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Monte Carlo wavelets: a randomized approach

to frame discretization
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Abstract

In this paper we propose and study a family of continuous wavelets
on general domains, and a corresponding stochastic discretization that
we call Monte Carlo wavelets. First, using tools from the theory of re-
producing kernel Hilbert spaces and associated integral operators, we
define a family of continuous wavelets using spectral calculus. Then,
we propose a stochastic discretization based on Monte Carlo estimates
of the integral operators. Using concentration of measure results, we
establish the convergence of such a discretization and derive conver-
gence rates under natural regularity assumptions.

1 Introduction

To construct a discrete frame it is common practice to first construct a frame
on a continuous parameter (measure) space, where the mathematical prop-
erties are nice and the structure is rich, and then obtain a discrete frame by
carefully selecting a discrete subset of parameters. The discretization prob-
lem has been studied extensively and in several settings [5, 2, 7, 6]. Although
theoretically relevant in establishing density theorems and complete charac-
terizations, some general discretization procedures require assumptions which
might be hard to check, and sometimes are not even constructive. On the
other hand, in constructive discretization methods the discrete parameter se-
lection is usually pretty sensitive, and it does not generalize trivially from the
Euclidean space to more general geometries [1]. In the following, we propose
a different approach based on random sampling.

First, we consider a general domain with an associated positive def-
inite kernel, and exploit the theory of reproducing kernel Hilbert spaces
(RKHS) and corresponding integral operators, to define a family of continu-
ous wavelets. Here, we borrow ideas from [8, 9, 2], and develop them using
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the properties of a RKHS. Then, we propose a stochastic discretization ap-
proach which replaces constructive discrete parameter selection with random
sampling. We note that the corresponding discrete frame is actually only
finite-dimensional. In particular, it does not solve the discretization problem
in the classical sense. Indeed, each discrete frame is a frame only up to a
certain sampling resolution. The frame dimensions increase with the number
of samples, and our main technical contribution is proving convergence to
the continuous frame as the number of samples goes to infinity. Further, we
derive convergence rates under natural regularity assumptions [4]. Our anal-
ysis combines classical tools from approximation theory and spectral calculus
with results of concentration of measure to deal with random sampling.

The paper is organized as follows. In Section 2 we introduce the general
framework in which we will conduct our analysis. This will allow us to state
the continuous and discrete settings within a unified formalism. The key
ingredient is a reproducing kernel with associated integral operator. Section
3 contains a general frame construction based on spectral filters and eigen-
functions of the integral operator. In Section 4 we define specific filters by
spectral calculus, which will play a central role in our approximation bounds.
In Section 5 we specialize the construction of Section 3 in a continuous and
a discrete frame, regarding the latter as a Monte Carlo estimate of the for-
mer. Our main result, Theorem 4, establishes quantitative consistency of
the Monte Carlo estimate on a class of Sobolev-regular signals. In Section 6
we provide an implementable formula to compute our Monte Carlo wavelets
from the eigendecomposition of a sample kernel matrix.

Notation

symbol definition

〈·, ·〉 inner product in a Hilbert space

‖ · ‖ norm of a Hilbert space, or operator norm

‖ · ‖HS Hilbert-Schmidt norm

span{S} linear span of the set S

S topological closure of the set S

PS orthogonal projection onto the closed subspace S

supp(ρ) support of the measure ρ

δx Dirac measure at x

X . Y X ≤ CY for some constant C > 0

[u]i i-th component of the vector u ∈ RN
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2 Setting

Let X be a locally compact, second countable topological space endowed
with a Borel probability measure ρ. Fixed a continuous positive semi-definite
kernel

K : X ×X → C, (1)

we let H be the corresponding reproducing kernel Hilbert space

H = {f : X → C : f(x) = 〈f,Kx〉} = span{Kx}x∈X , (2)

withKx = K(·, x) and inner product given by 〈Kx, Ky〉 = K(x, y). Assuming
supx∈X K(x, x) ≤ κ2, we define the integral operator T : H → H

Tf(x) =

∫

X

K(x, y)f(y)dρ(y). (3)

Under these assumptions, T is a positive self-adjoint trace class operator with
spectrum σ(T ) ⊂ [0, κ2]. Let

Tvi =

{
λivi i ∈ Iρ

0 vi i ∈ I0
(4)

be the spectral decomposition of T over the orthonormal basis {vi}i∈Iρ∪I0.
The subspace

Hρ = span{Kx}x∈supp(ρ) = span{vi}i∈Iρ (5)

splits H as H = Hρ ⊕ ker T .
As examples of this setting, we can think of X as Rd, or non-Euclidean

domains such as a compact connected Riemannian manifold or a weighted
graph. In all these cases, we can take K as the heat kernel associated with
the proper notion of Laplacian, be it the Laplace-Beltrami operator or the
graph Laplacian.

3 Frame construction

To construct our frame, we take inspiration from [8] and references therein.
We start defining filters on the spectrum of T . Let (Gj)j∈N be a family of
bounded measurable functions Gj : [0,∞) → [0,∞) satisfying

∑

j∈N

λGj(λ)
2 = 1 λ ∈ (0, κ2]. (6)
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Then, for every j, Gj(T ) is a positive self-adjoint operator onH with σ(Gj(T )) =
Gj(σ(T )) ⊂ [0, Gj(κ

2)]. We can thus define

ψj,x = Gj(T )Kx j ∈ N, x ∈ X . (7)

Note that, if x ∈ supp(ρ), then ψj,x ∈ Hρ since Gj(T )Hρ ⊂ Hρ. Moreover,
using the self-adjointness of Gj(T ), the reproducing property (2) and (5), we
can rewrite ψj,x as

ψj,x =
∑

i∈Iρ

Gj(λi)vi(x)vi. (8)

This reveals (7) as a generalization of classical wavelets, where the vectors
vi’s are the eigenfunctions of the Laplacian. We may therefore interpret x, j
as location and scale parameters, respectively.

The following proposition shows that the family (7) is a tight frame on
Hρ.

Proposition 1. For every f ∈ H,

‖PHρ
f‖2 =

∑

j∈N

∫

X

|〈f, ψj,x〉|2dρ(x).

Proof. Let f ∈ span{vi}i∈Iρ∪I0 . SinceGj(T ) is self-adjoint, we have 〈f, ψj,x〉 =
〈Gj(T )f,Kx〉. Hence, integrating over X we get

∫

X

|〈f, ψj,x〉|2dρ(x) = 〈TGj(T )f,Gj(T )f〉

= 〈TGj(T )
2f, f〉

=
∑

i∈Iρ

λiGj(λi)
2|〈f, vi〉|2.

Summation over N along with (6) thus gives

∑

j∈N

〈Gj(T )
2Tf, f〉 =

∑

i∈Iρ

|〈f, vi〉|2
∑

j∈N

λiGj(λi)
2 =

∑

i∈Iρ

|〈f, vi〉|2 = ‖PHρ
f‖2.

The assertion follows since span{vi}i∈Iρ∪I0 is dense in H.

4 Examples of spectral filters

Let (gj)j∈N be a family of functions gj : [0,∞) → [0,∞) such that

0 ≤ gj ≤ gj+1, lim
j→∞

λgj(λ) = 1. (9)
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Then we can define filters (6) by means of (9):

G0(λ) =
√
g0(λ), Gj+1(λ) =

√
gj+1(λ)− gj(λ). (10)

The qualification of a spectral function gj(λ) is a constant ν ∈ (0,∞] such
that, for all ν > 0,

sup
λ∈(0,κ2]

λν(1− λgj(λ)) . j−min{ν,ν}. (11)

As instances of gj(λ), we can take the spectral functions in Table 1 (see [3]).

Table 1

method gj(λ) qualification

Tikhonov regularization 1
λ+1/j 1

Iterated Tikhonov (λ+1/j)m−(1/j)m

λ(λ+1/j)m m

Landweber iteration 1
λ(1− (1− γλ)j) ∞

Asymptotic regularization 1
λ (1− exp(−jλ)) ∞

These functions play a fundamental role in ill-posed inverse problems regu-
larization, where the error of a given regularizer decays with a rate governed
by its qualification.

5 Consistency

From now on, assume supp ρ = X , whence Hρ = H by (5). Therefore, (7)
is a frame on the whole space H, thanks to Proposition 1. Suppose we are
given N independent and identically distributed samples

x1, . . . , xN ∼ ρ. (12)

Then we can consider the empirical distribution

ρ̂N =
1

N

N∑

i=1

δxi
, (13)

define the empirical integral operator

T̂ f(x) =
1

N

N∑

i=1

K(x, xi)f(xi) (14)
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and repeat the construction of Section 3, to get

ψ̂j,xi
= Gj(T̂ )Kxi

j ∈ N, i = 1, . . . , N. (15)

In view of Proposition 1, (15) defines a discrete tight frame on

ĤN = Hρ̂N = span{Kxi
}Ni=1 ≃ R

N . (16)

Since (14) is a Monte Carlo estimate of (3), we call (15) a family of Monte
Carlo wavelets. Note that, as we take more and more samples, we obtain
a sequence of discrete tight frames on a sequence of nested subspaces of
increasing dimension:

ĤN ⊂ ĤN+1 ⊂ · · · ⊂ H. (17)

Our goal is to establish consistency of the Monte Carlo estimate (15), that
is, to see whether and in what sense (15) tends to (7) as N → ∞.

Now, let

Tjf =

∫

X

〈f, ψj,x〉ψj,xdρ(x), T̂jf =
1

N

N∑

i=1

〈f, ψ̂j,xi
〉ψ̂j,xi

(18)

be the frame operator at scale j and its empirical counterpart. Proposition 1
gives a resolution of the identity, which can be approximated by a truncated
empirical version:

IH =
∑

j∈N

Tj ≈
∑

j≤τ

T̂j . (19)

We split the resolution error of (19) on a signal f ∈ H into an approximation
and a sampling error,

‖f −
∑

j≤τ

T̂j‖ ≤ ‖
∑

j>τ

Tjf‖+ ‖
∑

j≤τ

(Tj − T̂j)f‖, (20)

and derive quantitative bounds for each term (Proposition 2 and 3). Tuning
the resolution τ in terms of the sample size N , we will finally obtain our
consistency result, Theorem 4.

For what concerns the approximation error, note that Proposition 1 al-
ready implies

‖
∑

j>τ

Tjf‖ −→
τ→∞

0 (21)

by dominated convergence. However, in order to obtain a convergence rate,
we need to assume some regularity of the signal f . Specifically, we will
assume the following Sobolev smoothness condition [4]:

f = T αh for some h ∈ H, α > 0. (22)
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Proposition 2 (Approximation error). Let gj(λ) as in (9). Suppose gj(λ)
has qualification ν. Then, for every f ∈ T αH,

‖
∑

j>τ

Tjf‖ . ‖T−αf‖κ2(α−β)τ−β

where β = min{α, ν}.
Proof. By Lemma 5 we have

∑
j≤τ Tj = Tgτ(T ), hence

‖
∑

j>τ

Tjf‖2 =
∑

i

|1− λigτ (λi)|2|〈f, vi〉|2

=
∑

i

λ
2β
i |1− λigτ(λi)|2|〈T−βf, vi〉|2.

Thus,

‖
∑

j>τ

Tjf‖ ≤ ‖T−βf‖ sup
i
λ
β
i (1− λigτ (λi)) . ‖T−βf‖τ−β.

The sampling error bound follows by concentration of the empirical inte-
gral operator (14) on the continuous one (3).

Proposition 3 (Sampling error). Let gj(λ) be as in (9). Suppose λ 7→ λgj(λ)
is Lipschitz continuous on [0, κ2] with Lipschitz constant bounded by j. Then,
for every f ∈ H, with probability higher than 1− 2e−t,

‖
∑

j≤τ

(Tj − T̂j)f‖ . ‖f‖κ2
√
tτN−1/2.

Proof. Using Lemma 6 we have

‖
∑

j≤τ

(Tj − T̂j)f‖ ≤ ‖Tgτ(T )− T̂ gτ(T̂ )‖‖f‖ ≤ ‖Tgτ(T )− T̂ gτ (T̂ )‖HS‖f‖

≤ τ‖T − T̂‖HS‖f‖.

Thanks to the reproducing property (2), we can write

T =

∫

X

Kx ⊗Kxdρ(x), T̂ =
1

N

N∑

i=1

Kxi
⊗Kxi

.

This allows for the concentration [10, Theorem 7], which yields

‖T − T̂‖HS . κ2
√
tN−1/2

with probability higher than 1− 2e−t .
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We are finally ready to state the consistency of our Monte Carlo dis-
cretization.

Theorem 4. Let gj(λ) as in (9). Suppose gj(λ) has qualification ν, and
λ 7→ λgj(λ) is Lipschitz continuous on [0, κ2] with Lipschitz constant bounded
by j. Then, for every f ∈ T αH, with probability higher than 1− 2e−t,

‖f −
∑

j≤N
1

2β+2

N∑

i=1

〈f, ψ̂j,xi
〉ψ̂j,xi

‖ . ‖T−αf‖(κ2(α−β) + κ2α+2
√
t)N− β

2β+2

where β = min{α, ν}.

Proof. We split ‖f−
∑

j≤τ T̂jf‖ in (20), and combine the bounds in Proposi-

tion 2 and 3. In order to balance the two terms, we choose τ = N
1

2β+2 , which
concludes the proof.

In particular, in view of Lemma 7, we can use the spectral filters defined
in Table 1, for which we obtain the following rates:

Table 2

method rate

Tikhonov regularization N−min{α,1}

Iterated Tikhonov N−min{α,m}

Landweber iteration N−α

Asymptotic regularization N−α

6 Numerical implementation

To implement the system of Monte Carlo wavelets in (15) we exploit equation
(8), that is,

ψ̂j,xk
=

1

N

N∑

i=1

Gj(λ̂i)v̂i(xk)v̂i,

where T̂ v̂i = λ̂iv̂i is the spectral decomposition of T̂ . In particular, we need
to compute eigenvalues and eigenvectors of T̂ , translating the calculations
from Ĥ to RN and back [10]. To this end, we introduce the restriction map

Ŝ : Ĥ → RN

[Ŝf ]i = f(xi) i = 1, . . . , N, (23)
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whose adjoint Ŝ∗ : RN → Ĥ defines the out-of-sample extension

Ŝ∗u =
1

N

N∑

ℓ=1

[u]ℓKxℓ
. (24)

Let

K̂i,k =
1

N
K(xi, xk) i, k = 1, . . . , N (25)

be the (normalized) sample kernel matrix. Now T̂ = Ŝ∗Ŝ and K̂ = ŜŜ∗,

hence T̂ and K̂ share the same eigenvalues. Moreover, the eigenvectors of T̂
are related to the ones of K̂ by the singular value decomposition of Ŝ:

Ŝv̂i =

√
λ̂iûi i = 1, . . . , N. (26)

Thus, we have

v̂i =
1√
λ̂i

Ŝ∗ûi =
1√
λ̂i

1

N

N∑

ℓ=1

[ûi]
ℓKxℓ

,

which evaluated at xk gives

v̂i(xk) =
1√
λ̂i

1

N

N∑

ℓ=1

K(xk, xℓ)[ûi]
ℓ =

1√
λ̂i

[K̂ûi]
k =

√
λ̂i[ûi]

k.

We therefore obtain

ψ̂j,xk
(x) =

1

N

N∑

i,ℓ=1

Gj(λ̂i)[ûi]
k[ûi]

ℓK(x, xℓ). (27)

In summary, given a kernel (1), filters (6) and samples (12), a numerical
implementation of the Monte Carlo wavelets (15) can be performed from the
sample kernel matrix (25) alone following the steps below:

1. compute eigenvalues and eigenvectors (λ̂i, ûi)
N
i=1 of K̂;

2. apply equation (27).
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Lemmata

Lemma 5. Let T , Gj and Tj be defined as in (3), (6) and (18). Then
Tj = TGj(T )

2.

Proof. For every i ∈ I we have

Tjvi =

∫

X

〈vi, Gj(T )Kx〉Gj(T )Kxdρ(x) = Gj(λi)

∫

X

〈vi, Kx〉Gj(T )Kxdρ(x).

Thus,

〈Tjvi, vi〉 = Gj(λi)
2

∫

X

〈vi, Kx〉〈Kx, vi〉dρ(x)

= Gj(λi)
2〈Tvi, vi〉

= 〈TGj(T )
2vi, vi〉.

Since span{vi}i∈I = H, the claim follows by polarization.

Lemma 6. Let A,B be self-adjoint operators on a Hilbert space H, and let
F : R → C be a Lipschitz continuous function with Lipschitz constant L.
Then

‖F (A)− F (B)‖HS ≤ L‖A− B‖HS.

Proof. Let {ei}i∈I and {fj}j∈J be orthonormal bases of H such that Aei =
λiei and Bfj = µjfj . Then

‖F (A)− F (B)‖2HS =
∑

i∈I,j∈J

|〈(F (A)− F (B))ei, fj〉|2

=
∑

i∈I,j∈J

|F (λi)− F (µj)|2|〈ei, fj〉|2

≤ L2
∑

i∈I,j∈J

|λi − µj|2|〈ei, fj〉|2

= L2‖A−B‖HS.

Lemma 7. Let gj(λ) be as in Table 1. The function λ 7→ λgj(λ) is Lipschitz
continuous on [0, κ2], with Lipschitz constant bounded by j.

Proof. The claim follows by a direct computation of the derivative of λ 7→
λgj(λ).
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