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Abstract

We study a natural extension of classical empirical risk minimization, where the hypothesis space is a
random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned
by a random subset of the data, recovering as a special case Nyström approaches for kernel methods.
Considering random subspaces naturally leads to computational savings, but the question is whether the
corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently
explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we
work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the
hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use
different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the
existence of different settings, depending on how hard the learning problem is, for which computational
efficiency can be improved with no loss in performance.

1 Introduction

Despite excellent practical performances, state of the art machine learning (ML) methods often require huge
computational resources, motivating the search for more efficient solutions. This has led to a number of
new results in optimization [Johnson and Zhang, 2013, Schmidt et al., 2017], as well as the development of
approaches mixing linear algebra and randomized algorithms [Mahoney, 2011, Drineas and Mahoney, 2005,
Woodruff, 2014, Calandriello et al., 2017].
While these techniques are applied to empirical objectives, in the context of learning it is natural to study
how different numerical solutions affect statistical accuracy. Interestingly, it is now clear that there is a
whole set of problems and approaches where computational savings do not lead to any degradation in
terms of learning performance [Rudi et al., 2015, Bach, 2017, Bottou and Bousquet, 2008, Sun et al., 2018,
Li et al., 2019, Rudi and Rosasco, 2017, Calandriello and Rosasco, 2018].
Here, we follow this line of research and study an instance of regularized empirical risk minimization
where, given a fixed, high or infinite dimensional, hypothesis space, the search for a solution is re-
stricted to a smaller, possibly random, subspace. This is equivalent to considering sketching operators
[Kpotufe and Sriperumbudur, 2019], or equivalently regularization with random projections [Woodruff, 2014].
For infinite dimensional hypothesis spaces, this includes Nyström approaches used for kernel methods
[Smola and Schölkopf, 2000] and Gaussian processes [Williams and Seeger, 2001]. Recent works in statistical
learning has focused on smooth loss functions [Rudi et al., 2015, Bach, 2013, Marteau-Ferey et al., 2019],
whereas here we want to extend those analysis also to convex, Lipschitz but possibly non smooth losses.
In particular, if compared with previous results for quadratic and logistic loss, our proof follows a different
path. For square loss, all relevant quantities (i.e. loss function, excess risk) are quadratic, while the regularized
estimator has an explicit expression, allowing for an explicit analysis based on linear algebra and matrix
concentration [Tropp, 2012]. Similarly, the study for logistic loss can be reduced to the quadratic case through
a local quadratic approximation based on the self-concordance property. Instead here convex Lipschitz but non-
smooth losses such as the hinge loss do not allow for such a quadratic approximation and we need to combine
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empirical process theory [Boucheron et al., 2013] with results for random projections. In particular, fast rates
require considering localized complexity measures [Steinwart and Christmann, 2008, Bartlett et al., 2005,
Koltchinskii et al., 2006] and sub-gaussian inputs [Koltchinskii and Lounici, 2014, Vershynin, 2010]. Related
ideas have been used to extend results for random features from the square loss [Rudi and Rosasco, 2017] to
general loss functions [Li et al., 2019, Sun et al., 2018].

Our main interest is characterizing the relation between computational efficiency and statistical accuracy,
while giving a unified theory including smooth and non-smooth losses. We do so studying the interplay
between regularization, subspace size and the different parameters describing the hardness of the problem.
Our results show that also for convex, Lipschitz losses there are settings in which the best known statistical
bounds can be obtained while substantially reducing computational requirements. Interestingly, these effects
are relevant but also less marked than for smooth losses. In particular, some form of adaptive sampling
seems needed to ensure no loss of accuracy and achieve sharp learning bounds. More than that, differently
from quadratic loss, also a fast eigenvalues decay of the covariance operator is fundamental to have some
computational savings. Related with this, local Rademacher complexities prove to be the right tool to fully
exploit this latter eigen-decay assumption modifying also in the structure of the risk bound and leading to
fast rates of convergence.
Once derived guarantees for both square and hinge losses, an interesting question is which one is better when
solving a classification task. To have a fair comparison we will convert the previous bounds into the standard
classification risk, i.e. the one derived by using the 0− 1 loss. Here we introduce the low noise condition that
will play a key role. The final result shows that hinge loss can have always a better rate than square loss, no
matter the choice of the parameter of eigen-decay, noise condition or approximation error that depend on the
specific data. Nevertheless, if we match the rate achieved by the two to a fixed, reachable one, then hinge
loss is cheaper than square loss, in terms of needed Nyström points, only when the problem is hard in some
sense that will be clear in the following.
The rest of the paper is organized as follow. In Section 2, we introduce the setting and the main notation.
In Section 3, we review the ERM approach and in Section 4 we introduce ERM on random subspaces and
our setting. In Section 5, we present and discuss the main results and defer the proofs to the appendix. In
Section 6, we extend our previous results to smooth losses. In Section 7 we pass to classification risk with
0− 1 loss and discuss the comparison between hinge and square losses. In Section 8, we collect some simple
numerical results.

2 Setting and notations
sec: setting

We fix a real separable Hilbert space H with scalar product 〈·, ·〉 and a Polish space Y, i.e a separable
complete metrizable topological space. Let (X,Y ) be a pair of random variables taking value in H and Y,
respectively and describing the input-output sampling procedure. We denote by P the joint distribution of
(X,Y ) defined on the Borel σ-algebra of H× Y and we choose a loss function ` : Y × R→ [0,∞] and set

L : H → [0,∞) L(w) =

∫
H×Y

`(y, 〈w, x〉)dP (x, y) = E[`(Y, 〈w,X〉)]

to be the corresponding expected risk. Given w ∈ H, `(y, 〈w, x〉) can be viewed as the error made predicting
y with the linear function f(x) = 〈w, x〉, while L(w) can be interpreted as the mean prediction error.
In this setting, we are interested in solving the problem

inf
w∈H

L(w), (1) def of the problem

when the distribution P is only known through a training set (xi, yi)
n
i=1, which is a realization of (X1, Y1),

. . . , (Xn, Yn), i.e. n i.i.d. copies of (X,Y ). Since we only have some data, we cannot solve the problem
exactly and given an empirical approximate solution ŵ, a natural error measure is the the excess risk

L(ŵ)− inf
w∈H

L(w),
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which is a random variable through its dependence on ŵ, and hence on the data (xi, yi)
n
i=1. In the following

we are interested in characterizing its distribution for finite sample sizes and afterwards in discussing
how approximate solutions can be obtained from data. To this aim we need to make some mathematical
assumptions.

ass: sub-Gaussian Assumption 1. There exists C > 0 such that X is a C-sub-Gaussian centered random vector.

We recall that, according to [Koltchinskii and Lounici, 2014] a random vector X taking value in a Hilbert
space H is called C-sub-Gaussian if

‖〈X,u〉‖p 6 C
√
p‖〈X,u〉‖2 ∀u ∈ H, p > 2 (2) def: subgauss

where ‖〈X,u〉‖pp = E [‖〈X,u〉‖p]. Note that (2) implies that for any vector u ∈ H, the projection 〈X,u〉 is
a real sub-Gaussian random variable [Vershynin, 2010], but this latter condition is not sufficient since the
sub-Gaussian norm

‖ 〈X,u〉 ‖ψ2
= sup

p>2

‖〈X,u〉‖p√
p

(3) eq:13

should be bounded from above by the L2-norm ‖〈X,u〉‖2. In particular, we stress that, in general, bounded
random vectors in H are not sub-Gaussian.
Under the above conditions, E[‖X‖2] is finite, so that the (non-centered) covariance operator

Σ : H → H Σ = E[X ⊗X]

is a trace-class positive operator, and

rΣ =

√
TrΣ

‖Σ‖
(4) eq:1

denotes the effective rank of Σ, where Tr Σ = E[‖X‖2] is the trace of Σ. Further, it is also useful to introduce
the so-called effective dimension [Zhang, 2005, Caponnetto and De Vito, 2007, Rudi et al., 2015]. We define
for α > 0

dα = Tr((Σ + αI)−1Σ) =
∑
j

σj
σj + α

(5)

where (σj)j are the strictly positive eigenvalues of Σ, with eigenvalues counted with respect to their multiplicity
and ordered in a non-increasing way, and (uj) is the corresponding family of eigenvectors. Note that dα is
finite since Σ is trace class.

Next assumption is on the loss function.

ass:loss Assumption 2 (Lipschitz loss). The loss function ` : Y × R→ [0,∞) is convex and Lipschitz in its second
argument, namely there exists G > 0 such that

|`(y, a)− `(y, a′)| ≤ G|a− a′| and `0 = sup
y∈Y

`(y, 0). (6) eq:5

for all y ∈ Y and a, a′ ∈ R.

Under the above condition, the expected risk L(w) is finite, convex and Lipschitz. We now provide some
relevant examples. The classical linear regression problem corresponds to the choice H = Rd and Y . Another
example is provided by kernel methods [Steinwart and Christmann, 2008].

ex kernel Example 1. The input variable X takes value in an abstract measurable set X . We fix a reproducing kernel
Hilbert space on X with (measurable) reproducing kernel K : X ×X → R. By mapping the inputs from X to
H through the feature map

H 3 x 7→ K(·, x) = Kx ∈ H,

we can always identify X with KX , which is a random variable taking value in H.
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We now provide some example of loss functions.

Example 2. The main examples are

(a) hinge loss:
`(y, a) = |1− ya|+ = max{0, 1− ya} Y = {−1, 1} (7) eq:9

which is convex, but non-differentiable with G = 1 and `0 = 1;

(b) logistic loss
`(y, a) = log(1 + e−ya) Y = {−1, 1} (8) eq:10

which is convex and differentiable with G = 1 and `0 = log 2;

(c) square loss

`(y, a) = (y − a)
2 Y ⊆ [−M,M ], (9) eq:11

which is convex and differentiable with G = 2M and `0 = 4M2.

For classification task Y = {−1, 1}, a natural loss function is given by the 0− 1 loss

`0−1(y, a) := 1(−∞,0](y sign a),

which is not convex. However, it is known that a bound for the excess risk leads directly to a bound on the
classification risk [Bartlett et al., 2006]. In Section 7 we recall some standard result and we apply them to
our setting.

2.1 Notations

For reader’s convenience we collect the main notation we introduced in the paper. We denote with the “hat”,
e.g. ·̂, random quantities depending on the data. Given a linear operator A we denote by A> its adjoint
(transpose for matrices). For any n ∈ N, we denote by 〈·, ·〉n , ‖·‖n the inner product and norm in Rn. Given
two quantities a, b (depending on some parameters), the notation a . b, or a = O(b) means that there exists
a constant C such that a 6 Cb. We denote by PX the marginal distribution of X and by P (·|x) is the
conditional distribution of Y given X = x. The conditional probability is well-defined since H is separable
and Y is a Polish space [Steinwart and Christmann, 2008]. Table 2.1 summarizes main notation.

tab:1

Table 1: Definition of the main quantities used in the paper

Definition

L(w)
∫
H×Y `(y, 〈w, x〉)dP (x, y)

Lλ(w) L(w) + λ‖w‖2
L̂(w) n−1

∑n
i=1 `(yi, 〈w, xi〉)

L̂λ(w) L̂(w) + λ‖w‖2
w∗ arg minw∈H L(w)
wλ arg minw∈H Lλ(w)

ŵλ arg minw∈H L̂λ(w)
βλ,B arg minβ∈B Lλ(β)

β̂λ,B arg minβ∈B L̂λ(β)
f∗(x) arg mina∈R

∫
Y `(y, a)dP (y|x)

Bm Bm = span{x̃1, . . . , x̃m}
PB projection operator onto B
Pm projection operator onto Bm
R (·) population Rademacher Complexity

R̂ (·) empirical Rademacher Complexity
en (dyadic) entropy numbers en = ε2n−1
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3 Empirical risk minimization: a review
sec:ERM

A classical approach to derive approximate solutions is based on replacing the expected risk with the empirical
risk L̂ : H → [0,∞) defined for all w ∈ H as

L̂(w) =
1

n

n∑
i=1

`(yi, 〈w, xi〉).

We consider the (regularized) empirical risk minimization (ERM) based on the solution of the problem,

min
w∈H

L̂λ(w), L̂λ(w) = L̂(w) + λ ‖w‖2 , (10) perm

where λ > 0 is a positive regularization parameter. Since L̂λ : H → R is continuous and strongly convex,
there exists a unique minimizer ŵλ and, by the representer theorem [Wahba, 1990, Schölkopf et al., 2001],
there exists c = ĉλ ∈ Rn such that

ŵλ = X̂>c ∈ span{x1, . . . , xn}, (11) repre

where X̂ : H → Rn denotes the data matrix

(X̂w)i = 〈w, xi〉 i = 1, . . . , n, w ∈ H.

The explicit form of the coefficient vector c depends on the considered loss function. In Section 3.1 we briefly
recall some possible approach to compute c, whereas in Section 3.2 we analyze its statistical properties.

ex: kernel span Example 3 (Representer theorem for kernel machines). In the context of kernel methods, see Example 1,
the above discussion, and in particular (11) are related to the well known representer theorem. Indeed, the
linear parameter w corresponds to a function f ∈ H in the RKHS, while the norm ‖ · ‖ is the RKHS norm
‖ · ‖H. The representer theorem (11) then simply states that there exists constants ci such that the solution

of the regularized ERM can be written as f̂λ(x) =
∑n
i=1K(x, xi)ci ∈ span{Kx1

, . . . ,Kxn}.

3.1 Computational aspects
sec:comp

Minimizing (10) can be solved in many ways and we provide below some basic considerations. If H is
finite dimensional, iterative via gradient methods can be used. For example, the subgradient method
[Boyd and Vandenberghe, 2004] applied to (10) gives, for some suitable w0 and step-size sequence (ηt)t,

wt+1 = wt − ηt

(
1

n

n∑
i=1

yixigi(wt) + 2λwt

)
, (12) subgsvm

where gi(w) ∈ ∂`(yi, 〈w, xi〉) is the subgradient of the map a 7→ `(yi, a) evaluated at a = 〈w, xi〉, see also
[Rockafellar, 1970]. The corresponding iteration cost is O(nd) in time and memory. Clearly, other variants can
be considered, for example adding a momentum term [Nesterov, 2018], stochastic gradients and minibatching
or considering other approaches for example based on coordinate descent [Shalev-Shwartz and Zhang, 2013].
When H is infinite dimensional a different approach is possible, provided 〈x, x′〉 can be computed for all

x, x′ ∈ H. For example, it is easy to prove by induction that the iteration in (12) satisfies wt = X̂>ct+1,
where

ct+1 = ct − ηt

(
1

n

n∑
i=1

yieigi(X̂
>ct) + 2λct

)
, (13) subgsvm1

and where e1, . . . , en is the canonical basis in Rn. The cost of the above iteration is O(n2CK) for

computing gi(w) ∈ ∂`
(
yi,
〈
X̂>ct, xi

〉)
= ∂`

(
yi,
∑n
j=1 〈xj , xi〉 (ct)i

)
, where CK is the cost of evaluat-

ing one inner product. Also in this case, a number of other approaches can be considered, see e.g.
[Steinwart and Christmann, 2008, Chap.11] and references therein. We illustrate the above ideas for the
hinge loss.
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Example 4 (Hinge loss & SVM). Considering problem (10) with the hinge loss corresponds to support
vector machines for classification. With this choice ∂`(yi, 〈w, xi〉) = 0 if yi 〈w, xi〉 > 1, ∂`(yi, 〈w, xi〉) = [−1, 0]
if yi 〈w, xi〉 = 1 and ∂`(yi, 〈w, xi〉) = −1 if yi 〈w, xi〉 < 1. In particular, in (13) we can take gi(w) =
−1[yi〈w,xi〉≤1].

3.2 Statistical analysis
sec:statistic

In this section we summarizes the main statistical properties of the regularized ERM under the sub-Gaussian
hypothesis. Thm. 2 will show that with high probability

L(ŵλ)− inf
w∈H

L(w) .
1

λn
+ λ ‖w∗‖2 ,

provided that the best in model w∗ ∈ H exists, see Assumption 3. With the choice λ �
√

1/n it holds that

L(ŵλ)− inf
w∈H

L(w) = O(
√

1/n), (14) eq:38

which provides a benchmark for our results. More generally, the following theorem provides a finite sample
bound on the excess risk of ŵλ without assuming the existence of w∗. To this aim, we introduce the
approximation error

A(λ) = inf
w∈H

[L(w) + λ‖w‖2]− inf
w∈H

L(w)

= L(wλ) + λ‖wλ‖2 − inf
w∈H

L(w) . (15) eq:24

thm:excessrisk-erm-standard Theorem 1. Under Assumptions 1 and 2, fix λ > 0 and 0 < δ < 1. Then, with probability at least 1− δ,

L(ŵλ)− inf
w∈H

L(w) <2A(λ) +
D2G2C2‖Σ‖(K2 + (rΣ +

√
log(1/δ))2)

4λn
+

+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ +
√

log(1/δ))√
n

. (16) eq:excessrisk-standard-general

where C and G are the constants defined respectively in (2) and (6), D is an absolute numerical constant and

K = Kλ,δ = rΣ +
√

log(1 + log2(3 + `0/λ)) + log(1/δ) = O(
√

log log(3 + `0/λ) + log(1/δ)).

The theorem can be easily extended to non-centered sub-Gaussian variables. Notice that the same re-
sult is well known for bounded random variables, by specializing more refined analysis, see for example
[Steinwart and Christmann, 2008, Shalev-Shwartz et al., 2010]. As regards the sub-Gaussian case, we are not
aware of a previous reference. In Appendix A we provide a simple self-contained proof, which holds true also for
the bounded case [Della Vecchia et al., 2021]. It is based on the fact that the excess risk bound for regularized
ERM arises from a trade-off between an estimation and an approximation term. Similar bounds in high-
probability for ERM constrained to the ball of radius R > ‖w∗‖ can be obtained through a uniform convergence
argument over such balls, see [Bartlett and Mendelson, 2002, Meir and Zhang, 2003, Kakade et al., 2009].
In order to apply this to regularized ERM, one could in principle use the fact that by Assumption 2,
‖ŵλ‖ 6

√
`0/λ (see Appendix) [Steinwart and Christmann, 2008], but this yields a suboptimal dependence

in λ. Finally, a similar rate for ŵλ, though only in expectation, can be derived through a stability argument
[Bousquet and Elisseeff, 2002, Shalev-Shwartz et al., 2010].

Bound (55) shows that the learning rate depends on some a-priori assumption of the distribution, allowing to
controll the approximation error A(λ). The simplest assumption is that the best in the model exists.

ass:best Assumption 3. There exists w∗ ∈ H such that L(w∗) = min
w∈H

L(w).

Under this condition, we have the following result, claimed at the beginning of the section:
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thm:regularized-full-space Theorem 2. Under Assumption 1, 2, and 3, take λ > 0 and 0 < δ < 1, then with probability at least 1− δ:

L(ŵλ)− L(w∗) <λ‖w∗‖2 +
D2G2C2K2‖Σ‖

4λn
+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ +
√

log(8/δ))√
n

+

+
DGC‖Σ‖ 1

2 ‖w∗‖
(
rΣ +

√
log(8/δ)

)
√
n

. (17) eq:excessrisk-standard-best

Hence, let λ = λn � (DGC ‖Σ‖1/2 /‖w∗‖)
√

log(1/δ)/n with high probability:

L(ŵλn)− L(w∗) = O(‖w∗‖
√

log(1/δ)/n), (18) eq:17

up to a log log n terms.

As above the proof is given in Appendix A.

Remark 1. Note that for all w ∈ H with ‖w‖ 6 R,

A(λ) 6 L(w) + λ‖w‖2 − inf
H
L 6 L(w)− inf

H
L+ λR2

hence A(λ) 6 inf‖w‖6R L(w)− infH L+ λR2 and

L(ŵλ)− inf
w∈H

L(w) <2
(

inf
‖w‖6R

L(w)− inf
H
L
)

+ 2λR2 +
D2G2C2‖Σ‖(K2 + (rΣ +

√
log(8/δ))2)

4λn

+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ) +D`0
√

log(8/δ)√
n

,

Letting λ � 1/(R
√
n), this gives L(ŵλ)− infw∈H L(w) 6 2(inf‖w‖6R L(w)− infH L) +O(R/

√
n) with high

probability.

4 ERM on random subspaces
sec: ERM on random subspace

As explained in the introduction, though the ERM algoritm ŵλn achieves optimal rates, from a computational
point of view is very expensive with large datasets. To overcome this issue, we consider a variant of ERM
based on considering a subspace B ⊂ H and the corresponding regularized ERM problem,

min
β∈B

L̂λ(β) (19) sperm

with β̂λ the unique minimizer. As clear from (11), choosing B = Hn = span{x1, . . . , xn} is not a restriction
and yields the same solution as considering (10). From this observation a natural choice is to consider for
m ≤ n,

Bm = span{x̃1, . . . , x̃m} (20) randspace

with {x̃1, . . . , x̃m} ⊂ {x1, . . . , xn} a subset of the input points, called the Nyström points. We denote by

Pm = PBm the corresponding projection and by β̂λ,m the unique minimizer of L̂λ on Bm, i.e.

β̂λ,m = argmin
β∈Bm

L̂λ(β). (21) eq:37

We now focus on the computational benefits of considering ERM on random subspaces and we analyze the
corresponding statistical properties, whereas the statistical analysis is given in Section 4.2. A more advanced
analysis is provided in Section 5 to obtain fast rates.
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4.1 Computational aspects

The choice of Bm as in (20) allows to improve computations with respect to (11). Indeed, β ∈ Bm is equivalent

to the existence of b ∈ Rm s.t. β = X̃>b, so that we can replace (19) with the problem

min
b∈Rm

1

n

n∑
i=1

`
(
yi,
〈
X̃>b, xi

〉)
+ λ

〈
b, X̃X̃>b

〉
m

where 〈·, ·〉m is the usual scalar product in Rm. Further, since X̃X̃> ∈ Rm×m is symmetric and positive semi-

definite, we can derive a formulation close to that in (10), considering the reparameterization a = (X̃X̃>)1/2b
which leads to,

min
a∈Rm

1

n

n∑
i=1

` (yi, 〈a, xi〉m) + λ ‖a‖2m , (22) embedsvm

where for all i = 1, . . . , n, we defined the embedding xi 7→ xi = ((X̃X̃>)1/2)†X̃xi and with ‖ · ‖m we refer to
the 2-norm in Rm. Note that this latter operation only involves the inner product in H and hence can be
computed in O(m3 + nm2CK) time. The subgradient method for (22) has a cost O(nm) per iteration. In
summary, we obtained that the cost for the ERM on subspaces is O(nm2CK + nm ·#iter) and should be
compared with the cost of solving (13) which is O(n2CK + n2 ·#iter). The corresponding costs to predict
new points are O(mCK) and O(nCK), while the memory requirements are O(mn) and O(n2), respectively.
Clearly, memory requirements can be reduced recomputing things on the fly. As clear from the above
discussion, computational savings can be drastic, as long as m < n, and the question arises of how this affect
the corresponding statistical accuracy. Next section is devoted to this question.

ex kernel emb Example 5 (Kernel methods and Nyström approximations). Again, following Example 1 and Example 3,
our setting can be easily specialized to kernel methods, where β ∈ Bm = span{x̃1, . . . , x̃m} is replaced by

f̃(x) =
∑m
i=1K(x, x̃i)c̃i ∈ span{Kx̃1

, . . . ,Kx̃m}, while the embedding xi 7→ xi = ((X̃X̃>)1/2)†X̃xi becomes

xi 7→ xi = (K̃1/2)†(K(x̃1, xi), . . . ,K(x̃m, xi))
>, with K̃i,j = K(x̃i, x̃j).

4.2 Statistical analysis
sec:statistics-Nystrom

In this paper, we consider approximate leverage scores sampling procedures of the Nyström points. The
reason is that, we wil show that under a suitable p-polynomial (or exponential) decay condition on the
spectrum, see (28),

L(β̂λ,m)− L(w∗) .

√
log(1/δ)√

n
.

provided that the best in model w∗ ∈ H exists, see Assumption 3, and, up to log terms,

λ � 1√
n
, m & np.

By comparing with the benchmark (14), we get the same convergence rate up to a log factor, but the
complexity of the algorithm is dramatically reduced, for example if p = 1/2 we only need m '

√
n Nyström

points. A similar result can be obtained for exponential decay with m ' log2 n Nyström points. Finally, we
observe that under the above decay conditions on the spectrum of Σ classical ERM algorithm achieves fast
rates. In Section 5 we will show that also Nyström sub-sampling has fast rates, but this requires a more
advanced analysis.

We now describe ALS sampling procedure. With this method we sample according to the leverages scores
[Drineas et al., 2012]:

li(α) =
〈
xi, (X̂X̂

>x+ αIn)−1xi

〉
i = 1, . . . , n (23) eq:3

where α > 0. Since in practice the leverage scores li(α) defined by (23) are onerous to compute, approximations

(l̂i(α))ni=1 have been considered [Drineas et al., 2012, Cohen et al., 2015, Alaoui and Mahoney, 2015]. In par-
ticular, in the following we are interested in suitable approximations defined as follows, see [Rudi et al., 2018]
and references therein.
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def:approx_lev_scores Definition 1 (Approximate leverage scores sampling (ALS)). Let (li(α))ni=1 be the leverage scores given

by (23). Given α0 > 0 and T > 1, we say that a family (l̂i(α))ni=1 is (T, α0)-approximate leverage scores with
confidence δ ∈ (0, 1) if

1

T
li(α) 6 l̂i(α) 6 T li(α), ∀i ∈ {1, . . . , n}, α > α0 (24)

with probability at least 1− δ. Under this condition, the approximate leverage scores (ALS) sampling selects
the Nyström points {x̃1, . . . , x̃m} from the training set {x1, . . . , xn} independently with replacement and

with probability Qα(i) = l̂i(α)/
∑
j l̂j(α).

We can state our first result. We recall the Nyström points are sampled according to ALS, see Definition 1.

thm:1 Theorem 3. Under Assumption 1, 2 and 3, fix α, λ, δ > 0. With probability at least 1− δ:

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2 (25) reg pb f_H main bound

up to log(log(1/λ)) terms and provided that n & dα ∨ log(1/δ) and m & dα log( 2n
δ ).

The proof of Theorem 3 with explicit constants is given in Appendix B, whereas here we add some comments.
Notice that

dα =

∫ 〈
w, (Σ + αI)−1w

〉
dPX(w) 6

∫
‖w‖2

∥∥(Σ + αI)−1
∥∥ dPX(w) 6 α−1E[‖X‖2] . α−1, (26) eq:6bis

where we used the fact that the second moment of a sub-Gaussian variable is finite.
Using the above bound, we get that, up to log terms, with high probability

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2,

provided that m & α−1. With the choice

λn �
1

‖w∗‖
√
n
, α � 1/n

we get that with high probability

L(β̂λn,m)− L(w∗) .
‖w∗‖

√
log(1/δ)√
n

(27)

up to log factors in n and with m & n.
Despite of the fact that the rate is optimal (up to the logarithmic term), the required number of subsampled
points is m & n, so that the procedure is not effective. However, the following proposition shows that under a
fast decay of the spectrum of the covariance operator Σ, the ALS method becomes computationally efficient.
We assume one of the following two conditions:

a) polinomial decay: there exists p ∈ (0, 1) such that

σj . j−
1
p (28) eq:2

b) exponential decay: there exists β > 0 such that

σj . e−βj . (29) eq:19

Under the above condition, we have the following result.

prop: constr pb Theorem 4. Under the assumptions of Theorem 3, fix δ > 0, with probability at least 1− δ:

9



(a) for the polynomial decay (28)

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2 (30)

and, with the choice

λn �
‖w∗‖

√
log(1/δ)√
n

, αn �
log(1/δ)

n
, m & np,

it holds that

L(β̂λn,m)− L(w∗) .
‖w∗‖

√
log(1/δ)√
n

(31) eq:12

(b) for exponential decay (29)

L(β̂λ,m)− L(w∗) .
log(1/δ)

λn
+
‖w∗‖

√
log(1/δ)√
n

+
√
α‖w∗‖+ λ‖w∗‖2 (32) eq: thm 3 exp decay

and with the choice

λn �
‖w∗‖

√
log(1/δ)√
n

, αn �
log(1/δ)

n
, m & log2 n,

it holds that

L(β̂λn,m)− L(w∗) .
‖w∗‖

√
log(1/δ)√
n

.

The proof of the above result is given in Appendix B. Theorem 4 is already known for square loss
[Rudi et al., 2015] and for smooth loss functions [Marteau-Ferey et al., 2019] under the assumption that
the input X is bounded. The cited references deal also the case of uniform sampling of Nyström points.
Notice that, compared with the analogous theorem for square loss, our bound on the number of Nyström
points is worse than the bound given in [Rudi et al., 2015]. In Section 6, by exploiting in the projection term
the square in the definition of the quadratic loss, we obtain the right estimate of Nyström points matching
the result in [Rudi et al., 2015].
Theorem 4 shows that for an arbitrary convex, possibly non-smooth, loss function, leverage scores sampling
can lead to better results depending on the spectral properties of the covariance operator. Indeed, if there
is a fast eigendecay, then using leverage scores and a subspace of dimension m < n, one can achieve the
same rates as exact ERM. For fast eigendecay (p small), the subspace dimension can decrease dramatically.
For example, considering p = 1/2, then the choice m '

√
n is enough. Notice also that other decays, e.g.

exponential, can also be considered. These observations are consistent with recent results for random features
[Bach, 2017, Li et al., 2019, Sun et al., 2018], while they seem new for ERM on subspaces. Compared to
random features, the proof techniques presents similarities but also differences due to the fact that in general
random features do not define subspaces. Finding a unifying analysis would be interesting, but it is left for
future work. Also, we note that uniform sampling can have the same properties of leverage scores sampling, if
dα � dα,∞, where dα,∞ := supw∈supp(PX)

〈
w, (Σ + αI)−1w

〉
, see [Rudi et al., 2015]. This happens under the

strong assumptions on the eigenvectors of the covariance operator, but can also happen in kernel methods
with kernels corresponding to Sobolev spaces [Steinwart et al., 2009]. With these comments in mind, here,
we focus on subspace defined through leverage scores noting that the assumption on the eigendecay not only
allows for smaller subspace dimensions, but can also lead to faster learning rates.

4.3 Further choices

Following [Rudi et al., 2015], other choices of B ⊆ H are possible. Indeed for any q ∈ N and z1, . . . , zq ∈ H
we could consider B = span{z1, . . . , zq} and derive a formulation as in (22) replacing X̃ with the matrix Z
with rows z1, . . . , zq. We leave this discussion for future work. We simply state the following result where

µB =
∥∥∥Σ1/2(I − P)

∥∥∥ , (33) proj

and P is the projection onto B.
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firstmain Theorem 5. Choose B ⊆ H. Under Assumptions 1, 2, 3, fix λ > 0 and 0 < δ < 1, with probability at least
1− δ:

L(β̂λ)− L(w∗) .
log(1/δ)

λn
+ λ ‖w∗‖2 +

√
µB ‖w∗‖ .

Compared to Theorem 2, the above result shows that there is an extra approximation error term due to
considering a subspace. The coefficient µB appears in the analysis also for other loss functions, see e.g.
[Rudi et al., 2015, Marteau-Ferey et al., 2019]. Roughly speaking, it captures how well the subspace B is
adapted to the problem.

5 Fast rates
sec:statistical

In this section we prove the Nyström algorithm achieves fast rates under a Bernstein condition on the
loss function, see Assumption 7, which is quite standard in order to have fast rates for regularized ERM
[Steinwart and Christmann, 2008, Bartlett et al., 2005]. To state our results, we recall some definitions and
basic facts, see [Steinwart and Christmann, 2008, Chapter 6] for a full account.
Given a threshold parameter M > 0, for any a ∈ R, acl denotes the clipped value of a at ±M

acl = −M if a 6 −M, acl = a if a ∈ [−M ,M ], acl = M if a >M.

We say that the loss function ` can be clipped at M > 0 if for all y ∈ Y, a ∈ R,

`(y, acl) 6 `(y, a), (34) eq: clipping

For convex loss functions, as we consider in this paper, the above definition is equivalent to the fact that for
all y ∈ Y, there exists ay ∈ [−M,M ] such that

`(y, ay) = min
a∈R

`(y, a),

see [Steinwart and Christmann, 2008, Lemma 2.23]. Furthermore, Aumann’s measurable selection principle
[Steinwart and Christmann, 2008, Lemma A.3.18] implies that there exists a measurable map ϕ : Y → R
such that

`(y, ϕ(y)) = min
a∈R

`(y, a), |ϕ(y)| 6M.

and we set

f∗(x) =

∫
Y
`(y, ϕ(x))dP (y|x) (35) target_def

for PX -almost all x ∈ H. The function f∗ is the target function since

L(f∗) = inf
f
L(f),

where the infimum is taken over all the measurable functions f : H → R. It easy to check that hinge loss
and square loss with bounded outputs can be clipped, whereas the logistic loss can not be clipped, however
we are able to include also this latter case in Section 6.2. We also introduce the following notation, for all
w ∈ H, we set

wcl : H → R wcl(x) = 〈w, x〉cl .

In the following we assume the conditions below.

ass:clipped Assumption 4 (Clippability). There exists M > 0 such that the loss function can be clipped at M .

ass:universal Assumption 5 (Universality).
inf
w∈H

L(w) = L(f∗). (36) universal

11



Recalling that the target function f∗ is the minimizer of the expected error over all possible functions f ,
condition (36) means that f∗ can be arbitrarily well approximated by a linear function 〈w, x〉 for some
w ∈ H. For the square loss, this condition is equivalent to the fact that H is dense in L2(H, PX) and, in the
context of kernel methods, see Example 1 it is satisfied by universal kernels [Steinwart and Christmann, 2008].
Condition (36) may be relaxed at the cost of an additional approximation term, but the analysis is lengthier
and it won’t be discussed in here. A sufficient stronger condition is provided by the well specified case.

target Assumption 6 (Well specified model). There exists w∗ ∈ H such that

f∗(x) = 〈w∗, x〉

for PX-almost x ∈ H.

We further assume the following condition.

ass:berstein Assumption 7 (Bernstein condition). There exist constants B > 0, θ ∈ [0, 1] and V > B2−θ, such that for
all w ∈ H, the following inequalities hold almost surely:

`(Y, 〈w,X〉cl) 6 B, (37) supremum bound

E[`(Y, 〈w,X〉cl)− `(Y, f∗(X))]2 6 V (E[`(Y, 〈w,X〉cl)− `(Y, f∗(X))])θ (38) variance bound

E[`(Y, 〈w,X〉)− `(Y, f∗(X))]2 6 V (E[`(Y, 〈w,X〉)− `(Y, f∗(X))])θ (39) variance bound2

Condition (37) is called supremum bound and it is satisfied by almost all loss functions. Condition (38) is
called the variance bound and the optimal exponent corresponds to the choice θ = 1. For the square loss with
bounded output, the variance bound always holds true with θ = 1, see [Steinwart and Christmann, 2008,
Example 7.3] . For other loss functions the above condition is hard to verify for all distributions. For
example for classification, the variance bound is implied by margin conditions, and the parameter θ char-
acterizes how easy or hard the classification problem is [Steinwart and Christmann, 2008]. With respect
to [Steinwart and Christmann, 2008], condition (39) is a technical one that we need in the proof.
To state our result, we introduce the approximation error,

A(λ) = min
w∈H

(
L(w) + λ ‖w‖2

)
− inf
w∈H

L(w). (40) ass:apprx

Note that, if w∗ exists, then A(λ) 6 λ ‖w∗‖2. More generally, the approximation error decreases with λ
and learning rates can be derived assuming a suitable decay. The following theorem provides fast rates for
Nyström algorithm, where we recall the Nyström points are sampled according to ALS, see Definition 1.

thm: fast rate A(lambda) Theorem 6. Under Assumptions 1, 2, 4, 7, let fix 0 < δ < 1, then, with probability at least 1− 2δ:

(a) for the polynomial decay condition (28)

L(β̂clλ,m)− L(f∗) .
( 1

λpn

) 1
2−p−θ+θp

+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ) (41) fast rate A(lambda)

provided that

α & n−1/p, n & dα ∨ log(1/δ), m & dα log(
2n

δ
),

(b) for the exponential decay (29)

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ)

provided that

α & e−n, n & dα ∨ log(1/δ), m & dα log(
2n

δ
).

The proof of Theorem 6 is given in Appendix C. Let us comment the above result in different settings.
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5.1 Polynomial decay of Σ

In this section we assume the polynomial decay (28) of the spectrum of Σ. By omitting numerical constants,
logarithmic and higher order terms, Theorem 6 implies that with high probability

L(β̂clλ,m)− L(f∗) .

(
1

λpn

) 1
2−p−θ+θp

+

√
αA(λ)

λ
+

log(3/δ)

n

√
A(λ)

λ
+A(λ).

To have an explicit rate, we further assume that there exists r ∈ (0, 1] such that

A(λ) . λr.

Under this condition, with the choice

λn � n−min{ 2
r+1 ,

1
r(2−p−θ+θp)+p}

αn � n−min{2, r+1
r(2−p−θ+θp)+p}

m & nmin{2p, p(r+1)
r(2−p−θ+θp)+p} log n

then with high probability

L(β̂clλn,m)− L(f∗) . n−min{ 2r
r+1 ,

r
r(2−p−θ+θp)+p}. (42) eq:25

The above bound further simplifies when the variance bound (38) holds true with the optimal paratemer
θ = 1 and the model is well specified as in (6) since we can set r = 1. Under these conditions, we get that

L(β̂clλn,m)− L(w∗) . n−
1

1+p . (43) rate2

with the choice
λn � n−

1
1+p , αn � n−

2
1+p , m & n

2p
1+p log n. (44) params_choice

By comparing bound (43) with (31), the assumption on the spectrum also leads to an improved estimation
error bound and hence improved learning rates. In this sense, these are the correct estimates since the decay
of eigenvalues is used both for the subspace approximation error and the estimation error. As it is clear
from (43), for fast eigendecay, the obtained rate goes from O(1/

√
n) to O(1/n). Taking again, p = 1/2 leads

to a rate O(1/n2/3) which is better than the one in (31). In this case, the subspace defined by leverage scores
needs to be chosen of dimension at least O(n2/3).
Coming back to arbitrary θ and r, bound (42) is harder to parse. For r → 0 the bound become vacuous
and there are not enough assumptions to derive a bound [Devroye et al., 2013]. Note that large values of
λ are prevented, indicating a saturation effect (see [Vito et al., 2005, Mücke et al., 2019]). As discussed
before, the bound improves when there is a fast eigendecay. Smaller values of θ and r leads to worse bounds
than (43), which is the best rate in this context. Since, given any acceptable choice of p, r and θ, the quantity

min{2p, p(r+1)
r(2−p−θ+θp)+p} takes values in (0, 1), the best rate, that differently from before can also be slower

than
√

1/n, can always be achieved choosing m < n (up to logarithmic terms).

We conclude this section stating the result just discussed for the well specified case.

thm: fast rate f_H Corollary 1. Fix λ > 0, α & n−1/p and 0 < δ < 1. Under Assumptions 1, 2, 6, 7 (with θ = 1) and
polynomial decay condition (28), then, with probability at least 1− 2δ:

L(β̂clλ,m)− L(w∗) .
1

λpn
+ λ ‖w∗‖2 +

√
α ‖w∗‖ (45)

provided that n and m are large enough.
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5.2 Exponential decay of Σ
subsec exponential

We can further improve the bounds above assuming an exponential decay (28) of the spectrum of Σ.
By omitting numerical constants, logarithmic and higher order terms, Theorem 6 implies that with high
probability

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ).

Under an exponential decay condition, it is reasonable to modify the source condition controlling the behaviour
of the approximation error A(λ) from polynomial to logarithmic. We therefore assume that

A(λ) . log−1(1/λ)

and, with the choice
λn � log n/n2, αn � 1/n2, m & log2 n, (46) params choice exp

with high probability,

L(β̂clλn,m)− L(w∗) . 1/ log n.

If the model is well-specified as in (6) and θ = 1, we get

L(β̂clλ,m)− L(w∗) .
log2(1/λ)

n
+ λ ‖w∗‖2 +

√
α ‖w∗‖

provided that n and m are large enough, and α & e−n. With the choice

λn � 1/n, αn � 1/n2, m & log2 n,

with high probability

L(β̂clλn,m)− L(w∗) . 1/n.

why Remark 2. Whereas the results of Section 4.2 also hold true for bounded inputs X, to have fast rates we
are forced to assume the sub-Gaussianity of X. Under this latter condition in fact, Lemma 4 requires only
that α & n−1/p for polynomial decay and α & e−n for exponential decay. These ranges are compatible with
the choices (44) and (46), which provide the optimal convergence rates. Under the assumption that X is
bounded, Lemma 4 is replaced by Lemma 7 in [Rudi et al., 2015], which requires instead that α & n−1 both
for polynomial and exponential decay, which is not compatible with (44) and (46).

5.3 Comparison with Random Features

We start comparing our results with the work [Sun et al., 2018] on random features. Specifically, their
Theorem 1 is based on similar assumptions as our Corollary 1, i.e. the Bayes predictor belongs to the RKHS
(realizable case), Massart’s low-noise condition (implying our variance condition), and the spectrum of the
covariance operator decays polynomially: σi � i−1/p, 0 < p < 1. They obtain a rate of n−1/(2p+1) using
n2p/(2p+1) random features. We can obtain the same rate with the same number of Nyström points, but our
analysis also provides an improved rate of n−1/(p+1) using n2p/(p+1) Nyström points; this improvement is due
to our refined analysis, allowing to consider smaller values of α in Corollary 1. We do not know whether
this improvement comes from a better adaptivity of Nyström sampling, or it’s a byproduct of our analysis.
Regarding [Li et al., 2019], comparison with their fast rates is more difficult, as they assume that the Bayes
predictor belongs to the random space spanned by random features. We do not make this strong assumption,
and indeed controlling the approximation error of the random subspace is one of the key challenges in our
work.
The following table provides a comparison (up to logarithmic factors) among the various rates for the hinge
loss discussed above.

∗θ = 1
†Here m is number of random features
‡X bounded
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Table 2: Comparison among the different regimes using hinge loss.

Assumptions Eigen-decay Rate m

Theorem 2 1,2,3 / n−1/2 /

Eq. (31) 1,2,3 σj . j−
1
p n−1/2 np

Eq. (32) 1,2,3 σj . e−βj n−1/2 log2 n

Eq: (43) 1,2,6,7∗ σj . j−
1
p n−

1
1+p n

2p
1+p

Eq: (42) 1,2,7 σj . j−
1
p n−min{ 2r

r+1 ,
r

r(2−p−θ+θp)+p} nmin{2p, p(r+1)
r(2−p−θ+θp)+p}

RF† [Sun et al., 2018] ·‡,2,6,7∗ σj . j−
1
p n−

1
2p+1 n

2p
2p+1

6 Differentiable loss functions
sec:other

6.1 Square loss

In this section we specialized the analysis to square loss defined by (9) under the assumption that Y ⊂ [−1, 1].
The interval [−1, 1] can be replaced by [−M,M ], but we take M = 1 since, in the following section, we will
consider binary classification. It is easy to see that

`(y, t) 6 4, y, t ∈ [−1, 1],

and ` can be clipped at 1 and a well known variance bound for the least squares shows(
`(y, fcl(x))− ` (y, f∗(x))

)2
=
((
f cl(x) + f∗(x)− 2y

) (
f cl(x)− f∗(x)

))2
6 16

(
f cl(x)− f∗(x)

)2
,

so that variance bound (38) holds for V := 16 and θ = 1.
Finally, the least squares loss restricted to [−1, 1] is Lipschitz continuous, that is

|L(y, t)− L (y, t′)| 6 4 |t− t′|

for all y ∈ [−1, 1] and t, t′ ∈ [−1, 1].
The result for the square loss, whose proof is given in Appendix D.1, reads as follows.

thm:square loss Theorem 7. Under Assumption 1 and polynomial decay condition (28), fix λ > 0, α & n−1/p and 0 < δ < 1.
then with probability at least 1− 2δ:

L(β̂clλ,m)− L(f∗) .
1

λpn
+
αA(λ)

λ
+

log(3/δ)

n

√
A(λ)

λ
+A(λ).

Furthermore, if there exists r ∈ (0, 1] such that A(λ) . λr, then

λn � n−min{ 2
r+1 ,

1
r+p}, αn � n−min{ 2

r+1 ,
1
r+p}, m & nmin{ 2p

r+1 ,
p
r+p} log n

with high probability

L(β̂clλn,m)− L(f∗) . n−min{ 2r
r+1 ,

r
r+p}.

As usual the Nyström points are sampled according to ALS, see Definition 1.
Comparing the above bound and (42) with θ = 1, we get the same optimal convergence rates, but the

number m of Nyström points reduces from nmin{2p, p(r+1)
r+p } log n to nmin{ 2p

r+1 ,
p
r+p} log n, matching the bound

in [Rudi et al., 2015].
As already observed in Remark 2 we are able to prove the above results only under the assumption that X
sub-Gaussian. However, it is possible to show that in the well specified case, see Assumption 6, corresponding
to the choice r = 1, the above result holds true also for bounded inputs X. This is due to the additional
square we get in the projection term thanks to the quadratic properties of the loss, namely

L(Pmw∗)− L(w∗) =
∥∥∥Σ1/2(I − Pm)w∗

∥∥∥2
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so that condition α & n−1 in Lemma 7 in [Rudi et al., 2015] can still be fulfilled for our choice of the
parameter α. We state the result without reporting the proof, which is a variant of the proof of Theorem 7
taking into account the above remark.

thm:square loss basic Corollary 2. Assume that X is bounded almost surely, under Assumption 6 and polynomial decay of the
spectrum (28), fix λ > 0, α & 1/n, and 0 < δ < 1. Then, with probability at least 1− 2δ:

L(β̂clλ,m)− L(w∗) .
1

λpn
+ λ ‖w∗‖2 + α ‖w∗‖2

provided that n and m are large enough. Further, for ALS sampling with the choice

λ � n−
1

1+p , α � n−
1

1+p , m & n
p

1+p log n, (47)

with high probability,

L(β̂clλ,m)− L(w∗) . n−
1

1+p . (48)

Table 3: Comparison among the different regimes with square loss

Assumptions Eigen-decay Rate m

Theorem 2 1,6 σj . j−
1
p n−

1
1+p n

p
1+p

[Rudi et al., 2015] X bounded, 6 σj . j−
1
p n−

1
1+p n

p
1+p

Theorem 7 1 σj . j−
1
p n−min{ 2r

r+1 ,
r
r+p} nmin{ 2p

r+1 ,
p
r+p}

tab: square

Remark 3 (Comparison with [Rudi et al., 2015]). The comparison makes sense only when choosing s = 0
in the source condition ‖Σ−sw∗‖H < R in [Rudi et al., 2015]. The reason is that while in [Rudi et al., 2015]
they study the problem in the well specified case –improving the result when w∗ belongs to subspaces of H
that are the images of the fractional compact operators Σs– here instead we go in the opposite direction
studying the case where w∗ does not exists and the approximation error must be introduced. The only
intersection is for s = 0 where it’s reasonable to compare their bound with our Theorem 2. As detailed in
Table 3 the two works return exactly the same rate and the same requirement for m.

6.2 Logistic loss
sec: logistic

As already mentioned, let’s start noticing that logistic loss defined by (8) cannot be clipped according to (34)
[Steinwart and Christmann, 2008]. Nevertheless, we can still clip our loss `(y, a) at M = log n so that for all
y ∈ Y, a ∈ R it’s easy to verify that

`(y, acl) 6 `(y, a) +
1

n
, (49) eq: clipping_logistic

where acl denotes the clipped value of a at ± log(n), that is

acl = − log(n) if a 6 − log(n),

acl = y if a ∈ [− log(n), log(n)],

acl = log(n) if a > log(n).

The key point here is that, even though the loss is not always reduced by clipping, i.e. ∃ y ∈ Y, a ∈ R s.t.
`(y, acl) � `(y, a), it can only increase at most of 1/n. This is important since it does not affect the resulting
bounds on the excess risk. In particular, we recover Theorem 7 and Corollary 2 for the logistic loss. The
proof is given in Appendix D.2.
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7 From surrogates to classification loss
sec:01losssec: 0-1 loss

In this section we deal with a classification task, so that Y = {±1} and the natural way of measuring
performances is by using the 0-1 loss, i.e. `0−1(y, a) := 1(−∞,0](y sign(a)). Through this section we study
how the previous bounds for surrogate losses relate with the 0-1 classification risk. In the following, to make
it more explicit, we will indicate with L0−1, Lhinge, Lsquare the risks associated respectively with 0-1, hinge
and square losses.
A key role will be played by the well-known low noise condition [Mammen and Tsybakov, 1999, Tsybakov, 2004,
Massart et al., 2006]. In the following, the definition is taken from [Tsybakov, 2004]:

Definition 2. Distribution P has noise exponent 0 6 γ < 1 if it satisfies equivalently one of the following:

• Nγ : for some c > 0 and all measurable f : H → {±1}

Pr[f(X)(2η(X)− 1) < 0] 6 c
(
L0−1(f)− L∗0−1

)γ
(50) ass:noise cond

• M γ
1−γ

: for some c > 0 and all ε > 0

Pr [0 < |2η(X)− 1| 6 ε] 6 cε
γ

1−γ (51)

where η(X) = Pr(Y = 1|X) and for γ = 1 we have M∞ equivalent to N1.

In the following we will assume this low-noise condition:

Assumption 8 (Low-noise condition). The distribution P has noise exponent γ ∈ [0, 1].ass: low-noise

Using the Lemma 10 in Appendix F, when dealing with the square loss, we have the following bound on the
classification risk:

cor: square to 0-1 Lemma 1 (Square loss). Under Assumption 8, there is a c > 0 such that for any measurable f : X → R we
have:

L0−1(f)− L∗0−1 .
(
Lsquare(f)− L∗square

) 1
2−γ (52)

It’s easy to see that an analogous bound can be obtained for logistic loss.

As regards hinge loss, the bound given by Lemma 9 in Appendix F can not be improved even under low
noise in Assumption 8. Anyway, it is worth noticing that an assumption of low noise is directly connected
with the variance bound (38) through Theorem 8.24 in [Steinwart and Christmann, 2008] (see Lemma 11 in
Appendix F). In particular, if we assume a low noise condition with parameter γ, then the variance bound in
Assumption 8 is always satisfied for the hinge loss with θ = γ.

7.1 From square and logistic losses to classification loss

Starting from Theorem 7, we can now derive an upper bound for the classification risk using the results
obtained for the surrogate square loss. We assume low-noise condition and exploit Lemma 1 to obtain the
following theorem, where Asquare(λ) is the approximation error, see (15), with respect the square loss and the
Nyström points are sampled, as always, accordingly to ALS, see Definition 1.

thm:square loss 01 Theorem 8. Under Assumptions 1 and 8 and the polynomial decay condition (28), fix λ > 0, α & n−1/p

and 0 < δ < 1, then with probability at least 1− 2δ:

L0−1(β̂clλ,m)− L0−1(f∗) .

(
1

λpn
+
αAsquare(λ)

λ
+

log(3/δ)

n

√
Asquare(λ)

λ
+Asquare(λ)

) 1
2−γ

.

Furthermore, if there exists r ∈ (0, 1] such that Asquare(λ) . λr and choosing

λ � n−min{ 2
r+1 ,

1
r+p}, α � n−min{ 2

r+1 ,
1
r+p}, m & nmin{ 2p

r+1 ,
p
r+p} log n,

then, with high probability

L0−1(β̂clλ,m)− L0−1(f∗) . n−min{ 2r
(2−γ)(r+1)

, r
(2−γ)(r+p)}.

Once again we have the analogous bounds, up to constant or negligible terms, for logistic loss.
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7.2 From hinge loss to classification loss

Similarly, starting from Theorem 6, we can derive another upper bound for the classification risk but using as
surrogate the hinge loss. Under the low noise assumption and exploiting Lemma 11 as described above, we
obtain the following theorem, where Ahinge(λ) is the approximation error, see (15), with respect the hinge
loss:

thm:hinge loss 0-1 Theorem 9. Under Assumptions 1, 8 and under polynomial decay condition (28), fix λ > 0, α & n−1/p and
0 < δ < 1, then with probability at least 1− 2δ:

L0−1(β̂clλ,m)− L0−1(f∗) .

(
1

λpn

) 1
2−p−γ+γp

+

√
αAhinge(λ)

λ
+

log(3/δ)

n

√
Ahinge(λ)

λ
+Ahinge(λ).

Furthermore, if there exists r ∈ (0, 1] such that Ahinge(λ) . λr and choosing

λ � n−min{ 2
r+1 ,

1
r(2−p−γ+γp)+p}, α � n−min{2, r+1

r(2−p−γ+γp)+p}, m & nmin{2p, p(r+1)
r(2−p−γ+γp)+p} log n,

then, with high probability

L0−1(β̂clλ,m)− L0−1(f∗) . n−min{ 2r
r+1 ,

r
r(2−p−γ+γp)+p}.

Table 4: Comparison between the 0− 1 classification risk derived from square, logistic and hinge loss under
low noise condition

Assump Eigen-decay Rate m

Square Loss: Theorem 8 1,8 σj . j−
1
p n−min{ 2r

(2−γ)(r+1)
, r
(2−γ)(r+p)} nmin{ 2p

r+1 ,
p
r+p}

Logistic Loss 1,8 σj . j−
1
p n−min{ 2r

(2−γ)(r+1)
, r
(2−γ)(r+p)} nmin{ 2p

r+1 ,
p
r+p}

Hinge Loss: Theorem 9 1,8 σj . j−
1
p n−min{ 2r

r+1 ,
r

r(2−p−γ+γp)+p} nmin{2p, p(r+1)
r(2−p−γ+γp)+p}

7.3 Discussion of the results

Since min{ 2r
(2−γ)(r+1) ,

r
(2−γ)(r+p)} 6 min{ 2r

r+1 ,
r

r(2−p−γ+γp)+p} for all the choices of p, γ and r the bound for

the classification error derived using the hinge loss has always a better rate than the one derived from the
square loss. On the other hand, since min{ 2p

r+1 ,
p
r+p} 6 min{ 2p

r+1 ,
p
r+p}, the choice of the hinge loss results to

be more expensive in term of m (while achieving a better rate). Therefore, we can try to compare the two
rates while fixing the number of number of Nyström points selected, or, viceversa, we can fix the rate and
compare the number of Nyström points needed to achieve it. The results here are less obvious and we do not
have a clear winner. What appears from the analysis is that the discriminant is the choice of the low noise
condition parameter γ and the r parameter, which controls the approximation error decay.
Let’s imagine to fix a realizable convergence rate O

(
n−R

)
for the classification excess risk. To achieve this

rate we need αsquare = n−R(2−γ)/r for square loss and αhinge = n−R(1+r)/r for hinge loss. Since having
αhinge 6 αsquare means mh > ms, we have that, given a fixed rate for the 0− 1 loss, using hinge is cheaper
than using square loss, when condition γ + r < 1 is fulfilled (see Figure 1). This suggests that when the
problem is hard, hinge loss seems to be even less expensive than square loss.
Similarly, imagine now to have some budget constraint on m so that we are not allowed to choose the optimal
value: which loss will show a faster non-optimal rate? Again the condition above is key, with hinge loss
performing better than square loss when γ+ r < 1 (see Figure 2, where also the saturation effect can be seen).

8 Experiments
sec:experiments

As mentioned in the introduction, a main of motivation for our study is showing that the computational savings
can be achieved without incurring in any loss of accuracy. In this section, we complement our theoretical
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Figure 1: Comparison between the number of Nyström points needed by square and hinge loss to get a fixed
common rate: the plots above show µsquare − µhinge, where 0 6 µ 6 1 is the exponent controlling m, i.e.
m � nµ. Light colours represent then the regimes where hinge loss is cheaper than square loss. fig: m

results investigating numerically the statistical and computational trade-offs in a relevant setting. More
precisely, we report simple experiments in the context of kernel methods, considering Nyström techniques. In
particular, we choose the hinge loss, hence SVM for classification. Keeping in mind Theorem 6 we expect we
can match the performances of kernel-SVM using a Nyström approximation with only m� n centers. The
exact number depends on assumptions, such as the eigen-decay of the covariance operator, that might be
hard to know in practice, so here we explore this empirically.

Nyström-Pegasos. Classic SVM implementations with hinge loss are based on considering a dual for-
mulation and a quadratic programming problem [Joachims, 1998]. This is the case for example, for the
LibSVM library [Chang and Lin, 2011] available on Scikit-learn [Pedregosa et al., 2011]. We use this imple-
mentation for comparison, but find it convenient to combine the Nyström method to a primal solver akin
to (12) (see [Li et al., 2016, Hsieh et al., 2014] for the dual formulation). More precisely, we use Pegasos
[Shalev-Shwartz et al., 2011] which is based on a simple and easy to use stochastic subgradient iteration§. We
consider a procedure in two steps. First, we compute the embedding discussed in Section 4. With kernels it
takes the form xi = (K†m)1/2(K(xi, x̃1), . . . ,K(xi, x̃m))T , where Km ∈ Rm×m with (Km)ij = K(x̃i, x̃j). Sec-
ond, we use Pegasos on the embedded data. As discussed in Section 4, the total cost is O(nm2CK+nm ·#iter)
in time (here iter = epoch, i.e. one epoch equals n steps of stochastic subgradient) and O(m2) in memory
(needed to compute the pseudo-inverse and embedding the data in batches of size m).

Datasets & setup (see Appendix G). We consider five datasets¶ of size 104 − 106, challenging for
standard SVMs. We use a Gaussian kernel, tuning width and regularization parameter as explained in
appendix. We report classification error and for data sets with no fixed test set, we set apart 20% of the data.

Procedure. Given the accuracy achieved by K-SVM algorithm, which is our target, we increase the number
of sampled Nyström points m < n as long as also Nyström-Pegasos matches that result.

§Python implementation from https://github.com/ejlb/pegasos
¶Datasets available from LIBSVM website http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/ and from

[Jose et al., 2013] http://manikvarma.org/code/LDKL/download.html#Jose13
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Figure 2: Comparison between the rate achieved by square and hinge loss varying m: the plots above have R
in the y-axis, where 0 6 R 6 1 is the exponent of the resulting rate, i.e. rate = n−R; in the x-axis we have µ,
with m = eµ and 0 6 µ 6 1 (µ = 1 is equivalent to sample the entire dataset). Every row shows the different
behaviours when γ + r is respectively less, equal or greater than 1, with p fixed. Note also the saturation
effects for hinge and square once we achieve the optimal values for m, with hinge loss always reaching a
better rate at the end. fig: rate

Results. We compare with linear (used only as baseline) and K-SVM see Table 5. For all the datasets, the
Nyström-Pegasos approach achieves comparable performances of K-SVM with much better time requirements
(except for the small-size Usps). Moreover, note that K-SVM cannot be run on millions of points (SUSY),
whereas Nyström-Pegasos is still fast and provides much better results than linear SVM. Further comparisons
with state-of-art algorithms for SVM are left for a future work. Finally, in Figure 3 we illustrate the interplay
between λ and m for the Nyström-Pegasos considering SUSY data set. In Appendix G we compare also with
results obtained using the simpler uniform sampling of the points.

References

[Adamczak, 2008] Adamczak, R. (2008). A tail inequality for suprema of unbounded empirical processes
with applications to markov chains. Electronic Journal of Probability, 13:1000–1034.

[Alaoui and Mahoney, 2015] Alaoui, A. and Mahoney, M. W. (2015). Fast randomized kernel ridge regression
with statistical guarantees. In Advances in Neural Information Processing Systems, pages 775–783.

20



Figure 3: The graphs above are obtained from SUSY data set: on the left we show how c-err measure changes
for different choices of λ parameter; in the central figure the focus is on the stability of the algorithm varying
λ; on the right the combined behavior is presented with a heatmap. fig

Table 5: Architecture: single machine with AMD EPYC 7301 16-Core Processor and 256GB of RAM. For
Nyström-Pegaos, ALS sampling has been used (see [Rudi et al., 2018]) and the results are presented as mean
and standard deviation deriving from 5 independent runs of the algorithm. The columns of the table report
classification error, training time and prediction time (in seconds). tab:results

LinSVM KSVM Nyström-Pegasos

Datasets c-err c-err t train t pred c-err t train t pred m

SUSY 28.1% - - - 20.0%± 0.2% 608± 2 134± 4 2500
Mnist bin 12.4% 2.2% 1601 87 2.2%± 0.1% 1342± 5 491± 32 15000
Usps 16.5% 3.1% 4.4 1.0 3.0%± 0.1% 19.8± 0.1 7.3± 0.3 2500
Webspam 8.8% 1.1% 6044 473 1.3%± 0.1% 2440± 5 376± 18 11500
a9a 16.5% 15.0% 114 31 15.1%± 0.2% 29.3± 0.2 1.5± 0.1 800
CIFAR 31.5% 19.1% 6339 213 19.2%± 0.1% 2408± 14 820± 47 20500

[Alquier et al., 2019] Alquier, P., Cottet, V., and Lecué, G. (2019). Estimation bounds and sharp oracle
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A Proof of Section 3
sec:radem-compl

This section is devoted to the proof of Theorems 1 and 2. With slight abuse of notation we set

`(w, z) = `(y, 〈w, x〉), z = (x, y) ∈ H × Y, w ∈ H.

With this notation L(w) =
∫
H×Y `(w, z)dP (z).

The following result is known, [Alquier et al., 2019, Lemma 8.1]. We provide an alternative proof tailored to
the Hilbert setting.

lem:gen-gap-ball-gauss Lemma 2. Under Assumptions 1 and 2, fix R > 0 and τ > 0, with probability at least 1− δ,

sup
‖w‖6R

∣∣L̂(w)− L(w)
∣∣ < D√

n

(
GRC‖Σ‖ 1

2

(
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
, (53) eq:gen-gap-ball-bound-gauss

where D > 0 is an absolute numerical constant and r2
Σ = TrΣ/‖Σ‖ is the effective rank of Σ. Furthermore,

for each w ∈ H, L̂(w)− L(w) is a sub-Gaussian centered real random variable and

‖L̂(w)− L(w)‖ψ2
6

2√
n

(`0 + CG‖ 〈X,w〉 ‖2). (54) eq:23

Proof. In the proof D denotes an absolute numerical constant, whose value can change from line to line. Fix
w ∈ H and define the centered real random variable

Zw = `(Y, 〈X,w〉)− E[`(Y, 〈X,w〉)].

We claim that, for any pair w,w′ ∈ H

‖Zw − Zw′‖ψ2
6 2CG‖ 〈X,w − w′〉 ‖2, (55) eq:14

where ‖Zw − Zw′‖ψ2
is defined by (28). Indeed, for all p > 1, recalling that ‖ξ‖p = E[|ξ|p]

1
p , then triangular

inequality and continuity of expectation give

‖Zw − Zw′‖p 6 ‖`(Y, 〈X,w〉)− `(Y, 〈X,w′〉)‖p + ‖`(Y, 〈X,w〉)− `(Y, 〈X,w′〉)‖1
6 2‖`(Y, 〈X,w〉)− `(Y, 〈X,w′〉)‖p
6 2G‖ 〈X,w − w′〉)‖p 6 2GC

√
p‖ 〈X,w − w′〉)‖2

where the last two inequalities are consequence of (6) and (2), respectively. Hence

sup
p>2

‖Zw − Zw′‖p√
p

6 2GC‖〈X,w − w′〉‖2,

so that (55) is clear. Furthermore, since

(
L̂(w)− L(w))− (L̂(w′)− L(w′)

)
=

1

n

n∑
i=1

((`(Yi, 〈Xi, w〉)− E[`(Yi, 〈Xi, w〉)])

− (`(Yi, 〈Xi, w
′〉)− E[`(Yi, 〈Xi, w

′〉)]))

is a sum of independent sub-Gaussian random variables distributed as (Zw − Z ′w)/n, then by rotational
invariance theorem [Vershynin, 2010, Proposition 2.6.1]

‖(L̂(w)− L(w))− (L̂(w′)− L(w′))‖ψ2 6
D√
n
‖Zw − Zw′‖ψ2 6

D√
n
CG‖ 〈X,w − w′〉)‖2, (56) eq:18

where the last inequality is a consequence of (55) and D is an absolute constant. Consider H as a metric
space with respect to the metric

d(w,w′) = ‖ 〈X,w − w′〉 ‖2
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where without loss of generality we assume that Σ is injective, then (56) states that the centered random

process
(
L̂(w)−L(w)

)
w∈H has sub-Gaussian increments and the generic chaining tail bound [Vershynin, 2010,

Theorem 8.5.5] implies that, with probability at least 1− 2e−τ ,

sup
w,w′∈BR

∣∣(L̂(w)− L(w))− (L̂(w′)− L(w′))
∣∣ 6 D√

n
CG
(√
τ diam(BR) + γ2(BR)

)
, (57) eq:20

where BR = {w ∈ H : ‖w‖ 6 R}, diam(BR) and γ2(BR) are the diamater with respect to the metric d and
the Talagrand’s γ2 functional of BR, [Vershynin, 2010, Definition 8.5.1].
Let G be the Gaussian random vector in H with covariance Σ, which always exists since Σ is a trace class
operator. Talagrand’s majorizing measure theorem [Vershynin, 2010, Theorem 8.6.1] implies that

γ2(BR) 6 DE[ sup
w∈BR

〈G,w〉] = E[ sup
w∈BR

| 〈G,w〉 |] = RE[‖G‖] 6 RE[‖G‖2]
1
2 = RTr(Σ)

1
2 ,

where the first equality is due to the fact that BR is symmetric, the second inequality is a consequence of
Jansen inequality and the last equality by definition of G. Furthermore, the definition of d gives that

diam(BR) 6 2R‖Σ‖ 1
2 .

Plugin these last two bounds in (57), it holds that

sup
w,w′∈BR

∣∣(L̂(w)− L(w))− (L̂(w′)− L(w′))
∣∣ 6 D√

n
CGR

(√
τ‖Σ‖ 1

2 + Tr(Σ)
1
2

)
. (58) eq:21

with high probability. Finally, observe that

|`(Y, 0)− E[`(Y, 0)])| 6 2 sup
y∈Y

`(y, 0) = 2`0,

by (6), and

L̂(0)− L(0) =
1

n

∑
i=1

(`(Yi, 0)− E[`(Yi, 0)])

so that Hoeffding’s inequality [Boucheron et al., 2013] implies that, with probability 1− 2e−τ ,

|L̂(0)− L(0)| 6 2`0

√
2τ

n
. (59) eq:22

Finally, since

sup
w∈BR

|L̂(w)− L(w)| 6 sup
w∈BR

|L̂(w)− L(w)− (L̂(0)− L(0))|+ |L̂(0)− L(0)|

bounds (58) and (59) give (53) with 4 exp(−τ) = δ. Bound (56) with w′ = 0 implies (54).

This result cannot be readily applied to ŵλ, since its norm ‖ŵλ‖ is itself random. Observe that, by definition
and by Assumption 2,

λ‖ŵλ‖2 6 L̂λ(ŵλ) 6 L̂λ(0) = L̂(0) 6 sup
y∈Y

`(y, 0) = `0,

so that ‖ŵλ‖ 6
√
`0/λ. One could in principle apply this bound on ŵλ, but this would yield a suboptimal

dependence on λ and thus a suboptimal rate.
The next step in the proof is to make the bound of Lemma 2 valid for all norms R, so that it can be applied
to the random quantity R = ‖ŵλ‖. This is done in Lemma 3 below though a union bound.

lem:gen-gap-union Lemma 3. Under Assumptions 1 and 2, ∀w ∈ H, with probability 1− δ:

L(w)− L̂(w) 6
DGC‖Σ‖ 1

2 (1 + ‖w‖)rΣ√
n

+
D√
n

(
GC‖Σ‖ 1

2 (1 + ‖w‖) + `0

)√
log(2 + log2(1 + ‖w‖)) + log(1/δ).
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Proof. Fix δ ∈ (0, 1). For p > 1, let Rp := 2p and δp = δ/(p(p+ 1)). By Lemma 2, one has for every p > 1,

P

(
sup
‖w‖6Rp

[
L(w)− L̂(w)

]
>

D√
n

(
GRpC‖Σ‖

1
2

(
rΣ +

√
log(1/δp)

)
+ `0

√
log(1/δp)

))
6 δp.

Collecting the terms containing δp and taking a union bound over p > 1 while using that
∑
p>1 δp = δ and

δp > δ2/(p+ 1)2, we get:

P

(
∃p > 1, sup

‖w‖6Rp

[
L(w)− L̂(w)

]
>

D√
n

(
GRpC‖Σ‖

1
2

(
rΣ +

√
log

p+ 1

δ

)
+ `0

√
log

p+ 1

δ

))
6 δ.

Now, for w ∈ H, let p = dlog2(1 + ‖w‖)e; then, 1 + ‖w‖ 6 Rp = 2p 6 2(1 + ‖w‖), so ‖w‖ 6 Rp. Hence,
∀w ∈ H, with probability 1− δ:

L(w)− L̂(w) 6
DGC‖Σ‖ 1

2 (1 + ‖w‖)rΣ√
n

+
D√
n

√
log

p+ 1

δ

(
GC‖Σ‖ 1

2 (1 + ‖w‖) + `0

)
6
DGC‖Σ‖ 1

2 (1 + ‖w‖)rΣ√
n

+
D√
n

(
GC‖Σ‖ 1

2 (1 + ‖w‖) + `0

)√
log(2 + log2(1 + ‖w‖)) + log(1/δ)

6 δ.

This is precisely the desired bound.

We are now able to prove the two theorems.

Proof of Theorem 1. Since the bound of Lemma 3 holds simultaneously for all w ∈ H, one can apply it to
ŵλ; using the inequality ‖ŵλ‖ 6

√
`0/λ 6 (1 + `0/λ)/2 to bound the log log term, this gives with probability

1− δ,

L(ŵλ)−L̂(ŵλ) 6
DGC‖Σ‖ 1

2 (1 + ‖ŵλ‖)rΣ√
n

+
D√
n

(
GC‖Σ‖ 1

2 (1+‖ŵλ‖)+`0
)√

log(1 + log2(3 + `0/λ)) + log(1/δ).

(60) eq:gen-gap-wlambda

Now, let K = Kλ,δ = rΣ +
√

log(1 + log2(3 + `0/λ)) + log(1/δ). Eq (60) writes

L(ŵλ)− L̂(ŵλ) 6
DGCK‖Σ‖ 1

2 (1 + ‖ŵλ‖)√
n

+
D`0(K − rΣ)√

n
(61) eq:lemma3 simple

Using that ab 6 λa2 + b2/(4λ) for a, b > 0, one can then write

L(ŵλ) 6 L̂(ŵλ) +
DGCK‖Σ‖ 1

2 ‖ŵλ‖√
n

+
DGCK‖Σ‖ 1

2

√
n

+
D`0(K − rΣ)√

n

6 L̂(ŵλ) + λ‖ŵλ‖2 +
D2G2C2K2‖Σ‖

4λn
+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ)√
n

6 L̂(wλ) + λ‖wλ‖2 +
D2G2C2K2‖Σ‖

4λn
+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ)√
n

(62) eq:proof-wlambda-def-wlambda

where (62) holds by definition of ŵλ. Now, using again Lemma 2 for ‖wλ‖ we have that, with probability
1− δ:

L̂(wλ)− L(wλ) <
D√
n

(
GC‖Σ‖ 1

2 ‖wλ‖
(
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
.

Combining this inequality with (62) with a union bound, with probability 1− 2δ:

L(ŵλ) <L(wλ) + λ‖wλ‖2 +
D2G2C2K2‖Σ‖

4λn
+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ)√
n

+

+
DGC‖Σ‖ 1

2 ‖wλ‖
(
rΣ +

√
log(4/δ)

)
√
n

+
D`0

√
log(4/δ)√
n

. (63) eq:proof-wlambda-general
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Since ab 6 λa2 + b2/(4λ), then

DGC‖Σ‖ 1
2 ‖wλ‖

(
rΣ +

√
log(1/δ)

)
√
n

6 λ‖wλ‖2 +
D2G2C2‖Σ‖

(
rΣ +

√
log(4/δ)

)2
4λn

6 A(λ) +
D2G2C2‖Σ‖

(
rΣ +

√
log(4/δ)

)2
4λn

so that (63) implies, with probability 1− 2δ:

L(ŵλ)− inf
w∈H

L(w) < 2A(λ) +
D2G2C2‖Σ‖(K2 + (rΣ +

√
log(4/δ))2)

4λn
+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ +
√

log(4/δ))√
n

.

After replacing δ by δ/2, we get bound (16).

Proof of Theorem 2. Assume that w∗ = arg minw∈H L(w) exists. Then, by definition of wλ,

L(wλ) + λ‖wλ‖2 6 L(w∗) + λ‖w∗‖2.

In addition, ‖wλ‖ 6 ‖w∗‖, since otherwise having ‖w∗‖ < ‖wλ‖ and L(w∗) 6 L(wλ) would imply L(w∗) +
λ‖w∗‖2 < L(wλ) + λ‖wλ‖2, contradicting the above inequality. Since L(w∗) = infH L, it follows from (63)
that, with probability 1− 2δ,

L(ŵλ) <L(w∗) + λ‖w∗‖2 +
D2G2C2K2‖Σ‖

4λn
+
DGCK‖Σ‖ 1

2 +D`0(K − rΣ)√
n

+

+
DGC‖Σ‖ 1

2 ‖w∗‖
(
rΣ +

√
log(4/δ)

)
√
n

+
D`0

√
log(4/δ)√
n

(64) eq:proof-mainbound-best

The bound (64) precisely corresponds to the desired bound (17) after replacing δ by δ/2. In particular, tuning

λ � (DGCK ‖Σ‖1/2 /‖w∗‖)
√

log(1/δ)/n yields

L(ŵλ)− L(w∗) .
{DGC ‖Σ‖1/2 ‖w∗‖}{log log n+

√
log(1/δ)}√

n
.

Omitting the log log n term, this bound essentially scales as Õ(DGC ‖Σ‖1/2 ‖w∗‖
√

log(1/δ)/n).

B Proof of Section 4
proofthmbasic

In order to prove Theorem 3, we need to previously extend Lemma 7 in [Rudi et al., 2015] to sub-Gaussian
random variables.

lem:id_min_proj_lev_subgauss Lemma 4. Fix δ > 0 and a (T, α0)-approximate leverage scores (l̂i(α))ni=1 with confidence δ > 0. Given α >
α0, let {x̃1, . . . , x̃m} be the Nyström points selected according to Definition 1 and set Bm = span{x̃1, . . . , x̃m}.
Under Assumption 1, with probability at least 1− δ:∥∥∥(I − PBm)Σ1/2

∥∥∥2

6
∥∥∥(I − PBm)(Σ + α I)1/2

∥∥∥2

6 3α, (65)

provided that

n & dα ∨ log(5/δ) (66) eq: subgauss n cond

m & dα log(
10n

δ
). (67) eq: subgauss m cond

Furthermore, if the spectrum of Σ satisfies the decay conditions (28) (polynomial decay) or (29) (exponential
decay), it is enough to assume that

n & log(5/δ) α & n−1/p m & α−p log(
10n

δ
) polynomial decay (68) eq:31a

n & log(5/δ) α & e−n m & log(1/α) log(
10n

δ
) exponential decay (69) eq:32a
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Proof. Exploiting sub-Gaussianity anyway the various terms are bounded differently. In particular, to bound
β1 we refer to Theorem 9 in [Koltchinskii and Lounici, 2014], obtaining with probability at least 1− δ

β1(α) . max

{√
dα
n
,

√
log(1/δ)

n

}
. (70)

As regards β3 term we apply Proposition 1 below to get with probability greater than 1− 3δ

β3(α) 6
2 log 2n

δ

3m
+

√
32T 2dα log 2n

δ

m

for n > 2C2 log(1/δ).
Finally, taking a union bound we have with probability at least 1− 5δ

β(α) .max


√
dα
n
,

√
log( 1

δ )

n

+

+

1 + max


√
dα
n
,

√
log( 1

δ )

n


2 log 2n

δ

3m
+

√
32T 2dα log 2n

δ

m

 . 1

when n & dα ∨ log(1/δ) and m & dα log 2n
δ . See [Rudi et al., 2015] to conclude the proof of the first claim.

Assume now (28) or (29) . The second claim is consequence of Proposition 2 or Proposition 3.

We can proceed now with the proof of Theorem 3:

Proof of Theorem 3. We recall the notation.

Bm = span{x̃1, . . . , x̃m}, β̂λ = arg min
w∈Bm

L̂(w), w∗ = arg min
w∈H

L(w)

and Pm = PBm the orthogonal projector operator onto Bm.

In order to bound the excess risk of β̂λ, we decompose the error as follows:

L(β̂λ)− L(w∗) 6
∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2H

∣∣∣+
∣∣∣L̂(β̂λ) + λ‖β̂λ‖2H − L̂(Pmw∗)− λ‖Pmw∗‖2H

∣∣∣+
+
∣∣∣L̂(Pmw∗)− L(Pmw∗)

∣∣∣+ |L(Pmw∗)− L(w∗)|+ λ‖Pmw∗‖2H (71) 1st_split_decomp

To bound the first term
∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2H

∣∣∣ we apply Lemma 3 for β̂λ and we get

L(β̂λ)− L̂(β̂λ) 6
DGCK‖Σ‖ 1

2 (1 + ‖β̂λ‖)√
n

+
D`0(K − rΣ)√

n

with K = Kλ,δ = rΣ +
√

log(1 + log2(3 + `0/λ)) + log(1/δ) as in (61).
Now since xy 6 λx2 + y2/(4λ), we can write

DGCK‖β̂λ‖‖Σ‖
1
2

√
n

6 λ‖β̂λ‖2 +
D2G2C2K2‖Σ‖

λn
(72)

hence, ∣∣∣L(β̂λ)− L̂(β̂λ)− λ‖β̂λ‖2
∣∣∣ 6 D2G2C2K2‖Σ‖

λn
+
DGCK‖Σ‖ 1

2

√
n

+
D`0(K − rΣ)√

n
, (73) bound_A_union_bound
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Term
∣∣∣L̂(β̂λ) + λ‖β̂λ‖2H − L̂(Pmw∗)− λ‖Pmw∗‖2H

∣∣∣ is less or equal than 0.

As regards term
∣∣∣L̂(Pmw∗)− L(Pmw∗)

∣∣∣, since Pm is a projection ‖Pmw∗‖ 6 ‖w∗‖, so that with probability

at least 1− δ:

∣∣∣L̂(Pmw∗)− L(Pmw∗)
∣∣∣ 6 sup

‖w‖6‖w∗‖

(∣∣∣L̂(w)− L(w)
∣∣∣)

<
D√
n

(
GC‖w∗‖‖Σ‖

1
2

(
rΣ +

√
log(4/δ)

)
+ `0

√
log(4/δ)

)
. (74) eq:6

where in the sup in the left hand side is taken over all possible Nyström points and the second inequality is
the content of Lemma 2 where the role of L and L̂ is interchanged.
Finally, term |L(Pmw∗)− L(w∗)| can be rewritten as

|L(Pmw∗)− L(w∗)| 6 G

∫
| 〈w,Pmw∗〉 − 〈w,w∗〉 |dPX(w)

6 G

(∫
| 〈w, (I − Pm)w∗〉 |2dPX(w)

) 1
2

= G 〈Σ(I − Pm)w∗, (I − Pm)w∗〉
1
2 (75) reg C term

= G‖Σ1/2(I − Pm)w∗‖H
6 G‖Σ1/2(I − Pm)‖‖w∗‖H
= G‖(I − Pm)Σ1/2‖‖w∗‖H 6 G

√
3α‖w∗‖, (76)

where the last bound is a consequence of Lemma 4 and it holds true with probability at least 1− δ.
Putting the pieces together we finally get the result in Theorem 3 by replacing δ with δ/3.

Proof of Theorem. 4. Under polynomial decay assumption (28), the claim is a consequence of Theorem 3
with Proposition 2 with β = 1/p so that

m & dα log n, dα . α−p, m � np(log n)1−p (77)

Under exponential decay assumption (29), the claim is a consequence of Theorem 3 with Proposition 3 so
that

m & dα log n, dα . log(1/α), m � log2 n (78)

Proof of Theorem 5. The proof is given by decomposing the excess risk as in (71) where Pm is replaced by
PB, (73) bounds term A, (74) bounds term B and (75) and 33 bound term C.

C Proofs of Section 5
app:theorem 4

The following proposition provides a bound on the empirical effective dimension dα(Σ̂) = Tr(Σ̂−1
α Σ̂) in terms

of the correspondent population quantity dα = Tr((Σα + α I)−1Σ).

prop: bound_emp_deff Proposition 1. Let X,X1, . . . , Xn be iid C-sub-Gaussian random variables in H. For any δ > 0 and
n > 2C2 log(1/δ), then the following hold with probability 1− δ

dα(Σ̂) 6 16dα (79)

Proof. Let Vα be the space spanned by eigenvectors of Σ with corresponding eigenvalues αj > α, and call Dα

its dimension. Notice that Dα 6 2dα since dα = Tr((Σα + α I)−1Σ) =
∑ αi

αi+α
, where in the sum we have
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Dα terms greater or equal than 1/2.
Let X = X1 +X2, where X1 is the orthogonal projection of X on the space Vα, we have

Σ̂ = Σ̂1 + Σ̂2 +
1

n

n∑
i=1

(X1,iX
>
2,i +X2,iX

>
1,i) 4 2(Σ̂1 + Σ̂2) (80)

Now, since the function g : t 7→ t
t+α is sub-additive (meaning that g(t + t′) 6 g(t) + g(t′)), denoting

dα(Σ) = Tr g(Σ) = Tr((Σα + α I)−1Σ),

dα(Σ̂) 6 2(dα(Σ̂1) + dα(Σ̂2)) (81)

and, since (Σ̂1 + α)−1Σ̂1 4 IVα ,

Tr((Σ̂α + α I)−1Σ̂) 6 2Dα +
2Tr(Σ̂2)

α
= 4dα +

2Tr(Σ̂2)

α
(82) upper_bound_emp_d

Now,

Tr(Σ̂2) =
1

n

n∑
i=1

‖X2,i‖2

It thus suffices establish concentration for averages of the random variable ‖X2‖2.
Since X is sub-Gaussian then ‖X2‖2 is sub-exponential. In fact, since X is C-sub-Gaussian then

‖〈v,X〉‖ψ2
6 C‖〈v,X〉‖L2

∀v ∈ H (83)

and given that 〈v,PX〉 = 〈Pv,X〉 with P an orthogonal projection, then also X2 is C-sub-Gaussian. Now
take ei the orthonormal basis of V composed by the eigenvectors of Σ2 = E[X2X

T
2 ], then∥∥‖X2‖2

∥∥
ψ1

=
∥∥∥∑

i

〈X2, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥〈X2, ei〉2
∥∥
ψ1

(84)

=
∑
i

‖〈X2, ei〉‖2ψ2
6 C2 ‖〈X2, ei〉‖2L2

(85)

= C2
∑
i

αi = C2Tr [Σ2] = C2E
[
‖X2‖2

]
(86)

so ‖X2‖2 is C2E
[
‖X2‖2

]
-sub-exponential. Note that E‖X2‖2 = E[Tr(X2X

>
2 )] = Tr(Σ2) 6 2αdα(Σ), in fact

dα =

∞∑
i=1

αi
αi + α

>
∑
i:αi<α

αi
αi + α

>
∑
i:αi<α

αi
2α

=
Tr(Σ2)

2α
(87)

Hence, we can apply then Bernstein inequality for sub-exponential scalar variables (see Theorem 2.10 in
[Boucheron et al., 2013]), with parameters ν and c given by

nE
[
‖X2‖4

]
6 4nC2α2d2

α(Σ)︸ ︷︷ ︸
ν

(88)

c = Cαdα (89)

where we used the bound on the moments of a sub-exponential variable (see [Vershynin, 2010]).
With high probability (82) becomes

dα(Σ̂) 6 8dα +
4Cdα

√
2 log(1/δ)√
n

+
2Cdα log(1/δ)

n
6 16dα (90)

for n > 2C2 log(1/δ).
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From [Adamczak, 2008] Theorem 4 we write a concentration inequality we will use in the following, corre-
sponding to the simplified Talagrand’s inequality in Theorem 7.5 of [Steinwart and Christmann, 2008] but
for sub-exponential random variables:

thm: Talagrand subexp Theorem 10 (Theorem 4 in [Adamczak, 2008]). Let X,X1, . . . , Xn be i.i.d. random variables with values
in a measurable space (S,B) and let F be a countable class of measurable functions f : S → R. Assume that
Ef (X) = 0 and

∥∥supf |f (X)|
∥∥
ψ1
<∞ for every f ∈ F . Let

Z = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f (Xi)

∣∣∣∣∣
and define

σ2 = sup
f∈F

Ef (X)
2
.

Then, for all τ > 0 and η > 0, we have

P

(
Z > (1 + η)EZ +

K1

∥∥supf∈F |f (X)|
∥∥
ψ1

(2 + τ)

n
+

√
3(1 + τ)σ2

n

)
6 e−τ (91)

where K1 = K1(δ, η).

Similarly to [Steinwart and Christmann, 2008], we define the quantity

gw,r :=
hw − Ehw

λ ‖w‖2 + Ehw + r
, w ∈ H, r > 0 (92) def: g_w,r

(notice that in [Steinwart and Christmann, 2008] they define −gw,r).
Our plan is to apply Theorem 10 to gŵ0,r, with ŵ0 ∈ Bm ⊆ H and ‖ŵ0‖ 6 ‖w∗‖.

cor: Talagrand Corollary 3. Under the hypothesis of Theorem 10, for all τ > 0 we have

sup
w∈H,‖w‖6‖w∗‖

Êhw − Ehw
λ ‖w‖2 + Ehw + r

<2ED∼Pn sup
w∈H,‖w‖6‖w∗‖

Êhw − Ehw
λ ‖w‖2 + Ehw + r

+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
(93)

Proof. In Theorem 10, we take

Z = sup
w∈H,‖w‖6R

∣∣∣∣∣ 1n
n∑
i=1

gw,r (Xi)

∣∣∣∣∣ . (94)

We have also that, using the second inequality of Lemma 7.1 in [Steinwart and Christmann, 2008] and taking
θ > 0, q := 2

2−θ , q′ := 2
θ , a := r, and b := Ehw 6= 0:

Eg2
w,r 6

Eh2
w(

λ ‖w‖2 + Ehw + r
)2 6

(2− θ)2−θθθEh2
w

4r2−θ (Ehw)
θ

6 V rθ−2 = σ2
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Moreover,∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|gw,r (X)|

∥∥∥∥∥
ψ1

=

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

∣∣∣∣∣ hw (X)− Ehw
λ ‖w‖2 + Ehw + r

∣∣∣∣∣
∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|hw − Ehw (X)|

∥∥∥∥∥
ψ1

=
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )− E[`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )]|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥ sup
w∈H,‖w‖6‖w∗‖

|`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )|+ sup
w∈H,‖w‖6‖w∗‖

|E[`(〈w,X〉 , Y )− `(〈w∗, X〉 , Y )]|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥∥∥G sup
w∈H,‖w‖6‖w∗‖

|〈w − w∗, X〉|+G sup
w∈H,‖w‖6‖w∗‖

E |〈w − w∗, X〉|

∥∥∥∥∥
ψ1

6
1

r

∥∥∥2G ‖w∗‖ ‖X‖+ 2G ‖w∗‖E ‖X‖
∥∥∥
ψ1

=
2G ‖w∗‖

r

∥∥∥ ‖X‖+ E ‖X‖
∥∥∥
ψ1

6
2G ‖w∗‖

r

∥∥∥ ‖X‖+ E ‖X‖
∥∥∥
ψ2

6
2G ‖w∗‖ (C

√
2TrΣ + E ‖X‖)
r

where last inequality derives from the fact that ‖X‖ is sub-Gaussian since, given an orthonormal basis ei,∥∥ ‖X‖ ∥∥2

ψ2
6
∥∥ ‖X‖2 ∥∥

ψ1
=
∥∥∥∑

i

〈X, ei〉2
∥∥∥
ψ1

6
∑
i

∥∥∥〈X, ei〉2∥∥∥
ψ1

6 2
∑
i

‖〈X, ei〉‖2ψ2
6 2C2 ‖〈X, ei〉‖2L2

= 2C2 Tr [Σ]

Applying Theorem 10 with η = 1 we get the result.

We now adapt Theorem 7.23 in [Steinwart and Christmann, 2008] to our setting:

thm: adaptation thm 7.23 Theorem 11. Under assumptions 1, 2, 4 and 3, the covariance matrix satisfies the polynomial decay condition
(28), and the Bernstein conditions (37)–(38) hold true. Fix a closed subspace F̂ of H and set

wF̂,λ = argmin
w∈F̂

(
L̂(w) + λ‖w‖2

)
λ > 0. (95) eq:34

Choose ŵ0 ∈ F̂ , fix δ > 0, then with probability at least 1− δ

λ‖ŵF,λ‖2 + L(ŵclF,λ)− L(f∗) 6 7
(
λ ‖ŵ0‖2 + L(ŵ0)− L(f∗)

)
+K3

(
a2p

λpn

) 1
2−p−ϑ+ϑp

+

+ 2

(
72V log(3/δ)

n

) 1
2−ϑ

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(96) fast rate thm 7.23 application

where the constant a only depends on (28) and K3 > 1 only depends on p,M,B, ϑ, and V .

Proof. The proof mimics the one of Theorem 7.23 [Steinwart and Christmann, 2008], with some major
differences.
We start recalling that Theorem 15 in [Steinwart et al., 2009] shows that that the decay condition (28) is
equivalent to condition (7.48) of Theorem 7.23, which is given in terms of entropy numbers ej , see Lemma 8.
Note that the constant a is defined by the bound (7.48). Using this remark, the above assumptions let
us upper bound the empirical Rademacher complexity of Hr in term of a function ϕn(r) defined as in
[Steinwart and Christmann, 2008] (see pag. 267). Thus, the result comes from the application of Steinwart’s
Theorem 7.20, with the key difference that our X is not bounded but sub-Gaussian and that ŵ0 here is not
deterministic but depends on the data.
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As a consequence, in order to control the quantity Êhŵ0
−Ehŵ0

we cannot simply apply a Bernstein’s inequality
for sub-Gaussian but we need to use the more refined Corollary 3. In particular, we mimic the reasoning to
derive [Steinwart and Christmann, 2008, eq. (7.44)], but where Talagrand’s inequality for bounded random
variables is replaced by our Theorem 10 for sub-exponential ones and in the specific case of Corollary 3.
We split the error as in [Steinwart and Christmann, 2008, eq. (7.39)],

λ ‖ŵλ‖2 + Ehŵclλ 6 (λ ‖ŵ0‖2 + Ehŵ0
) + (Êhŵ0

− Ehŵ0
) + (Ehŵclλ − Êhŵclλ ) (97) eq: split 7.20

and we start with controlling the term Êhŵ0
− Ehŵ0

.
Exploiting the definition of gw,r in (92), we know that for all the w ∈ H with ‖w‖ 6 ‖w∗‖ and r > 0 we can
apply Corollary 3. In particular, since ŵ0 ∈ Bm ⊆ H, the bound in the Corollary is valid also for ŵ0, i.e

Êhŵ0
− Ehŵ0

λ ‖ŵ0‖2 + Ehŵ0
+ r

<2ED∼Pn
Êhŵ0

− Ehŵ0

λ ‖ŵ0‖2 + Ehŵ0
+ r

+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
. (98)

Using symmetrization (see Prop. 7.10 in [Steinwart and Christmann, 2008]) we have

ED∼Pn sup
w∈Bm,r,‖w‖6‖w∗‖

∣∣∣Êhw − Ehw
∣∣∣ 6 ED∼Pn sup

w∈Hr,‖w‖6‖w∗‖

∣∣∣Êhw − Ehw
∣∣∣

6 2ED∼PnR̂ad(Hr, n) 6 2ϕn(r). (99)

Peeling by Steinwart’s Theorem 7.7 together with Hr = {w ∈ H : λ ‖w‖2 + Ehw 6 r} hence gives

ED∼Pn sup
w∈Bm,‖w‖6‖w∗‖

∣∣∣Êgw,r∣∣∣ 6 ED∼Pn sup
w∈H,‖w‖6‖w∗‖

∣∣∣Êgw,r∣∣∣ 6 8ϕn(r)

r
(100)

Putting all together we get w.h.p.

Êhŵ0
− Ehŵ0

< (λ ‖ŵ0‖2 + Ehŵ0
)

(
10ϕn(r)

r
+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr

)

+ 10ϕn(r) +

√
3V (1 + τ)rθ

n
+ 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
(101)

As regards the term Ehwclλ − Êhwclλ we proceed as in [Steinwart and Christmann, 2008]. We finally obtain,

for ŵ0 ∈ Bm with ‖ŵ0‖ 6 ‖w∗‖ and with r > r∗Bm > r∗H, w.h.p.

λ ‖ŵλ‖2 + Ehŵclλ <
(
λ ‖ŵ0‖2 + Ehŵ0

)
+

+ (λ ‖ŵ0‖2 + Ehŵ0
)

(
10ϕn(r)

r
+

√
3V (1 + τ)

nr2−θ + 2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr

)
+

+ 10ϕn(r) +

√
3V (1 + τ)rθ

n
+ 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
+

+
(
λ ‖ŵλ‖2 + Ehŵclλ

)(10ϕn(r)

r
+

√
2V τ

nr2−θ +
28Bτ

3nr

)

+ 10ϕn(r) +

√
2V τrθ

n
+

28Bτ

3n
(102)

which replaces (7.44) in [Steinwart and Christmann, 2008].

Observe now that r > 30ϕn(r) implies 10ϕn(r)r−1 6 1/3 and 10ϕn(r) 6 r/3. Moreover, r >
(

72V (1+τ)
n

)1/(2−θ)

yields (
2V τ

nr2−θ

)1/2

6
1

6
and

(
2V τrθ

n

)1/2

6
r

6
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and (
3V (1 + τ)

nr2−θ

)1/2

6
1

4
and

(
2V (1 + τ)rθ

n

)1/2

6
r

4

In addition n > 72(1 + τ), V > B2−θ, and r >
(

72V (1+τ)
n

)1/(2−θ)
imply

28Bτ

3nr
=

7

54
· 72τ

n
· B
r

6
7

54
·
(

72τ

n

) 1
2−θ

· V
1

2−θ

r
6

7

54

and 28Bτ
3n 6 7r

54 . Finally r > 8GK1 ‖w∗‖ (C
√

2TrΣ+E‖X‖)(2+τ)
n gives

2GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

nr
6

1

4
and 2GK1 ‖w∗‖

(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
6
r

4

We finally obtain

λ ‖ŵλ‖2 + Ehŵclλ <
11

6

(
λ ‖ŵ0‖2 + Ehŵ0

)
+

79

54
r + ε+

17

27

(
λ ‖ŵλ‖2 + Ehŵclλ

)
6 5

(
λ ‖ŵ0‖2 + Ehŵ0

)
+ 2r (103)

with

r > max

{
30ϕn(r),

(
72V τ

n

) 1
2−ϑ

, 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n
, r∗H

}

remark: w_la Remark 4. Notice that the same reasoning can be applied in Section 5 in the more general framework where

w∗ does not exist. In that case w∗ will be replaced by wλ := arg minw∈H L(w) + λ‖w‖2, with ‖wλ‖ 6
√
A(λ)
λ .

We are now ready to prove our main result:

Proof of Theorem 6, polynomial decay. Applying Theorem 11 in the general case of Remark 4, with the
choice F̂ = Bm and ŵ0 = PBmwλ, we rewrite (96) as:

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+ 2
(72V log(3/δ)

n

) 1
2−θ

+

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

= 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(wλ) + L(wλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

6 7(L(PBmwλ)− L(wλ) + λ‖wλ‖2 + L(wλ)− L(f∗)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+

+ 2
(72V log(3/δ)

n

) 1
2−θ

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

= 7A(λ) + 7(L(PBmwλ)− L(wλ)) +K3

( a2p

λpn

) 1
2−p−θ+θp

+ 2
(72V log(3/δ)

n

) 1
2−θ

+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(104) eq:39
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where we used the fact that ‖wλ‖ 6
√
A(λ)/λ.

We can deal with the term L(PBmwλ)−L(wλ) as in (75) (but where we use Lemma 4 instead of Lemma 7 in
[Rudi et al., 2015] to exploit sub-Gaussianity), so that for α & n−1/p with probability greater than 1− δ

L(PBmwλ)− L(wλ) 6 K2G
√
α ‖wλ‖ 6 K2G

√
α

√
A(λ)

λ
(105) eq:40

for some universal constant K2 > 0. We finally obtain with probability greater than 1− 2δ:

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(f∗) 6 7A(λ) + 7K2G

√
αA(λ)

λ
+K3

( a2p

λpn

) 1
2−p−θ+θp

+ 2
(72V log(3/δ)

n

) 1
2−θ

+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(106)

which proves the first claim.

The following corollary provides the optimal rates.

optimal_rates Corollary 4. Fix δ > 0. Under the Theorem 6 and the source condition

A(λ) 6 A0λ
r

for some r ∈ (0, 1], set

λ � n−min{ 2
r+1 ,

1
r(2−p−θ+θp)+p} (107) eq:3a

α � n−min{2, r+1
r(2−p−θ+θp)+p} (108) eq:3b

m & nmin{2p, p(r+1)
r(2−p−θ+θp)+p} (109) eq:3c

with probability at least 1− 2δ:

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(f∗) . n−min{ 2r
r+1 ,

r
r(2−p−θ+θp)+p} (110)

Proof. Lemma 4 with Proposition 2 gives

m & dα log(n/δ), dα . α−p α � log1/p(n/δ)

m1/p
(111)

Lemma A.1.7 in [Steinwart and Christmann, 2008] with r = 2, 1/γ = (2− p− θ + θp), α = p, β = r shows
that the choice of λ, α and m given by (107)–(109) provides the optimal rate.

Notice that α � n−min{2, r+1
r(2−p−θ+θp)+p} is compatible with condition α & dα � n−1/p in Lemma 4.

Proof of Corollary 1. The proof mimics the proof of Theorem 6 where in (96) we choose ŵ0 = PBmw∗
Hence (96) with θ = 1 reads

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 7(λ‖PBmw∗‖2 + L(PBmw∗)− L(w∗)) +K3
a2p

λpn
+ 144V

log(3/δ)

n
+

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

6 7λ‖w∗‖2 + 7(L(PBmw∗)− L(w∗)) +K3
a2p

λpn
+ 144V

log(3/δ)

n
+

+ 16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(112)

We can deal wit h the term L(PBmw∗) − L(w∗) as in (75), so that for α & n−1/p with probability greater
than 1− δ

L(PBmw∗)− L(w∗) 6 K2G
√
α ‖w∗‖
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for some K2 > 0. Hence, with probability at least 1− 2δ:

λ‖β̂λ,m‖2 + L(β̂clλ,m)− L(w∗) 6 7λ‖w∗‖2 + 7K2G
√
α‖w∗‖+K3

a2p

λpn
+ 144V

log(3/δ)

n
+

16GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
(113)

which proves the claim.

The following corollary provides the optimal rates, whose proof is the same as for Corollary 4

cor:optimal Corollary 5. Fix δ > 0. Under the Theorem 1 set

λ � n−
1

1+p (114) eq:4a

α � n−
2

1+p (115) eq:4b

m & n
2p

1+p log n (116) eq:4c

then, for ALS sampling, with probability at least 1− 2δ:

λ‖β̂λ,m‖2H + L(β̂clλ,m)− L(w∗) . ‖w∗‖
( 1

n

) 1
1+p

(117)

Notice that α � n−
2

1+p is compatible with condition α & dα � n−1/p in Lemma 4.

C.1 Excess risk under exponential decay

As regards exponential decay, given the discussion in Appendix E, we have a different bound on the empirical

Rademacher complexity of Hr. In particular, we obtain ϕn(r) := C1

√
V
n log2

(
1
λ

)√
r + C2

log2
2(1/λ)
n and we

modify Theorem 11 in the case of exponential decay using the following Lemma:

lem: exp decay Lemma 5. When

r = C3
log2

2(1/λ)

n
+

(
72V τ

n

) 1
2−ϑ

+ 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n

we have

r > max

{
30ϕn(r),

(
72V τ

n

) 1
2−ϑ

, 8GK1 ‖w∗‖
(C
√

2TrΣ + E ‖X‖)(2 + τ)

n

}
We can finally prove the second part of Theorem 6 under exponential decay:

Proof of Theorem 6, exponential decay. We follow exactly the proof of Theorem 11 for polynomial decay
presented above in the previous subsection, but using the estimate in Lemma 5 for r:

L(β̂clλ,m)− L(f∗) .
log2(1/λ)

n
+

√
αA(λ)

λ
+
( log(3/δ)

n

) 1
2−θ

+
log(3/δ)

n

√
A(λ)

λ
+A(λ).

D Proofs of Section 6

D.1 Square loss
app: square

We report in this section the proofs of Theorem 7.
As mentioned above, in the case where w∗ does not exists, the assumption of sub-Gaussianity is necessary to
get fast rates:
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Proof of Theorem 7. The proof follows the one of Theorem 6 in Appendix C with some differences coming
from the fact that we are working now with the square loss. Since Theorem 11 works also with locally
Lipschitz loss functions we have:

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

= 7(Lλ(PBmwλ)− Lλ(wλ) + Lλ(wλ)− L(f∗)) +K3
a2p

λpn
+

+ 2
72V log(3/δ)

n
+ 16GK1

(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

= 7A(λ) + 7(Lλ(PBmwλ)− Lλ(wλ)) +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(118)

Using the fact that Lλ is quadratic and expanding around the the minimum wλ we have

Lλ(Pmwλ)− Lλ(wλ) = ‖(Σ + α)1/2(I − Pm)wλ‖2 (119)

Using Lemma 4 we get the result

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7A(λ) + 7‖(Σ + α)1/2(I − Pm)wλ‖2 +K3
a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ

. 7A(λ) + 7α
A(λ)

λ
+K3

a2p

λpn
+ 2

72V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
(120)

Furthermore, if there exists r ∈ (0, 1] such that A(λ) . λr, then with the choice for ALS sampling

λ � n−min{ 2
r+1 ,

1
r+p}

α � n−min{ 2
r+1 ,

1
r+p}

m & nmin{ 2p
r+1 ,

p
r+p} log n

with high probability

L(β̂clλ,m)− L(f∗) . n−min{ 2r
r+1 ,

r
r+p}.

D.2 Logistic Loss
app: logistic

Since logistic loss is not clippable, we prove how the modification of the definition of the clipping in (49) and
the similar treatment of the projection term, up to constants, between square and logistic losses asymptotically
lead to the same excess risk bounds. We start adjusting the proof of Theorem 11.
As explained in subsection 6.2, let’s note that we have hf (X)− hclf (X) + 1

n > 0. Therefore we can simply
rewrite the splitting of the error (97) as

λ ‖ŵλ‖2 + Ehŵclλ 6 (λ ‖ŵ0‖2 + Ehŵ0
) + (Êhŵ0

− Ehŵ0
) + (Ehŵclλ − Êhŵclλ ) +

1

n
. (121)
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Clearly last term 1/n does not spoil the rate and we can proceed as for square loss:

λ‖β̂λ,m‖2 + L(β̂clλ,m)−L(f∗) 6 7(λ‖PBmwλ‖2 + L(PBmwλ)− L(f∗)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1 ‖wλ‖
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n
+

1

n

= 7(Lλ(PBmwλ)− Lλ(wλ) + Lλ(wλ)− L(f∗)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
+

1

n

= 7A(λ) + 7(Lλ(PBmwλ)− Lλ(wλ)) +K3
a2p

λpn
+

144V log(3/δ)

n
+

+ 16GK1
(C
√

2TrΣ + E ‖X‖)(2 + log(3/δ))

n

√
A(λ)

λ
+

1

n
(122)

To deal with the projection term Lλ(PBmwλ)− Lλ(wλ) we do a Taylor expansion

Lλ(PBmwλ)− Lλ(wλ) =
1

2
〈(HL)(w′)(PBmwλ − wλ), (PBmwλ − wλ)〉 (123) eq: taylor logistic

where w′ = wλ + t(PBmwλ − wλ) with t ∈ [0, 1] and using the fact that ∇Lλ(wλ) = 0. We can find the
expression of the Hessian H of L in w ∈ H exploiting its definition

〈(HL)(w)v, v〉 =
d2

dt2
L(w + tv)|t=0 =

d

dt
E [`′(〈w + tv,X〉, Y )〈v,X〉] |t=0

= E
[
`′′(〈w + tv,X〉, Y )(〈v,X〉)2

]
|t=0 6ME

[
〈v,X〉2

]
(124) eq: hessian logistic

where M = supτ∈R,y∈Y `
′′(τ, y) and v ∈ H. For the logistic loss we have

`′′(τ, y) = σ(yτ)(1− σ(yτ)) 6
1

4
, ∀τ ∈ R, y ∈ Y

where σ(·) is the sigmoid which is upper bounded by 1. So combining this result with (124) and considering

Lλ(·) = L(·) + λ ‖·‖2 we get
(HLλ)(w) 6 Σλ.

Finally we can rewrite (123) as

Lλ(PBmwλ)− Lλ(wλ) 6
1

2

∥∥∥Σ
1/2
λ (PBmwλ − wλ)

∥∥∥2

(125)

and proceed exactly as in the case of the square loss (see appendix D.1).

E Entropy Numbers and Exponential Decay
app: entropy

We analyse here the main steps needed to obtain the results for exponential decay in Theorem 3 and
Theorem 6.

E.1 Entropy numbers in Hilbert spaces

Let H and K be real Hilbert spaces. For all n ∈ N, n > 1

sup
16k<∞

(
n−1/k

(
Πk
`=1a`(T )

)1/k)
6 εn(T ) 6 14 sup

16k<∞

(
n−1/k

(
Πk
`=1a`(T )

)1/k)
(126) eq: entropy1
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where εn(T ) are the entropy numbers, see (3.4.15) of [Carl and Stephani, 1990].
Let X be a random variable on a probability space (Ω,F ,P) taking value in a real Hilbert space H such that
E
[
|〈X, v〉|2

]
is finite for all v ∈ H. Define

T : H → L2(Ω,P) T (v)(ω) = 〈X(ω), v〉

so that Σ = T ∗T is (non-centered) covariance matrix. We assume that Σ is a trace-class operator and the
corresponding eigenvalues have an exponential decay

Σ =

+∞∑
n=1

λn(Σ)vn ⊗ vn λn(Σ) ' 2−2an

where (vn)n is a base of H. Since Σ is trace-class, S is compact, so that by (126)

en(T ) ' sup
16k<∞

2−(n−1)/k
(
Πk
`=1an(T )

)1/k
with en(T ) = ε2n−1(T ) the (dyadic) entropy numbers and where by [Carl and Stephani, 1990]

an(T ) = an(|T |) = λn(|T |) = λn(Σ)1/2 ' 2−an.

We have
2−(n−1)/k

(
Πk
`=12−a`

)1/k
= 2−(n−1

k +
a(k+1)

2 ).

Observe that the minimum on (0,+∞) of the function

f(x) =

(
n− 1

x
+
ax

2

)
is f(

√
2(n− 1)/a) =

√
2a(n− 1), then

en(T ) ' 2−
√
an.

E.2 Entropy numbers of Fr
Given the above calculation we want to upper bound the entropy number of Fr, we recall here some definitions:

Hr :=
{
f ∈ H : Υ(f) + L(f cl)− L(f∗) 6 r

}
r > r∗

Fr :=
{
` ◦ f cl − ` ◦ f∗ : f ∈ Hr

}
r > r∗

Using the above discussion we obtain

ei(Fr) 6 Gei(Hr) 6 G

√
r

λ
ei(BH) = G

√
r

λ
2−c
√
i

E.3 Bound the Rademacher Complexity of Fr
Now we are ready to upper bound the empirical Rademacher Complexity R̂ of Fr:

Lemma 6.

R̂ (Fr) 6
√

log 16

n
log

(
1

λ

)
(3ρ+ 2c3

√
r) (127)

where ρ = supf∈Fr ‖f‖L2(D) and ‖f‖L2(D) :=
(

1
m

∑
i f

2 (xi)
)1/2

.
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Proof. Using Theorem 7.13 in [Steinwart and Christmann, 2008], we have

R̂ (Fr) 6
√

log 16

n

( ∞∑
i=1

2i/2e2i
(
Fr ∪ {0}, ‖ · ‖L2(D)

)
+ sup
f∈Fr

‖f‖L2(D)

)

It is easy to see that ei (Fr ∪ {0}) 6 ei−1 (Fr) and e0 (Fr) 6 supf∈Fr ‖f‖L2(D). Since ei (Fr) is a decreasing
sequence with respect to i, together with the lemma above, we know that

ei (Fr) 6 min

{
sup
f∈Fr

‖f‖L2(D),

√
2r

λ
2−c
√
i

}

Even though the second one decays exponentially, it may be much greater than the first term when 2r/λ is
huge for small i s. To achieve the balance between these two bounds, we use the first one for first T terms in
the sum and the second one for the tail. So

R̂ (Fr) 6
√

log 16

n

(
sup
f∈Fr

‖f‖L2(D)

T−1∑
i=0

2i/2 +

√
2r

λ

∞∑
i=T

2i/22−c
√

2i−1

)

The first sum is
√

2
T−1√
2−1

. When T is large enough, the second sum is upper bounded by the integral

∫ ∞
T

2x/22−c
√

2i−1 dx 6
∫ ∞
T

2x/22−c2
√

2i dx 6
2−c2

√
2T+1

c2 log2(2)
(128)

6 c32−c2
√

2T (129)

To make the form simpler, we bound
√

2
T−1√
2−1

by 3 · 2T/2, and denote suph∈Fr ‖h‖L2(D) by ρ. Taking T to be

log2

(
c24 log2

2

(
1

λ

))
,

with c4 such that c2c4 > 1/2, we get the upper bound of the form

R̂ (Fr) 6
√

log 16

n

(
3ρ log

(
1

λ

)
+ c3

√
2r

λ
λc2c4

)
6

√
log 16

n
log

(
1

λ

)
(3ρ+ 2c3

√
r)

Now we can directly compute the upper bound for the population Rademacher Complexity R (Fr) by taking
expectation over D ∼ Pm:

Lemma 7.

R (Fr) 6 C1

√
V

n
log2

(
1

λ

)√
r + C2

log2
2(1/λ)

n
(130)

where C1 and C2 are two absolute constants.

Proof.

R (Fr) = E[R̂ (Fr)] 6
√

(log 16)

n
log2

(
1

λ

)(
3E sup

f∈Fr
‖f‖L2(D) + 2c3

√
r

)
(131)

By Jensen’s inequality and Corollary A.8.5 in [Steinwart and Christmann, 2008], we have

E sup
f∈Fr

‖f‖L2(D) 6

(
E sup
f∈Fr

‖f‖2L2(D)

)1/2

6

(
E sup
f∈Fr

1

m

m∑
i=1

f2 (xi, yi)

)1/2

6
(
σ2 + 8R (Fr)

)1/2
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where σ2 := Ef2. When σ2 > R (Fr) , we have

R (Fr) 6
√

log 16

n
log2

(
1

λ

)
(9σ + 2c3

√
r) (132)

6

√
log 16

n
log2

(
1

λ

)
(9
√
V rθ + 2c3

√
r) (133)

6 c5

√
V

n
log2

(
1

λ

)√
r (134)

The second inequality is because Ef2 6 V (Ef)θ and Ef 6 r for f ∈ Fr. When σ2 6 R (Fr) , we have

R (Fr) 6
√

log 16

n
log2

(
1

λ

)(
9
√
R (Fr) + 2c3

√
r
)

6 (9 + 2c3)c3

√
log 16

n
log2

(
1

λ

)√
r + (9 + 2c3)2 (log 16) log2

2(1/λ)

n

The last inequality can be obtained by dividing the formula into two cases, either R (Fr) < r or R (Fr) > r
and then take the sum of the upper bounds of two cases. Combining all these inequalities, we finally obtain
an upper bound

R (Fr) 6 C1

√
V

n
log2

(
1

λ

)√
r + C2

log2
2(1/λ)

n

where C1 and C2 are two absolute constants.

F Known results
app: known results

For sake of completeness we recall the following known results, we freely use in the paper.
The following two results provide a tight bound on the effecticbe dimension under the assumption of a

polynomial decay or an exponential decay of the eigenvalues σj of Σ from [Caponnetto and De Vito, 2007].
We report the proofs for sake of completeness.

prop: eig polynom decay Proposition 2 (Proposition 3 in [Caponnetto and De Vito, 2007]).
If for some γ ∈ R+ and 1 < β < +∞

σi 6 γi−β

then

dα 6 γ
β

β − 1
α−1/β (135)

Proof. Since the function σ/(σ + α) is increasing in σ and using the spectral theorem Σ = UDU∗ combined
with the fact that Tr(UDU∗) = Tr(U(U∗D)) = TrD

dα = Tr(Σ(Σ + αI)−1) =

∞∑
i=1

σi
σi + α

6
∞∑
i=1

γ

γ + iβα
(136)

The function γ/(γ + xβα) is positive and decreasing, so

dα 6
∫ ∞

0

γ

γ + xβα
dx

= α−1/β

∫ ∞
0

γ

γ + τβ
dτ

6 γ
β

β − 1
α−1/β (137)

since
∫∞

0
(γ + τβ)−1 6 β/(β − 1).
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prop: eig exp decayprop:Exponential eigenvalues decay Proposition 3 (Exponential eigenvalues decay).
If for some γ, β ∈ R+σi 6 γe−βi then

dα 6
log(1 + γ/α)

β
(138)

Proof.

dα =

∞∑
i=1

σi
σi + α

=

∞∑
i=1

1

1 + α/σi
6
∞∑
i=1

1

1 + α′eβi
6
∫ +∞

0

1

1 + α′eβx
dx (139) exp decay

where α′ = α/γ. Using the change of variables t = eβx we get

(139) =
1

β

∫ +∞

1

1

1 + α′t

1

t
dt =

1

β

∫ +∞

1

[1

t
− α′

1 + α′t

]
dt =

1

β

[
log t− log(1 + α′t)

]+∞
1

=
1

β

[
log
( t

1 + α′t

)]+∞
1

=
1

β

[
log(1/α′) + log(1 + α′)

]
(140)

So we finally obtain

dα 6
1

β

[
log(γ/α) + log(1 + α/γ)

]
=

log(1 + γ/α)

β
(141)

The following result provides a bound on the entropy number and it is the content of Theorem 15 in
[Steinwart et al., 2009]. We recall that, given a bounded operator A between two Hilbert spaces H1 and H2,

we denote by ej(A) the (dyadic) entropy numbers of A and by P̂H = 1
n

∑n
i=1 δxi the empirical (marginal)

measure associated with the input data xi, . . . , xn. Regard the data matrix X̂ as the inclusion operator
id : H → L2(P̂ )

(idw)(xi) = 〈w, xi〉 i = 1, . . . , n

entropy Lemma 8. Let p ∈ (0, 1). Then

EP̂ [ej(id : H → L2(P̂ ))] ∼ j−
1
2p (142)

if and only if

σj ∼ j−
1
p (143) decad lemma equiv

As regard results in Section 7, from [Bartlett et al., 2006] we report the following lemma:

lem: from0-1_to_surr Lemma 9. For any nonnegative loss function φ, any measurable f : H → R, and any probability distribution
on H× {±1}

ψ
(
L0−1(f)− L∗0−1

)
6 Lφ(f)− L∗φ.

In particular, for square, hinge and logistic losses we can write

• square loss: L0−1(f)− L∗0−1 6
√
Lsquare(f)− L∗square,

• hinge loss: L0−1(f)− L∗0−1 6 Lhinge(f)− L∗hinge,

• logistic loss: L0−1(f)− L∗0−1 6 2
√
Llogistic(f)− L∗logistic.

Under the assumption of low noise we can improve the above bounds in Lemma 9:

lem: class risk wirh gamma Lemma 10 (Theorem 3 in [Bartlett et al., 2006]). Suppose that P has noise exponent 0 6 γ 6 1, and that
φ is classification-calibrated (which is the case for square, hinge and logistic losses). Then there is a c > 0
such that for any f : X → R

c
(
L0−1(f)− L∗0−1

)γ
ψ

((
L0−1(f)− L∗0−1

)1−γ
2c

)
6 Lφ(f)− L∗φ

where ψ(x) = x2 when φ is the square loss, ψ(x) = x when φ is the hinge loss and ψ(x) > x
2 when φ is the

logistic loss.
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We copy also this results from [Steinwart and Christmann, 2008], linking the variance bound in Assumption 7
with low noise condition in Assumption 8 for hinge loss:

lem: lownoise_bernst Lemma 11. [Theorem 8.24 [Steinwart and Christmann, 2008]] (Variance bound for the hinge loss). Let P
be a distribution on X × Y that has noise exponent γ ∈ [0, 1]. Moreover, let f∗ : X → [−1, 1] be a fixed Bayes
decision function for the hinge loss `. Then, for all measurable f : X → R, we have

E
(
` ◦ f cl − ` ◦ f∗

)2
6 6c

(
E
(
` ◦ f cl − ` ◦ f∗

))γ
where c is the constant appearing in (50).

G Experiments: datasets and tuning
appexp

Here we report further information on the used data sets and the set up used for parameter tuning.
For Nyström SVM with Pegaos we tuned the kernel parameter σ and λ regularizer with a simple grid search
(σ ∈ [0.1, 20], λ ∈ [10−8, 10−1], initially with a coarse grid and then more refined around the best candidates).
An analogous procedure has been used for K-SVM with its parameters C and γ. The details of the considered
data sets and the chosen parameters for our algorithm in Table 5 and 6 are the following:
SUSY (Table 5 and 6, n = 5 × 106, d = 18): we used a Gaussian kernel with σ = 4, λ = 3 × 10−6 and
mALS = 2500, muniform = 2500.
Mnist binary (Table 5 and 6, n = 7× 104, d = 784): we used a Gaussian kernel with σ = 10, λ = 3× 10−6

and mALS = 15000, muniform = 20000.
Usps (Table 5 and 6, n = 9298, d = 256): we used a Gaussian kernel with σ = 10, λ = 5 × 10−6 and
mALS = 2500, muniform = 4000.
Webspam (Table 5 and 6, n = 3.5× 105, d = 254): we used a Gaussian kernel with σ = 0.25, λ = 8× 10−7

and mALS = 11500, muniform = 20000.
a9a (Table 5 and 6, n = 48842, d = 123): we used a Gaussian kernel with σ = 10, λ = 1 × 10−5 and
mALS = 800, muniform = 1500.
CIFAR (Table 5 and 6, n = 6× 104, d = 400): we used a Gaussian kernel with σ = 10, λ = 2× 10−6 and
mALS = 20500, muniform = 20000.

Table 6: Comparison between ALS and uniform sampling. To achieve similar accuracy, uniform sampling
usually requires larger m than ALS sampling. Therefore, even if it does not need leverage scores computations,
Nyström-Pegasos with uniform sampling can be more expensive both in terms of memory and time (in
seconds). tab:comparison

Nyström-Pegasos (ALS) Nyström-Pegasos (Uniform)

Datasets c-err t train t pred c-err t train t pred

SUSY 20.0%± 0.2% 608± 2 134± 4 20.1%± 0.2% 592± 2 129± 1
Mnist bin 2.2%± 0.1% 1342± 5 491± 32 2.3%± 0.1% 1814± 8 954± 21
Usps 3.0%± 0.1% 19.8± 0.1 7.3± 0.3 3.0%± 0.2% 66.1± 0.1 48± 8
Webspam 1.3%± 0.1% 2440± 5 376± 18 1.3%± 0.1% 4198± 40 1455± 180
a9a 15.1%± 0.2% 29.3± 0.2 1.5± 0.1 15.1%± 0.2% 30.9± 0.2 3.2± 0.1
CIFAR 19.2%± 0.1% 2408± 14 820± 47 19.0%± 0.1% 2168± 19 709± 13
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