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Abstract

We study the learning properties of nonparametric ridge-less least
squares. In particular, we consider the common case of estimators defined
by scale dependent kernels, and focus on the role of the scale. These
estimators interpolate the data and the scale can be shown to control their
stability through the condition number. Our analysis shows that there are
different regimes depending on the interplay between the sample size, the
dimension, and the smoothness of the problem. Indeed, when the sample
size is less than exponential in the ambient dimension, then the scale can
be chosen so that the learning error decreases. As the sample size becomes
larger, the overall error stops decreasing but interestingly the scale can
be chosen in such a way that the variance due to noise remains bounded.
Our analysis combines, probabilistic results with a number of analytic
techniques from interpolation theory.

1 Introduction
A classical idea in statistical learning theory is that there should be a tradeoff
between fitting the data and the complexity of the estimators [33, 20, 14].
Indeed, much work is devoted to characterizing this intuition through different
measures of complexity [30, 11, 29]. This point of view is contrasted by the
recent empirical observation that it is often possible to fit, interpolate, the data
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arbitrarily well, without degrading learning accuracy. This is indeed, true for
deep neural networks [35], but also for other models [5] including kernel methods
[7], and begs the question of whether interpolation can be reconciled with classical
learning theory [5] .

Kernel methods provide a generalization of many classical linear models [28]
and are grounded in the theory of reproducing kernel Hilbert spaces [1]. From a
theoretical point of view, they provide a natural starting point to understand
the learning properties of interpolating estimators. Recent works have started
considering the properties of linear models, where interpolation can be achieved
as soon as the number of parameters exceed the number of available points, the
so called overparameterized regime. For example, linear regression is considered
in [22], while linear models based on random features are studied in [6, 19]. In
this context, bounds are typically derived via random matrix theory [25], letting
the number of points and parameters go to infinity, a common setting in high
dimensional statistics. Kernel methods have been considered in [23, 24]. In this
case, the number of parameters is infinite, and bounds are derived assuming
the dimension of the points to scale with their number. Further, the kernel is
assumed to be fixed. A family of estimators defined by kernels depending on
a scale (bandwith) parameter is studied in [8]. These estimators are akin to
classical local kernel methods [20], but based on a family of singular kernels
leading to interpolation.

In this paper, we study the properties of global kernel estimators, defined
by minimum norm interpolating estimators defined by scale dependent Matern
kernels [34]. The focus is on deriving non asymptotic bounds and understanding
the role of the scale parameter in the kernel. Finite sample bounds for kernel
methods are typically studied [29, 13, 12, 30], adding penalties or constraints
that prevent interpolation. Only a handful of works consider the role of kernel
parameters [18, 31, 21], but also in this case penalties are added. Here, we focus
on the case where no penalty is added, called kernel ridge-less regression in
[23], and focus on the influence of the kernel parameters. The basic observation
is that there is a wide range of problems, where the corresponding estimators
are stable, even without adding any penalty or constraint. This a byproduct
of sampling data in high dimension, or, more precisely, of having a number of
samples which is not exponential in the dimension. In this, case, the minimum
distance among the points is large and the corresponding kernel matrix is shown
to have small condition number. Error bounds can be derived as consequence of
this basic observation, combining learning theory results [13], with tools from
interpolation theory [34, 4]. Further, the scale of the kernel can be tuned to
improve stability and hence the bounds. When the number of points grows,
distances shrink and stability gets worse. Interestingly, even in this case, the
variance can be controlled by tuning the scale parameter of the kernel, however
the error plateaus and there is no consistency. Indeed, the lack of consistency
is expected in view of the lower bounds in [26]. Interestingly, necessary and
sufficient conditions for consistency as well as non asymptotic bounds are given
in [2] for a general infinite dimensional regression problem, but these conditions
are not realized by the class of kernels we consider.
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The plan of the paper follows. We introduce the setting of the problem in
Section 2, our main results in Section 3, and some simple experiments in Section
4. We defer technical details to the appendix.

2 Learning and interpolating with scale depen-
dent kernel

We introduce the problem of learning with least-squares [20, 14], and the min-
imum norm interpolating estimator that we study. Setting. Let (X × R, ρ)
be a probability space where X is a closed subset of Rd. Denote by ρX the
marginal measure on X , and by ρ(·|x) the conditional measure on R given x ∈ X .
Statistical learning with least squares corresponds to the problem of minimizing
the expected risk, defined as

E(f) =

∫
X×R

(f(x)− y)2 dρ(x, y).

The expected risk is minimized by the regression function

fρ(x) =

∫
R
y dρ(y|x),

but neither the expected risk nor the regression function can be computed,
because ρ is known only through a training set z = (x,y) = (xi, yi)

n
i=1 ∼ ρn of n

i.i.d random samples. Then, the learning problem is to use the data to derive an
empirical estimate fz of fρ. A natural way to measure the quality of an estimate
is the excess risk

E(fz)− E(fρ),

In the following, we study the excess risk for a class of interpolating kernel least
squares solutions, that we introduce next.
Interpolation with scale dependent kernels. We consider estimators de-
fined by a family of symmetric positive definite kernels kγ : X×X → R, depending
on a scale parameter γ > 0, see [1, 9]. Each such kernel defines a unique Hilbert
space of functions Hγ called reproducing kernel Hilbert space (RKHS) with inner
product denoted by 〈·, ·〉γ , such that for every x ∈ X , kγ,x = kγ(x, ·) ∈ Hγ and
for every f ∈ Hγ the following reproducing property holds f(x) = 〈kγ,x, f〉γ .
The estimator we consider is the minimum norm interpolating solution, i.e.

f†γ,z = arg min
f∈Hγ

‖f‖γ such that f(xi) = yi ∀i = 1, . . . , n . (1)

The above estimator can be explicitly computed using the kernel matrix Kγ,x ∈
Rn×n such that (Kγ,x)i,j = kγ(xi, xj), see Appendix D for details. Indeed, if we
assume the input data to be distinct, then, for the class of kernel we consider,
Kγ,x is invertible (see next section and [34]), and the estimator f†γ,z can be
computed as

f†γ,z(x) = kγ(x,x)>K−1γ,x y .
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where kγ(x,x) denotes the n-dimensional vector with entries (kγ(x,x))i =
kγ(x, xi). In the following, we study the properties of the above estimator with
a focus on the role played by the scale parameter γ. We next provide insight,
comparing the minimum norm solution with the classical kernel ridge regression
(KRR) estimator.
Stability and regularization with scale dependent kernels. With the
above notation, the KRR estimator is defined for λ > 0 as

f†γ,λ,z = arg min
f∈Hγ

1

n

n∑
i=1

(yi − f(xi))
2 + λ ‖f‖2γ .

The above estimator can also be explicitly computed

f†γ,λ,z(x) = kγ(x,x)>(Kγ,x + nλ I)−1 y .

Compared to 1 the inverse of the kernel matrixK−1γ,z is replaced by (Kγ,x+nλ I)−1.
The idea is that adding the diagonal term can improve stability of the matrix
in terms of the corresponding condition number, and also in terms of learning.
Indeed, most theoretical studies of KRR focus on the role of the regularization
parameter λ for learning, while assuming the kernel to be fixed [13, 32, 10]. This
contrasts with common practice where both λ and the kernel parameters are
tuned. This latter situation is studied only in a handful papers [18, 31, 21], but
always assuming λ > 0. The case λ = 0, sometimes called ridge-less regression,
has been recently considered in [26, 23], see also [2]. The key observation is
that, not only the kernel matrix in (1) is invertible, but its condition number
can be small depending on the distribution of the distances of the points in the
training sets. This means that the corresponding estimator may converge, even
without explicit regularization. Indeed, as we discuss in the following, for the
Matern kernels the smallest eigenvalue depends on the minimal distance among
the points, which can be large as long as the number of points is not exponential
in the dimension. In this work, we also leverage the additional observation that,
for the kernels we consider, the scale parameter γ further improve the smallest
eigenvalue and hence the stability of the estimator. Before developing these
ideas, we first introduce the class of kernels under investigation.
Matern kernels We focus on scale dependent Matern kernels [34], that are
radial basis kernels with Fourier decay characterized by a smoothness parameter
s > d/2 (see Appendix B for details),

kγ(x, x′) = Qγ(x− x′) with Qγ(z) =

(
‖z‖
γ

)s−d/2
Ks−d/2

(
‖z‖
γ

)
. (2)

Here Kα denotes the modified Bessel function of the second kind with parameter
α. Matern kernels are uniformly bounded, since for every γ > 0 (see Lemma 8
in the Appendix)

sup
x,x′∈X

kγ(x, x′) ≤ κs, κs = 2
2s−d−2

2 Γ(s− d/2). (3)
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A peculiar and important property of these kernels is that for s > d/2, the
RKHS corresponding to different scales are all equivalent to the Sobolev space
W s

2 (X ) for every γ. This means that, if a function belongs to Hγ for some γ,
then it also belong to Hγ′ for any other γ′. However, the same function will
have different norms in spaces corresponding to different scale parameters. Also,
the scale parameter effectively rescales the distance of the points, and, as we see
next, it changes the spectral properties of the matrices and operators defined
by the kernels. The main example of kernels we consider are Laplace kernels
(s = d/2 + 1/2), Qγ(z) = e−‖z‖/γ . Note that Gaussian kernels e−‖z‖

2/(2γ2) do
not satisfy the above assumptions [34] and in particular the associated RKHS
are nested, i.e. spaces with larger scales are included in those with smaller scales.
Further, Gaussian kernels have exponential Fourier decay, that makes it hard
to control the eigenvalues of the corresponding kernel matrix. With the above
comments in mind, we next present our main results.

3 From interpolation to learning: non asymptotic
bounds

We introduce the main assumptions we consider and then state and discuss our
main results.

3.1 Main assumptions
First, we introduce a basic assumption on the marginal distribution ρX .

Assumption 1. The marginal distribution ρX is the uniform distribution over
X , where X is a bounded subset of Rd, with Lipschitz boundary and satisfying
an internal cone condition, i.e. there exists an angle α ∈ (0, π/2) and a radius
r > 0 such that for every x ∈ X a unit vector ξ(x) exists such that the cone

C(x, ξ(x), α, r) :=
{
x+ λy : y ∈ Rd, ‖y‖2 = 1, yT ξ(x) ≥ cosα, λ ∈ [0, r]

}
is contained in X . We let vol(X ) =

∫
X dx < +∞, where dx is the Lebesgue

measure on Rd.

The geometric assumptions on X are standard in approximation theory and
satisfied for many subsets of Rd (such as balls or cubes) [34]. They are crucial
to use tools from interpolation theory and Fourier analysis to study the spectral
properties of matrices/operators defined by the kernel, and in particular to derive
upper and lower bounds on their eigenvalues. Assuming a uniform distribution
is needed only when studying the minimum distance among points and is done
for simplicity. Similar conclusions should hold more generally. Next, we make a
standard assumption on the output distribution.

Assumption 2. We assume there exist σ > 0, such that for almost all x ∈ X

E
[
y2
]
< +∞, and E [exp (λ(y − fρ(x))) | x] ≤ exp

(
σ2λ2/2

)
.
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The first condition implies that the regression function fρ is well defined,
while the second is a condition on the variance of the outputs. This assumption
is equivalent to a random design regression model y = fρ(x) + ε, where ε is a
σ2-subgaussian random variable.

Finally, we assume a well-specified model. As seen in Section 2, the spaces
Hγ are equivalent for all scales γ, and also they are equivalent to Sobolev space
W s

2 (X ) (see appendix B for details).

Assumption 3. It holds that fρ ∈W s
2 (X ).

This assumption simplifies the analysis and the presentation. It can be
relaxed to a miss-specified case where fρ /∈ Hγ , potentially leading to different
learning behavior of the estimator. We leave this to future work. We comment
instead on the role of the scale parameter. We will see in the following that
considering a well specified model implies that the the scale parameter mainly
influences the variance, rather than the bias/interpolation error, of the considered
estimator.

3.2 Main results
Provided with the above discussion, we begin presenting our results. We first
state a simplified version of our main theorem, and then provide details in the
next section. In the following theorem we denote by a(n) . b(n) the fact that
there exists a constant C not depending on n such that a(n) ≤ Cb(n) for n ∈ N
(analogously for ≈).

Theorem 1 (Main result: simplified). Under Assumptions 1, 2, 3, let δ > 0,
p > 0 and choose s = d

2 + p then, for every γ & C2n
−2/d, the following holds

with probability greater than 1− 4δ

E(f†γ,z)− E(fρ) .

γ
4p2

d+2p n−
2p
d+2p if n .

(
exp

(
1−2p
2p

)) d
2

γ
4p2

d+2p n
(d+4p)(2p)
d(d+2p) otherwise .

(4)

With the choice γ ≈ n−2/d, that is of the order of the minimum distance between
the points in x, then with probability greater than 1− 4δ

E(f†γ,z)− E(fρ) .

n−4p/d if n .
(

exp
(

1−2p
2p

)) d
2

C otherwise
(5)

where C and the other constants depend only on δ, X , d and p (see appendix for
their definition).

The main difference with recent results [23, 24] is that the above bounds are
non asymptotic. In particular, the dimension d is kept fixed and the number
of points n varied. Our results highlight two different phases in the learning
curve crucially depending on n and d. If the kernel is not too smooth, i.e.,
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d/2 < s < d/2 + 1/2, then, when n is less than exponential in the dimension d,
the error improves with n. However, as n increases further, the improvements
stop, in particular preventing the consistency of the estimator. This latter result
aligns with the findings in [26], showing that ridge-less regression cannot be
consistent for the class of kernels we considered. Our non asymptotic bounds
further indicate the potential benefits of tuning the scale parameter. The
bound in (4) holds for γ & n−2/d, and suggests γ can be tuned to improve
the results. Indeed, from the bounds, the best choice is taking γ as small as
possible that is scaling as n−2/d. The bounds thus obtained depend on the
dimensionality as well as the smoothness of the problem. In particular, they
suggest a saturation effect [3], where the rates do not improve if p (hence s) is
large. These results can be compared to those in [8] where local singular kernel
dependent estimators are studied. Later we also compare with known bounds
in nonparametric statistics. Here, we discuss the relation with the results in
[2], deriving finite sample bounds for random design regression in an infinite
dimensional setting. Interestingly, these results provide necessary and sufficient
conditions for consistency of unregularized estimators. The setting in this paper
provides a specific instance of the abstract setting of [2] in the context of kernel
methods. In our notation, the condition for consistency is related to a condition
on the smoothness s, which, roughly speaking, needs to be very close to d/2.
Indeed, this turns out to be a critical regime also in our analysis, where the
conditions for consistency are not met, even if tuning γ. In this view, It would be
interesting to see if there are classes of kernels where consistency can be achieved.
In the rest of the section, we discuss the main result leading to Theorem 1 as
well as provide its complete statement.

3.3 Variance and interpolation error
We discuss an error decomposition for the excess risk of f†γ,z and study the
corresponding error terms. It is useful to first introduce the space L2

ρ of square
integrable functions on X with respect to the marginal ρX where ‖·‖ρ denotes
the corresponding norm. Indeed, it is well known [15, 20] that

E(f)− E(fρ) = ‖f − fρ‖2ρ .

Using the above identity and denoting by f̂ρ, ε̂ ∈ Rn the vectors which entries
fρ(xi) and yi − fρ(xi), we can decompose the excess risk of f†γ,z as

E(f†γ,z)− E(fρ) =
∥∥f†γ,z − fρ∥∥2ρ =

∥∥kγ(·,x)>K−1γ,x y − fρ
∥∥2
ρ

(6)

=
∥∥∥kγ(·,x)>K−1γ,x f̂ρ − fρ + kγ(·,x)>K−1γ,x ε̂

∥∥∥2
ρ

≤ 2
[ ∥∥∥kγ(·,x)>K−1γ,x f̂ρ − fρ

∥∥∥2
ρ︸ ︷︷ ︸

interpolation error

+Ey

∥∥kγ(·,x)>K−1γ,x ε̂
∥∥2
ρ︸ ︷︷ ︸

variance

]
(7)
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where the last equality follows since the expectation of ε̂ conditionally to x is zero
by definition. The first term in the decomposition is the error of approximating
a function in Hγ with its interpolant over the discrete set of points x [34]. The
second term is the variance of the estimator and depends on the noise. Both
terms depend on the random sampling of the inputs.

Our main technical result is a bound on the variance. A key quantity is
the minimum distance among the input points x = {x1, . . . , xn}, also known as
separation distance [34], and defined as

q∞ =
1

2
min
i 6=j
‖xi − xj‖∞ ,

where ‖x‖∞ is the sup norm of the vector x. The separation distance is crucial
to control the minimum eigenvalue of the kernel matrix in terms of the scale γ.
In turn, the minimum eigenvalue governs the variance of the estimator. The
next lemma generalizes a result in [17] to the case of Matern kernels.

Lemma 1 (Lower bound on σmin(Kγ,x)). Let Kγ,x be the kernel matrix and
q∞ be the separation distance of the set x. Then for every 0 < q ≤ q∞ there
exist two constants c2(d, s) and c1(d, s) (defined in the proof E) depending on d
and s such that

σmin(Kγ,x) ≥

c1(d, s)
(
γ
q

)d
if γ < γq

c2(d, s)
(
q
γ

)2s−d
if γ ≥ γq

(8)

where γq = 2q√
dπ

√
s
s+1 .

Note that, if γ is larger than a quantity of the order of the separation distance
q∞, then the lower bound increases with q. This means that the more distant are
the points, the better is the condition number of the kernel matrix. Moreover,
the lower bound is increasing and then decreasing in γ with a maximum in
γ = γq. This shows that the scale γ allows a control on the condition number of
the empirical kernel matrix. In particular with the choice γ = γq we obtain a
constant lower bound,

σmin(Kγ,x) ≥ c2(d, s)

(√
dπ(s+ 1)

2s

)2s−d

=: c3(d, s) . (9)

Also note that the above bound suggests a diverging behavior as γ becomes
smaller than γq, which in practice seems pessimistic, see Section 4. Improving
the lower bound in this regime is left for future work. We note that the smallest
eigenvalue of the kernel matrix is also the key quantity studied in [23, 24] using
different techniques. In our approach, lower bound in Lemma 1 is completely
deterministic, and probability enters only in finding a lower bound qn on the
separation distance. For the sake of simplicity and since considering γ < γq does
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not lead to any improvement, we next consider γ ≥ γq. In particular, for a given
0 < δ < 1, we have the following lower bound on the separation distance, that
holds with probability greater than 1− δ

qn :=
d
√
δ vol (X )

4
· 1

n2/d
≤ q∞

and define

γn := γqn =
d
√
δ vol (X )

2π
√
d

√
s

s+ 1
· 1

n2/d
. (10)

The next proposition gives the bound on the variance.

Proposition 1 (Variance). Let δ > 0, s > d/2, γ > γn and

Ns,d =
√
δ vol(X )

(
8

1
2s−d

4

) d
2

. (11)

Under Assumptions 1, 2 there exist a constant c > 0 depending on d, s,X such
that with probability greater than 1− 3δ

∥∥kγ(·,x)>K−1γ,x ε̂
∥∥2
ρ
≤


32cδσ

2c
c2(d,s)δ

γ
(2s−d)2

2s n−
2s−d
2s if n ≤ Ns,d

4cδσ
2c

c2(d,s)δ
2s
d
γ

(2s−d)2
2s n

(4s−d)(2s−d)
2sd if n > Ns,d

where c2(d, s) is defined in Lemma 1. If γ = γn, then with probability greater
than 1− 3δ

∥∥kγ(·,x)>K−1γ,x ε̂
∥∥2
ρ
≤


32cδσ

2κs
c4(d,s)δ

n−
2(2s−d)

d if n ≤ Ns,d
4cδσ

2κs

c4(d,s)δ
2s
d

if n > Ns,d

where c4(d, s) = c3(d, s)

(
4

d
√
δ vol(X )

)2s−d

, c3(d, s) is defined in (9) and κs is

defined in (13).

The proof of Proposition 1 is in Appendix F. It combines Lemma 1 with
a probabilistic bound on the separation distance and a new estimate of the
effective dimension of the RKHS defined by Matern kernels. The condition
n ≤ Ns,d is meaningful if the kernel is not too smooth, meaning that at most
s = d/2 + 1/2 (that is p = 1/2). In this case, if the number of points is no larger
than exponential in d, then the variance is decreasing in n, for any fixed γ and
the decrease can be made faster tuning γ. Note that, Ns,d goes to +∞ as s
approach d/2 (that is p ∼ 0). On the other hand, if the number of points is
very large, then for fixed γ the bound start to increase with n. Interestingly,
tuning γ the variance stays bounded by a constant, even for very smooth kernels
(meaning large s).
Next proposition gives a bound on the interpolation error.
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Proposition 2 (Interpolation error). Let δ > 0, s > d/2 and γ > 0. Under
Assumption 3, with probability at least 1− δ it holds that∥∥∥kγ(·,x)>K−1γ,x f̂ρ − fρ

∥∥∥2
ρ
≤ 3κs√

n
log

2

δ
‖fρ‖2W s

2
.

where κs is defined in equation (13).

This results is based on the observation that the interpolation error is the norm
of the difference between fρ and its projection on the n-dimensional subspace
Hγ,x = span {kγ,xi : i = 1, . . . , n} , and on the use of standard concentration
inequalities. The main new contribution is showing that the interpolation error
does not depend on the scale parameter γ. This result can be improved to get
a higher convergence rate. However, note that since the variance is dominant
even a higher rate would not improve the total bound on the performance of
the expected excess risk. We leave this improvement for a longer version of the
paper. We also note that the above quantity is standard in interpolation [34],
however known bounds typically require n to be very large.
From Proposition 1 and Proposition 2 we derive the complete statement of our
main result.

Theorem 2 (Bound on the excess risk). Let δ > 0, s > d/2, γ > γn, then with
probability greater than 1− 4δ

E(f†γ,z)−E(fρ) ≤


64cδσ

2c
δc2(d,s)

γ
(2s−d)2

2s n−
2s−d
2s + 6κs√

n
log 2

δ ‖fρ‖
2
W s

2
if n ≤ Ns,d

8cδσ
2c

c2(d,s)δ
2s
d
γ

(2s−d)2
2s n

(4s−d)(2s−d)
2sd + 6κs√

n
log 2

δ ‖fρ‖
2
W s

2
if n > Ns,d .

With the choice γn in (10) it holds with probability greater than 1− 4δ by

E(f†γ,z)− E(fρ) ≤


64cδσ

2κs
c4(d,s)δ

n−
2(2s−d)

d + 6κs√
n

log 2
δ ‖fρ‖

2
W s

2
if n ≤ Ns,d

8cδσ
2κs

c4(d,s)δ
2s
d

+ 6κs√
n

log 2
δ ‖fρ‖

2
W s

2
if n > Ns,d .

The variance strongly depends on the scale parameter γ, whereas the interpo-
lation error does not. Moreover, the latter decreases with n, so that the variance
dominates the error, see Thereom1. As already noted, if the kernel is not too
smooth, i.e. s < d/2 + 1/2, then the obtained bound shows two different regimes
of n, d. For fixed γ, if the number of points is not exponential in d, then the
bound is decreasing in n, but when n is larger then the bound starts to increase.
The intuition is that if n is not very high, then the input points are distant
and the condition number of Kγ,x does not affect the behavior of the estimator.
When n increases, the inputs start to be too close, and the condition number
increases, degrading the stability of the estimator. The scale parameter γ can be
tuned to improve the stability and hence the bound for “n small”. Interestingly,
it also to allows the variance to stay bounded for “n large”. This last fact is true
independently on the smoothness s of the kernel. The a main drawback of the
analysis is a pessimistic dependence of the constants in the dimension d.
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3.4 Related works
We further comment on the relation with related works. As already mentioned,
the results in [23] [24] are close to our analysis. In [23] the authors consider d � n,
and show that the curvature of the kernel has an implicit regularization effect,
proving a data-dependent bound. In [24] the authors consider d � nα (with
0 < α < 1) and show that for certain values of α, the error goes to zero as n, d
go to +∞. The difference with these works is that they use results from random
matrix theory and concentration of measure to exploit the high-dimensionality of
the data and control the minimum eigenvalue. In contrast, we fix the dimension
d and use analytic results from interpolation theory, coupled with probabilistic
estimates of the separation distance. Further, we investigate the role of the scale
parameter γ, which in practice can be tuned. Our estimates are explicit but
have pessimistic dependence on the d. If the number of points is not too large
(meaning exponential in d), then our bound takes the form

Ez

[
E(f†γ,z)− E(fρ)

]
≤

{
C n−

2p
d+2p γ constant

C n−4p/d γ = γ(n).

This bound is similar to bound for local methods to estimate a Lipschitz continu-
ous function (like partitioning estimators or kernel smoothing [20]). However the
dependence of our constant C on d is worse, since it increases with d. This effect
is due to technicalities in the estimation of the minimum eigenvalue. Numerical
simulations show that in practice the minimum eigenvalue is increasing in d.
A recent work [8] studies a local estimator with singular kernels, under the
well-specified model and assuming fρ to be in the Hölder class (with parameter
β). Here, the scale γ is also tuned to of order n−1/(2β+d) and gives the rate
of optimal (for that class of problems) rate n−2β/(2β+d). In contrast, here we
study the role of the scale for the global estimators, obtained as minimum norm
interpolants. For this estimator the bound start increasing (or stay bounded with
an appropriate tuning of γ) with the number of points n, hence is not consistent.
This is directly connected with recent results in [2] studying consistency when
the marginal distribution is assumed to Gaussian and the eigenvalues σ`,γ of
the integral operator Lγf(x) =

∫
kγ(x, x′)f(y) dρX (x′) decay as (` logq `)−1 for

some q ≥ 2. In our case the eigenvalues decay only as σ` ≈ `−2s/d, s > d/2. The
slow decay can only be approximatively achieved when s→ (d/2)+. Note that
in this case, the condition n ≤ Ns,d is always satisfied, since Ns,d → +∞ and
the bound becomes decreasing (even if slowly) in n.

4 Numerical results
We perform basic experiments considering X = [0, 1]d, ρX uniform and kγ(x, x′) =

e−‖x−x
′‖/γ .

Smallest eigenvalue vs γ (Fig. 1). We consider the behavior of smallest
singular value σmin(Kγ,x) as function of γ, varying d. As expected, σmin(Kγ,x)

11



is larger for smaller γ, and as mentioned before it does not diverge for γ → 0,
but rather it stabilizes, suggesting our bound is loose for γ small. Also, it further
improves as d increases, since the distance between points also increases.
Excess risk vs γ (Fig. 2). We study the behavior for the excess risk as a
function of the scale γ, varying n. We assume a regression model yi = fρ(xi) +εi
where fρ(x) = arctan(‖x‖2) and εi are Gaussian random variables with zero-
mean and variance 2. The dimension d is chosen equal to 10. The plot shows that
the excess risk, approximated as the average of 20 simulations on a validation
set of 103 data, can be improved by tuning γ, but the improvements level out as
n increases. Also, the results suggest that the choice γ = n−2/d is appropriate.
Excess risk vs n (Fig. 3). With the same setting as before, we study the
behavior for the excess risk as a function of n, varying γ. The plot shows that, for
any fixed γ, the excess error decreases with n and then reaches a constant value
as predicted by theory. The result improve as we choose a smaller scale and in
particular the result improve as the scale approaches the value γ = 1.082 n−2/d.

Figure 1: Plot of
σmin(Kγ,x) as function of
γ with fixed n = 500 and
different choices of d.

Figure 2: Approximation
of the excess risk of f†γ,z.
Black dot show the choice
γ = n−2/d.

Figure 3: Approximation
of the excess risk of f†γ,z.

5 Conclusions
We study excess risk bounds for kernel ridge-less regression keeping the data
dimension fixed and focusing on understanding the role the kernel parameters.
Our results suggest that error decreases as long as the number of point is smaller
than exponential d and then flattens out preventing consistency. The result is a
direct consequence of the interplay between the minimum distance among points
and the smallest eigenvalue of the kernel matrix. As points are further away,
the condition number improves, highlighting the key role played by the input
dimension, rather than the number of parameters in the model. The scale of
the kernel effectively changes the distance used in the kernel, providing further
control on the stability of the estimator. A number of developments are left for
future work, like sharpening the estimates at small scales and improving the
dependence of the constants on d. Considering different class of kernels and
comparing ridge and ridge-less regression would be interesting.
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Appendix A Notation
The Euclidean norm and scalar product of Rn are denoted by ‖·‖ and 〈·, ·〉. The
Lebesgue measure of Rd is denoted by dx, for any Borel subset E its volume is

vol(E) =

∫
E

dx.

and the corresponding Lebesgue spaces are Lp(Rd, dx) with p ∈ [0,+∞]. If the
Lebesgue measure is replaced by the marginal distribution ρX we use the short
notation Lpρ.

The Fourier transform F is defined as

Ff(ξ) =
1

(2π)d/2

∫
Rd
f(x) e−i〈ξ,x〉 dx ∀f ∈ L1

(
Rd, dx

)
and if Ff ∈ L1

(
Rd, dξ

)
the inversion formula

h(x) =
1

(2π)d/2

∫
Rd
Ff(ξ) ei〈ξ,x〉 dξ .

If A is an bounded operator between to Hilbert spaces, we denote by A† the
Moore-Penrose inverse. If A is a semi-positive definite square matrix we denote
by σmin(A) the smallest non-zero eigenvalue of M .

Appendix B Sobolev spaces and Matern kernels
We recall some properties, see [34] for more details.

1. We remember the definition of the Bessel function of the second kind Kα

with parameter α, for x > 0 and α > 0 it holds

Kα(x) =
( π

2x

)1/2 e−x

Γ(α+ 1/2)

∫ ∞
0

e−uuα−1/2
(

1 +
u

2x

)α−1/2
du .

2. The Sobolev space of function on Rd of smoothness s can be defined as

W s
2

(
Rd
)

=
{
f ∈ L2

(
Rd
)

: Ff(·)
(
1 + ‖ · ‖22

)s/2 ∈ L2
(
Rd
)}

where L2
(
Rd
)
denotes the square integrable functions on Rd with respect

to the Lebesgue measure dx. This space can be equipped with the inner
product

〈f, g〉W s
2 (Rd)

:= (2π)−d/2
∫
Rd

(Ff)(ω)(Fg)(ω)
(
1 + ‖ω‖22

)s
dω

and the respective norm

‖f‖2W s
2 (Rd)

:= (2π)−d
∫
Rd
|(Ff)(ω)|2

(
1 + ‖ω‖22

)s
dω

Now we can define the Sobolev spaces W s
2 (X ) over a sufficiently regular

domain X ⊆ Rd as the restriction of the functions in W s
2

(
Rd
)
to X .
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3. the Fourier trasform of Qγ is

FQγ(ξ) = 2s−1Γ(s)
γd

(1 + γ2 ‖ξ‖2)s
; (12)

4. since FQγ(ξ) is not zero, Kγ is positive definite [34] and so the kernel
matrix Kγ,x is invertible, provided the input data x are disjoint;

5. the kernel Kγ is bounded

sup
x,x′∈X

kγ(x, x′) ≤ 2
2s−d−2

2 Γ(s− d/2) = κs ; (13)

6. all RKHS Hγ are equal to the Sobolev space W s
2 (X ) with equivalent norms

cγ ‖f‖Hγ ≤ ‖f‖W s
2 (X ) ≤ Cγ ‖f‖Hγ

provided suitable regularity condition on X as in Assumption 1 [34]. How-
ever, the constants cγ and Cγ depend on γ and the dependence on this
parameter since it allows to rescale the space X and so controlling the
distance between the points xi ;

7. with the choice s = d
2 + 1

2 , we recover Laplace kernel

Qγ(z) =

√
π

2
e−
‖z‖
γ .

8. The norm in the RKHS Hγ is given by

‖f‖2Hγ =

∫
Rd

|Ff(ω)|2

|FΦγ(ω)|
dω .

Appendix C Mathematical setting: kernel oper-
ators

In this section we define all the key operator that will be useful in the analysis
of the error.
We let Sγ : Hγ → L2

ρ such that almost surely Sγf(x) = 〈f, kγ,x〉γ . Let S∗γ be
the adjoint operator of Sγ and denote Tγ = S∗γSγ the covariance operator and
Lγ = SγS

∗
γ the integral operator, defined as

Tγ : Hγ → Hγ Tγf =

∫
〈f, kγ,x〉γ kγ,x dρX (x)

Lγ : L2
ρ → L2

ρ Lγf(x) =

∫
kγ(x, x′)f(x′) dρX (x′) .
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For any set of point x = (x1, . . . , xn) we also introduce finite rank operators by
replacing ρ by

ρ̂ =
1

n

n∑
i=1

δxi

and consider the space Rn with the normalized norm ‖·‖n = 1√
n
‖·‖ and scalar

product 〈·, ·〉n = 1
n 〈·, ·〉

Sγ,x : Hγ → Rn (Sγ,xf)i = 〈kγ,xi , f〉γ ∀f ∈ Hγ , ∀i ∈ {1, . . . , n}

S∗γ,x : Rn → Hγ S∗γ,xw =
1

n

n∑
i=1

wikγ,xi ∀w ∈ Rn

Tγ,x : Hγ → Hγ Tγ,x = S∗γ,xSγ,x =
1

n

n∑
i=1

kγ,xi ⊗ kγ,xi

Lγ,x : Rn → Rn Lγ,x = Sγ,xS
∗
γ,x =

1

n
Kγ,x (14)

where Kγ,x denotes the kernel matrix which entries are (Kγ,x)i,j = kγ(xi, xj)
for every i, j ∈ {1, . . . , n}.

Since kγ is bounded and measurable, all above operators are bounded,
Tγ , Tγ,x, Lγ , Lγ,x are positive trace class operators and the pairs Tγ , Lγ and
Tγ,x, Lγ,x have the same positive eigenvalues. Furthermore, Hγ = Range(S∗γ) =

Range
(
S∗γSγ

)
and Hγ,x = Range(S∗γ,x) = Range(S∗γ,xSγ,x).

Observe that with these operator the condition on the regression function (As-
sumption 3) is equivalent to assume there exists g ∈ H1

fρ = S1g

and that the estimated solution f†γ,z can be written as (see section D)

f†γ,z = T †γ,xS
∗
γ,xy .

and that the vector f̂ρ = Sγ,xfρ . Finally the error decomposition (6) can be
rewritten as∥∥Sγf†γ,z − fρ∥∥2ρ =

∥∥Sγ (T †γ,xS∗γ,xSγ,xfρ + T †γ,xS
∗
γ,xε̂

)
− fρ

∥∥2
ρ

≤ 2
∥∥SγT †γ,xS∗γ,xSγ,xfρ − fρ∥∥2ρ + 2

∥∥SγT †γ,xS∗γ,xε̂∥∥2ρ
= 2

(
‖Sγ (Pγ,x − I) fρ‖2ρ︸ ︷︷ ︸

interpolation error

+
∥∥SγT †γ,xS∗γ,xε̂∥∥2ρ︸ ︷︷ ︸

variance

)
, (15)

where Pγ,x = T †γ,xS
∗
γ,xSγ,x = T †γ,xTγ,x is the projection onto the interpolation

space Hγ,x.
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Appendix D Nonparametric ordinary least squares
The family of estimators we consider are given by

f†γ,z = Sγ,x
†y . (16)

We describe how such estimators can be derived and implemented numerically.
Consider the set of linear equations

f(xi) = yi, i = 1, . . . , n

for f ∈ Hγ . Then, the above equations can be written as

〈f, kγ,xi〉γ = yi, i = 1, . . . , n.

With the aid of the empirical kernel operators they correspond to the finite
dimensional inverse problem

Sγ,xf = y.

From property 2 of section B we know that if the kernel kγ is positive-definite
(which is our case) then for every n ∈ N the dimension of Range(S∗γ,x) is n.

Then the above problem has multiple solutions. However, it is a standard
fact that there is a minimal norm solution solving

min
Sγ,xf=y

‖f‖γ .

The form of the solution is easily derived using Lagrange multipliers, considering

min
α∈L2

ρ̂,f∈Hγ
L(α, f), L(α, f) =

1

2
‖f‖2γ − 〈α, Sγ,xf − y〉n .

Setting the partial derivative w.r.t. f to zero gives

∂fL(α, f) = f − S∗γ,xα = 0 ⇒ f = S∗γ,xα.

Setting the partial derivative w.r.t. α t Setting the partial derivative w.r.t. f to
zero gives

∂αL(α, f) = −(Sγ,xf − y) = 0 ⇒ Sγ,xf = y

And combining the two conditions

Sγ,xS
∗
γ,xα = y ⇒ α = (Sγ,xS

∗
γ,x)−1y

where, since the dimension of Range(S∗γ,x) is n then (Ŝγ Ŝγ
∗
)−1 is invertible and

f = S∗γ,x(Sγ,xS
∗
γ,x)−1y
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that is (16). For the numerical realization of the above method, by using the
reproducing property and the definition of the empirical operators, it follows
that

f†γ,z =
1

n

n∑
i=1

kγ(x, xi)αi α = (Sγ,xS
∗
γ,x)−1y = nKγ,x

−1y,

or equivalently

f†γ,z =

n∑
i=1

kγ(x, xi)ci c = (Kγ,x)−1y.

On the other hand without assuming a positive definite kernel than the linear
systems does not have a solution and least squares need be considered,

min
f∈Hγ

n∑
i=1

(yi − f(xi))
2.

that is
min
f∈Hγ

‖y − Sγ,xf‖2n ,

where ‖·‖n denotes the norm in L2
ρ̂. The optimality condition gives the following

equivalent linear system,
S∗γ,xSγ,xf = S∗γ,xy.

and the estimator can be written as

f†γ,z = Tγ,x
†S∗γ,xy .

Appendix E Proof of Lemma 1: Control of the
condition number

Proof. As in [17] the following identity holds true for all c ∈ Rn

cTKγ,xc =
1

(2π)d/2

∫
Rd
FQγ(ξ)

∣∣∣∣∣
n∑
i=1

cie
i〈xi,ξ〉

∣∣∣∣∣ dξ .
Fix R > 0 and set

ϕγ(R) := inf
‖ξ‖≤R

FQγ(ξ),

since FQγ ≥ 0

cTKγ,xc ≥
1

(2π)d/2

∫
B(0,R)

FQγ(ξ)

∣∣∣∣∣
n∑
i=1

cie
i〈xi,ξ〉

∣∣∣∣∣ dξ
≥ 1

(2π)d/2
inf
‖ξ‖≤R

FQγ(ξ)

∫
B(0,R)

∣∣∣∣∣
n∑
i=1

cie
i〈xi,ξ〉

∣∣∣∣∣ dξ
≥ 1

(2π)d/2
ϕγ(R)

(
1− dπ2

4q2R2

)
q−d(2π)d

(π
4

)2d
‖c‖22
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where the last bound follows by Corollary 2.3 of [17] by replacing q∞ with a
lower bound 0 < q ≤ q∞ (see Theorem 8.1 in [?] for further details) and provided
that

R ≥
√
dπ

2q
. (17)

Hence we have the lower bound for the smallest eigenvalues of the kernel matrix

σmin(Kγ,x) ≥
(
π5

27

)d/2
ϕγ(R)

(
1− dπ2

4q2R2

)
q−d .

Recalling that Qγ is Matern kernel (2), by 12

ϕγ(R) = 2s−1Γ(s)
γd

(1 + γ2R2)
s ≥ 2s−1Γ(s)

γd

(2γ2)sR2s
assuming γ2 ≥ 1

R2

son that

σmin(Kγ,x) ≥
(
π5

27

)d/2
2s−1Γ(s)

γd

(2γ2)s
1

R2s

(
1− dπ2

4q2R2

)
︸ ︷︷ ︸

h(R)

q−d .

With the choice

R2 =
dπ2

4q2

(
1 +

1

s

)
=
dπ2

4q2

(
s+ 1

s

)
=:

1

γ2q

we obtain
σmin(Kγ,x) ≥ c2(d, s)

γ2s−d
q2s−d γ ≥ γq

where

c2(d, s) =

(
π5

27

)d/2
2s−1Γ(s)

(
2s

dπ2(s+ 1)

)s(
1

s+ 1

)
which conclude the proof of the second case.
For the first case, observe that

ϕγ(R) = 2s−1Γ(s)
γd

(1 + γ2R2)
s ≥ 2s−1Γ(s)

γd

(2)
s =

1

2
Γ(s) γd . 0 < γ < γq

so that, as above,

σmin(Kγ,x) ≥ c1(d, s)γd q−d 0 < γ < γq

where

c1(d, s) =

(
π5

27

)d/2
1

2
Γ(s)

(
1

s+ 1

)
.
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Remark 1. The constant c2(d, s) can be approximated as

c2(d, s) =

(
π5

27

)d/2
2s−1Γ(s)

(
2s

dπ2(s+ 1)

)s
1

s+ 1

≈ 1

2

(
π5

27

)d/2
2s Γ(s)

(
2

dπ2

)s
1

s+ 1

≈ 1

2

(
π5

27

)d/2
2s

(s− 1)s−1

es−1

√
2π(s− 1)

(
2

dπ2

)s
1

s+ 1

≈ 1

2

(
π5

27

)d/2
2s

(s− 1)s

es−1

√
2π(s− 1)

(
2

dπ2

)s
1

(s+ 1)(s− 1)

≈ 1

2

(
π5

27

)d/2
2s

1

es−1

(
2(s− 1)

dπ2

)s √
2π(s− 1)

(s+ 1)(s− 1)

where in the third line we approximate the Gamma function with Stirling’s
formula. If s is sufficiently close to d/2 this constant can be approximated as
10−d/2.

In the next corollary we specialize Lemma 1 by exploiting Assumption 1 on
the data points.

Corollary 1.
Under the same assumptions of Lemma 1 and Assumption 1, let 0 < δ < 1 and
assuming

γ ≥
d
√
δ vol (X )

2π
√
d

√
s

s+ 1
· 1

n2/d

then with probability greater than 1− δ it holds

σmin(Kγ,x) ≥ c2(d, s)δ
2s−d
d

γ2s−d
1

n
2
d (2s−d)

. (18)

Moreover if

n ≤
√
δ vol(X )

(
8

1
2s−d

4

) d
2

(19)

then
σmin(Kγ,x) ≥ c2(d, s)

8γ2s−d
(20)

where c2(d, s) defined in Lemma 1 .

Proof.
The first part follows directly from Lemma 1 and choosing the lower bound q on
q∞ given in (31).
For the second part, with the choice of t = 8−

1
2s−d (30) reads

P
[
q∞ ≤ 8−

1
2s−d

]
≤ n2 1

vol(X )

( 4

8
1

2s−d

)d
≤ δ
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where the last inequality follows from the assumption on n. Then, from Lemma
1 with probability greater than 1− δ

σmin(Kγ,x) ≥ c2(d, s)

γ2s−d
q2s−d∞ ≥ c2(d, s)

8γ2s−d

Appendix F Proof of Proposition 1: Variance
Proof. Given 0 < δ < 1, under Assumption 2 it holds that with probability
grater than 1− δ∥∥SγT †γ,xS∗γ,xε̂∥∥2ρ =

〈
SγT

†
γ,xS

∗
γ,xε̂, SγT

†
γ,xS

∗
γ,xε̂

〉
ρ

=
〈
ε̂, Sγ,xT

†
γ,xTγT

†
γ,xS

∗
γ,xε̂

〉
n

=
1

n

〈
ε̂, Sγ,xT

†
γ,xTγT

†
γ,xS

∗
γ,xε̂

〉
≤ cδσ

2

n

[
Tr
(
Sγ,xT

†
γ,xTγT

†
γ,xS

∗
γ,x

)]
=
cδσ

2

n

[
Tr
(
TγT

†
γ,x

)]
where the inequality follows from Lemma 10 with cδ = 4 log

(
1
δ

)
+ 2.

Observe that the key quantity Tr
(
TγT

†
γ,x

)
depends on the ratio between the

eigenvalues of the covariance operator Tγ and its empirical approximation Tγ,x.
Observe that

TγTγ,x
† = (Tγ+λ I)1/2Tγ(Tγ+λ I)−1(Tγ+λ I)1/2(Tγ,x+λ I)−1/2(Tγ,x+λ I)Tγ,x

†(Tγ,x+λ I)−1/2,

then the cyclic property of the trace and Hölder inequality for Schatten norms
imply

Variance ≤ cδσ
2

nδ
Tr
(
TγT

†
γ,x

)
≤ cδσ

2

nδ
Tr
(
Tγ(Tγ + λ I)−1

) ∥∥∥(Tγ + λ I)1/2(Tγ,x + λ I)−1/2
∥∥∥2
∞

∥∥(Tγ,x + λ I)T †γ,x
∥∥
∞

=
cδσ

2

nδ
Nγ(λ)

∥∥∥(Tγ + λ I)1/2(Tγ,x + λ I)−1/2
∥∥∥2
∞

(
1 +

λ

σmin (Tγ,x)

)
=
cδσ

2

δ

∥∥∥(Tγ + λ I)1/2(Tγ,x + λ I)−1/2
∥∥∥2
∞

(
Nγ(λ)

n
+

λNγ(λ)

σmin (Kγ,x)

)
(21)

where Nγ(λ) = Tr
(
Tγ(Tγ + λ I)−1

)
are the degrees of freedom of Tγ , σmin (Tγ,x)

is the smallest non-zero eigenvalue of Tγ,x and in the last equality we use the
following fact

σmin (Tγ,x) =
1

n
σmin (Kγ,x)

23



where σmin (Kγ,x) denotes the smallest eigenvalue of the kernel matrix Kγ,x.
Lemma 7 implies that, given 0 < δ < 1, then for any

λ ≥ 9

n
log

n

δ

with probability greater than 1− δ

2

3
≤
∥∥∥(Tγ + λ I)

1
2 (Tγ,x + λ I)−

1
2

∥∥∥2
∞
≤ 2 .

Denoting

λn =
9

n
log

n

δ
∝ log n

n

and we obtain

Variance ≤ 2cδσ
2

δ

(
Nγ(λn)

n
+

λnNγ(λn)

σmin (Kγ,x)

)
≤ 4cδσ

2 λnNγ(λn)

σmin (Kγ,x)
. (22)

By Lemma 4
Nγ(λ) ≤ c γ− d

2s (2s−d) λ−
d
2s

with a suitable constant c that depends only on d, s,X , but not on γ and λ.
Moreover since

λNγ(λ) ≤ TrTγ ≤ κs
then

Variance ≤ 4cδσ
2κs

δσmin (Kγ,x)
. (23)

By combining these two bounds we have that

Variance ≤ 4cδσ
2

δ

min
{
c γ−

d
2s (2s−d) λ1−

d
2s , κs

}
σmin (Kγ,x)

.

We split the proof according to the condition on n.
If n ≤ Ns,d from 20 with probability at least 1− δ it holds

σmin(Kγ,x) ≥ c2(d, s)

8γ2s−d
if γ ≥

d
√
δ vol (X )

2π
√
d

√
s

s+ 1
· 1

n2/d
. (24)

Hence, we get with probability greater than 1− 3δ

Variance ≤ 4cδσ
2

δ

λnNγ(λn)

σmin (Kγ,x)

≤ 32cδσ
2

δc2(d, s)
γ(2s−d) min

{
cγ−

d
2s (2s−d)λ

1− d
2s

n , κs

}
≤ 32cδσ

2

δc2(d, s)
γ(2s−d) min

{
cγ−

d
2s (2s−d)

(
log n

n

) 1
2s (2s−d)

, κs

}
.
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If n ≥ Ns,d, bound (18) implies that with probability greater than 1− 3δ

Variance ≤ 4cδσ
2

c2(d, s)δ
2s
d

γ(2s−d)n
2
d (2s−d) min

{
cγ−

d
2s (2s−d)

(
log n

n

) 1
2s (2s−d)

, κs

}
.

Appendix G Proof of Proposition 2: Interpola-
tion error

Proof. In order to study the interpolation error, we first show that the choice of
Hγ as hypothesis space is equivalent to fix H1 and to rescale the input space X .
Given γ > 0 define the dilation diffeomorphism

Rγ : Rd → Rd x 7→ x

γ

so that Qγ = Q1 ◦Rγ . Define the feature map

Fγ : Rd → H1 Fγ(x) = k1,Rγ(x).

Since

〈Fγ(x), Fγ(x′)〉H1
= kγ(x, x′) and 〈f, Fγ(x)〉H1

= 0 ∀x ∈ X =⇒ f = 0

then the map

Uγ : H1 → Hγ
f(x) 7→ 〈f, Fγ(x)〉H1

= f (Rγ(x)) = f ◦Rγ

is a unitary operator. Denoted by (ei)i the canonical base of Rd, then

Sγ,z(·) =

n∑
i=1

〈kγ,xi , ·〉Hγ ei =

n∑
i=1

〈
Uγk1,Rγ(xi), ·

〉
Hγ

ei =

n∑
i=1

〈
k1,Rγ(xi), U

∗
γ (·)

〉
H1
ei

where Rγ(z) = (Rγ(x1), y1, . . . , Rγ(xn), yn), so that

Sγ,z = S1,Rγ(z)U
∗
γ

S∗γ,z = UγS
∗
1,Rγ(z)

Tγ,z = S∗γ,zSγ,z = UγS
∗
1,Rγ(z)

S1,Rγ(z)U
∗
γ = UγT1,Rγ(z)U

∗
γ .

Hence

f†γ,z = T †γ,zS
∗
γ,zy = UγT

†
1,Rγ(z)

U∗γUγS
∗
1,Rγ(z)

y = UγT
†
1,Rγ(z)

S∗1,Rγ(z)y = Uγf
†
1,Rγ(z)

.

(25)
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Define the rescaled input space Xγ = Rγ(X ), so that Rγ is a diffeomorphism
from X to Xγ , and define the probability distribution ργ on Xγ × R as the
pushforward measure of ρ

ργ = (Rγ × I)∗ (ρ)

so that ∫
Rd×R

f(x, y) dργ(x, y) =

∫
Rd×R

f (Rγ(x), y) dρ(x, y).

A simple computation shows that the marginal distribution ρXγ and the condi-
tional distribution ργ(· | x) of ρX are

ρXρ,γ = (Rγ)∗ ρX ργ(· | x) = ρ(· | R−1γ (x)), (26)

so that it holds true
fρ(x) = fργ (Rγ(x))

where fρ and fργ are the regression functions with respect to ρ and ργ , respec-
tively.
Finally, by (26) the operator

Wγ : L2
ργ → L2

ρ

f 7→ f ◦Rγ

is unitary and
fρ = Wγfργ (27)

Now regarding the population operators we have

Sγ : Hγ → L2
ρ

S1,γ : H1 → L2
ργ

and it holds
SγUγ = WγS1,γ . (28)

By (25), (27) and (28), the bias term becomes∥∥Sγf†γ,z − fρ∥∥2L2
ρ

=
∥∥∥SγUγf†1,Rγ(z) −Wγfργ

∥∥∥2
L2
ρ

=
∥∥∥WγS1,γf

†
1,Rγ(z)

−Wγfργ

∥∥∥2
L2
ρ

=
∥∥∥Wγ

(
S1,γf

†
1,Rγ(z)

− fργ
)∥∥∥2

L2
ρ

=
∥∥∥S1,γf

†
1,Rγ(z)

− fργ
∥∥∥2
L2
ργ

.

Since the Sobolev norm ‖·‖W s
2
is equivalent to the RKHS norm ‖H1‖ then

Assumption 3 implies exists g ∈ H1 such that ‖fρ‖W s
2

= ‖g‖H1
and

fρ = Sγgγ where gγ = Uγg ,
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due to (27) and (28) can be rewritten as

Wγfργ = fρ = SγUγg = WγS1,γ g =⇒ fργ = S1,γ g

moreover, since
‖gγ‖Hγ = ‖Uγg‖Hγ = ‖g‖H1

we obtain that ∥∥Sγf†γ,z − fρ∥∥2L2
ρ

=
∥∥∥S1,γ

(
f†1,Rγ(z) − g

)∥∥∥2
L2
ργ

.

This shows that we can always consider γ = 1 by rescaling the probability
distribution ρ with ργ and the training set from z to Rγ(z).
By denoting the projection operator P1,Rγ(z) = T †1,Rγ(z)T1,Rγ(z) and T1 = S∗1S1

the bias becomes∥∥Sγf†γ,z − fρ∥∥2L2
ρ

=
∥∥S1,γ

(
P1,Rγ(z) − I

)
g
∥∥2
L2
ργ

=
∥∥∥T 1/2

1

(
P1,Rγ(z) − I

)
g
∥∥∥2
H1

=
∥∥∥(T 1/2

1 − T 1/2
1,Rγ(z)

) (
P1,Rγ(z) − I

)
g
∥∥∥2
H1

≤
∥∥∥T 1/2

1 − T 1/2
1,Rγ(z)

∥∥∥2 ∥∥(P1,Rγ(z) − I
)
g
∥∥2
H1

≤
∥∥T1 − T1,Rγ(z)∥∥ ‖g‖2H1

where in the third equality we use that T 1/2
1,Rγ(z)

(
P1,Rγ(z) − I

)
= 0 and in the

last inequality we use that the operator P1,Rγ(z) − I is a projection.
We conclude applying Lemma 6, which states that, given 0 < δ < 1/2, then with
probability greater than 1− δ it holds∥∥T1 − T1,Rγ(z)∥∥ ≤ 3κs√

n
log

2

δ

which complete the proof.

Appendix H Control of the effective dimension
Lemma 2. Let t ∈ N+ and P` : Hγ 7→ Hγ be a projection operator with rank
smaller or equal than ` ∈ N. Let σt(Lγ) be its t-th eigenvalue of the integral
operator Lγ . Then it holds:∑
t>`

σt(Tγ) =
∑
t>`

σt(Lγ) ≤
∫
X
‖(I−P`)kγ,x‖2Hγ dρX (x) ≤ sup

x∈X
‖(I−P`)kγ,x‖2Hγ
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Proof. Let L̃γ = SγP`S
∗
γ . Notice that L̃γ is well-defined on L2

ρ 7→ L2
ρ since the

rank of P` is smaller or equal than `, then σt(L̃γ) = 0 for t > ` and so∑
t>`

σt(Lγ) =
∑
t>`

σt(Lγ)− σt(L̃γ)

Now note that σt(Lγ) ≥ σt(L̃γ) for any t ∈ N since I � P` and so SγS∗γ � SγP`S∗γ .
Then ∑

t>`

σt(Lγ)− σt(L̃γ) ≤
∑
t∈N

σt(Lγ)− σt(L̃γ) = Tr(Lγ − L̃γ)

since I−P` = (I−P`)2 by projection property so by the cyclicity of the trace and
the fact that covariance operator Tγ is given by Tγ = S∗γSγ =

∫
kγ,x⊗kγ,x dρX (x)

we have

Tr(Lγ−L̃γ) = Tr
(
Sγ(I−P`)S∗γ

)
= Tr

(
Sγ(I−P`)2S∗γ

)
= Tr

(
(I−P`)S∗γSγ(I−P`)

)
= Tr((I−P`)Tγ(I−P`))

Finally by linearity of the trace and integral operator we have

Tr((I−P`)Tγ(I−P`)) =

∫
Tr ((I−P`) (kγ,x ⊗ kγ,x) (I−P`)) dρX (x) =

∫
‖(I−P`)kγ,x‖2Hγ dρX (x)

where to prove the last equality let v = (I−P`)kγ,x, we have

Tr ((I−P`) (kγ,x ⊗ kγ,x) (I−P`)) = Tr (((I−P`)kγ,x)⊗ ((I−P`)kγ,x))

= Tr(v ⊗ v) = 〈v, v〉Hγ = ‖v‖2Hγ
.

Lemma 3. Let A : Hγ → Hγ be a bounded linear operator, then

sup
x∈X
‖Akγ,x‖2Hγ ≤ sup

‖f‖Hγ≤1
‖A∗f‖2L∞(X )

Proof. Since Hγ is a RKHS so kγ,x ∈ Hγ . By making use of the definition of the
Hilbert norm and the fact that the evaluation functional is continuous for any
x ∈ X , we have:

sup
x∈X
‖Akγ,x‖Hγ = sup

x∈X
‖f‖Hγ≤1

〈f,Akγ,x〉Hγ

= sup
‖f‖Hγ≤1

sup
x∈X
〈f,Akγ,x〉Hγ

≤ sup
‖f‖Hγ≤1

sup
x∈X

∣∣∣〈A∗f, kγ,x〉Hγ ∣∣∣
= sup
‖f‖Hγ≤1

sup
x∈X
|A∗f(x)|

= sup
‖f‖Hγ≤1

‖A∗f‖C(X )

= sup
‖f‖Hγ≤1

‖A∗f‖L∞(X )

where the last equality holds true since f ∈ C(X ) .
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Lemma 4 (Bound on the effective dimension). Let s > d
2 . Then the effective

dimension Nγ(λ) satisfies the following upper bound:

N (λ) ≤ c λ−d/2sγ− d
2s (2s−d) + 1

where c is a constant which depends on d, s,X .

Proof. Let t ∈ N, lets consider the definition of effective dimension we have

Nγ(λ) =
∑
j≥1

σj (Tγ)

σj (Tγ) + λ

≤
t∑

j=1

σj (Tγ)

σj (Tγ) + λ
+ λ−1

∑
j>t

σj (Tγ)

≤
t∑

j=1

σj (Tγ)

σj (Tγ) + λ
+ λ−1 sup

x∈X
‖(I−P`)kγ,x‖2Hγ

≤ t+ λ−1 sup
x∈X
‖(I−Pt)kγ,x‖2Hγ

where Pt : Hγ 7→ Hγ is a projection operator with rank smaller or equal than t.
Lets start with the case γ = 1. We can choose Pt as the projection operator on
the finite dimensional subspace

span{k1,x1
, . . . , k1,xt} s.t. Ptf(xi) = f(xi) ∀i = 1 . . . , t , ∀f ∈ H1

where {x1, . . . , xt} are distributed over a d-dimensional grid over X such that
the fill distance

ht = sup
x∈X

min
i∈{1,...,t}

‖x− xi‖ . t−1/d .

Now from Lemma 3 with A = I−Pt we have

sup
x∈X
‖(I−Pt)k1,x‖2H1

≤ sup
‖f‖H1

≤1
‖(I−Pt)f‖2L∞(X )

and from Corollary 11.33 of [34] it holds that there exist a constant C (depending
on d, s,X ) such that

sup
‖f‖H1

≤1
‖(I−Pt)f‖2L∞(X ) ≤ Ch

2s−d
t . Ct−

2s
d +1 .

Now we can generalize to differnt γ by rescaling the space X throw the map
Rγ(x) = x

γ and with the same consideration we did in the previous case it holds
that

sup
x∈X
‖(I−Pt)kγ,x‖2Hγ ≤ sup

‖f‖Hγ≤1
‖(I−Pt)f‖2L∞(X ) ≤ C

(
ht
γ

)2s−d

. Cγd−2st−
2s
d +1 .
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since the infinity norm is invariant on the rescaling.
Finally we obtain that

Nγ(λ) ≤ t+ λ−1 sup
x∈X
‖(I−Pt)kγ,x‖2Hγ ≤ t+ λ−1Cγd−2st−

2s
d +1 ∀t ∈ N

and optimizing over t, hence taking t = round
[
Cd/2sλ−d/2sγ−

d
2s (2s−d)

]
we

obtain
N (λ) ≤ 2Cd/2sλ−d/2sγ−

d
2s (2s−d) + 1

and conclude by taking denoting c = 2Cd/2s .

Appendix I Separation distance
Under Assumption 1 we study a probabilistic lower bound on the separation
distance

q∞ =
1

2
min
i 6=j
‖xi − xj‖∞ .

Lemma 5 (Bound on the separation distance). Under Assumption 1, let δ > 0
then with probability greater than 1− δ

q∞ ≥
d
√
δ vol (X )

4
· 1

n2/d

Proof. We have that

P
[

1

2
min
i 6=j
‖xi − xj‖∞ ≤ t

]
= P

[
∃i < j | ‖xi − xj‖∞ ≤ 2t

]
≤ P

⋃
i<j

{‖xi − xj‖∞ ≤ 2t}


≤ n(n− 1)

2
P [‖x1 − x2‖∞ ≤ 2t]

≤ n2 (4t)d

vol(X )

since

P [‖x1 − x2‖∞ ≤ 2t] =

∫
X
P [‖x1 − x2‖∞ ≤ 2t] dρX (x2)

=

∫
X
P [x1 ∈ B∞(x2, 2t)] dρX (x2)

=

∫
X

vol (B∞(x2, 2t) ∩ X ) dρX (x2)

≤vol (B∞(x2, 2t))

vol (X )

=
(4t)d

vol (X )
(29)
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where B∞(x, t) denotes the ball centered at x and radius t with respect to the
sup-norm in Rd. Hence

P [q∞ ≤ t] ≤ n2
(4t)d

vol(X )
(30)

Fix δ > 0, then with probability at least 1− δ

q∞ ≥
d
√
δ vol (X )

4
n−2/d . (31)

Appendix J Complementary Lemmas
Next lemma is a standard concentration inequalities (see Lemma 4 in [16] for
details).

Lemma 6. Let 0 < δ < 1/2. It holds with probability at least 1− δ :

‖Tγ − Tγ,x‖ ≤ ‖Tγ − Tγ,x‖HS ≤
3κs√
n

log
2

δ
.

Here, ‖ · ‖HS denotes the Hilbert-Schmidt norm.

Next lemma is a concentration result on the product of the regularized
empirical covariance and population covariance, see [27] for details.

Lemma 7. Let 0 < δ < 1 and λ ≥ 9
n log n

δ . It holds with probability greater
than 1− δ : √

2

3
≤
∥∥∥(Tγ + λ I)

1/2
(Tγ,x + λ I)

−1/2
∥∥∥ ≤ √2 .

Lemma 8 (Bound on the trace of the kernel). Given the kernel functions kγ
defined in (2) then there exist a constant κs defined by

κs = 2
2s−d−2

2 Γ(s− d/2)

such that
sup

x,x′∈X
kγ(x, x′) ≤ κs .

Proof. Recall that

sup
x,x′∈X

kγ(x, x′) = sup
x∈X

kγ(x, x) = Qγ(0) = Q(0) = 2s−1Γ(s)

∫
Rd

1

(1 + ‖ξ‖2)s
dξ.

Note that

Q(0) = lim
z→0
‖z‖s−d/2 Ks−d/2 (‖z‖)

≤ ‖z‖s−d/2 2s−
d
2−1Γ(s− d/2) ‖z‖−(s−d/2) = κs

where in the second inequality we use Lemma 5.14 from [34] to bound the
modified Bessel function Ks−d/2.
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Lemma 9 (Covariance of the noise). Define

ε̂ = y − f̂ρ

where y = (y1, . . . , yn) and f̂ρ = (fρ(x1), . . . , fρ(xn)). Under Assumption 2 the
random vector ε̂ has zero-mean (conditionally to x) and the covariance satisfies

Ey [ε̂⊗ ε̂] � σ2

n
IRn

where A � B is the partial order induced by the notion of positive operator and
IRn denotes the identity matrix of size n.

Proof. For every v ∈ Rn we can compute

E [〈ε̂⊗ ε̂ v, v〉n | x] = E [〈v, ε̂〉n 〈v, ε̂〉n | x]

=
1

n2

n∑
i,j=1

vivj E [εiεj | x]

≤ 1

n2

n∑
i,j=1

vivjδi,jσ
2

=
σ2

n2

n∑
i=1

v2i

=
σ2

n
〈v, v〉n

where we use that the variables εi are independents and the variance is bounded
by σ2.

Lemma 10 (Lemma 9 in [2] or Lemma 35 in [?]).
Let the random variables ε1, . . . , εn, be conditionally independent given x and
conditionally σ2-subgaussian, that is, for all λ ∈ R

E [exp (λεi) | x] ≤ exp
(
σ2λ2/2

)
∀i = 1, . . . , n .

Suppose that M ∈ Rn×n is a.s. positive semidefinite, conditionally on x. Then
a.s. on x, with conditional probability at least 1− δ,

〈ε,Mε〉 ≤
(

4 log

(
1

δ

)
+ 2

)
σ2 tr(M) .
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