,g)r, is a continuous anti-linear map, which we
denote by I'g, on M, ,, whose norm is

ITell = sup {[<f. el | f € Myms If L, < 1}
< sup {[{h g1 1 | h € Lrm(G) A, <1} =lgllz,,, -

Next, since L, ,(G) is the dual of L, ,,,-1(G), there is h € L, ,,(G) with ||k, ,, <1
such that ||gllz,,, .+ = (h,g)L,- Now, setting ¢ := |[RCkl|IL, ,,—L,,, and [ = ct-
RCkh, we have || f]|z,,, <1 and

<f’ g>L2 = c_1<RCKh’ g>L2 = C_1<h’ RCKg>L2 = C_1<h, g>L2 = C_IHg”Lr/!m—l :
Hence, ¢ - gz, < ITell < liglle,, , -
We now prove that the map g + Iy is surjective. Take I' in the anti-linear dual

of My . Since M, ,,, is a subspace of L, ,(G) there exists g’ € L,/ ,,-1(G) such that
I'(f)=(f.8", for all f € M, ,,,. By setting g = RCxg’ € M, ,-1, as above

L(f) =8, =(RCk f, ), = ([, ), =Te(f) forall f € My pm,
thus I' = T. ]

Now we can prove that in the following setting Assumption B.4]is fulfilled.

Lemma 3.8. Fizr € (1,00) and assume that the right convolution operator RCk is
bounded on Ly ,(G). Then the sets span{m(x)u}xec and span{A(x)K}xec are dense
in Co(Lym) and M, m, respectively. Thus, Assumption[34)is fulfilled.

Proof. By the correspondence principle, it is enough to show the second claim. Let
I' e M; ,, be such that for all x € G,

T(A(x)K) = 0.

By the above corollary, there exists g € M, ,,-1 such that T'(f) = (g, f)r, for all
f € My . In particular,

0 =T(A(0)K) = (g, A)K)r, = g * K(x) = RCxg(x)

for all x € G, that is, RCxg = 0. Since g € M, ,,-1, this implies g = 0 and then
I' = 0. Since this holds for any I' € M/ such that I'(A(x)K) = 0 for all x € G, we

r,m

see that span{A(x)K}yec is dense in M, ;. O

By Young’s inequality we know that the L;(G)-integrability of K - w implies that
the (right) convolution operator RCk is a bounded operator acting on Ly, ,,,(G) for
all 1 < p < co. But for general K € 7, this question is unclear. As we will show in
Sect. B3lthere are kernels that act boundedly on all L,(G) without being integrable.
But in Sect. M we also show that there exist kernels for a very similar setting that
are contained in 7,, but that do not give rise to bounded operators on Ly »(G).

3.2. Atomic Decompositions. This section is dedicated to finding possible atomic
decompositions of coorbit spaces, provided that Assumption 3.4 is fulfilled. The
main results of this section will be stated in Theorem [3.16]
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But before that, we need to introduce some notation. First, for each n € N, we
choose a countable subset ¥, = {xj.}jeq, € G such that

(27) Y, C Y1,
(28) Jn=6
neN

Moreover, for every n € N, we assume that there exists a compact neighborhood
0, of the identity e € G, such that Y, is Q,-dense in G, i.e.,

(29) G =] xn0n-
i<

Additionally we assume each ¥, to be uniformly relatively Q,-separated, i.e. there
exists an integer 7, independent of n, and subsets Z,,; ¢ ¥,, 1 <i < I, such that

I
(30) Yo =) Zus
i=1

and for all x,y € Z,;, 1 <i < 7, it holds xQ, N yQ, # 0 if and only if x = y.
By ¥, = {¥nx}xey, we denote a partition of unity subordinate to the Q,-dense
set Yy, i.e.,

(31) 0<yYnx <1,
(32) > =1,
xeY,
(33) supp(Wn,x) C XQn.

We also assume that the family W, = {{,x }xev, is linearly independent as a.e. de-
fined functions, i.e. for any finite subset X C ¥, and (ax)xex € CX, the condition

Z a’x'pn,x(y) =0
xeX

for almost all y € G implies that a, =0 for all x € X.
We now denote with X, a finite subset of Y¥,, such that

(34) Xn C Xn+17
(35) x. =0
neN

Therefore, for every n € N, the finite set of functions {yn x}xex, is similar to a
partition of unity subordinate to the family (x0y)xex,, -
For eachn e Nand 1 <r < o0, set

(36) Tp: Lrm(G) = My TuF = Y (F.dinidi, A0K.
xeX,

We observe that this operator is well-defined. Since the sum is finite, we only have
to verify that each term of the sum is a well-defined element of M, ,,. It is easy to
verify that the reproducing identity holds for A(x)K, since it holds for K. Moreover
we have A(x)K € L, ,(G) by Assumption and by translation invariance of the
spaces Ly ,(G); thus, A(x)K € M, ;. Finally, the pairing

(i)t = /G FOWonr(y) dy

13



is well-defined for all x € Xj,, since ¢, » is bounded with compact support, so that
Ynx € Lr’,m’1 (G).

Now we define V,, = RanT,, which is a finite dimensional subspace of M, ,,, as
well as V, = V;4(V,,), which is a finite dimensional subspace of Co(L, ) by the
correspondence principle. We show the following result concerning the structure of
the spaces Vj,:

Lemma 3.9. The following holds for all n € N:

(37) Vi = span {A(x)K},cx, »
(38) Vn C Vn+17
(39) U Vo = My m.

n>1

Proof. We start by showing B7). By the construction we made above, V, C

span {A(x)K} cx, -
We first observe that the map

F = ((Fohn)1(6)) xex,

is surjective from L, ,,(G) to CX». Indeed, if this was not true, there would be
a nonzero family (ay)cex, € CX satisfying 2xex, Gx(F¥nx)r, = 0 for all F €
Ly m(G), then ¥ cx, axnx = 0in L, ,,-1(G) and, hence, almost everywhere, then by
assumption ay = 0 for all x € X, a contradiction. It follows that span {A(x)K},ex, S
V, and (B7) holds true.

Equation (B8] is an easy consequence of (34 and (B7]).

It remains to show (B9). Since the sequence (V;)nen is an increasing family of
subspaces, and since V, ¢ M, ,, for all n € N, the set |J,»; Vi is a subspace of
the closed space M, . Hence, by the Hahn-Banach theorem, condition (39)) is
equivalent to the following condition: If T € M/ ,, satisfies

(T, F)M/r’mer’m =0, forall FeV, neN,

then T' = 0 in M; ,,. By Lemma [3.2] we can write (T, F)uq , xM,.. = (8 F)L, for
all F € M, ,,, for a suitable g € L, ,,-1(G). Since A(x)K € M, m, x € G, for every
f € Ly -1 (G) with f — g € M}, it holds for all x € G,

(8 * K)(x) = (8, A(x) K)r, = (T, AxX) K) A, x My -
Now, with F =T, f for some f € L, ,,(G), we obtain

0 =T IM, o x My = Z Wrnes Ly T AKI My 5 My

xeX,

= > W L - (@ K)x) = (D (8% )W ),
xeXp xeXy
Since this holds for any f € L, m(G), we get Y ex, (8% K)(X)Wnx = 0in L -1 (G) for
all n € N. Because the finite family {t,bn, x}xexn is linearly independent as elements
of L, u-1(G), we have (g * K)(x) = 0 for all x € X,, and n € N. Therefore, by (3H),
the function g = K vanishes on a dense subset of G. But since we have g * K(x) =
(8, A(x)K)r, with g € L ,,,-1(G), and since the map G — L, »(G),x — A(x)K is
continuous, we see that g * K : G — C is a continuous functions, so that we get
gxK =0,ie, (LLAOK) M, xM,,, =0 forall x € G.
14



’

By Assumption 3.4} this implies I' = 0 as an element of M/ ., which proves

B9 O

Remark 3.10. By the correspondence principle, analogous results to [B10), (B) and
@9 hold true for V,. This can be seen as follows: Since it holds Verr(x)u = A(x)K
for all x € X, by 1) we obtain

(40) Vi = span {x(x)u} ey,

Hence, the nesting property Vi C Vst analogous to [B) is straightforward. By the
correspondence principle, it follows from (BY) that

(41) |J Vi = ColLym).
neN

With the spaces V,, at hand, in the following we will turn to projections from
M, onto V,, and their properties. To this end, let n, : M, ,,, — V,, be the metric
projection defined by
(42> m(F) = argmingevn IIF - g”Mr‘m-

Since M, ,, is a closed subspace of L, ,(G) with 1 < r < oo, the space M, ,, is a
uniformly convex Banach space and every Vj, is convex and closed; therefore m, is
a well-defined and unique function, see [19, Proposition 3.1]. Similarly, we define
the projection @, : Co(Ly m) — v, by setting 7, = V, 7, V..

The following lemma gives us a first norm estimate for this metric projection.

Lemma 3.11. Given & >0 and F € M, n, there erists n* = n}, . € N such that for
all n > n* it holds

(43) IF = 2n(F)llm,,. <&
(44) 7 ()M, < L+ EF M, -

Proof. If F = 0 the claim is clear since 0 € V,, so that n,(F) = 0. Hence, we can
assume that F # 0. Let ¢ := min{l, ||F||Mr,m} -& > 0. By (B9) there exists n* > 1
and g € Vy» such that [|F - gl p,,, < 6. For all n > n*, by (38) we have g € V,, and,
by definition of the metric projection,

IF = a(F)Iptyy < IF = glly,,, <6 < &
The triangle inequality gives

I7n(E)M, e S T = 70 (E)lI M, + 1F M, < 6+ (IF M, < A+ ENFlIM,,.

which concludes the proof. O

The following auxiliary result establishes a first upper bound for certain coeffi-
cients related to functions F € M, ,,. This will be used for the atomic decomposition
afterwards.

Proposition 3.12. For any F € L, ,,(G) and n € N, let the coefficients cnx € C,
x € X,,, be defined via

Cnx = / F()’)lﬁn,x()’) dy
G

15



Then the inequality

(45) (Z |cn,x|rm<x>r) < 1QulV"" - sup w(g) - IFIlL, .

xeX, q€0n

holds, where |Qy| denotes the Haar measure of the set Q, and r’ denotes the dual
exponent of r.

Proof. We first note that, since i, » is compactly supported and bounded, the
coefficient ¢, x is well-defined.

Next, we observe that if ¢, (y) # 0, then y = xg, for some g, € Q,, and hence
m(x) = m(anqnl) < m(xgn) - w(g,") < m(y) - supyeg, w(g). This shows

() - e < m(x) - / FO)| - tnr () dy
(46) ¢

< sup w(q) - I(mF)(y)I Ynx(y)dy.
q€0n

We will now further estimate the integral on the right-hand side, setting Fy :=m-F

for brevity.
To this end, we define the measure duy on G (for x € X,;) by setting

‘/’n,X(Y)
lnxllL,

and readily observe that fG 1 duy = 1. Thus, by Jensen’s inequality, see [8, Theorem
10.2.6], we obtain

Ynx(y) r_ '
( / Rl y) —( fG IFo(y)| dux(y))

< / RO din()

r ‘pn,x(y)
/ o i @

By the properties of ¥,,, see B1), (32)) and B3], it holds

Wnslles = [ sty ay< [ vav= [ 1ay=10.l
G x0n On
Recalling ([@6]), we thus see

() - lenl)

dux(y) =

xeX,
, lﬁnx(y) )
< X
< s wia)' ZX Wl ( / IR
, r ‘/’nX(Y)
< ° n,x
< sup vl xezxnnw I / R el g
< sup i) sup Wl Y, [ IR0 i) dy
q€0n X€Xn x€X,

IA

sup w(q)” - |Qul" ™ - IIFIl}, .
q€0n ’
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which concludes the proof. O

With this at hand we are able to give a first atomic decomposition for functions
F €V,, neN, as well as an estimate for the norm of the coefficients involved.

Lemma 3.13. Given n € N, for all F € V, the following atomic decomposition
holds true:

(47) F= ) c(Fps AWK,

xeX,

where the coefficients c(F)nx are of the form
(48) C(F)n,x = <SnF, Wn,x)Lw

where S, denotes any linear right inverse of Tn : Ly m(G) — Vy,. In particular, the
coefficients depend linearly on F and they satisfy

1/r
(49) ( > |c(F)n,x|’m(x)r) < GallFllp,,,.

xeX,
with Cy = ||Sull - 1Qa """ - sUp, e, W(q).

Proof. We first observe that the operator 7,, admits a bounded right inverse S, :
Vi — Lym(G). Indeed, by [4, Theorem 2.12] the existence of a bounded right
inverse is equivalent to the existence of a topological supplement of the kernel of T,,.
However, since the spaces V), are finite dimensional, such a topological supplement
exists, see [4, Example 2.4.2].

In the remainder of the proof, we denote by S, an arbitrary linear right inverse
of T,. Thus, for all F € V,, we have the decomposition

F=T,S,F = Z (SuF, Ynx ), A(XK,

xeX,

so that (A7) holds true if we define the coefficients ¢(F),» as in [{@8). With this
notation the coefficients depend linearly on F. By applying (@3] we obtain the
estimate

1/r
(Z |c(F>n,x|rm(x>r) < 10ul"" - sup W(q) - [1SuFllw,.,, < CallFllpg, e
xEXn qun

where C,, is as in the statement of the lemma, and where ||Sy|| is the operator norm
of S, as an operator from V, into L, ,,(G). This proves [@9). O

Remark 3.14. Note that if the sequence (|Qn|1/r/'supqEQn w(q)-|Sul)nen is bounded,
then the constant C,, in @) can be bounded independently of n. Naturally the ques-
tion arises under which conditions this really is the case. To answer this question,
it is mecessary to determine the asymptotic behaviour of the operator norm of S,.
As we will show in Sect. [3.3 this task is already non-trivial for a very simple set-
ting. Still, in Lemma [A.3 we give a partial answer, as we present a technique to
characterize the operator-norm in a different manner.

The proof of the following technical lemma can be found in the appendix. We
recall that the integer 7 is defined through assumption (30).
17



Lemma 3.15. Let 1 < p < oo and (dy)xey, € {pm(¥n) for some n € N, then
_1 1
| >t < 77F - sup wig) - 10ulF - ldo)ver,
il Lp.m 9€Qn

with the convention é :=0.

With the auxiliary results above, we are in the position to state and prove our
main result.

Theorem 3.16. We assume that K satisfies () and that there exists p < r such
that

K€ L,,air(G),

(50) oscg, (K) € Lpw(G) N L, a-110 (G),
for all n e N.
i) Fix & > 0; then for any T € Co(L,,,) there exists n* = ny . € N such that for
alln > n*
“T - Z c(Tpxm(x)u Cotl ) <e,

xeX,

where the family (c(T)nx)xex, Satisfies
I(c(Mnx)xex, e, n < Ca(1+ )T llco(L, )

with C,, = |Qn|1/r/~supqEQn w(q)-||Sull, where S,, denotes any linear right inverse
to the operator Ty, : Ly m(G) — V,, defined in (30]).
i) Let n € N, and let d = (dx)xey, € lgm(Yn). Then T = Y ey, dxn(X)u is in
Co(Ly,m). Furthermore the estimate
ITllco(L,. ) < Dull(dx)xey, lle,. .
holds, where 1/qg+1/p=1+1/r, and

(51) D, := |Qn|%_1 'Il_% - sup w(q) - O
q€Qn

with 6, := max {|| 05¢0, (K) + Kl llL,.,.. llosco, (K) + IKIllL, ., }

Proof. To prove i), choose n* = n}. _ as in Lemma B.IT with F = V.T € M, ,,. By
applying (7)) and {@8) to m,(F) € V, we obtain the atomic decomposition

ﬁn(T) = Ve_lﬂ'n(F) = Ve_1 ( Z (Spmn(F), lprl,x>L2 - A(x)K

xeX,

= D SamaVel D) )i, - VoADK = ) e,

xeX, xeX,
where ¢(T)nx = (SnnVe(T),¥nx)r,. Using [@3) and the correspondence principle

we derive

[7= 2% emmenton, = -FDle, ) = VT =V,

xeX,

=||F = 7u(F)||,, , <€

18



Now ({@9) and {4) yield the estimate

=

(Z |C(T)n,x|rm(x)r) < Cn”ﬂn(VeT)”Mr,m < Cn(l + ‘9)”VeT”Mhm

xeX,
= Cu(1 + )T llcow,. )

for any n > n*.

It remains to prove ii). In [6, Chap. 3, p. 100] the following pointwise estimate
for y € G has been established:

|Z@MWMsQﬂm$T

xeY, xeY,

* (0scg, (K) + |K]) ().

Let now ¢ > 1 such that 1/¢g +1/p = 1+ 1/r. By using Young’s inequality, see
Proposition [A.2] and Lemma [B.15] we obtain

Z dym(x)u = Z dxA(x)K
XE€Y, Co(Ly,m) XE€Y, Ly,m
<{( D 1dilxso, ) * (osco, (K)+ KT || -IQaI™
xeY, Lrm
<|| D7 ldelwro,|| - 10al™
xeY, L<],m
.MQM%WHWMMM%WHWMWW}
1_ _1
<|Qnla™" - T4 - sup w(g) - [(di)lle, .,
q€0n
.qu%WHmmwM%WHmMWW}

By the assumption (50]) the expression on the right-hand side is finite.
O

Remark 3.17. The coefficients ¢(T)nx, X € X, in Theorem[T 18 i) depend linearly
on T if and only if the projection m,, from [@2) is linear.

The following proposition presents a slight variation of Theorem [3.16

Proposition 3.18. Under the same assumptions as in Theorem[Z.18 the following
holds: Fix & >0 and T € Co(Ly,m); then there exists n* = n}. . € N such that for all
n>n*

1
(52) ad+e) I(c(Mnx)xex, ey < T llco(L,m)
and
(53) ITlco(z,. ) < &+ Du - 1(c(Mnx)xex, e, s

1

where D, as in (BI) and 1, = C, - |Xn|%_r, |X,| is the cardinality of X, and
1/g+1/p=1+1/r.
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Proof. Throughout this proof we use the same notations as in Theorem [3.161 We
first note that for any finite sequence (dy)xex,, n € N, by Holder’s inequality, it
holds that

1(dx)xex, leg m < Wd)xexi N - 1L, lle 1 -

where 1x, is a sequence of ones only. Furthermore it holds

1

1_
x,lle g =1Xnla 7.
7=q

With 7,, :=C,, - |Xn|$_% we then obtain from Theorem [B.16]1) the estimate

1
I(c(Dndxexalleg.m S m7 S NCDn)xex, lle < T llcowy, )

1
(1 +¢g) C,(1+¢)

which proves (52)).

It remains to show the second inequality (53). For this we note that the sequence
(c(T)n,x)xex, can be understood as a sequence over the index set ¥, with only finitely
many non-zero entries. Therefore, by (@3] and Theorem [B.16ii), this yields

ITllco(r, ) < €+

Z c(T)pxm(x)u

x€Xn Co(Lr,m)

1
1
< e+ |07 - On - [(e(Tnx)xex, ey, me

which concludes the proof. O

3.3. An Example: Coorbit Theory for Paley-Wiener Spaces. As an exam-
ple we will discuss the case of band-limited functions on the real line. This case
cannot be handled with the classical coorbit theory, since the reproducing kernel
that arises is the sinc function, which is not integrable. Thus, the band-limited
functions are a suitable example for our setting.

We will briefly recall the setting following the lines of Sect. 4.2 in [5]. Let
G denote the additive group R whose Haar measure is the Lebesgue measure dx.
Since the group is abelian, R is unimodular. We denote by S(R) the Schwartz
space of smooth, rapidly decaying functions and by S’(R) the space of tempered
distributions. The Fourier transform on S(R) and S’(R)—defined for f € L'(R) as
Ff() = f(f) = fRf(x)e_2”ix§ dx—is denoted by . If v € S’(R) we also set v = Fv.

The Hilbert space H we are interested in is the Paley-Wiener space of functions
with band in the fixed set Q c R, namely

H = Bf) ={v € Ly(R) | supp(v) C Q}
equipped with the La(R) scalar product. Then, by defining 7 for b € R as
a(byv(x)=v(x—=b), ve Bé,

7 becomes a unitary representation of the group R acting on Bf). With this definition
of 7, on the frequency side 7 = FaF ! acts on FH = Ly(Q) by modulations:

T(b)V(¢) = e*PEV(é), v e BR.

From now on we set Q to be a symmetrical interval, Q = [-w, w]. Proposition 4.6
in [5] then shows that by choosing as admissible vector the function u = F~1yq €
20



Bé, the resulting kernel K as defined in (B]) is the sinc function
sin(2wnb)
b’

where sinc x = sin x/x. Clearly, K is not in L;(R), but it belongs to L,(R) for every
p > 1. Therefore we choose the weight w = 1 and take

7= () L®

1<p<co

(54) K(b) = F 1 ya(b) = 2wsinc(2wnb) =

as a target space to construct coorbits, see (I9)). As above, the (anti)-dual of 7~ can
be identified with

T’ = U = span U Ly(R).
l<g<oo

For p € [1, ), we define the Paley-Wiener p-spaces

BY :={f € L,(R) | supp(F f) € Q}.

Recall that the Fourier transform maps L,(R) to L,(R) for p < 2, which follows
from the Hausdorfl-Young inequality. In contrast, for p > 2 the space FL,(R)
contains distributions that in general are not functions, see [23, Theorem 7.6.6].

The spaces BS are sometimes defined in the literature as the spaces of the entire
functions of fixed exponential type whose restriction to the real line is in L, (R). This
definition is equivalent to ours since a Paley-Wiener theorem holds for all p € [1, o).
In particular, all these functions are infinitely differentiable on R. Moreover, if
fe Bg with p < oo, then f(x) — 0 as x — +oo0, and hence

By CCP(R) = {f € C*(R) | f(x) > 0as x - xoo}, 1<p<oo.
Consequently, the Paley-Wiener spaces are nested and increase with p:
By CBl, 1<p<g<oo.

Proposition 3.19 (Proposition 4.8 of [5]). Let Q = [-w,w] and define u := K :=
F~1xa. The “test space” (as defined in [@)) is

S:ﬂBg

PpE(1,00)

s'= ] B,

pe(l,00)

and its dual space is

The extended voice transform is the inclusion
Vo :S" —>U
and the following identification holds:
Co(Ly(R)) = MP = Bg.

To obtain a discretization as laid out in Sect. Bl we first need to show that
Assumption 3.4] is fulfilled. By Lemma [3.8] it suffices to show that the convolution
operator associated to K is a bounded operator on L, (R).

Corollary 3.20. Let 1 < p < oo, then RCk is a bounded operator on L,(R).
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Proof. Since K = F~! yq, the convolution with K is a bounded operator on L,(R)
if and only if yq is a Fourier multiplier on L,(R). By [20, Example 2.5.15] this is
true if and only if xjo 1] is a Fourier multiplier on L,(R). However, it is well-known
that this is true because the Hilbert transform is bounded as an operator acting on
L,(R), see |20, Theorem 5.1.7]. ]

We will now apply the analysis outlined in Sect. to obtain a discretization
for these spaces. To this end, for n € N, let

(55) Yy = {2k} s, C R.
Furthermore we fix

(56) Qn — [_2—"—1’ 2—n—1] ,
which is a compact neighborhood of zero, and we set
(57) Unk = X[—o-n-1,0-n-1)(- — 27k)

for n € N and k € Z, where y denotes the characteristic function. Then, the
verification of BI)-B3) is straightforward. For later use we note that |Q,| = 27".
Furthermore the system {¥,, r }xez, n € N fixed, is orthogonal with ||y, « ||i2(R) = |0nl.
As a finite subset of ¥,,, n € N, we set

(58) X, :={27"k | =N(n) < k < N(n)},

where N(n) € N is chosen such that (34) and (B3] are fulfilled. A possible choice is
N=Nn)=n-2".
According to (BB) the operator T, : B, — Vi, C By is defined via

N(n)

Tuf(x) = D {ftmi)r, K(x = 27"k),

k=—N(n)
for f € By, where
271 (k+1/2)
Gt = [ 10 dy.
27" (k—-1/2)
By (B1) this means
V,, = span {sinc2rw(- — 27"k)) | -N(n) < k < N(n)}.
In order to apply Theorem we first need to show the following;:

Lemma 3.21. It holds K € M’én(Lr), and therefore oscg, f € L.(R) for all n e N.

Proof. We have |K(y)| < 2w for all y € R, and |K(b)| < 1/(x|b]) for all b # 0. This
implies

1+4w
KOl < :
L+1yl
Indeed, for |y| < 1 we have |K(y)| < 2w < %“‘;l, while for |y| > 1, we have 1/]y| <
2/(1 + |y|), and thus |K(y)| < %ﬁ < tzllﬁ

Now, for y € x + Q,, € x +[-1,1] we have 1 + |x| < 2+ |y| < 2(1 + |y|), so that

144 248
K(y)| < 1:‘;‘1 < Jrl;‘f. Hence,

2+ 8w\"
1+1x]) °

sup |K(y)|" < (
yex+Qn
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and thus

/ sup [KO)I" dx < oo,
R yex+Qn

concluding the proof. O

With this at hand we can discretize the Paley-Wiener p-spaces according to
Theorem [3.16]

Proposition 3.22. Let 1 < p < c0.
i) Fiz & > 0; then for any f € Bg there exists an integer n* = n;’e e N, such that

for alln = n*
N(n)

Hf— DT e(PmiK (- 27"k)

k=—N(n)

<e&

gl

Lp
where the family of coefficients (c(f)ni)-Nm)<k<N(n) Salisfies

(i) -Nm<ksvenlle, <277 A+ NSl - 1f e, -

Here, as usual, S, is a linear right inverse for the operator T,, defined in (BG).
it) For any sequence (dyx)xev, € Cq(Yn), n € N, the function f defined by
f = Ykez dankK(- —27"k) is in By with

£l @ < € - 2" YD [(do)xey, lle,
where C = C(p,q) > 0 is a constant and q < p.
Proof. 1) is an application of Theorem 316 1), with |Q,| = 27".

It remains to prove ii). Again, we can apply Theorem [3.10ii) and note that, by
Lemma [B2]] the assumption ([B0) is fulfilled. Moreover, Lemma B21] shows that
loscg, (K) + |K|||z, can estimated from above by a constant C > 0 independent of
n€N. O

As stated in Remark [3.14] the asymptotic behaviour of the operator norm of S,
is crucial. In the following we apply Lemma[A3]to obtain a useful characterization
of ||Sall-

For this we restrict ourselves to the case p = 2 and obtain with the notation of
Lemma [A3]

ISalI7" = & = inf {M fe (KerT,,)l}
1AL,
* 1/2
= inf {7@5”% o | f e (Ken Tn)l} = din(Un),

where Apin(Uy,) denotes the smallest eigenvalue of the operator
U, =TT, : KerT,)" — (KerT,)*.

Here, we used the well-known inclusion Ran A* ¢ (Ker A)* which guarantees that
U, is well-defined.
We have thus shown that the asymptotic behaviour of the smallest eigenvalue of
U, is equivalent to the asymptotic behaviour of ||S,||.
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By using

N(n) N(n)
Tf= > (fm)KC=2") Tig= Y (&K(-2"K)Ldnt
Jj==N(n) ke==N(n)

we can rewrite U, as
N(n)
Uf= Y (ot KC = 27D KC = 2R,k
J-k==N(n)
N(n)
= D P @K@ k= )k
J-k==N(n)
for f € (KerT,)™*.

We set W, := span {‘Pmk | —N(n) <k < N(n)} and obtain the relation W} c
KerT,; thus (KerT,)* ¢ W,. Next, we note that the family {A(x)K}rer is linearly
independent; indeed, we have F(A(x)K) = e 27X X[-w,w], and by analyticity these
functions are linearly independent if and only if the functions (R — C, & + e~ 27/*¢)
are. But each of these functions is an eigenvector of the differential operator d/dé
with pairwise distinct eigenvalues 27ix, x € R, which yields the linear independence.
From this and from Lemma 3.9 we see that RanT, = V,, = span {A(x)K},cy, satis-
fies dimRanT7, = |X,| = 1+2N(n). But since T}, : (KerT,)* — V,, is an isomorphism,
we see dim(KerT,)* = 1 + 2N(n) as well, so that we finally see W, = (KerT,,)* by
comparing dimensions. Hence, U, : W,, —» W,,.

Moreover, by the orthogonality of the family {¥,}, we see that

N(n)
(59) Untini = lnilf, D KQ@(E= ) Wne
=—N(n)
for any —N(n) < k < N(n). Since dimW, = 2N(n) + 1 < oo, we may define an
isomorphism

(60) P, W, - R2N(n)+l’ Pn(lﬁn,k) = ”‘/’n,k”Lgek,

where e denotes the k-th canonical unit vector of RZ2VN®+1 Note that P, maps the
orthonormal basis (Y /|[Wnk|lz,®)) to the orthonormal basis (ex)xen, so that P, is
unitary.

The linear map P,U,P;' : RZNMW+1 _ RN+ jg represented by a matrix M,
whose entries are given via

‘pn, k 'ﬁn, J

L
Wi, 1Wnjll,® >

(Mn)j,k = <PnUnP;19k, ej>R2N(n)+1 = <Un

N(n)

DT K@= k)Yt )L

 Wnlles S

= Wil Wnj I, K27"(j = k)
=27"KQ2™"(j - k)),

_ ¥nklle,

1< j,k <2N(n)+ 1. Since K is real, the matrix M,, is a symmetric Toeplitz matrix,

which means that the entries of M,, only depend on the quantity |k—j|, thus yielding

a band-structure. Since the eigenvalues of M), coincide with those of the map Uy,
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finding the smallest eigenvalue of U, is equivalent to finding the smallest eigenvalue
of the Toeplitz matrix M,.

Unfortunately, this task is very difficult. To the best knowledge of the authors,
it is not possible to properly characterize the asymptotic behaviour of the smallest
eigenvalue of such a Toeplitz matrix. We further refer to [3], where the authors
were told that leading experts on the field of Toeplitz matrices are unaware of these
asymptotics.

Since there are already big obstacles in understanding the asymptotic behaviour
of ||S,,|| in this rather simple setting, one cannot hope that easy answers are available
when turning to more complex groups and their associated coorbit spaces.

4. OBSTRUCTIONS TO DISCRETIZATION FOR NON-INTEGRABLE KERNELS

In classical coorbit theory, the kernel K(x) = Vu(x) = (u, 7(x) u)¢ is assumed to
be integrable; in other words, it has to satisfy K € L;,,(G) for a suitable weight
w > 1 on G. This assumption is introduced in order to guarantee two independent
properties: First, it ensures that one can construct a suitable reservoir of “dis-
tributions,” and thus obtains well-defined coorbit spaces. Second, it ensures that
the right convolution operator f +— f * K acts boundedly on the function space Y
which is used to define the coorbit space Co(Y). For instance, this is the case if
Y = L, ,»(G) with a w-moderate weight m.

Replacing the integrability condition K € Li,,(G) by the weaker assumption
K € Ni<p<eo Lp.w(G), one can still define a suitable reservoir and obtains well-
defined decomposition spaces, as we saw in Sect. However, we will see in the
present section—precisely, in Proposition L5l—that the modified assumption K €
MNi<p<eo Lpw(G) is in general too weak to ensure that right convolution with K
defines a bounded operator on L, ,,(G). In other words, a given kernel K satisfying
the weak integrability assumption might or might not act boundedly on L, ,,,(G) by
right convolution.

For such “bad” kernels that do not act boundedly, no discretization results sim-
ilar to those from classical coorbit theory can hold, as we will prove in the present
section. Therefore, if such discretization results for the coorbit space Co(L; ;)
are desired, one needs to assume that K € (;<,<c0 Lp,w(G) and additionally that
f = f K defines a bounded operator on L, ,,(G). This second condition is highly
nontrivial to verify in many cases where the kernel K is not integrable. However,
it is possible in the setting of the group (R, +) as discussed in Sect. above.

Since we aim to show that no discretization as for classical coorbit theory is
possible, we briefly recall these results: Assuming the kernel K to be well behaved,
a combination of Lemma 3.5 v) and Theorem 6.1 in [I3] shows that the synthesis
operator

Synthy : € my (I) = Co(Ly ), (¢i)ier — Z ci-n(x))u with (mx); = m(x;)
iel
is well-defined and bounded, for each r € (1, ), each w-moderate weight m, and
each family X = (x;)ies in G that is sufficiently separated—similar to 6Z¢ in G = R¢.
The operator Synthy even has a bounded linear right inverse, provided that the
family X is sufficiently dense in G, where the required density only depends on w, u.
If Synthy indeed has a bounded linear right inverse, the family (7(x;) u);er is called
a family of atoms for Co(L; ,,) with coefficient space &y, (I).
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Dual to the concept of atomic decompositions is the notion of Banach frames,
which was introduced in [2I]. By definition, the family (m(x;)u);es is a Banach
frame for Co(L; ) with coefficient space €, (1) if the analysis operator

AX : CO(Lr,m) - gr,mx (I)’f and (<f’ ﬂ(xi) M>Sw)iEI

is well-defined and bounded and has a bounded linear left inverse. As shown in
[21, Theorem 5.3], this is satisfied if the sampling points X = (x;);e; satisfy the
same properties as above: they should be sufficiently separated and dense enough
in G, where these conditions only depend on w and u, but not on the integrability
exponent r or the w-moderate weight m. Provided that (7(x;) u);¢s is a Banach frame
for Co(Ly,m), we have in particular lAx flle, .y = Il fllco(,,.) for all f € Co(Lym);
but in general this latter property is weaker than the Banach frame property.

The preceding statements hold for all w-moderate weights m and for all exponents
r € (1,00). Since the reciprocal m~' of a w-moderate weight m is again w-moderate,
see Lemmal[Z8] it follows that if the above properties hold for L, ,,(G), then they also
hold for L, ,,,-1(G). Therefore, classical coorbit theory provides discretization results
that are stronger than the assumptions of the following theorem. The following
theorem thus shows that discretization results as in classical coorbit theory can
only hold if the kernel K acts boundedly on L, ,,(G) via right convolutions.

Theorem 4.1. Let r € (1,00) be arbitrary. Assume that Assumption[2.9 is satisfied,
and let m : G — (0, 00) be a w-moderate weight. Furthermore, assume that for some
family (x;)ier in G and for some weight 6 = (6;);e; on the index set I, the following
hold:

i) “Weak Banach frame condition for Co(L,.,)”: The analysis map
A Co(Lym) = bro(D), o = ((@, m(x)u)s, );e
is well-defined and bounded, with

(61) IA¢ll, , < llellcor,,y  for alle € Co(Lrm) -
ii) “Weak atomic decomposition condition for Co(Ly ,,-1)”: The synthesis map
S+ b1 (1) = Co(Ly 1), (ciier > Y lei - w(xi) u]
iel
is well-defined and bounded.
Then the right convolution operator RCkx : f — f % K defines a bounded linear
operator on Ly, (G).

For the proof of this theorem, we will need several technical lemmata. Having
shown in Sect. [2that the voice transform can be extended from H to the reservoir
S}, (and thus to the coorbit spaces Co(L;)), our first lemma shows that one can
also define a version of the voice transform on the (anti)-dual space [Co(Lr,m)],.

Lemma 4.2. If Assumption[Z2 is satisfied for r € (1,00), and if m : G — (0, ) is
w-moderate, then there is a constant C = C(m,r,w,K) > 0 such that

forallxeG: n(x)ue Co(L,,) and |m(x) ullcoz, .y < C- w(x).

Therefore, for any (antilinear) continuous functional ¢ € [Co(Lr’m)]/, the special
voice transform

Vapp : G = Cox 5 o(n(x) u) = (@, (XU Co(L,. ) xCo(Ly.m)

is a well-defined function.
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Proof. First, let us set C; := m(e), where e is the unit element of G. Since m is
w-moderate (see (I3), we have
m(x) =m(x-e) < w(x) -m(e) < Cy - w(x) forallx € G.

Furthermore,

w(y) = wlxx™ty) < wx) - wxty) = w(x) - (A)w)().

Now, recall from Sect. [l the embedding H — S),, and that the extended voice
transform V, coincides with the usual voice transform on H. Therefore, since
m(x)u € H, and since K = Vu, we get

IVe [x()ulllz,,, = IV Ix(x)ulllg, ,, < Co-IVIxulllg,,,
=Ci-lw-Ax) [Vullly, < Cr-w(x) - [|4(x) [w - Vaulll,
=Cr-w() - llw-Vully, = C-wx)-[[Kll,  =C-wx),
where C := Cy - ||K]|z,,, is finite thanks to Assumption This proves the first

part of the lemma, which then trivially implies that Vs, ¢ is a well-defined function,
for any ¢ € [Co(Ly m)]". O

Our next lemma shows that if the right convolution with K does not act bound-
edly on L,/ ,,-1(G), then there exist certain pathological functionals on Co(L; ).

Lemma 4.3. Assume that Assumption [2.2 is satisfied, and let r € (1,00). If the
right convolution operator RCk : f +— f * K does not yield a well-defined bounded
linear operator on Ly ,-1(G), then there is an (antilinear) continuous functional

pE [Co(Lr,m)]/ satisfying Vsp @ & Lys 1-1(G).
Proof. We first claim that there is some ® € L, ,,,-1(G) with ®«K ¢ L, ,,-1(G); that
is, we claim that RCk : L,/ ;;,-1(G) = L, ,-1(G) is not well-defined.

To see this, recall from Assumption that K € MN1<p<co Lp.w(G). Thus, since

m™! is w-moderate (see Lemma[2.8)), Young’s inequality (see Proposition[A.2]) shows

that the right convolution operator RCk is bounded as a map RCk : L,/ ,,-1(G) —
Ly m-1(G) for any g € (r’,e0). Therefore, if RCx : Ly ;,-1(G) — Ly ;,-1(G) was
well-defined, then the closed graph theorem would imply that RCk : L, ,,-1(G) —
L, »-1(G) is bounded, contradicting our assumptions. Hence, there is a function @
as desired.

Now, define the antilinear functional

¢:Collrm) =€ o [ 00) Ty
G
It is easy to see that ¢ is well-defined and bounded; in fact,

e < 1@, Vel Nl =190, 1 ooy -
Finally, note for all x € G that

Vap 603) = (6 K)ot ot 0 = [ OO Ve TR T dy
= [ 00Tt w0y = [ 00)- . w5 ) dy
G G

- /G O(y) - K('x)dy = (@  K)(x)
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with ® * K € L, ,,-1(G) for all g € (', 00). But by our choice of ®, we have V, ¢ =
DK ¢ Ly y-1(G), as desired. O

Our next lemma shows that the assumptions of Theorem 1] exclude the exis-
tence of pathological functionals as in the preceding lemma.

Lemma 4.4. Under the assumptions of Theorem [{.1] and with notation as in
Lemma [{-3, every antilinear continuous functional ¢ € [Co(Lr,m)]/ satisfies
‘/Sp @ (S Lr/’m—l(G).

Proof. Let ¢ € [Co(Lr,m)]/ be arbitrary, and let the analysis operator A be as in
the assumptions of Theorem Il Using this operator, we define the (antilinear)
functional

Ao : A(Co(Lym)) = CAf - o(f).
Note that this is well-defined, since (61I) ensures that A is injective. Furthermore,

with A (Co(Ly.,,)) considered as a subspace of ¢ g(I), the functional Ag is bounded,
since (G1]) yields a constant C > 0 such that each ¢ = Af € A (Co(L,,,)) satisfies

1Ao()l = [e(NI < Nlellicow, v - 1 lcoe, )
< Cllelicow, oy - 1AL e, o = Cligllicow, .y - llclle, , -

With Ay being bounded, an antilinear version of the Hahn-Banach theorem yields
a bounded (antilinear) extension A : €, ¢(I) — C of Ag. Therefore, an antilinear
version of the Riesz representation theorem for the dual of ¢, ¢(I) ensures the exis-
tence of o = (0i);e; € € 9-1(I) satisfying A(c) = (o, ¢), o1 %Xlra for all ¢ € €, 0(I).
Here, the pairing between €, g-1(1) and ¢, ¢(I) is given by ((ci)ier, (€i)ier)e,, ,-1xt,.0 =
2iel Ci " @i

Having constructed the sequence o € €. g-1(I), we can now apply the second
assumption of Theorem [£.I}—the boundedness of the synthesis operator S—to define

g := Sp € Co(L; -1). Furthermore, for arbitrary x € G, we recall from Lemma [4.2]
that n(x)u € Co(Ly ), so that

W = (™)., = Ar(u) = ((7(x) uy 7(x) )gy),op € bro(])

is well-defined. Combining our preceding observations, we see

Vip (%) = p(m(x) 1) = Ao (A(r(x) ) = A(™) = (0, )., o1 xtr.0

(62) = > o T A | = Y Lo (xx) u, w0, |
iel iel
2 (D (o atwyu) . wlou) = (Se, w(x)u)s, = [Veg] ().

iel
This identity—which will be fully justified below—completes the proof, since we
have g = So € Co(L, 1), that is V, g € L,+ ,,,-1(G). Therefore, (62)) implies Vyp ¢ =
Ve g € Ly -1(G), as claimed.

It remains to justify the step marked with (%) in ([G2). At that step, we used
on the one hand that So = X;¢; [0 - m(x;) u] with unconditional convergence in
Co(Ly+ ,-1). To see that this indeed holds, recall that r* < oo, so that 0 = }};¢; 0i di,
with unconditional convergence in £,- g-1(I); by the boundedness of S, this implies
the claimed identity. On the other hand, we also used at (x) that Co(L, ;1) —
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C f = {f,n(x)u)s, is a bounded linear functional. Indeed, (I0) and Lemma
imply
(o m ) uds, | = Vel VIR@) u) | < Ve, - IV 2 alll,
= Fllcote, - IV IRl ,, < C - fllcui, 1) - W),
with C = C(m, w,u,r). O
We can now finally prove Theorem [£.1}

Proof of Theorem[{.1] Assume towards a contradiction that the right convolution
operator RCkx : Ly m(G) — L, ;,(G) is not bounded. By Proposition B.6, and
since the prerequisites of Theorem [£.1] include Assumption 2.2] this implies that
RCk : Ly ;y-1(G) = Ly -1(G) is also not bounded. Therefore, Lemma (.3 yields an
antilinear continuous functional ¢ € [Co(L, n)]" with Vipe € Ly ,-1(G). In view of
Lemma [£.4] this yields the desired contradiction. O

“

Before closing this section, we show that the “weak integrability assumption”
K € MNi<p<co Lp,w(G) does not imply in general that the right convolution operator
RCk : f = f %K acts boundedly on any L,-space with p # 2.

To this end, we consider as in Sect. [3.3] the Paley-Wiener space

(63) H = Bé ={f € La(R) : fz 0 almost everywhere on R\ Q}

for a fixed measurable subset Q C R of finite measure. As seen in Sect. B.3] the
group G = R acts on this space by translations; that is, if we set n(x)f = A(x)f for
f € B}, then r is a unitary representation of R. Setting u := ' yo € B}, using
Plancherel’s theorem, and noting f: f Xa = f u for f € Bf), we see that the

associated voice transform is given by
VI = (f s aur, = (F e i), = /R F@) - dg = (F7 ) = f(x).

Thus, V : Bé — L3(R) is an isometry and the reproducing kernel K is simply given
by K(x) = Vu(x) = u(x) for x € R. In view of these remarks, the following propo-
sition shows that there is a reproducing kernel that satisfies the weak integrability
assumption, but for which the associated right convolution operator does not act
boundedly on L,(R) for any p # 2.

Proposition 4.5. There is a compact set C C [0, 1] with the following properties:
Z) 7:_1XC € ﬂl<p$oo LP(R)-

ii) For any p € (1,00) \ {2}, the convolution operator f +— f = F lyc is not
bounded, and by Proposition not well-defined, as an operator on Ly(R).

Since the construction of the set C is quite technical, we defer the proof to the
appendix.

5. IMPROVED DISCRETIZATION RESULTS UNDER ADDITIONAL ASSUMPTIONS

In the preceding section we have seen that there are limitations to the possible
discretization theory for coorbit spaces with “bad” kernels, that is, for kernels K
for which the right convolution with K does not act boundedly on L, ,,(G).

But even if this right convolution operator does act boundedly, the results in
the preceding sections only yield discretization results that are weaker than those
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that one would expect to hold when coming from classical coorbit theory. In the
present section we will see that a “proper” discretization theory is possible even
for relatively bad (i.e., non-integrable) kernels, as long as the kernel in question
acts boundedly on L, ,,,(G) and is compatible with another “well-behaved” kernel
W : G — C, in the sense that it satisfies K * W = K for the construction of Banach
frames, or W * K = K for the construction of atomic decompositions.

We emphasize that we do not assume that the kernel W satisfies W« W = W,
thereby allowing a larger freedom in the choice of W. To see that the property
K « K = K is indeed quite restrictive, let us consider the case when G = R is the
real line. Then K % K = K implies that K=K- I?, so that K = Yo must be the
indicator function of a (measurable) set, see also [5]. In particular, K ¢ Li(R)
(unless K = 0), since otherwise K would be continuous. In stark contrast, at least if
the set Q is bounded, one can choose a Schwartz function ¥ with ¢ = 1 on Q, so that
W := F1y € S(R) satisfies WxK = W-XQ = yo = I?, and thus K« W =W =K =K.
It is worth noting that a related approach has been established in [17].

The section is structured as follows: In the first subsection, we recall some
basic notions from classical coorbit theory: Relatively separated sets, BUPUs, etc.
Then, in Subsect. we discuss conditions on the well-behaved kernel W which
guarantee the existence of Banach frames for the coorbit spaces. The existence of
atomic decompositions, under similar but different conditions on W, is discussed in
Subsect. (.3l In the last subsection we apply the abstract results to the setting of
Paley-Wiener spaces.

Finally, we should mention that most of the proofs in this section are heavily
inspired by the original coorbit papers [12], 13} (14, 2I]. The main novel ingredient
here is the observation that instead of the idempotent reproducing formula K * K =
K, it suffices to have K+ W = K or W« K = K for potentially different kernels K, W.

Remark 5.1. Most of the results in this section can also be obtained for coorbit
spaces Co(Y) where Y is a solid Banach space continuously embedded into Ly(G).
For simplicity, we restrict our attention to the case Y = L. ,(G) as in the rest of
the paper.

5.1. Required Notions from Classical Coorbit Theory. We would like to
sample the continuous frame (”(x)”)xec to obtain a discrete (Banach) frame
(ﬂ(x,-)u)i ;- In order for this to succeed, the family of sampling points (x;);e; needs
to be sufficiently well distributed in G. This intuition is made precise in the follow-
ing definition. The reader might compare this to the definitions in the beginning
of Sect.

Definition 5.2. (c¢f. [13] Definition 3.2])
Let X = (x;)ie; be a family in G.

i) X is V-dense in G, for a unit neighborhood V C G, if G = J;¢; %iV.
ii) X is V-separated, for a unit neighborhood V. C G, if the family (x;V)ier is
pairwise disjoint.
ii1) X s relatively separated if for every compact unit neighborhood Q C G there
is a constant N = N(X, Q) € N with

ZXX"Q(X) <N forallx e G.
iel
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i) X is V-well-spread for a unit neighborhood V.C G if X is relatively separated
and V-dense.

Remark 5.3. i) Since we always assume the underlying group G to be second
countable, G is in particular o-compact. Therefore, [28, Lemma 2.3.10] shows
that (the index set of ) every relatively separated family in G is countable.

ii) Usually, X is called relatively separated if X is a finite union of V-separated
sets, for some compact unit neighborhood V. The two definitions are shown to
be equivalent in in [11, Lemma 2.9] and [28, Lemma 2.3.11].

Given a V-well-spread family X = (x;);¢7, one often wants to decompose a given
function f into building blocks f; which are supported in the sets (x;V);e;. This
can be done using suitable partitions of unity; again the reader might compare this
to Sect.

Definition 5.4. (¢f. [13 Definition 3.6])

Let V. C G be a compact unit neighborhood. A family ¥ = (¥;)ier is called a
V-BUPU (bounded uniform partition of unity) with localizing family X = (x;);es if
the following holds:

i) Fach ¢; : G — [0,1] is a measurable function.
ii) X is relatively separated and y; =0 on G\ x;V for alli € 1.
iii) We have Yy i =1 on G.

One can find a V-BUPU for any compact unit neighborhood V:

Lemma 5.5. (¢f. [I0, Theorem 2] and [28, Lemma 2.3.12])
Let V. ¢ G be an arbitrary compact unit neighborhood. Then there ezists a
V-BUPU VY = (l//l‘)l‘E] with l//i S CC(G) fm’ alliel.

The following lemma points out an important property of relatively separated
families that we will use time and again:

Lemma 5.6. Let X = (x;);e1 be a relatively separated family and let r € [1,00). Let
further m : G — (0,00) be a w-moderate weight. Define the weight mx on the index
set I by (mx); := m(x;) foriel.
Then for every compact unit neighborhood U C G, the synthesis operator
Synthx,u : gr,mx (I) i Lr,m(G)a (Ci)iel = Z Ci )(x,-U
iel

is well-defined and bounded, with pointwise absolute convergence of the defining
series.

Furthermore, if ¥ = (Y;)ier is a U-BUPU with localizing family X, then the
synthesis operator

Synthyy : b (1) = Lyrm(G), (cidier = ) i
iel
is well-defined and bounded, with pointwise absolute convergence of the defining
series.

Proof. The second part of the lemma is a consequence of the first one: Since 0 <
;i < 1, and since y; vanishes outside of x;U, we have

|(Synthy g @) < D leil gi(x) < D leil xwu(x) = (Synthy s le[)(x) < o0
iel iel
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for all x € G and all ¢ = (¢j)ier € Crmx (), where |c| = (|ci])ier € Crmy(I) With
Iletley my = lclle, ., » sO that

| Synthy y cllz, . < [ISynthyylelllz, . < ellle e = llelle .y -
Thus, it remains to prove the first part of the lemma.

By definition of a relatively separated family, there is N = N(X,U) > 0 with
Yier Xx;u < N. On the one hand, this shows that for each x € G only finitely many
terms of the series defining (Synthy ; ¢)(x) do no vanish; in particular, the defining
series is pointwise absolutely convergent. On the other hand, we see

r r
| (Synthy g ¢)(x) | < (Z leil xxu () Xin(x)) < (S}lpIle)(x_,U(x) : Z)(x,—U(x))
iel Jel iel
<N -sup el xwu(x) < N el xu(x).
Jel iel

Thus,

| Synthyy el <N /G () - S feil” pagw () d

iel
<N - Z (|ci|r / (m(x))" dx) .
iel xiU
But for x = x;u € x;U, we have m(x) = m(xu) < m(x;) - wu) < C - m(x;) for

C := sup, ¢y w(u), which is finite since U is compact and w is continuous. Overall,
since |x;U| = |U| for all i € I, where |U]| is the Haar-measure of U, we see

ISynthy g el , < N"-C"-[Ul- > (m(x) - leil)”,
iel

which easily yields the boundedness of Synthy ;. O

5.2. Banach Frames. In this subsection, we will assume the following:

Assumption 5.7. We fix some r € (1,0) and a w-moderate weight m : G — (0, 00)
and assume that the kernel K from [B) satisfies the following:
i) Assumption[2.2 is satisfied, that is, K € Ly, ,,(G) for all p € (1, 00).
ii) The right convolution operator RCxk : f v f %K is well-defined, and by Propo-
sition bounded, as an operator on Ly ,(G).
iii) There is some unit neighborhood Uy C G such that for each unit neighborhood
U c Uy there is a constant Cy > 0 with

(64) forall f € Mym: |l OSC’Z fllz,.. <Cu-fllc,.. -
Here, M, is the reproducing kernel space from (22), and
(65) oscy, f(x) := sup |f (xu) = f ()]
ue

similar to (28)).

iv) The constants Cy from the preceding point satisfy Cy — 0 as U — {e}. More
precisely, for every & > 0 there is a unit neighborhood Ue C Uy with Cy < € for
all unit neighborhoods U C Ug.
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At a first glance it seems that the preceding assumptions have nothing to do with
the existence of a “well-behaved” kernel W which is compatible with the kernel K.
But it turns out that the existence of such a kernel provides an easy way of verifying
the preceding assumptions:

Lemma 5.8. Assume that K € Ly, (G) for all p € (1,00) and that the operator
RCk : Ly i(G) = Ly (G), f — f = K is well-defined and bounded.

Furthermore assume that there is a kernel W : G — C with the following proper-
ties:

i) W is continuous.

i) K«W =K.

i) M(A]UW € Liw(G) N Ly ywa1(G) for some compact unit neighborhood Uy C G.
Here

(66) M3 W(x) = Wileoowy, X €G

is the local maximal function (with respect to left regular representation),
sitmilar to ([24)).

Then Assumption[5.7 is satisfied.

Proof. We first note that our assumptions imply M{}W € L1,w(G) N Ly a1 (G) for
every compact unit neighborhood U c G. Indeed, by compactness, and since U C
Uxeg xint(Up), there is a finite family (x;)i=1,...» with U c U}, x;Up. Therefore,
xU c UL, xx; Uy, whence

n
MEWE) = W) < D IV uo)
i=1
n

= D Mg W) = ) [pe) (M, W) ).
i=1

i=1

But since w and wA™ are submultiplicative, both L;,,(G) and Ly ,a-1(G) are in-
variant under right translations, and hence Mi}W € L1,w(G)N Ly, ywa_, (G).

Next, if V is an open precompact unit neighborhood and U := V, then by conti-
nuity of W, we have |[W(x)| < sup,cy IW(xv)| = [[W||r vy < M{}W(x) for all x € G.
Therefore, W € L1,,,(G) N L1 ,a-1(G).

Since by assumption the right convolution operator RCk acts boundedly on
Ly .m(G), Lemma B8 shows that the set Xp := span{A(x)K},.s is dense in the
reproducing kernel space M, ,,. Furthermore, the assumption K * W = K yields
(AX)K) « W = A(x)(K « W) = A(x)K for all x € G, and thus f W = f for all f € Xj.
By density of Xy in M, ,,, and since the right convolution operator f — f * W is
continuous on L, ,(G) thanks to W € Ly,,(G) N Ly ,a-1(G) and Young’s inequality
(Proposition [A2)), we see

(67) f=W=f foral feM m.
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We now use (67)) to prove ([64). To this end, let U c G be an arbitrary compact
unit neighborhood. Let f € M, ;,, x € G and u € U be arbitrary. Then

) = FO) = |(f * W) — (f » W) < /G PO - WO xu) = W] dy
< /G PO - (o5, W)~x) dy = (1f] * (o5, W) (x)

Since this holds for every u € U, we get osc’l)] fx) < |f] = (osc% W)(x) for all x € G.
By solidity of L, ,,(G) and in view of Young’s inequality (Proposition [A22)), this
implies

loscy, flle,.,, < Ifllz,.,, - max{|losc}, Wllr, ., lloscl, WilL, -1 } -

But an easy generalization of Lemma [3.3]shows that || osc‘f] Wlr,, = 0asU — {e},
for v = w as well as for v = wA™!. From this it is not hard to see that the two
remaining properties from Assumption 5.7 are satisfied. O

We now prove that Assumption [(.7] ensures that a sufficiently fine sampling of
the continuous frame (m(x)u)yeg provides a Banach frame for the coorbit space
Co(Ly, ). For this, we will first show that we can sample the point evaluation
functionals to obtain a Banach frame for the reproducing kernel space M, . In
the end, we will then use the correspondence principle to transfer the result from
the reproducing kernel space to the coorbit space.

We begin by showing that a certain sampling operator is bounded:

Lemma 5.9. Let Assumption [5.7 be satisfied, and let X = (x;)ier be a relatively
separated family in G.
Then, with the weight mx as in Lemmal[2.0, the sampling operator

Sampy : Mym = Crmy (D), f 0 (f(xi))ier = ((fa Ax; K>L2)i51
is well-defined and bounded.
Proof. We first recall that each f € M, ,, satisfies f = f * K, and hence

F) = fK(x) = fG FO) - KO dy = fG FO) - KGTy) dy = (f AWK, -

But K € Ly (G), and thus also A(x)K € L. ,(G), since w is submultiplicative.
Furthermore, since m is w-moderate, we have m(e) = m(xx™') < m(x)w(x~'), and
thus [m(x)]™! < w(x™)/m(e) = w(x)/m(e), whence L, ,,(G) <> L, ,,-1(G). Thus, the
dual pairing (f, A(x)K)r, € C is well-defined for every x € R. Therefore, each entry
f(x;) of the sequence Sampy f = (f(x;))ier makes sense.

Now, let U be a compact unit neighborhood with || osc{, Az, £ C-lIfllL,m
for all f € M, m. Such a neighborhood exists by virtue of Assumption 5.7 Note
that U™! is also a compact unit neighborhood, so that by definition of a relatively
separated family there is a constant N > 0 with X;c; xx,u-1(x) < N for all x € G.

Next, fix any i € I and note that y,,p-1(x) # 0 can only hold if x = x;u~! and
thus x; = xu for some u € U. But in this case, we see by definition of the oscillation
oscy, f that

|Gl < 1f @+ 1f () = FOI < 1f ()] + (oscfy f)(x) =2 F(x).
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We have thus shown |f(x;)| - xx,u-1(x) < F(x) - xx,u-1(x) for all x € G. Summing
over i € I, we see

Or(x) 1= D 1F 0| X1 (%) <

iel

Zxx,.u-1<x)) F(@) < N - F(x)
iel
for all x € G.

Because of r > 1, we have ¢1(I) = ¢,(I), which implies };¢; ¢/ < (X7 ;)" for
arbitrary ¢; > 0. Therefore,

/G m()) - D o () dx < |1Of1l7, < N"-|IFIl7,
iel
<N (1 Ly + 0SS L, )"
<N -+ O -IfIl,, -

Finally, if y,,u-1(x) # 0, then x = x;u™! for some u € U, and therefore m(x;) =
m(xu) < m(x) - w(u) < C’ - m(x) for C’ := sup, ¢y w(u), which is finite since w is
continuous and U is compact.

Overall, we have thus shown

(C©)"  m)) - | )l U™ < /G (mCe) = DG xu (x) dx
iel iel

<N+, S
which—Dbecause of |x;U~!| = |U|—shows

ISampy fllr,, < C'N(L+C)- U [Iflr,.,. forall f € My,
which finally proves that Sampy is well-defined and bounded. O

Now we can prove that a sufficiently fine sampling of the point evaluations yields
a Banach frame for the reproducing kernel space M, .

Proposition 5.10. Let Assumption[5.7 be satisfied, and let U c Uy* be a compact
unit neighborhood such that the constant Cy-1 from (64)) satisfies

(68) ”RCK”Lr,m—>Lr,m . CU—l <1.

Let X = (x;)ier be any relatively separated family in G for which there ezists a
U-BUPU Y = (Y;)ier with localizing family X, and let the weight mx be defined as
in Lemma[5.0

Then there is a bounded linear reconstruction map R : €y pmy (1) = My, which
satisfies R o Sampy = idyy, ,, for the sampling map Sampy from Lemma (2.3

In other words, the family (Ox,)ier of point evaluations forms a Banach frame
for My with coefficient space €y my (I).

Remark 5.11. The proof shows that the action of the reconstruction operator is
independent of the choice of r,m.

In other words, if (68) is satisfied for Ly m,(G) and Ly, m,(G) and if
Ry by x (D) = Mymy and Ry @ brymy (1) — My, m, denote the respective
reconstruction operators, then Ric = Rac for all ¢ € €y m, (1) N Ly my  (I).

Proof. With the synthesis operator Synthy y from Lemma [5.6] we define

B := Synthy y o Sampy : My, — Ly m(G).
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Because of f(x) = Y;er ¥i(x)f(x), we have
@) = B < D i) - 1 () = fx)l.

iel
But if y;(x) # 0, then x = x;u € x;U, so that x; = xu™' € xU™', and hence

IF(x) = f(x)| = |f(x) = fxu™)| < osc‘L’,_1 f(x). Therefore,
1fx) = Bf)| < > wix)oscf,, f(x) = 0sef, f(x).

i€l
By Proposition[3.6lthe operator RCk is a projection onto M, ,,,, therefore RCk f =
f for f € M, ,,. Thus, the operator A := RCk o B : My — M, is well-defined
and bounded, and we have

If=Aflc,,. = IRCk(f - BHIL,... <IRCkllL, L Ilf = BfllL,..
< IRCk Ly s - 105G Iz, < IRCkIL, Ly - Cor - ISl

for all f € M, .
In view of (68]), a Neumann series argument (see [2 Sect. 5.7]) shows that the
bounded linear operator Ry := ¥, _o(id pm, ,,, —A)" : Mym — M, m satisfies

(Ro o RCk o Synthy y) o Sampy = Ryo A =idy,, , -

Thus, R := Ry o RCk o Synthy y : &y my(I) = M, is the desired reconstruction
operator. Note that the action of this operator on a given sequence is independent
of the choice of r,m, since the action of the operators RCg, Synthyy and A =
RCk o Synthy g o Sampy is independent of r,m, so that the same holds for Ry =
oo (id —A)". o

Using the correspondence principle, we can finally lift the result from the repro-
ducing kernel space M, ,,, to the coorbit space Co(Ly ).

Theorem 5.12. Under the assumptions of Proposition [5.10, the sampled family
(m(xp)u)ier € (Co(Ly,m)) forms a Banach frame for Co(L,,,) with coefficient space
by (D),

More precisely, the sampling operator

Same,CO 1 Co(Ly,m) = bromy (1), f (Vef(xi))iel = ((fa ”(xi)“>8w)i51

is well-defined and bounded, and there is a bounded linear reconstruction operator
Rco : brmx (I) = Co(Ly,m) satisfying Rco © Sampy ¢ = idco(L, m)-

Finally, the action of the reconstruction operator Rc, is independent of the choice
of r,m, that is, if the assumptions of the current theorem are satisfied for Ly, m,(G)
and for Ly, m,(G) and if Ri, Ry denote the corresponding reconstruction operators,
then Ric = Rac for all ¢ € Cr iy (1) O Cry s 5 (I).

Proof. The correspondence principle (Proposition 2.9]) states that the extended
voice transform V, : Co(Ly m) — M, m is an isometric isomorphism. Now, with the
sampling map Sampy from Proposition 510, we have

(Same OVe')f = (Vef(xi))iel = (<f’ ﬂ(xi)u>3w)iel = Same,Cof'

Thus, the sampling operator Sampy ¢, = Sampy oVe : Co(Ly,m) = €y my (I) is indeed
well-defined and bounded.
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Now, with the reconstruction operator R : &y () = M, from Proposition
.10, define Roo := V, o R : €y (I) = Co(L; ). Then

Rco 0 Sampy ¢, = Ve_1 o R o Sampy oV, = Ve_1 o Ve = idco(L, )

as desired. Since the action of R is independent of the choice of r, m, so is the action
of Rco.- m}

5.3. Atomic Decompositions. For the case of atomic decompositions we will
impose slightly different conditions compared to the case of Banach frames. In this
case, our assumptions immediately refer to a “well-behaved” kernel W.

Assumption 5.13. We fix some r € (1,00) and some w-moderate weight
m: G — (0,0), and we assume that the kernel K from [B) satisfies the follow-
mg:
i) Assumption[Z2 is satisfied, that is, K € Ly, ,,(G) for all p € (1, 0).
ii) The right convolution operator RCk : f v f = K is well-defined and bounded
as an operator on Ly m(G).
iii) There is a continuous kernel W : G — C with the following properties:
a) WxK =K.
b) MgW € L1,w(G) N Ly,ya1(G) for some compact unit neighborhood Q C G.

Here, the mazimal function MgW is defined as in (24)).

Remark 5.14. We will use below that M{}W € Li,w(G) N Ly wa1(G) for every

compact unit neighborhood U C G if we assume MZW € Li,w(G) N Ly ya1(G) for
some unit neighborhood Q C G.

Indeed, by compactness of U, and since U C |J,cg(int Q)x, there is a finite family
(xi)i=1,...n tn G with U c U, Ox;. Therefore, Ux C I, Qx;x, whence

MEW() = [Wileows € D IWleaosx = Y (MG W)(xix).
i=1 i=1

By solidity and (left) translation invariance of L1,(G) for v =w or v = wA™!, this
implies

n
MWL, , < DI MG W)L, < oo
i=1

Here, the left-translation invariance of L1,(G) is a consequence of the submulti-
plicativity of v.

As in the preceding subsection, our first goal is to show that certain synthesis
and analysis operators are bounded.

Lemma 5.15. Let Assumption[5.13 be satisfied, and let X = (x;)ie; be any relatively
separated family in G. Let the weight mx be as in Lemmal[58 Then the following
hold:

i) If ¥ = (Yi)ier is a U-BUPU with localizing family X, then the analysis operator
AnaX,‘I‘ : Lr,m(G) - gr,mx (I)’f — (<f’ lﬁi)Lg)iEI

is a well-defined bounded linear map.
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ii) The synthesis map
Synthyw : brumy () = Lrm(G) (ciier = ), ci - AW

iel
is a well-defined bounded linear map, where the defining series is almost every-
where absolutely convergent.

Proof. For x = x;u € x;U we have m(x;) = m(xu™') < m(x)w(u™') < C - m(x), where
C := sup,y w(u™t) is finite by continuity of w and compactness of U. Since we
also have ¥; = 0 on G \ x;U, then we see by following the lines of the proof of
Proposition B.I2l and using Jensen’s inequality, see [8, Theorem 10.2.6]:

(m(xi))" - (s vie,|” < |5 UL - (/U |f(x)|m(x,')l//i(x)|:__)£]|
) . dx
< |xU| ‘/x,U(lf(xN - C - m(x)gi(x)) |x;U|

<|upt-cr /G m - P - wi(x) dx.

where the last step used the left invariance of the Haar measure and the estimate
(i (%)) < ¢;(x) which holds since y;(x) € [0,1] and r > 1.
Summing over i € I and applying the monotone convergence theorem, we thus
get
| Anax v f1I;

r
r,my

= Z (m(x) - 1{foidral)

iel
<ior e [ e peor - Y it de
G iel
— |U|r—1 . CV . ”f“zrm < 00,
thereby proving the boundedness and well-definedness of Anax, y.

We now consider the synthesis map Synthyy,. Let V C G be any compact
unit neighborhood, and set Q := intV, so that U := Q C V is a compact unit
neighborhood that satisfies int U > Q = U and hence U = int U. As a consequence,
as seen in the proof of Lemma [3.3] (see p. B0), we have |[W||L wx) = supyeyx W)
for all x € G. Here we used that W is continuous.

Now, let x € G and i € I be arbitrary. For any y = x;u € x;U we then have
xl.‘lx =(yu N 'x =uy'x € Uy 'x, and thus

|W(xi_1x)| S MIWllew@wy-1x) = (MZW)(y_lx) for allx € G and y € x;U .

Writing © := M{’]W, and averaging this estimate over y € x;U, we get

1
(69) |4, W(x)| < m/ () -0 x)dy forallxeG,iel.
G

Now, let ¢ = (ci)ier € €rmy(I) be arbitrary, and set Y := ;¢ |ci| - yx,u. With
the notation introduced in Lemma [5.6] we get T = Synthy ;; [c| with |c| = (|c;i|)ier-
This easily implies Y € L, ,(G) with

(70) ICllz,,. < C-llclle,

.my
for a constant C = C(m, X, U, r) independent of c.
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By weighting estimate ([69) with |¢;| and summing over i € I, and by invoking
the monotone convergence theorem, we see for all x € G that

Sl AW < - [ 10000 ) dy = (T 0.
iel G Ul

But since ® = MﬁW € L1,w(G)N Ly wa-1(G) (see Assumption [5.13 and Remark [5.14)
and since Y € L, ,(G), Young’s inequality (Proposition [A.2)) shows T*@ € L, ,(G).
In particular, T * ®(x) < oo almost everywhere. Therefore, we already see that the
series defining Synthy y, ¢ is almost everywhere absolutely convergent. Finally, we
also see

1
S —_
Lrm U]

I Synthyy clle,,,, <|| Y leil - 14G)W] I+ Olls,.,
iel

1
< 1] -max{[|®lL, . 1O, .} 1Tz, -

In view of (Z0), this proves the boundedness and well-definedness of Synthy y,. O
Now we can prove the desired atomic decomposition result:

Proposition 5.16. Let Assumption[5.13 be satisfied. For each compact unit neigh-
borhood U C G write

(1) Cu = max{| oscy Wile,,,. l oscu W, ., }
Assume that
(72) CU : ||RCK||Lr.m_>Lr,m < 1 -

Finally, let X = (x;)ier be a relatively separated family for which there ezists a
U-BUPU Y = (yi)ier with localizing family X, and let the weight mx be as defined
in Lemma[2.0

Then the family (A(xi)K)ier forms a family of atoms for M, , with associated
sequence space Ly pmy (I). This means:

i) The synthesis operator
Synthy g : Crmy () = My, (ei)ier = D ci - Axi)K

iel
is well-defined and bounded, with unconditional convergence of the defining
series. This even holds without assuming (2).
ii) There is a bounded coeflicient operator

C: My = brmy(I)  with  Synthy goC =idy,,,, -

Remark 5.17. i) We note that condition ([T2)) is always satisfied for U small
enough, thanks to Lemma[3.3 and Assumption [5. 13
ii) As in Proposition [5.10, the action of the coefficient operator C is independent
of the choice of r,m, that is, if condition ([[2)) is satisfied for Ly m,(G) and
Lyymy(G) and if C1 : My my = Crimy x (1) and Co : My, my — Crymo (1) are the
respective coefficient operators, then C1f = Caf for all f € My, my N Myym, -

Proof. Step 1 (Boundedness of the synthesis operator): For this step we will
not use condition ([[2). By Assumption 513l RCk : Ly n(G) — L, m(G) is bounded,
and we have W « K = K, which implies (A(x)W) « K = A(x)(W %= K) = A(x)K for all
x eG.
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Furthermore, Lemma [5.15] shows that the map
SynthX,W : fr,mx (I) - Lr,m(G)v (Ci)iEI — Z Ci /l(xl)W

iel
is well-defined and bounded. Because of r < o0, each ¢ = (¢;)ier € €r.my (I) satisfies
¢ = e ¢i0; with unconditional convergence in &, (I), where (6;);er denotes the
standard basis of ¢y (). This implies that the series defining Synthy y, ¢ con-
verges unconditionally in L, ,,(G). Since bounded operators preserve unconditional
convergence, we see

RCK ( SynthX’W C) = RCK

Dl A(x,->w) = > (AW < K] = " e Ax)K
i€l i€l i€l
with unconditional convergence of the series. We have thus shown that Synthy g =
RCk o Synthy y @ rmyx(I) = Ly m(G) is well-defined and bounded, with uncondi-
tional convergence of the defining series.

Since A(x;)K € M, ,, for all i € I, we also see that the range of Synthy g is
contained in the closed subspace M, C Ly m(G).

Step 2 (An alternative reproducing formula for M, ,,): In this step we
will prove

(73) f=((=W)=K for all f € My, -

This is almost trivial: For f € M, ,,, we have f = f % K by definition of M, ,,
and we have K = W * K by Assumption By combining these facts, we get
f=f*K = f=x(W=xK). Thus, all we need to verify is that the convolution is
associative in the setting that we consider here.

In light of [5] Lemma 6.3] to prove this it remains to show ((|f]*|W])*|K|)(x) < oo
for almost all x € G. To this end, we first show W € Ly,,,(G) N Ly ,a-1(G). In order
to see this, let V ¢ G be any compact unit neighborhood, and set Q := intV, so
that U := Q c V is a compact unit neighborhood that satisfies int U > Q = U and
hence U = int U. As a consequence of this and of the continuity of W, as seen in
the proof of Lemma B3] (see p. B0), we have

MSW(X) = WL wx) = sug) [W(y)| = |W(x)| forallxeG.
yeUx

Since MIPJW € L1,w(G) N Ly ,,a-1(G) (see Assumption and Remark B.T4), we see
W e Ll,w(G) N Ll,wA‘l(G)-

Now, fix some s € (r, ) and let f € M, ,,. Because of W € L1 ,,(G) N Ly,,a-1(G),
Proposition [A2] shows |f| * |W| € L, ,u(G). Therefore, by the second part of Propo-
sition [A2] we see (|f| * [W|) = |K| € Lsm(G), since |K(x™1)| = |K(x)| and since
K e L, (G) for all p € (1,00). In particular, ((|f| * [W]) * |[K[)(x) < oo for almost all
x € G. By the considerations from above, we thus see that (73] holds.

Step 3 (Approximating f +— f* W): Let Anaxy : Ly u(G) = € my (1) and
Synthy w : €my(I) = Lrm(G) be as defined in Lemma [B.I5] and define A :=
Synthy yw o Anax,y : Ly ;m(G) = Ly m(G). In this step, we will show

(74) If*«W-AflL,,, < Cu-Iflc,,,  foralfeL,.(G),

with Cy as in ([I)).
To this end, recall from the previous step that W € L1, (G) N Ly a1 (G), so that
Young’s inequality (Proposition [A2)) shows |f| * |W| € Ly (G) for f € Ly n(G). In
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particular, this implies |f]| = [W|(x) < oo for almost all x € G. For each such x € G,
the dominated convergence theorem and the definition of the operators Anax w,
Synthy y, and A shows

W) =401 = |3 [ FOOWO™ 0 dy = YL Gw)

iel iel
<y /G W) - O - WO ) — W L)) dy
iel

Fix i € I for the moment. For y € G with y;(y) # 0, we have y = x;u € x;U, and
thus x;'x = uy~'x € Uy~ x. Therefore, |W(y 'x) - W(x;'x)| < (oscy W)(y™'x), by
definition of the oscillation oscy W (see (24])).

If we combine this with the estimate from above and with the monotone conver-
gence theorem, we get

f W) - Af@) < fG wiy) - |f )] - (osey W)(y~x) dy

iel
- /G £ - (oscu W)(yx) dy = (1] * oscy W)(x)

In view of Young’s inequality (Proposition[A.2)) and the definition of Cy (see (1)),
we see that (74) holds true.

Step 4 (Completing the proof): Recall that RCx : L, w(G) = M, is
bounded by Assumption Thus, B := RCk o A|pm,.,,, * Mrm — My is well-
defined and bounded, with A as in the preceding step. Now, for arbitrary f € M,
our results from Steps 2 and 3 show

If = BflL,.. = IRCk(f * W = AL, . < IRCKlL, Ly - CU - IS llLy -
In view of our assumption (72)), a Neumann series argument (see [2, Sect. 5.7]) shows
that Co := ¥;_o(id p, ,, —B)" defines a bounded linear operator Co : My m — My m
with Bo Cp =idy,,,-
But we saw in Step 1 that Synthy x = RCk o Synthy y,, so that

B=RCk o Aer,m = RCk o Synthy y o Anax,y |Mr,m
= SynthX’K ] AnaX,\P |Mr,m .

Thus, the operator C := Anay y|m, ., © Co : Mrm = Crmy (I) satisfies
Synthy x oC =Bo Cy =idp,,, -

It is not hard to see that the action of the coefficient operator C is independent
of the choice of r,m. For more details see the end of the proof of Proposition [5.10,
where a similar claim is shown. O

Finally, as in the preceding section we apply the correspondence principle to
obtain atomic decomposition results for the coorbit spaces from those for the re-
producing kernel spaces.

Theorem 5.18. Under the assumptions of Proposition [5.10, the sampled family
(n(x))u)ier € Co(Lym) forms a family of atoms for Co(Ly ) with coefficient space

Crmx (D).
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More precisely, the synthesis operator

Synthy co : €rmy (I) = Co(Ly,m), (¢i)ier = Z ci - m(x;)u
i€l
is well-defined and bounded, and there is a bounded linear coefficient operator Ccy :
Co(Lyr,m) = €r.mx (1) satisfying SynthX,Co oCco = idCo(Lr,m)-
Finally, the action of the coefficient operator Cco is independent of the choice
of r,m. In other words, if the assumptions of the current theorem are satisfied for
L. m, and for L, m, and if C1,Cy denote the corresponding coefficient operators,

then C1f = Cof for all f € Co(Ly,m,) N Co(Lyym,)-

Proof. The correspondence principle (Proposition [Z9) states that the extended
voice transform V, : Co(Ly m) = M, m is an isometric isomorphism. Furthermore,

(Ve n(x) u)(y) = (x(x) u, w(y) u)s,, = (m(x) u, m(y) ) = K(x"1y) = (A0)K)()

for all x,y € G. In other words, V, n(x)u = A(x)K for all x € G.
Now, since the bounded linear operator V;! : M, ,, — Co(L,,,) preserves un-
conditional convergence of series, the synthesis operator Synthy g from Proposition

satisfies
Zci . /l(xi)K) = Z ¢i - Vo (A(x)K)

iel i€l

= Z ci - m(xp)u = Synthy ¢, (¢i)ier

iel

(v, 'o Synthy g) (¢i)ier = vt

for arbitrary (¢;)ier € €r,my(I), with unconditional convergence of all involved series.
Thus, the operator Synthy ¢, = vt oSynthy g : € my (1) = Co(Ly, ) is indeed well-
defined and bounded.

Now, with the coefficient operator C : M, ,; — €y (I) from Proposition 516
define Cco := C oV, : Co(Ly 1m) = rmy (I). Then

Synthy ¢, 0Cco = Ve_1 o Synthy g oCoV, = Ve_1 o Ve =idco(L, )

as desired. Since the action of C is independent of the choice of r, m, so is the action
of Cco- m}

5.4. An Application: Discretization Results for General Paley-Wiener
Spaces. In this subsection we will apply the abstract results from this section to
the Paley-Wiener spaces Bg, thereby improving on the discretization results derived
in Sect. Furthermore, our proofs clearly point out those properties that the set
Q c R has to satisfy if one wants discretization results to hold for the associated
Paley-Wiener spaces:

Assumption 5.19. Let Q c R be measurable, and let r € (1,00)\ {2}. Assume that
the following properties hold:

i) Q is bounded;

ii) the kernel K := ' yq satisfies K € MNi<p<co Lp(R);
iii) the convolution operator RCk is well-defined on L.(R).

Remark 5.20. The last property means that the indicator function xq is an L,(R)-

Fourier multiplier, which implies that yoc = 1 — xq is an L,(R)-Fourier multiplier

as well. Therefore, |24, Theorem 1] shows that there is an open set U C R with

Xac = xu almost everywhere, and thus yuyec = xa almost everywhere. But since
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Q is bounded, we have Q C [-R,R] for some R > 0, and then ya = xax[-rr] =
XU< X[-R.R] = X[-R,R\U almost everywhere. Thus, by modifying Q on a null set, we
can (and will) always assume that Q is compact. This neither changes the kernel
K, nor the underlying Hilbert space

H = Bf) ={f € Ly(R) : fEO a.e. on R\ Q}.

As seen in the discussion before Proposition LB, if we set u := K = F ! yq,
then all standing assumptions from Sect. [2] are satisfied for m = w = 1, so that
the coorbit spaces Co(L,) are well-defined for 1 < p < co. Furthermore, we saw
before Proposition [£5] that the associated voice transform satisfies Vf = f for all
feH= Bé C Lo(R). Using this identity, we can now identify the abstractly defined
coorbit spaces with more concrete reproducing kernel or Paley-Wiener spaces.

Lemma 5.21. Setting T := (\1<p<c Lp(R), the space S from (@) satisfies
S={feT | fxK=[f},

with topology generated by the norms (|| - ||, )1<p<co-
Furthermore, with M, = {f € L,(R) | fxK= f} and M := Ui<pcco Mp, the
map
M-S e O with (D, g)s = (f. 8L,
is a bijection. If we identify each ¢ € S’ with its inverse image 1o € M under
this map, then the extended voice transform is the identity map, that is V, ¢ = " Lo.
According to the general result, the coorbit spaces Co(L,) are given by

(75) Co(Lp) = t(Mp) for all p € (1,00),

which means that if we identify ¢ with ¢, then Co(L,) = M.
Finally for p € (1,2] we have

Mszg = {fELF(R)‘fEO a.e. onR\Q}.

Therefore, up to canonical identifications, the coorbit spaces Co(Lp) coincide with

the Paley- Wiener spaces Bg, at least for p € (1,2].

Remark 5.22. We do not know if in general the identity M, = Bg with
BS = {f e L,(R) ‘ the tempered dist. f has supp(f) C Q}

also holds for p € (2,00). In case of Q = [~w,w], it was shown in [5, Proposition
4.8] that this is true. Using this, one can show M, = BS even if Q is a finite
disjoint union of compact intervals. For more general sets Q, however, we do not
know whether M, = Bg for p € (2,00).

of Lemma[ZZ1]. The following proof is similar to the proof of [5], Proposition 4.8]
with some significant improvements and generalizations.

The first property is an immediate consequence of the definitions, combined with

Vf=ffor feH.

The map ¢ is indeed well-defined, since if f € M, for some p € (1,0), then
I(fs &l < I flle,, - llgllz,, » where || - ||, is a continuous norm on S.
To prove the surjectivity of ¢, we first show that M is a (complex) vector space.
Since each M,, is closed under multiplication with complex numbers, we only need
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to show that M is closed under addition. To this end, note for f € M, because of
K € L,(R) that

lf O = 1(f * K)x)| = [{fs ADK) L] < (I f e, - 14K L, < Cp - (Il

for all x € R, and thus M, < L. This embedding implies M, c M, for p < g,
and thus M, + M, ¢ Mg+ My = M, € M. From this, we easily see that M is a
vector space.

With M being a vector space, we see M = spanjp<e Mp. With notation as
in (), this means M = M. Hence, Theorem 2.6 shows for arbitrary ¢ € S’ that
fi=Vep e MY = M, and ([I0) shows because of Vg = g for g € S ¢ H that

<(I)f’ g)S = <f7g>L2 = <Ve“p7 Vg>L2 = <‘)07g>3 .

Hence, ¢ = ®f = 1f = (V.. On the one hand, this shows that ¢ is surjective, and
on the other hand—once we know that ¢ is bijective—it proves that the inverse of
tis given by 1 =V, : 8" —» M.

In order to prove that ¢ is injective, note A(x)K € S for all x € R and recall
K(x) = K(-x). Hence,

(@f, ANK)s = (f, A)K)L, = (f * K)(x) = f(x) for feM.

Therefore, if ®¢ = 0, then f = 0 as well. Since the domain M of ¢ is a vector space,
this shows that ¢ is injective.

Equation (75)) is seen to be true by combining the identity V, = ! with the
correspondence principle (see Proposition 29), which states that V. : Co(L,) —
{feL,®) | f+K = f}=M, is an isomorphism.

To prove M, = Bp for p € (1,2], first note F(f xg) = f g for arbitrary f, g € Lo,
see e.g. [26 p. 270] Therefore for f € M, = My (here we used that p < 2) we see
that f f * K = f K= f X, where the equality holds in the sense of tempered
distributions. But since both sides are Lo(R) functions, this implies f f xo
almost everywhere, and thus f € BS.

Conversely, let f € Bg be arbitrary. Because of p < 2, [27, Theorem in Sect.

1.4.1] shows f € Ly(R). Furthermore, since fE 0 almost everywhere on R \ Q, we
have T(f*K):f-I?:f-ngf, and thus f = f * K, so that f € M,,. O

With Lemma [B.21] showing that the coorbit spaces Co(L,) coincide with the
reproducing kernel spaces M, we will in the following concentrate on the latter
spaces for proving discretization results.

In Sects. and [5.3] we showed that the sampled frame (m(x;)u);e; forms a
Banach frame or an atomic decomposition for the coorbit space Co(L, ) if the
family of sampling points (x;)ie; is sufficiently dense in G. For the case of the
Paley-Wiener spaces, one can state quite precisely how dense the sampling points
need to be:

Proposition 5.23. Suppose that Assumption [5.19 is satisfied, and choose R > 0
and & € R with Q C & + [-R, R].

Then the family (A(k/(2R))K)kez forms a Banach frame and an atomic decom-
position for the reproducing kernel space M, with coefficient space €,(Z). More
precisely, the operators

Samp : My — 6(Z), f > (f(k/2R)));z = ((f. AK/CR)K)L,) e
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and
Synth : £.(Z) — M,, (ck)kez — Z ck - Ak/(2R)K
keZ
are well-defined and bounded with Synth o Samp = (2R)™! - id 4, .

Proof. Since Q C R is bounded, there is a Schwartz function ¥ € S(R) with ¢ = 1
on Q. We then have W := 1y € S(R), so that W is continuous. Furthermore,

mzmzﬁﬁem-w:m:f,
and hence W K = K «W = K. Since W is a Schwartz function, there is some C > 0
with [W(x)| < C-(1+ |x|)72 for all x € R. Because of
1+x][ <2+ x-y|<2-(1+|x-y|)

for any y € Q := Uy := [-1,1], this shows |W(x + y)| < 4C - (1 + |x|)~2, and hence
MSW € L1(R) and Mil,OW € L1(R). Overall, noting that the modular function A of
the abelian group G = R satisfies A = 1, we see using Lemma [5.8 that Assumptions
B and are both satisfied for w = m = 1.

Now, define I := Z and x; := k/(2R) for k € Z. Tt is not hard to see that the family
(xx)kez is relatively separated in G = R. Therefore, Lemma 5.9 and Proposition [5.16]
show that the two operators from the statement of the current proposition are well-
defined and bounded. It remains to show Synth o Samp = (2R)'id , .

For this, it suffices to show Synth(Samp f) = (2R)™!- f for f € M, N Ly(R), since
Lemma [3.8] shows that span{A(x)K}xer € M, N La(R) is dense in M,. But it is
well-known that the family (ex)kez = ((2R)7Y2- T )¢z, forms an orthonormal
basis of L2(Qg) where Qg := & + [-R, R]. To make use of this orthonormal basis,
first note for f € M, N Lo(R) that f: m = f]? = Xg-f. Because of f: f X,
we get f = 0 almost everywhere on R\ Q D> R\ Q.

Overall, since F(A(k/(2R)K) = 2737 yo = (2R)"/2 - e_i - ya, We see
f=xa-[= XQ'Z<ﬁek>L2 ek

keZ

= @R Y (R (AK/QR)K)), - FAk/R)K)

keZ

=R F (Z(f, A/C2R)K)L, - A(L/(2R)) K

(el
= (2R)™! - ¥ (Synth(Samp f)) ,

which implies f = (2R)™! - (Synth o Samp)f for all f € Lo(R) N M,., as desired. O

To close this section, we show that the existence of a “well-behaved” kernel W
with K « W = K is independent of the property that K acts boundedly on L,(R)
via right convolutions, even when we restrict to the class of reproducing kernels
K which satisfy the weak integrability property K € (;<p<w Lp(R). In the proof
of Proposition .23 we saw that for every bounded set Q C R, there is a such a
well-behaved kernel W associated to the reproducing kernel K = ! yq. But the
set C c [0, 1] that we constructed in Proposition 5] is bounded and the associated
kernel K = F 1 yc satisfies the weak integrability property. Still, K does not act
boundedly via right convolution on any L,(R) space with p # 2. Conversely, the
following proposition shows the existence of a kernel K that acts boundedly via
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right convolution on all L, spaces for 1 < p < oo, but for which no well-behaved
kernel W with K = W = K exists.

Proposition 5.24. The set Q := U;’;l[?) <2772 4(0,27%)] with the associated kernel
K := F 1 yq has the following properties:

Z) K e ﬂ1<p<oo LF(R)-
ii) There is no W € L1(R) with K = K = W.
i) The operator RCk is bounded on L,(R) for every p € (1, ).

Proof. We first verify that the union defining Q is indeed disjoint. To this end, set
I;:=3-272+(0,27%) for j € N, and note 3j —2 > 0, so that 2272 > 1, and hence
27% < 2772, This implies

(76) 21 =92.272 <3272 <3.272 4970 <3.2/72 4 272 = 9)
Therefore, I; C (2/-1,2/), which easily yields the desired disjointness. Next, we
verify the three claimed properties.

First property: A direct computation shows that F := F ! y(g 1) satisfies F(x) =
e=L for x # 0, and hence F € (;<pe Lp(R). Since x1; = A3 - 2/72) (x(0,1)(2¥")),
we thus see by elementary properties of the Fourier transform that #~! X (x) =
272/ . 672X . F(272/ ). Therefore,

IKlIL, =||> 7,
= be

for arbitrary p € (1, o).

< > 2HF@ ), = IFll, - 270 < oo
j=1

Jj=1

Second property: Assume towards a contradiction that K = K = W for some
W e L1(R). This implies yq = K=K-W-= xXo- W almost everywhere. In particular,
there is a null-set N ¢ R with W(g—‘) =1 for all £ € Q\ N. But the Riemann-
Lebesgue lemma shows lims_,c VT/(f) = 0, so that |VT/(§)| < 1/2 for all ¢ € R with
|&€] > 27072 for a suitable j, € N. Hence, for any & belonging to the positive measure
set I, \ N = (3-20072,3.20072 1 9720) \ N ¢ Q\ N, we have 1 = [W(&)| < 1/2, a
contradiction.

Third property: Here, we will use the strong Marcinkiewicz multiplier theorem
which states the following:

Strong Marcinkiewicz multiplier theorem (see [9, Theorem 8.3.1]) Let (Aj)jez
denote the usual dyadic decomposition of R,

(2771, 27), if j >0,
Aj =9 (=11), if j=0,
(=21, =211 ifj < 0.
Assume that ¢ : R — C is measurable and satisfies

sup |¢(€)] < oo and sup Vary; ¢ < oo,

&eR jez
where Vary¢ denotes the total variation of the function ¢ when restricted to the
interval I.

Then ¢ is an L,(R)-Fourier multiplier for all p € (1,00). In other words, the map
S(R) — S'(R), f +— 77_1(]?' @) extends to a bounded linear operator on L,(R), for
any p € (1, 00).
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We want to apply this theorem for ¢ := yq. To this end, first note sup;eg [¢(£)| =
1 < co. Second, (@) shows for j € Z with j < 0 that ¢|s; = 0, and for j € N that
#la; = xi; is the indicator function of an interval. In both cases, Vara,¢ < 2.
All in all, the strong Marcinkiewicz multiplier theorem shows that the map S(R) —
S'(R), f > F (¢ -f) = f*K extends to a bounded linear operator on L,(R) for any
p € (1,). Finally, since K € (1< Lp(R), Young’s inequality (Proposition [A.2)
shows that L,(R) — Ly(R), f + f*K is well-defined and bounded for any ¢ € (p, ).
Therefore, the extended map is still given by L,(R) — L,(R), f — f * K. O

APPENDIX A.

In this appendix we provide proofs for several technical auxiliary results that we
used above. We first present some weighted versions of well-known facts for the
reader’s convenience.

The first lemma is a weighted version of Schur’s test.

Lemma A.1 (Schur’s test). Let K : G X G — C be measurable, let w > 0 denote a
weight on G, and let p,q,r € [1,00] with 1+ 1/p =1/q + 1/r. Assume that there is
a constant Cx > 0 such that

(77) HK(X, ) % L < Cg fora.e. xé€GgG,
(78) ||K(~,y)- %y) . <Cg forae yeGgG.

If f € Ly w(G), then the integral

b = [ Kfo) dy
converges for a.e. x € G. The function Iy is in L, (G) and fulfills
5z, < CxllfllLy..-

Proof. Tt suffices to assume f > 0 and K > 0. Indeed, temporarily writing Ik r
instead of Iy to emphasize the role of the kernel K, we have |Ix | < I|x|r); fur-
thermore, if ([T7) and (T8) hold for K, then they also hold for |K|, with the same
constants, and we have || f|l., ., = [ |f]ll,.,. Hence, if the claim holds for K, f > 0,
then also

xrlle,. < MHkLrlle,.. < Ck -z, =Ck - Iflle,.. -

Thus, we will assume in the following that K, f > 0. Hence, also Iy > 0, so that
[16, Theorem 6.14] shows

I, h
(79) Wil = swp  orlie
™ osher,, - @\oy R,
We denote with d(x,y) the product measure on G X G. Furthermore, for brevity

we set My (y) := % - K(x,y) and observe |[My||r, < Ck for almost all x € G,

thanks to (T7). Likewise, (T8) shows |[M®)||,, < Ck for almost all y € G, where

MO)(x) = 22 K(x, y).

We first consider a number of special cases, so that we can then concentrate on
the case where p, g, r € (1, ).
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Case 1: At least one of p, ¢, r is infinite. In case of p < oo, we have 1 < 1+p~t =
g ' +r71. But if ¢ = o0, then the right-hand side of this inequality is »~* < 1, which
leads to a contradiction. Similarly, we see that r = oo leads to a contradiction.
Therefore, we necessarily have p = oo in the present case.

Because of 1 =1+ p~! = ¢! + 71, this implies ¢ = #’, and hence

w(x) - Ir(x) = /GMx(y)'W(y)'f(y) dy < [[Mxll., - Ifllz,.,, < Ck - I fllz,,, <

for almost all x € G, proving the claim in Case 1, since p = oco.

Case 2: We have p,q,r < oo, but at least one of p,q,r is equal to one. This
leaves three subcases:

Case 2-A: We have p = 1, and hence 2 = 1+ p~! = g7! +r~! < 2, which implies
g =r = 1. Hence, by Fubini’s theorem,

me=LwnLmefm@w=LMmeleww@
< Cx Ml = C - If e,

which proves the claim in Case 2-A.

Case 2-B: We have p € (1,00), but r = 1. Since 1+p ' =g ' +r 1 = 1447, this
implies p = g € (1,00). Hence, for each nonnegative h € L,/ ,,-1(G) \ {0}, Fubini’s
theorem and Holder’s inequality show

<&M=Lmqémwwm@m

:f M . [M(y)(x)]l’% [M(y)(x)]

GxG W(x)

’ /P’
BN 1
S(,/G(w(x)) LMy(x)dydx)

1/p
-(/Yw@»f@»ﬂ/°MWRde@j
G G
< Ci Ml s I fley -

S

“w(y) f(y)d(x,y)

In view of ([[@) and because of p = g, this proves the claim in Case 2-B.

Case 2-C: We have p,r € (1,0), but ¢ = 1. This implies p = r € (1, o), since
1+pt=¢g'+r ! =1+r", For nonnegative h € Ly ,,-1(G) = L,,,-1(G), we thus
have

wwb=wamemeﬂ9w@

wi(x)
< [ w0 7O 1Ml - Wil
< Ck -z, s - WfllLy,, = C -l - I f N, -
In view of ([3)), this proves the claim in Case 2-C.

Finally, we handle the case p,g,r € (1,0). By elementary calculations one can
show r/p+r/q’ =q/p+q/r’" =p'/q" +p’/r' =1, where all occurring numbers %, ql
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and so on are elements of the interval (0,1). Thus, for any 0 < h € Ly ,,-1(G), it
follows from Holder’s inequality and Fubini’s theorem that

w(x)
w(y)

= /G ) (MO)"P - (FOwm) P - (M)

(W) ™)P (FOMG)) Y (W)™ d(x, y)

®) q O (" )W
< ( /G W) /G (MO(0)" dx dy
, 1/q’
( / G| / (Me(y)” dy dx)
G G

1/r
- ( / PO AW P d(, y))
GxG

< Cx W flleg, - 12l -0 < 00,

Uy by, = / KCan) ™ sy - how(x)™ d(x.y)

1

1 1 _ i
1 5+1—;_1.InV1eW0f

where the step marked with (x) used tot =5t 1-
(@), this proves the claim for the case 22 q, re (1 ). O

Next we present a weighted version of the classical Young’s inequality.

Proposition A.2 (Young’s inequality). Let m be a w-moderate weight on G, see
@3), and let p,q,r € [1,00] such that 1 + 1/p = 1/q + 1/r. Then it follows for
f € Lgm(G) and g € Ly w(G)N L, \yp-1/r(G) that f g € Ly m(G) and

bl g m

If, instead of g € Ly w(G) N L, ,a-1r(G), it holds g € Ly (G) and |g(x)| = lg(x~ 1)
as well as w(x) = w(x™1) for all x € G, or if g € L, ,,(G) and G is unimodular, then

(81) IS *&llLpm < NgNLrw - N g -

Proof. We apply Lemma [AT] for the case K(x,y) = g(y 'x) and the weight m. It
suffices to show that there exists a constant Cx that fulfills (77)) and (78]). We first
consider the case r < oo and use ([3) and the left invariance of the Haar measure
to conclude

-1 r' r ) yz)r r m(y)rw(z)r
[rsomor 25 ax= [ e - 225 de < [ lgtor - MO o

B / lg(@)I" - w(2)" dz=liglly, ,
G

(80) I *glle,, . < max{ligllL, ... llgllz

rowA=1/r

for almost all y € G. Now, using the change of variables z = x"'y, and recalling the
formula do(x) = A(x"!)dx (see [15, Proposition 2.31]) for the right Haar measure o
given by o(M) = (M), we see

[1eo7or- 2 ”r Sy = [ G

= [l bwor A(y)-l dy=lelly, .,
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for almost all x € G. By setting Cx = max{||glz,.,,. llgllL } < o0, Lemma [A]]

wA—1/r

yields

If gl < Ck - Iflle,.,,  forallf e Lym(G),

which proves (80).
Finally, for the case r = oo, observe m(x) = m(yy~'x) < m(y) - w(y~1x), so that we
get
m(x)

18 )] - W;C) < 1gO7 )l wO ) < Mgl

for almost every x € G and almost every y € G, which establishes (77 and (7g]).
It remains to prove (8I). If we assume |g(x)| = |g(x7!)| and w(x) = w(x™!), the
formula do(x) = A(x™!)dx from above yields for r < co that

I81E, ., = [ 16OI WO 807 dy = [ Je( - otz
= [ ls@r @Y dz =il

This identity trivially holds if G is unimodular, so that A = 1. For r = oo, we always
have ||g||Lr atr = ligllz,.,, - In all of these cases (BI) is a direct consequence of

(0. m]

Lemma A.3. Let A be a bounded and surjective linear operator that maps a Banach
space W onto a Banach space V. Suppose that the kernel of A admits a complement
L inW. Set

& 1= inf {sup {(Ax, Vvav-| | v € V3 lylly = 1} |x € L llxlhw = 1}.
Then the map S := (A|)™' : V. — L C W is a linear right inverse of A with
ISl =&t
Proof. 1t is straightforward that Al : L — V is a bijection. Therefore S is indeed
a linear right inverse of A, and we have
inf {sup {|(Ax, y)vxv+| | y € V3, |Iyllve =1} [ x € L, [|x|lw = 1}
= inf {[|Ax[ly | x € L, [[x[lw = 1}

- inf{”Ax”V xel\ {0}} - inf{”Asv”V vevh {0}}
[l [lw (ISvIlw
ISV llw })1 ( {”SVHW ‘ })1
= |su veV\{0 = [su veV\{0
( P { IASv [l Vo) P\ Vo)
=|ISII7,
which proves the claim. O

Lemma [3.3] and Lemma [3.15] as well as Proposition were left unproven. The
proofs are presented here.

Proof of Lemma [T We start with an auxiliary observation: We claim that
I8llz(0x) = subyepy [8(¥) if g : G — C is continuous and if Q € G is a compact
unit neighborhood with Q = int Q.

Indeed, the inequality “<” is trivial. Conversely, if we set a := ||gl|z(0x), then the
set M :={y € G| |g(y)| > a} is open, and MNQx is a null-set. Hence, MN(int Q)x =
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0, since this is an open null-set. In other words, |g(y)| < @ for all y € (int Q)x. By
continuity of g and since Q C int Q, we see |g(y)| < « for all y € Qx.
In particular, this implies Mgg(x) = sup,¢q 1g(gx)|, and thus (because of e € Q)

Mpg > Igl.

To prove i) we note that Mgof € L, (G) which implies f € L, ,,(G), since we
just saw that Mgof > |f]. We intend to show |[loscg, fl|L,,, < co. But we have
osco, f(x) = sup |f(gx) - f(x)] < sup |f(gx)] +|f(X)] < |f(x)] +1‘71§0f(X)~
q€Qo q€Qo

Therefore,

(82) lloscgo fllL,. < IMG, fllL,.. + £z, <oo.

It remains to prove ii). For this we first note that oscgf < oscg,f if Q c Q.
Furthermore, by part i) we have osco, f € Lpw(G). Hence, since G is o-compact,
for any & > 0, there exists a compact set K C G of positive measure such that

p P £
(83) ‘/G\K losco f(x)w(x)|” dx < L\K losco, f(x)w(x)|P dx < 5

for all unit neighborhoods Q C Q.

Next, we observe that since f is continuous, it is uniformly continuous on K in
the following sense: For every 6 > 0 there is a unit neighborhood Us ¢ G with
| f(x) = f(ux)| < 6 for all x € K and u € Us.

The uniform continuity described above simply means oscy, f(x) < 6 for all x €
K. Choosing 6 := /P /([2-|K|]*P supy,cx W(y)), we see for every unit neighborhood
Q0 C Qg NUs that

e w(x)? e e
84 /osc xwxpde/ . de/—dxz—.
(0 Jloscel O dvs ooty supyerwiow @ = S 2kl @7 2
Equations (B83) and (&) yield |loscg f ||€P . <&, which concludes the proof.

Proof of Lemma[313 Let 1 < p < oo and (dx)xey, € {p,m(¥n), then we first note
that for all x € G it holds

/x o m(y)’ dy = /Q ) m(xy)’ dy < m(x)P /Q ) w(y)? dy

< sup w(q)” - |Qul - m(x)”.
q€0n

With this at hand and since ¥, is relatively Q,-separated, as stated in B0), we
derive

S |-

I r

2 Xl [ mray

p.m i=1 \x€Z,; xQ

> ldilxso,

xEZ,,,i

P

7
< DU D) ldelPmor | - sup wig) - 1Qal”

i=1 \x€Zpn.; 9€0Qn

_1 1
<I'7 - sup w(g) - 10nl? - I(dx)xev, lle, -
q€0n
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It remains to prove the case p = co. Similarly as above, we see that

7 I
Dilddxeo]| <D D) s, =D sup (|dx|- sup m(y))

XY, Lom =1 lxez, Leom =1 ¥€Zn.i YExXQn

<7I- (sup || 'm(X)) - sup w(y)

X€Y, yeQn
=1 - sup w(g) - [l(dx)xev, lle, -
q€0n

Proof of Proposition [{.5] We will construct C c [0,1] as a certain “fat Cantor
set”. In particular, we will show below that C has positive measure and fulfills the
following two additional properties:

(85) |C N B| < |B| for all open intervals 0 # B C R,
and
0o 271 a™ 4+ p
c _ n : n._ _J J Hn+1l Hn+l
(86) co=JU sy with By =L +(—2, 2),
n=0 j=0

where the complement C¢ is taken relative to [0,1], and where aj."), b;n) € R are
suitable, while y, := min{4™",n™"} for n € N.

Before we provide the precise construction of such a set C, let us see how the
properties (88) and (86l imply the properties of C that are stated in the proposition.

First, [24) Theorem 1] shows that if the operator f — f * F ! yc is bounded on
L,(R) for some p € (1,00)\ {2}, that is, if yc is an L,(R)-Fourier multiplier, then
C would be equivalent to an open set. In other words, there would be an open
set U Cc R with y¢ = yu Lebesgue almost everywhere. But since C has positive
measure, this is only possible if U is a nonempty open set. Therefore, U contains
a nonempty open interval B ¢ U. Since yc = yu almost everywhere, this implies
[BNC| =|BnU| =|B|, in contradiction to (8F). In summary, we have thus shown
that the convolution operator f + f * F ! yc is not bounded on any L,(R) space
for p € (1,00) \ {2}. But this even implies that L,(R) = L,(R), f — f*F 'xc is
not well-defined, by Proposition

Second, we will see that (B6) ensures F ! yce € M1<p <o Lp(R), which then im-
plies F'xc = F 'xo1n - F ‘xce € Mi<p<eo Lp(R). Here, we used that F :=
F 1 X01) € Mi<p<eo Lp(R), since a direct computation shows F(x) = 62;;;1 for x #
0, which implies |F(x)| < (1 + |x|)~'. It remains to show F ' ycec € Mi<p<oo Lp(R).

a™+p™
J J

— Hn+1
2

To this end, we set f}") = , recall the definition of the intervals
Bj’.‘ = gj(.") + pns1 - (0,1) from (86), and use standard properties of the Fourier trans-

form to compute
7:_1/\/3;‘ = Hns1 - Mo [(F " x0.0)(Hns1)] = pns1 “ Mo (F(ptns1°))
2] J

where (Mg f)(x) = e***¢ f(x) denotes the modulation with frequency ¢ of a function

f- Next, (86l) shows
0o 2"-1

F ' xce = Z Z ¢_1XB}1-

n=0 j=0
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Combining this with the triangle inequality for L, and with the elementary iden-

tities M fll, = IIfll, and |f(@)liL,@ = a ™ ?[f L, for a > 0 and f € Ly(®),
we see because of u, <n™™ and 1 —p~t > 0 for each fixed p € (1,00] that

oo 2"-1
17 e, < 3 D) swer - 1Mo (FGptns) e,

n=0 j=0

(87) oo 2"-1 )

-1 _ _P(1—p-1
<NIFl, - Y. Z < IFll, - Y20 et
n=0 j= =1

But for ¢ > £ = £o(p), we have (1 — p™1) - log,(€) > 2, and thus

1

9f=1 . p=t=p™) _ ol . 9=t(1-p™)ogs(0) ¢ of (1-(1-p™)1oga(0)) < oL

so that the series on the right-hand side of (8T) converges. Hence, F ! yce € L,(R)
for every p € (1, o].
Finally, we note because of u, < 47" that property M) also implies
00 2"._1

S EDIPNLH —22 ns1 <Zzn 47D < 2 Zz-

n=0 j=0

so that C c [0, 1] necessarily has positive measure if it satisfies properties (85]) and
[B6). Tt remains to show that one can indeed construct a compact set C c [0,1]
that satisfies properties (88) and (86l).

To this end, as for the construction of the classical Cantor set, we will set C :=
Mneo C"* where the sets C" := UJQZ(] ! Cj'.‘ will be defined inductively.

For the start of the induction set Cg = [a; © b(o)] [0,1].

For the induction step, assume for some n € Ny that we have constructed closed
intervals C} = [ai,"), bi,")] c[0,1], for £=0,...,2" — 1, with

(88) < b —d <2 forall 0<€<2"
and
(89) B <d?  for  0<£<2'-1.

Now, for 0 < j < 2™ we can write j = 2€ + k with uniquely determined k € {0, 1}
and 0 < £ < 2". We then recall from after (86) that g,41 = min{4="*D, (n+1)"+D},
and define

24 p)
[ i}")’ ¢ '2”’(? _ ML;] [ (n) b(")] _ Cn ifk=0,
(90) C(l+1 — [a(n+1) b(n+1)] —
FAR )

j J : (), ) '
| ] [a b = ¢ k=1

With this choice, we see from (88)) and because of g1 < 4~V that

(1) (n)
D) _ ) _ be =" pnn 1 (47" — 4700 = 3 4n s g-ne1)
J 2 2 2 8 -
and
b — )

pn D) _ 1) _ Lo Lo oy o)
J 2 2 t l
thereby proving (88)) for n + 1 instead of n.
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For the proof of [®9) for 0 < j < 21 — 1 with j = 20+ k and k € {0,1}, we
distinguish two cases:
Case 1: £k =0. In this case, j + 1 = 2 + 1, and hence

() (1)
b(n+1) U+ by _ Hns1 Hntl _ (n+1)
< =a;,,
2 2 2 2 It
Case 2: k = 1. In this case, 2(€+1)+0=j+1 < 2™ sothat 1 < £+1 < 2"

Therefore, ([89) shows b("+1) b(") ;’31 = ay:l).

We have thus ver1ﬁed [®9) for n+ 1 instead of n.

As indicated above, we define C" := U?Z& ! C]’f and observe as a consequence of
[@0) that each C" is closed with C"** c C" for all n € Ny. Hence, C := (5o, C" C
C% = [0,1] is compact.

a4

Having defined the set C, our first goal is to prove property (8h). Let B ¢ R
be a nonempty open interval. If C N B is a finite set, the inequality in (83 is
trivially satisfied. Hence, we can assume that C N B is infinite, so that there are
x,y € CN B with x < y. Choose n € Ny with 27" < y — x and note because
of x,y € C ¢ C" = Uj.;" C! that there are jy, jy € {0,...,2" — 1} with x € C!

and y € C]"y In case of j, < jx, we would get because of ai}ﬂ) < b(t,") < 57'31 for

0 < ¢ < 2" -1 and because of b(t,") - aﬁ,") <2 for 0 < £ < 2" (see (BY), (BI)) that
o <y pT g < ) _ g ¢ gm
Y =y x T Ty By = ’

X

a contradiction. Hence, j, > jy, so that (88) and (89) show
B>x<b™<p™ <a(‘")SyeB,
Jx Jy-1 Jy

and thus (b(") (")) C B\ C" c B\ C. But since this interval has positive measure,
we see |B| = |B \ C| +|BNC| > |BnC|, thereby proving (8a).

Finally, we prove the formula (80) for the complement C¢ of C, with the comple-
ment taken relative to [0, 1]. To see this, note C° = |J;_,(C™)°. By disjointization,
and since (C%)¢ = 0 and (C™)° c (C™1)°, this yields

— U(Cn)c \(Cn—l)c - U Cn—l \ Cn — U Cn \ Cn+1 .

n=1 n=1 n=0

Next, recall C" = U?:al C;’ and also recall from (@0) that C;’;Jrlk cCpfor0<t<2n

and k € {0,1}. Therefore, by (@) and the definition of B} in (8G) it holds

2"-1 1

1_ 1 1
e = () (=)ot
£=0 k=0
Putting everything together, we see that (86) holds.
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