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Abstract. Selecting the best regularization parameter in inverse problems is a classical and yet
challenging problem. Recently, data-driven approaches have become popular to tackle this challenge.
These approaches are appealing since they do require less a priori knowledge, but their theoretical
analysis is limited. In this paper, we propose and study a statistical machine learning approach,
based on empirical risk minimization. Our main contribution is a theoretical analysis, showing that,
provided with enough data, this approach can reach sharp rates while being essentially adaptive
to the noise and smoothness of the problem. Numerical simulations corroborate and illustrate the
theoretical findings. Our results are a step towards grounding theoretically data-driven approaches
to inverse problems.
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1. Introduction. Let (X , ⟨·, ·⟩X ) and (Y, ⟨·, ·⟩Y) be real separable Hilbert spa-
ces and A : X → Y a forward operator. Given A and a datum y ∈ Y, the corresponding
inverse problem is to find x∗ ∈ X solving

A(x∗) = y.

In practice, only perturbed data are typically available, that is

ŷ = y + ε, ∥ε∥Y ≤ τ,

where we considered a deterministic noise model. The above problem is often ill-posed
and, in particular, solutions might not depend smoothly on the data. Regularization
theory provides a principled approach towards finding stable solutions, see e.g. [10,
23]. First, a family of regularization operators is defined for every λ ∈ (0 + ∞):
fλ : Y → X . Then, a choice is specified for the regularization parameter λ. Ideally,
for some given discrepancy ℓ, such a choice should allow to optimally control the error
ℓ(fλ(ŷ), x∗). Classical strategies for choosing the regularization parameter are divided
in a priori, where λ = λ(τ, x∗) and a posteriori, where λ = λ(τ). A priori choices
are primarily of theoretical interest. The reason is that they allow to derive sharp
error estimates that can be shown to match corresponding lower bounds, see e.g. [23].
However, they are usually impractical since they depend on the unknown solution x∗

– or rather on its regularity properties expressed by some smoothness parameters. A
posteriori choices, such as the classic Morozov discrepancy principle [35] are adaptive
to the knowledge of the regularity properties of x∗, but still require the noise level τ .
Since in many practical scenarios this information might not be available, a number
of alternative strategies have been proposed, including generalized cross-validation
[25, 47], quasi-optimality criterion [6, 44], L-curve method [28], and methods based
on an estimation of the mean squared error, see e.g. [19] and references therein.

In recent years, data-driven approaches to inverse problems have received much
attention since they seem to provide improved results, while circumventing some lim-
itations of classical approaches, see [2] and references therein. The starting point of
data-driven approaches is the assumption that a finite set of pairs of data and exact
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solutions (ŷ1, x
∗
1), . . . , (ŷn, x

∗
n) is available. This training set can be used to define, or

refine, a regularization strategy to be used on any future datum ŷ for which an exact
solution is not known. This perspective has been already considered to provably learn
a regularization parameter choice. For example, in [1] a general approach is analyzed
to learn a regularizer in Tikhonov-like regularization schemes for linear inverse prob-
lems. Indeed, these results can be adapted to learn the best regularization parameter
in some cases. Another learning approach is analyzed in [18] and [31], where an un-
supervised approach is studied. A bilevel optimization perspective is taken in [24],
where some theoretical results are also given.

In this paper, we consider one of the most classical machine learning approaches,
namely empirical risk minimization (ERM). We study the regularization parameter
choice defined by the following problem,

min
λ∈Λ

1

n

n∑
i=1

ℓ(fλ(ŷi), x
∗
i )

where Λ is a suitable finite set of candidate values for λ. Our main contribution
is characterizing the error performance of the above approach. Towards this end,
we consider a statistical inverse problems framework and tackle the question with
the aid of tools from statistical learning theory [16, 46]. The theory of ERM is
well established, and the class of functions we need to consider is parameterized
by just one parameter– the regularization parameter. However, the dependence on
such a parameter is nonlinear/nonsmooth and possibly hard to characterize, making
the application of standard ERM results not straightforward. To circumvent this
challenge we borrow ideas from the literature of model selection in statistics and
machine learning [21, 27] and in particular, we adapt ideas from [12]. Our theoretical
analysis shows that the ERM approach for learning the best regularization parameter
can essentially achieve the same performance of an ideal a-priori choice. As we will
see, this is true up to an error term, which decreases fast with the size of the training
set. General results are illustrated considering several inverse problems scenarios. In
particular, we discuss the case of linear inverse problems with spectral regularization
methods and Tikhonov regularization with general convex regularizers in Sections 3
and 5 respectively. Also, we consider non-linear inverse problems in Hilbert spaces
and the corresponding Tikhonov regularization in Section 4. The theoretical results
are illustrated through numerical experiments in Section 6 for spectral regularization
methods and sparsity promoting norms.

Notation. In the following, we assume that (Ω, P ) is a probability space. Ran-
dom variables will be denoted in capital letters. Given an element x in a Hilbert space
(X , ⟨·, ·⟩X ), ∥x∥X denotes the corresponding norm, i.e. ∥x∥X =

√
⟨x, x⟩X . Moreover,

if (Y, ⟨·, ·⟩Y) is also a Hilbert space, we denote L(X , Y) the space of linear opera-
tors between X and Y. Moreover, given A ∈ L(X , Y), we denote by A∗ its adjoint
operator and, if A is injective, by A−1 its inverse. With ∥ · ∥op we denote the oper-
ator norm. Finally, the subdifferential of a proper, convex and lower semicontinuous
function f : X 7→ R ∪ {+∞} is the set-valued operator ∂f : X → 2X defined by

x 7→ {u ∈ X | for every y ∈ X , f(x) + ⟨y − x, u⟩X ≤ f(y)}.

2. Learning one parameter functions. In this section, we derive statistical
learning results to learn functions parameterized by one parameter. In particular, in
the context of learning in inverse problems, this will be the regularization parameter.
For the time being, we consider an abstract learning framework.
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LEARNING THE OPTIMAL REGULARIZATION PARAMETER 3

Let (Y,X) be a pair of random variables with values in Y ×X and let (Yi, Xi)
n
i=1

be n identical and independent copies of (Y,X). For λ ∈ (0,+∞), let fλ : Y → X be
a family of measurable functions parametrized by λ. Given a measurable loss function
ℓ : X × X → [0,+∞), for all measurable functions f : Y → X consider the expected
risk

L(f) = E[ℓ(f(Y ), X)].

and the empirical risk

L̂(f) =
1

n

n∑
i=1

ℓ(f(Yi), Xi).

Moreover, for some N ∈ N, define Λ, the finite grid of regularization parameters, as

(2.1) Λ = {λ1, . . . , λN}

with 0 < λ1 ≤ λ2 · · · ≤ λN < ∞. Considering the empirical risk minimization (ERM),
we let

(2.2) λ̂Λ ∈ arg min
λ∈Λ

L̂(fλ).

We aim at characterizing L(fλ̂Λ
), namely the expected risk corresponding to the

regularization parameter chosen accordingly to the rule in (2.2). An idea would be to
compare it directly to minλ∈(0,+∞) L(fλ). Instead, as discussed next, we assume that
a suitable error bound minλ L(fλ) ≤ U(λ∗) is available, and then we compare L(fλ̂Λ

)
to U(λ∗). Next, we list and comment the main assumptions.

assumption 1. The loss function ℓ is bounded by a constant M > 0.

In the following, we will consider loss functions defined by classic discrepancy errors
in inverse problems. In particular, we focus on Hilbertian norms, see Sections 3 and
4, and Bregman divergences associated with convex functionals, see Section 5. While
none one of these examples are bounded, since we will assume X to be almost surely
bounded, a bounded loss will be obtained by composing the discrepancy with suitable
truncation operators.

assumption 2. There exists U : (0,+∞) → (0,+∞) such that, for every λ ∈
(0,+∞),

(2.3) L(fλ) ≤ U(λ).

Moreover, there exists λ∗ > 0 such that

(2.4) λ∗ ∈ arg min
λ∈(0,+∞)

U(λ).

Finally, there exists a non decreasing function C : [1,+∞) → [0,+∞) such that, for
all q ≥ 1,

(2.5) U(qλ∗) ≤ C(q)U(λ∗).

The main reason for the above assumption is to avoid smoothness conditions on the
dependence of fλ on λ which are required in classic studies of ERM, see e.g. [16]. This
assumption might seem unusual for a learning setting but, as shown in Sections 3, 4
and 5, it is naturally satisfied in the context of inverse problems. Moreover, this is
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the usual strategy to design a priori choices of the regularization parameter, since in
this latter setting it is often possible to derive tight bounds, in the sense that the two
quantities, L(fλ) and U(λ), have the same behaviour with respect to λ and the noise
level, and therefore minλ∈(0,+∞) L(fλ) is comparable to U(λ∗) (see e.g. [23, Chapter
4]). We make one last assumption on how large is the set of candidate values Λ.

assumption 3. Let Λ be defined as in (2.1). Assume that

(2.6) λ∗ ∈ [λ1, λN ]

and, for every j = 1, . . . , N , λj = λ1Q
j−1, where

(2.7) Q =

(
λN

λ1

) 1
N−1

.

The above assumption states that we can choose a sufficiently large interval for our
discretization so that the optimal regularization parameter λ∗ in (2.4) always falls
within the interval. This is an approximation assumption which is satisfied in practice
by taking λ1 sufficiently small (and λN sufficiently big).

Given the above assumptions, we next show that the choice λ̂Λ achieves an error
close to that of λ∗.

Theorem 1. Let Assumptions 1, 2 and 3 be satisfied and let η ∈ (0, 1). Then,
with probability at least 1 − η,

L(fλ̂Λ
) ≤ 2C(Q)U(λ∗) +

13M

2n
log

2N

η
.

The above result shows that λ̂Λ achieves an error of the same order of λ∗ up to a
multiplicative factor depending on C(Q) and a corrective term which decreases as
1/n.

From the expression (2.7), once the minimal and maximal elements of the dis-
cretization are fixed, we can see that Q ≈ 1 if N is large enough. At the same time,
taking N large has a minor effect on the bound, since the corrective term depends
logarithmically on N . In the following, we provide concrete examples in the context
of inverse problems that illustrate and instantiate the above results.

We first provide the proof of Theorem 1.

2.1. Proof of Theorem 1. We begin providing a sketch of the main steps in
the proof. The idea is to first compare the behaviour of λ̂Λ to that of

λΛ ∈ arg min
λ∈Λ

L(fλ),

which is the ideal regularization parameter choice when restricting the search to Λ.
Indeed, we prove in Lemma 1 that with high probability

L(fλ̂Λ
) ≤ 2L(fλΛ

) + c
log(2N)

n
,

for some constant c > 0. Then, in Lemma 2 we show that there exists 1 ≤ q < Q
such that

L(fλΛ
) ≤ L(fqλ∗).
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Combining the above results and using condition (2.5), we get with high probability
that

L(fλ̂Λ
) ≲ 2L(fqλ∗) +

log(2N)

n
≲ 2C(Q)U(λ∗) +

log(2N)

n
,

which is the desired result. We next provide the detailed proof. First, we introduce
the following probabilistic lemma.

Lemma 1. Under Assumption 1, for η ∈ (0, 1) we have that, with probability at
least 1 − η,

L(fλ̂Λ
) ≤ 2L(fλΛ

) +
13M

2n
log

2N

η
.

The proof is based on a classic union bound argument and the following concentration
inequality, see Proposition 11 in [12], which we report for simplicity.

Proposition 1. Let Z1, . . . Zn be a sequence of i.i.d. real random variables with
mean µ, such that |Zi| ≤ B a.s. and E[|Zi − µ|2] ≤ σ2. Then for all α, ε > 0

(2.8) P

{∣∣∣∣∣ 1n
n∑

i=1

Zi − µ

∣∣∣∣∣ ≥ ε + ασ2

}
≤ 2e−

6nαε
3+4αB .

The idea of the proof is adapted from [12].

Proof. (of Lemma 1). For λ ∈ Λ , let Zi(λ) = ℓ(fλ(Yi), Xi), i = 1, ..., n. Then,

1

n

n∑
i=1

Zi(λ) = L̂(fλ),

and
E[Zi(λ)] = L(fλ).

Moreover, since the loss is bounded by Assumption 1, then Zi(λ) ≤ M and this
implies

E[|Zi(λ)|2] = E[ℓ(fλ(Yi), Xi)ℓ(fλ(Yi), Xi)] ≤ ML(fλ).

Now, we apply (2.8) with B = M and, by recalling that E[|Zi(λ) − E[Zi(λ)]|2] ≤
E[|Zi(λ)|2], we fix σ2 = ML(fλ). We then get, for each λ ∈ Λ and for all α, ε > 0,

P
{
|L̂(fλ) − L(fλ)| ≥ ε + αML(fλ)

}
≤ 2e−

6nαε
3+4αM .

Moreover, since the probability of a union of events is less or equal than the sum of
their probabilities, we have that, for all α, ε > 0,

P

(⋃
λ∈Λ

{
|L̂(fλ) − L(fλ)| ≥ ε + αML(fλ)

})
≤ 2|Λ|e−

6nαε
3+4αM .

Now let η ∈ (0, 1). Since the above is valid for any α > 0, fix α = 1/(3M). With this

choice, let ε = 13M
6n log 2|Λ|

η . Then, with probability at least 1 − η, for all λ ∈ Λ we
have that

L̂(fλ) ≤ 4

3
L(fλ) + ε

and

L(fλ) ≤ 3

2

(
L̂(fλ) + ε

)
.
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Using the above inequalities and the definition of λ̂Λ we have that,

L(fλ̂Λ
) ≤ 3

2

(
L̂(fλ̂Λ

) + ε
)

≤ 3

2

(
L̂(fλΛ

) + ε
)

≤ 2L(fλΛ
) + 3ε.

The result follows by plugging in the expression of ε and by recalling that |Λ| = N .

Note that the above result holds under minimal assumptions. Indeed, the structural
assumptions we introduced are used to prove the following lemma.

Lemma 2. Let Assumptions 2 and 3 be satisfied and consider λ∗ as in Assumption
2. Then, there exists 1 ≤ q ≤ Q such that qλ∗ ∈ Λ and so

L(fλΛ
) ≤ L(fqλ∗).

Proof. From Assumption 3, since λ∗ ∈ [λ1, λN ], there exists j0 ∈ {2, . . . , N} such
that

λj0−1 ≤ λ∗ ≤ λj0 .

If we let q = λj0/λ∗, then qλ∗ = λj0 ∈ Λ. It is only left to prove that 1 ≤ q ≤ Q.
Given the definition of Q and the construction of Λ, if we divide the above inequalities
by λj0 , then

1

Q
≤ 1

q
≤ 1,

so that
1 ≤ q ≤ Q.

Finally, by the definition of λΛ, we get

L(fλΛ
) ≤ L(fqλ∗),

concluding the proof.

We add one final remark.

Remark 1 (Comparison with union bound combined with Hoeffding). A slightly
different estimate can be obtained using a union bound argument and a different con-
centration result, namely Hoeffiding inequality (2.10). Indeed, if we let η ∈ (0, 1), the
following bound holds with probability at least 1 − η:

(2.9) L(fλ̂Λ
) ≤ L(fλΛ

) + 2

√
M

n
log

2N

η
.

Compared to the estimate obtained in Lemma 1, the above inequality avoids the factor
2 in front of L(fλΛ). However, the dependence on the data cardinality n is considerably
worse. By using inequality (2.9) in place of Lemma 1, it is possible to derive a result
analogous to Theorem 1. Again, this allows to improve the bound by a factor of 2 while
achieving a much worse dependence on the number of data points. For completeness,
we report the proof of inequality (2.9), which is based on Hoeffding’s inequality:

(2.10) P

{∣∣∣∣∣ 1n
n∑

i=1

Zi − µ

∣∣∣∣∣ ≥ ε

}
≤ 2e−

nε2

B ,
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where B is an upper bound on the random variables Zi, as in Proposition 1. Indeed,
by adding the subtracting the empirical risks we have that,

L(fλ̂Λ
) − L(fλΛ) = L(fλ̂Λ

) − L̂(fλ̂Λ
) + L̂(fλ̂Λ

) − L̂(fλΛ) + L̂(fλΛ) − L(fλΛ)

≤ L(fλ̂Λ
) − L̂(fλ̂Λ

) + L̂(fλΛ
) − L(fλΛ

)

≤ 2 sup
λ∈Λ

|L(fλ) − L̂(fλ)|,

using the fact that the term L̂(fλ̂Λ
) − L̂(fλΛ) is negative by definition of λ̂Λ. Then,

combining (2.10) and a union bound, we get

P

{
sup
λ∈Λ

|L(fλ) − L̂(fλ)| ≥ ε

}
≤ 2Ne−

nε2

M .

Inequality (2.9) follows by setting η = 2Ne−(nε2)/M and deriving the expression for ε.

3. Spectral regularization for linear inverse problems. In this section, we
illustrate the general results considering spectral regularization methods for a class
of stochastic linear inverse problems, extending the classical deterministic framework.
The key point is to derive a suitable error bound and a corresponding a priori pa-
rameter choice so that Assumption 2 holds. Let X ,Y be real and separable Hilbert
spaces, and let A ∈ L(X ,Y) and assume that ∥A∥op ≤ 1. Then, let X, ε be a pair of
random variables with values in X and Y respectively, and

(3.1) Y = AX + ε, a.s.

We make several assumptions. The first is on the noise ε.

assumption 4. We assume that

E[ε|X] = 0

and, moreover, that there exists τ > 0 such that

E[∥ε∥2Y |X] ≤ τ2.

The above condition is a simple and natural stochastic extension of the classical
bounded variance assumption. We also assume that X satisfies the following stochas-
tic extension of the classical Hölder source conditions [23].

assumption 5. The random variable X is such that ∥X∥X ≤ 1 a.s. and there
exist a random variable Z with values in Y, and β, s > 0 such that,

X = (A∗A)sZ,

and
E[∥Z∥2Y ] ≤ β2.

In this setting, a corresponding Tikhonov regularized estimator is defined as

(3.2) Xλ = arg min
x∈X

∥Ax− Y ∥2Y + λ ∥x∥2X .

Clearly, Xλ = Xλ(Y ), but we omit the dependence for conciseness. A more explicit
expression is given by

(3.3) Xλ = (A∗A + λI)−1A∗Y.

This manuscript is for review purposes only.
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More generally, the class of spectral regularization methods is given by

(3.4) Xλ = gλ(A∗A)A∗Y,

defined by a suitable function gλ : (0, 1] → R using spectral calculus. Note that
the above expression ensures that Xλ is measurable, since it is the image of a linear
operator applied to Y .

The following assumption characterizes the key properties required on gλ.

assumption 6. There exists a constant C1 > 0 such that, for all λ ∈ (0,+∞),

sup
σ∈(0,1]

|gλ(σ)
√
σ| ≤ C1√

λ
.

Moreover, there is a constant C2 > 0 and α > 0 such that, for s > 0 as in Assump-
tion 5,

(3.5) sup
σ∈(0,1]

|(1 − gλ(σ)σ)σs| ≤ C2λ
α.

Assumption 6 is satisfied by a large class of filter functions such as Tikhonov regular-
ization, the Landweber iteration, that is gradient descent on the least squares error,
spectral cut-off, heavy-ball methods and the ν-method [23], or Nesterov acceleration
[37]. We add some remarks regarding this assumption.

Note that the first assumption implies that the norm of the regularization operator
gλ(A∗A)A∗ is always bounded and controlled by λ. The second is an approximation
condition, which characterizes the extent to which the considered spectral regulariza-
tion method can take advantage of the regularity of the problem, expressed by the
source condition. For many spectral regularization methods, there is q > 0 such that

sup
σ∈(0,1]

|(1 − gλ(σ)σ)σν | ≤ C2λ
ν , for every ν ≤ q.

The number q is called qualification parameter and depends on the regularization
method gλ; see [5]. Therefore, Assumption 6 is satisfied for α = min(q, s). Both of
the above assumptions allow us to derive suitable error bounds and corresponding a
priori regularization parameter choice, extending classical results in the deterministic
setting.

Theorem 2. Under Assumptions 4, 5 and 6, the following bound holds for all
λ ∈ (0 + ∞),

(3.6) E[∥Xλ −X∥2X ] ≤ C2
1

τ2

λ
+ C2

2β
2λ2α.

In particular, taking

λ∗ =

(
C2

1

2αC2
2

)1/(2α+1)(
τ

β

)2/(2α+1)

,

the following bound holds

(3.7) E[∥Xλ∗ −X∥2X ] ≤ (2α + 1)

[(
C2

1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

.
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Proof. To relate Xλ and X, we observe that

E[Xλ|X] = E[gλ(A∗A)A∗Y |X] = E[gλ(A∗A)A∗AX|X] = gλ(A∗A)A∗AX,

where we used the definition of Y and Assumption 4. Then, we can decompose the
deviation of Xλ to X as

Xλ −X = Xλ − E[Xλ|X] + E[Xλ|X] −X

= gλ(A∗A)A∗(Y −AX) + (gλ(A∗A)A∗A− I)X

= gλ(A∗A)A∗ε + (gλ(A∗A)A∗A− I)(A∗A)sZ.(3.8)

Next, recall that, under Assumption 6, the following operator estimates hold

(3.9) ∥gλ(A∗A)A∗∥op ≤ C1√
λ
, ∥(I − gλ(A∗A)A∗A)(A∗A)s∥op ≤ C2λ

α,

see e.g. [23]. If we take the expectation of the squared norm in (3.8) and develop the
square, we get

E[∥Xλ −X∥2X ] = E[∥gλ(A∗A)A∗ε∥2Y ] + E[∥(gλ(A∗A)A∗A− I)X∥2X ],

since, by Assumption 4, we have

E[⟨gλ(A∗A)A∗ε, (gλ(A∗A)A∗A− I)X⟩X ]

= E[⟨gλ(A∗A)A∗E[ε|X], (gλ(A∗A)A∗A− I)X⟩] = 0.

Then, using again Assumptions 4, 5, and 6 as well as the estimates (3.9), we derive

E[∥Xλ −X∥2X ] ≤ ∥gλ(A∗A)A∗∥2op E[∥ε∥2Y ] + ∥(I − gλ(A∗A)A∗A)(A∗A)s∥2op E[∥Z∥2Y ]

≤ C2
1

τ2

λ
+ C2

2β
2λ2α.

Finally, the value of λ minimizing the above bound is

λ∗ =

(
C2

1τ
2

2αC2
2β

2

)1/(2α+1)

,

and the corresponding error bound is

E[∥Xλ∗ −X∥2X ] ≤ (2α + 1)

[(
C2

1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

,

which is the inequality that we were aiming for.

Equation (3.6) provides a bound, for any value of the regularization parameter,
of the distance between the regularized and the exact solutions. This bound is com-
posed of two terms. The first one is related to τ , the noise level, and decreases with
the regularization parameter as 1/λ. The second one is related to β in the source
condition, and increases with the regularization parameter as λ2α. The choice of the
parameter λ∗ is then obtained by minimizing this upper bound in λ. Once we plug
λ∗ in (3.6), we obtain the bound in (3.7). These results are analogous to the ones
usually obtained in the deterministic setting (see for instance Corollary 4.4 in [23]),
and are known to be optimal in the sense of Definition 3.17 in [23].
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Next, we show that the regularization parameter on the grid learned from data,
namely λ̂Λ defined in (2.2), achieves a similar perfeormance to the one of λ∗. Indeed,
with the aid of the previous results, and in combination with Theorem 1, we obtain a
sharp error bound for the regularized solution with λ̂Λ. Toward this end, let T : X →
X be the truncation operator such that for all x ∈ X ,

(3.10) Tx =

 x, ∥x∥X ≤ 1,
x

∥x∥X
, ∥x∥X > 1.

To apply the result in Section 2, we consider the loss function defined, for every
(x, x′) ∈ X 2, as

(3.11) ℓ(x, x′) = ∥Tx− Tx′∥2X .

Then, the corresponding expected risk is, for every measurable function f ,

(3.12) L(f) = E[∥Tf(Y ) − TX∥2X ].

Under Assumption 3, for every λ ∈ (0,+∞) let fλ(Y ) = Xλ as defined in (3.4). Now,
we next study the error obtained in this context by choosing λ with ERM.

Consider a finite set of independent and identical copies (Yi, Xi), i = 1, ..., n, of
the pair (Y,X) distributed as in (3.1). Then, the corresponding ERM is given by

(3.13) λ̂Λ ∈ arg min
λ∈Λ

1

n

n∑
i=1

∥Tfλ(Yi) −Xi∥2X ,

where we used that Xi = TXi a.s.. since ∥X∥X ≤ 1 almost surely.
The following corollary provides the desired error estimates.

Corollary 1. Let Assumption 3 be satisfied with λ∗ as in Theorem 2. Suppose
that Assumptions 4, 5 and 6 hold, and choose the loss as in (3.11). Let η ∈ (0, 1).
Then, with probability at least 1 − η,

L(Xλ̂Λ
) ≤ 2(2α + Q2α+1)

Q

[(
C2

1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

+
26

n
log

2N

η
.

In this setting, Assumption 1 is trivially satisfied. The proof will therefore consist in
verifying that also Assumption 2 holds, so that Theorem 1 can be applied.

Proof. In this case, Assumption 1 is satisfied with M = 4. We just need to show
that Assumption 2 is satisfied for fλ = Xλ and L defined as in (3.12). Since T is a
projection, it is 1-Lipschitz. Then, for all measurable functions f : Y → X ,

L(f) = E[∥Tf(Y ) − TX∥2X ] ≤ E[∥f(Y ) −X∥2X ].

Then, if we define U(λ) as the right hand side of equation (3.6), (2.3) holds. In
addition, λ∗ defined as in Theorem 2 is the minimizer of U . Now, define the function

C : [1,+∞) → [0,+∞); C(q) :=
2α + q2α+1

q(2α + 1)
,
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and observe that it is non decreasing. Then, from the error bound (3.7), we derive,
for any q ∈ [1,+∞), that

U(qλ∗) = C(q)U(λ∗) =
2α + q2α+1

q

[(
C2

1

2α

)2α

C2
2

]1/(2α+1)(
τ2α

β

)2/(2α+1)

.

Hence, Assumption 2 is satisfied. The result follows by applying Theorem 1.

Corollary 1 shows that, under a natural generalization of the classical assumptions
in deterministic inverse problems to the stochastic setting, the error obtained with
the optimal parameter on the grid for the empirical risk, namely λ̂Λ, is close to that
of λ∗, up to a logarithmic factor that increases very slowly with N , and decreases
with n. We add one final remark for this section.

Remark 3.1 (Comparison with Theorem 4.1 in [1]). The paper [1] aims to learn
the optimal Tikhonov regularizer, of the form ∥B(· − h)∥2, for a linear operator B
and a bias vector h ∈ X . The main result of [1] is Theorem 4.1, which establishes an

excess risk bound for parameters (B̂, ĥ) learned by minimizing the empirical risk. The
setting is quite different since, in [1], the authors learn a general Tikhonov regularizer
by demonstrating that the optimal pair (B∗, h∗) consists of the covariance operator
and the mean of X, respectively. In this paper, we only learn the regularization
parameter, but our setting allows for a large class of spectral filters. The assumptions
of theorem 4.1, as seen in (20) and (21) of [1], are quite different from Assumption 5
and Assumption 6, making a direct comparisong between our Corollary 1 and Theorem
4.1 not meaningful. We only observe that the proof of Theorem 4.1 in [1] relies on
learning techniques that exploit the Lipschitz continuity of the Empirical Risk with
respect to the pair (h,B) and a classic covering argument. In this paper, we use
instead a different approach introduced in [12] for the cross-validation method.

4. Tikhonov regularization for non linear inverse problems. Next, we
consider the problem of selecting the regularization parameter for Tikhonov regu-
larization in the setting of nonlinear inverse problems [23]. Let X ,Y be real and
separable Hilbert spaces, and A : dom(A) ⊆ X → Y be a (nonlinear) operator whose
domain has nonempty interior. Let X, ε be a pair of random variables with values in
X and Y respectively, and let

(4.1) Y = A(X) + ε, a.s.

with X ∈ int(dom(A)) almost surely. We make several assumptions. The first one is
on the noise ε.

assumption 7. There exists a constant τ > 0 such that

E[∥ε∥2Y |X] ≤ τ2 a.s.

Using Jensen’s inequality for the conditional expectation [48, 9.7 (h)], we derive from
the previous assumption that

(4.2) E[∥ε∥Y |X] ≤ τ a.s.

Next we impose fairly standard conditions on the operator A.

assumption 8. The operator A : dom(A) → Y is a continuous and weakly closed
operator with int(dom(A)) non-empty, and with dom(A) convex. Moreover, A is
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Fréchet differentiable in int(dom(A)) with derivative denoted by A′ and there exists a
constant C0 > 0 such that, for all x and x′ ∈ int(dom(A)),

(4.3) ∥A′(x) −A′(x′)∥op ≤ C0 ∥x− x′∥X .

The previous assumption implies that, for all x ∈ int(dom(A)) and x′ ∈ dom(A),

∥A(x′) −A(x) −A′(x)(x′ − x)∥Y ≤ C0

2
∥x′ − x∥2X ,

so that, by the triangle inequality,

(4.4) ∥A′(x)(x′ − x)∥Y ≤ ∥A(x′) −A(x)∥Y +
C0

2
∥x′ − x∥2X .

Here, we assume global Lipschitz continuity of the derivative to avoid technicalities,
but the argument could be extended under a local smoothness assumption as in [15].

For nonlinear inverse problems, the Tikhonov estimator is defined with respect
to a suitable initialization. Here, we assume the initialization to be described by a
random variable X0 with values in X . The set arg minx∈dom(A) ∥A(x) − Y (ω)∥2Y +

λ ∥x−X0(ω)∥2X is nonempty for every ω ∈ Ω thanks to Assumption 8, see [15, Theo-
rem 10.1]. A corresponding Tikhonov regularized estimator is a random variable Xλ

defined by setting, for almost all ω ∈ Ω

(4.5) Xλ(ω) ∈ arg min
x∈dom(A)

∥A(x) − Y (ω)∥2Y + λ ∥x−X0(ω)∥2X .

Note that Xλ depends on Y and X0, but we will omit this dependence for the sake
of simplicity. The existence of a random variable Xλ taking values in the set of
minimizers is ensured under some additional assumptions, see e.g. Filippov’s Implicit
function Theorem [30, Theorem 7.1]. For that reason, we directly assume that such
measurable selection exists. The following assumption will be needed to derive the
error bounds and extends analogous conditions in the deterministic case.

assumption 9. The random variable X is such that ∥X −X0∥X ≤ 1 and, under
Assumption 8, there exists a random variable Z with values in Y, β > 0 such that
almost surely

X −X0 = A′(X)∗Z,

and
∥Z∥Y ≤ β a.s., with βC0 < 1,

where C0 is the constant introduced in Assumption 8.

The latter assumption can be seen as a nonlinear version of the source condition
considered in Assumption 5 (for s = 1).

In the next result, which is analogous to Theorem 2, we derive a bound on the
error of the Tikhonov regularized solution, leading to a priori parameter choices.

Theorem 3. Suppose that Assumptions 7, 8 and 9 are satisfied. Then the fol-
lowing bound holds: for all λ ∈ (0 + ∞),

(4.6) E[∥Xλ −X∥2X ] ≤ (τ + βλ)2

(1 − βC0)λ
.

In particular, setting λ∗ = τ/β,

E[∥Xλ∗ −X∥2X ] ≤ 4(1 − βC0)−1τβ.
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The proof is a modification of the the one in the deterministic setting, see e.g. [15, 23].

Proof. The expressions below are all intended to hold almost surely. By definition
of Xλ, X and ε, it follows that

∥A(Xλ) − Y ∥2Y + λ ∥Xλ −X0∥2X ≤ ∥A(X) − Y ∥2Y + λ ∥X −X0∥2X
= ∥ε∥2Y + λ ∥X −X0∥2X .(4.7)

Since

(4.8) ∥Xλ −X0∥2X = ∥Xλ −X∥2X + ∥X −X0∥2X + 2 ⟨Xλ −X,X −X0⟩X ,

inequality (4.7) implies

∥A(Xλ) − Y ∥2Y + λ ∥Xλ −X∥2X ≤ ∥ε∥2Y − 2λ ⟨Xλ −X,X −X0⟩X .

Then, Assumption 9 and Cauchy-Schwartz inequality yield

(4.9) ∥A(Xλ) − Y ∥2Y + λ ∥Xλ −X∥2X ≤ ∥ε∥2Y + 2λ ∥A′(X)(Xλ −X)∥Y ∥Z∥Y .

Since X ∈ int(dom(A)) and Xλ ∈ dom(A), and dom(A) is convex by assumption,
inequality (4.4) with x = X and x′ = Xλ yields

∥A′(X)(Xλ −X)∥Y ≤ ∥A(Xλ) −A(X)∥Y +
C0

2
∥Xλ −X∥2X ,

so that, by adding and subtracting Y in the first term of the right hand side, we
obtain

∥A′(X)(Xλ −X)∥Y ≤ ∥A(Xλ) − Y ∥Y + ∥ε∥Y +
C0

2
∥Xλ −X∥2X .

Plugging the above inequality into (4.9), we get

∥A(Xλ) − Y ∥2Y + λ ∥Xλ −X∥2X ≤ ∥ε∥2Y + 2λ ∥Z∥Y (∥A(Xλ) − Y ∥Y

+ ∥ε∥Y +
C0

2
∥Xλ −X∥2X ).

By adding λ2∥Z∥2Y to both sides and rearranging the terms, we get(
∥A(Xλ) − Y ∥Y − λ∥Z∥Y

)2
+ λ∥Xλ −X∥2X ≤ ∥ε∥2Y + 2λ∥Z∥Y(∥ε∥Y

+
C0

2
∥Xλ −X∥2X ) + λ2∥Z∥2Y .

Next, we take expectations on both sides. First, recall that Assumption 7 implies
(4.2), i.e. E[∥ε∥] ≤ τ and therefore, with Assumption 9,

E[∥Z∥Y∥ε∥Y ] ≤ βτ.

Assumption 9 implies also that

E[∥Z∥Y∥Xλ −X∥2X ] ≤ βE[∥Xλ −X∥2X ].

We then get that

E[
(
∥A(Xλ) − Y ∥Y − λ∥Z∥Y

)2
] + λE[∥Xλ −X∥2X ] ≤ τ2 + 2λβτ

+ λ2β2 + λC0βE[∥Xλ −X∥2X ].
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In particular,

E[∥Xλ −X∥2X ] ≤ (1 − βC0)−1 (τ + βλ)2

λ
,

where we used the assumption that βC0 < 1. Finally, the value of λ that minimizes
the above bound is

λ∗ =
τ

β
,

and the corresponding error bound is

E[∥Xλ∗ −X∥2X ] ≤ 4(1 − βC0)−1τβ,

which proves the result.

To apply Theorem 1, we consider the problem obtained with a truncated square loss:

(4.10) ℓ(x, x′) = ∥T (x−X0) − T (x′ −X0)∥2,

where T is the truncation operator defined in (3.10). The corresponding expected risk
is given by

L(f) = E[∥T (f(Y ) −X0) − T (X −X0)∥2X ].

We focus on Tikhonov regularization, where, for every λ ∈ (0,+∞), fλ(Y ) = Xλ(Y ) is
given by (4.5), and analyze the error corresponding to the choice of the regularization
parameter with ERM. Consider independent and identical copies (Yi, Xi), i = 1, ..., n,
of the pair of random variables (Y,X) as in (4.1). The ERM problem is given by

(4.11) λ̂Λ ∈ arg min
λ∈Λ

1

n

n∑
i=1

∥T (fλ(Yi) −X0) − (Xi −X0)∥2X .

In the following result we derive an upper bound corresponding to the expected risk.

Corollary 2. Suppose that Assumptions 7, 8 and 9 hold. Let Assumption 3 be
satisfied with λ∗ = τ/β, and let η ∈ (0, 1). Then, with probability at least 1 − η,

L(Xλ̂Λ
) ≤ (1 + Q)2

2Q(1 − βC0)
τβ +

26

n
log

2N

η
.

Proof. To prove the result, it is enough to show that Assumptions 1 and 2 are
satisfied. First, note that Assumption 1 is satisfied since the truncated square loss
in (4.10) is bounded by 4. Moreover, since T defined in (3.10) is the projection on a
convex and closed set, it is 1−Lipschitz, so that Theorem 3 implies

L(Xλ) ≤ E[∥Xλ −X∥2X ] ≤ U(λ),

with U(λ) = (1 − βC0)−1(τ + βλ)2λ−1. The minimizer of U is λ∗ = τ/β with
U(λ∗) = 4(1 − βC0)−1τβ and, for every q ≥ 1 we have that

U(qλ∗) =
(1 + q)2

q
(1 − βC0)−1τβ =

(1 + q)2

4q
U(λ∗).

Since the function

C : [1,+∞) → [0,+∞); C(q) :=
(1 + q)2

4q

is non decreasing, Assumption 2 is satisfied. The result then follows from Theorem 1.
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Corollary 2 establishes an upper bound on the excess risk of Xλ̂Λ
, corresponding

to the choice of the regularization parameter based on ERM in the grid Λ. Actually,
it ensures that the error obtained when considering λ̂Λ is close to that of λ∗, except
for an additive error term that decreases with n. Notably, the dependence on the
cardinality of the grid N is only logarithmic.

5. General Tikhonov regularization with convex regularizers for linear
inverse problems. In this section, we consider the linear inverse problem setting in
Section 3, with Assumption 4 on the noise. We study Tikhonov regularization with a
general function J instead of the squared norm,

(5.1) Xλ(ω) ∈ arg min
x∈X

1

2
∥Ax− Y (ω)∥2Y + λJ(x),

where J : X → R ∪ {+∞} is a function. In this section, we assume that the set of

minimizers of the function x 7→ ∥Ax− Y (ω)∥2Y /2+λJ(x) is nonempty for almost every
ω ∈ Ω, and that ω 7→ Xλ(ω) is a measurable selection of the set of minimizers. This
setting includes various examples of sparsity-inducing regularizers beyond Hilbertian
norms, see e.g. [10] for references. We discuss specific examples in Sections 5.1 and
5.2. For this class of regularization schemes, a natural error metric is given by the
Bregman divergence, defined for every x, x′ ∈ X as

(5.2) DJ(x, x′) =

{
J(x) − J(x′) − ⟨sJ(x′), x− x′⟩X , if x′ ∈ int(dom J),

+∞, elsewhere,

where sJ(x′) is an element of ∂J(x′), which is nonempty as long as x′ ∈ int(dom J) [8,
Theorem 9.23]. If x and x′ belong to int(dom J), we can consider also the symmetric
Bregman distance, that is

dJ(x, x′) = DJ(x, x′) + DJ(x′, x) = ⟨sJ(x) − sJ(x′), x− x′⟩X .

Of course, if J is not differentiable, both the Bregman distance and the symmetric
one depend on the choice of the specific subgradient sJ(x) (and sJ(x′)). To derive an
error bound we consider the following assumptions.

assumption 10. The function J : X → R is proper, convex, lower semicontinu-
ous and satisfies dom(∂J) = int(dom(J)).

The previous assumption is satisfied in two main settings, which are discussed in the
following: the one where domJ = Rd and the one where J is essentially smooth.

assumption 11. The random variable X takes values in int(dom(J)) a. s. and
there exists a random variable Z ∈ Y such that, almost surely, A∗Z ∈ ∂J(X) and that
Z is measurable with respect to the σ-algebra generated by X. Moreover, we assume
that there exists β > 0 such that

E[∥Z∥2Y ] ≤ β2.

Assumption 11 can be seen as a generalization of the source condition for the squared
norm regularization in Assumption 5, in the case s = 1. In the following, we will
analyze the behavior of dJ(Xλ, X). We first show that this quantity is well-defined.
From the optimality condition for the Tikhonov problem (5.1) we derive that, almost
surely,

(5.3)
1

λ
A∗(Y −AXλ) ∈ ∂J(Xλ).
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In particular we know that Xλ ∈ dom ∂J and so, by Assumption 10, that Xλ ∈
int(dom J). Moreover, from Assumption 11 we have that X ∈ int(dom J) almost
surely, and

A∗Z ∈ ∂J(X).

Then, the following symmetric Bregman distance, is well defined, and can be written
as,

dJ(Xλ, X) =

〈
1

λ
A∗(Y −AXλ) −A∗Z,Xλ −X

〉
X
.(5.4)

The Bregman distances we consider (both the symmetric and the standard one) are
based on the specific subdifferentials considered in the latter formula. In the setting
above, we have the following upper bound.

Theorem 4. Under Assumptions 4, 10 and 11 the following bound holds, for all
λ ∈ (0 + ∞),

(5.5) E[dJ(Xλ, X)] ≤ τ2

2λ
+

β2λ

2
.

In particular, taking λ∗ = τ/β, we have

(5.6) E[dJ(Xλ∗ , X)] ≤ βτ.

Proof. The identities and inequalities below are intended to hold almost surely.
By Assumption 11,

λdJ(Xλ, X) + ∥A(Xλ −X)∥2Y = ⟨A∗(Y −AXλ) − λA∗Z,Xλ −X⟩X
+ ∥A(Xλ −X)∥2Y

= ⟨Y −AXλ − λZ + AXλ −AX,A(Xλ −X)⟩Y
= ⟨Y −AX − λZ,A(Xλ −X)⟩Y

≤ 1

2
∥Y −AX − λZ∥2Y +

1

2
∥A(Xλ −X)∥2Y .

Rearranging the terms, we obtain

λdJ(Xλ, X) +
1

2
∥A(Xλ −X)∥2Y ≤ 1

2
∥Y −AX − λZ∥2Y .

Taking the conditional expectation with respect to X, we get

λE[dJ(Xλ, X)|X] +
1

2
E[∥A(Xλ −X)∥2Y |X] ≤ 1

2
E[∥Y −AX∥2Y |X] +

λ2

2
E[∥Z∥2Y |X]

− λE[⟨Y −AX,Z⟩Y |X].

By Assumption 11, Z is a measurable function with respect to X, and therefore last
term is zero since Y = AX + ε and by Assumption 4. Thus, if we take the full
expectation, the previous inequality implies

λE[dJ(Xλ, X)] +
1

2
E[∥A(Xλ −X)∥2Y ] ≤ 1

2
E[∥Y −AX∥2Y ] +

λ2

2
E[∥Z∥2Y ]

≤ τ2

2
+

β2λ2

2
,
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by Assumptions 4 and 11. Therefore,

(5.7) E[dJ(Xλ, X)] ≤ τ2

2λ
+

β2λ

2
.

The value of λ minimizing the above upper bound is

λ∗ =
τ

β
.

and the theorem follows.

Remark 2. Following [11], the above analysis can be extended considering X to
be a Banach space embedded in a Hilbert space. In this case, the inner product in X
needs to be replaced by the corresponding duality pairing.

In the rest of the section, we will apply Theorem 1 to different loss functions, all
based on the Bregman divergence. To perform the analysis, additional assumptions
are needed on J to ensure that the hypotheses of Theorem 1 are satisfied, e.g. the
boundedness of the loss. We focus on two different settings: the case of sparsity
inducing regularizers, of the form J(x) = |Gx|, where G is a general linear and
bounded operator and | · | a general norm (for instance, the ℓ1-norm), and the case of
regularizers J of Legendre type.

5.1. Sparsity inducing regularizers. In this section, we focus on the finite-
dimensional setting, where X = Rd, 1 ≤ d < +∞. We study sparsity-inducing
regularizers such as the ℓ1 norm [3]. Towards this end, we first introduce a generic
norm on Rm (not necessarily the euclidean one), which we denote by | · |, and the
corresponding dual norm | · |∗. We then fix a linear and bounded operator G : (X , ∥ ·
∥) → (Rm, | · |). We will consider the following structural assumption.

assumption 12. The regularizer J : Rd → R is defined by setting, for every x ∈
Rd,

(5.8) J(x) = |Gx|,

and ∥G∥op ≤ R, for some R > 0 (here the operator norm is meant with respect to the
spaces X = Rd and Rm with their norms ∥ · ∥ and | · |, respectively).

The above condition describes the class of sparsity inducing regularizers we con-
sider, including Lasso [43] (G equal to the identity and | · | the ℓ1 norm), Graph-Lasso
[34], penalties for multitask learning [36], group lasso [40], ℓq penalties [26], and Total
Variation regularization [39], among others (see [29] and references therein). For this
regularizers functions J , the subdifferential can be written as

∂J(·) = G∗∂| · |(G·),

which is nonempty at every point x ∈ X . In addition, recall that the subdifferential
of the norm can be computed as [3, Remark 1.1]

∂| · |(x) = {η ∈ Rm : ⟨η, x⟩ = |x|, |η|∗ ≤ 1}.

In this section, we consider the loss function defined by the Bregman divergence for
every x and x′ ∈ Rd:

ℓ(x, x′) = DJ(x, x′)
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where DJ is defined as in (5.2), for some subgradient sJ(x′) ∈ ∂J(x′). As before, if
we let fλ(Y ) = Xλ, then the corresponding expected error is given by

(5.9) L(fλ) = E[DJ(X, fλ(Y ))].

In this case, and as in Section 3, we also assume that the random variable X is such
that ∥X∥ ≤ 1 a.s.. Finally, the ERM is given by

(5.10) λ̂Λ ∈ arg min
λ∈Λ

1

n

n∑
i=1

DJ(Xi, fλ(Yi)).

We can now state the probabilistic error estimates for this setting.

Corollary 3. In the setting of this subsection, let Assumptions 3, 4, 11, and 12
be satisfied and let η ∈ (0, 1). Then, with probability at least 1 − η,

(5.11) L(Xλ̂Λ
) = E

[
DJ(X,Xλ̂Λ

)
]
≤ 1 + Q2

Q
βτ +

13R

n
log

2N

η
.

Proof. To apply Theorem 1, we need to check that Assumptions 1 and 2 are
satisfied. For every x ∈ Rd with ∥x∥ ≤ 1 and z ∈ Rd, we have

DJ(x, x′) = |Gx| − |Gx′| − ⟨G∗s|·|(Gx′), x− x′⟩Rm

= |Gx| − |Gx′| − ⟨s|·|(Gx′), Gx−Gx′⟩Rm

= |Gx| − ⟨s|·|(Gx′), Gx⟩Rm

≤ (1 + |s|·|(Gx′)|∗)|Gx|
≤ 2∥G∥op∥x∥
≤ 2R.

Hence, the loss function is bounded on the cylinder {(x, x′) ∈ Rd×d : ∥x∥ ≤ 1} , and
Assumption 1 is therein satisfied with M = 2R. We are left to show that Assumption 2
is satisfied for fλ(Y ) = Xλ and L defined as in (5.11). From the inequality

DJ(X,Xλ) ≤ dJ(X,Xλ)

and Theorem 4, we derive that

L(Xλ) ≤ U(λ),

where U(λ) = τ2/(2λ) + β2λ/2. The latter is minimized by λ∗ = τ/β and satisfies

U(qλ∗) ≤ 1 + q2

2q
βτ,

where the multiplicative factor depending on q is a nondecreasing function for q ≥ 1.
The statement then follows from Theorem 1.

5.2. Legendre Regularizers. In this section, we consider Legendre regulariz-
ers. We start by recalling some definitions, see [7] for more details. A proper and
lower semicontinuous function J : R → R ∪ {+∞} is said to be essentially smooth if
∂J is locally bounded and single valued on its domain. The function J is essentially
strictly convex if (∂J)−1 is locally bounded on its domain and J is strictly convex
on every convex subset of dom ∂J . A function J is Legendre if it is proper, lower
semicontinuous and it is both essentially smooth and essentially strictly convex. In
this section, we will rely on the following assumption.
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assumption 13. The function J : X → R ∪ {+∞} is Legendre.

In particular, Assumption 13 implies Assumption 10, since dom(∂J) = int(dom(J))
by [7, Theorem 5.6]. Consider x0 ∈ int(dom J) and r > 0 such that B := {x ∈ X :
∥x − x0∥ ≤ r} is a subset of int(dom J). Since J is Legendre, it is possible to define
the projection onto B with respect to the Bregman distance for every x ∈ X (see [7,
Corollary 7.9]), by setting

(5.12) πB(x) := arg min
z∈B

DJ(z, x).

Note that, under Assumption 13, the Bregman projection is univocally defined, mean-
ing that it does not depend on the choice of the subgradient. Indeed, if x /∈ int(dom J),
then DJ(z, x) = +∞. Otherwise, x ∈ int(dom J) = dom(∂J), where the subdifferen-
tial of J is single valued. Moreover, by definition, πB(x) ∈ B ⊆ int(dom J). Recalling
that it always holds int(dom J) ⊆ dom(∂J), we know that the subdifferential of J is
non empty at each point of B. In particular, under Assumption 13, the subdifferential
of J is single valued on B. We need an additional assumption on the function J on
the set B, namely a uniform upper-bound for the norm of its gradient.

assumption 14. There exists R > 0 such that

sup
x∈B

∥∇J(x)∥ ≤ R.

Note that, since J is Legendre and essentially smooth, then ∂J is locally bounded and
single valued on its domain. This means that for every x ∈ dom(∂J) there exists ε > 0
such that sup ∥∇J(x)∥ < +∞, where the supremum is taken on the ball centered at
x with radius ε. In this context, we consider the loss function defined for all x, x′ ∈ X
as the Bregman divergence between the projections onto B, namely

(5.13) ℓ(x, x′) = DJ(πB(x), πB(x′)),

which is univocally defined since πB(x′) ∈ B, and the subdifferential of J is non empty
and single valued on B. We consider also the corresponding expected risk, defined as

L(f) = E[DJ(πB(X), πB(f(Y )))].

In this case, and in opposition with the other sections where we assumed that ∥X∥ ≤ 1,
we assume that X is such that X ∈ B a.s.. As in the previous sections, we want to
bound the expected risk of the regularization method fλ(Y ) = Xλ defined as in (5.1),
when λ is selected by ERM,

λ̂Λ ∈ arg min
λ∈Λ

1

n

n∑
i=1

DJ(πB(Xi), πB(fλ(Yi))).

The corresponding error bound isgiven in the following corollary.

Corollary 4. Let Assumptions 3, 4, 11, 13 and 14 be satisfied and let η ∈ (0, 1).
Then, with probability at least 1 − η,

L(Xλ̂Λ
) ≤ 1 + Q2

Q
βτ +

26Rr

n
log

2N

η
.
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Proof. To prove the statement, we will rely again on Theorem 1. Therefore we
just need to show that Assumptions 1 and 2 hold. We first show that Assumption 1
is satisfied. From πB(x), πB(x′) ∈ B and Assumption 14, recalling that ∂J is single
valued on B, it follows that

0 ≤ ℓ(x, x′) = DJ(πB(x), πB(x′)) ≤ DJ(πB(x), πB(x′)) + DJ(πB(x′), πB(x))

= ⟨∇J(πB(x)) −∇J(πB(x′)), πB(x) − πB(x′)⟩ ≤ 4Rr.

Then, the considered loss function (5.13) is bounded and Assumption 1 is satisfied
with M = 4Rr. Next, we check that Assumption 2 is satisfied. First, observe that
both X and Xλ belong to dom(∂J) almost surely since X ∈ B by assumption and
since A∗(Y −AXλ)/λ ∈ ∂J(Xλ) by the optimality condition. Then, the subdifferential
of J is not empty (and so single valued) at X,Xλ and

dJ(X,Xλ) ≥ DJ(X,Xλ) ≥ DJ(X,πB(Xλ)) + DJ(πB(Xλ), Xλ),

by the first order optimality conditions of problem (5.12) and the fact that X ∈ B.
Again, since X ∈ B almost surely, we have that πB(X) = X almost surely. Then, the
previous inequality implies that

L(Xλ) = E[DJ(πB(X), πB(Xλ))] = E[DJ(X,πB(Xλ))] ≤ E[dJ(X,Xλ)].(5.14)

Theorem 4 gives the bound E[dJ(X,Xλ)] ≤ U(λ), where U(λ) = τ2/(2λ) + β2λ/2.
So, togheter with (5.14), this implies that

L(Xλ) ≤ U(λ).

The minimizer of U(λ) is given by λ∗ = τ/β with U(λ∗) = βτ . We derive directly
from the definition that

U(qλ∗) =
1 + q2

2q
βτ =

1 + q2

2q
U(λ∗)

for any q ≥ 1, where the multiplicative term (1+q2)/(2q) is a non decreasing function
for q ≥ 1. Hence, Assumption 2 is satisfied and we can apply Theorem 1 to obtain
the desired result.

6. Numerical results. In this section, we provide an empirical validation of
the theoretical results discussed in the previous sections. We consider different ex-
perimental settings and, for each of them, we illustrate the excess risk decay as a
function of the number of training points n, showing that it goes to zero as n tends to
infinity. First, we consider the setting of linear inverse problems with squared norm
regularization. In this case, we focus on the Tikhonov regularization and Landweber
method. For both of them we compare the proposed data-driven procedure with the
so-called quasi-optimality criterion [6]. Then, we turn to more general regularization
penalties. More precisely, we consider the problem of denoising and deblurring sparse
signals with the ℓ1-norm, and TV denoising for images.

Code statement: All of the simulations have been implemented in Python on
a laptop with 32GB of RAM and 2.2 GHz Intel Core I7 CPU. In Section 6.2.2 we
also use the library Numerical Tours by G. Peyré [38]. The code is available at
https://github.com/TraDE-OPT/Supervised-Learning-for-Inverse-Problems.
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6.1. Spectral regularization. In this section, we empirically analyze the pro-
posed data-driven parameter selection strategy for Tikhonov regularization and the
Landweber method to solve an instance of a linear inverse problem as in Section 3.
We consider a problem of the form Y = AX+ε which we describe next. The operator
A is a 70× 70 square matrix with operator norm equal to one, built as follows. Given
a diagonal matrix D with elements dii = i−4, i = 1, ..., 70, and a random orthogonal
matrix U , we set A = UDUT /∥UDUT ∥2, where in this case the squared norm coin-
cides with the operator one. It can be seen that the condition number of A is large,
and therefore the constructed matrix is ill conditioned. To ensure that Assumption 5
is satisfied with a known exponent, we define the random variable X ∈ R70 as

X = (A∗A)sZ,

with s to be fixed later and Z sampled uniformly in the unit ball This, jointly with
∥A∥2 ≤ 1, ensures that ∥X∥ ≤ 1 almost surely. Note that, in this setting, Assump-
tion 5 is satisfied with β = 1. Finally, ε ∼ N(0, τ2Id), which satisfies Assumption
4.

The training set is obtained by sampling n = 100 independent pairs (yi, xi) from
the previous model. The section will be divided into two main parts: one where we
verify the theoretical results that we have proven, and another one where we compare
the studied method with the quasi-optimality criterion [45]. Finally, every experiment
is run 30 times, and we report both the mean (in solid lines) and the values between
the 5th-percentile and 95th-percentile of the data (in shaded regions).

10 4 10 3 10 2 10 1 100 101 102

0.5

1.0

1.5

2.0
Tikhonov

100 101 102

k

0.2

0.4

0.6

0.8 Landweber

L(
X

)

Fig. 1. Empirical risk trajectories of the Tikhonov and Landweber regularization methods. The
solid lines represent the mean value, while the shaded regions represent the 5th-percentiles and 95th-
percentiles over 30 trials. The x-axis is shown in logarithmic scale.

6.1.1. Illustration of the data-driven parameter choice. We start consid-
ering the problem described in Section 6.1 with noise level τ2 = 0.125 and source
condition s = 3. Starting from the training set {(yi, xi)}100i=1, for every λ ∈ Λ, we
define the empirical risk for the Tikhonov regularized solution as

(6.1) L̂(Xλ) =
1

100

100∑
i=1

∥TXλ(yi) − xi∥2,

where Xλ(yi) = (A∗A+λI)−1A∗yi (see Section 3). The empirical risk for the Landwe-
ber method is defined analogously, where in this case Xλ(yi) = (I − γA∗A)⌊1/λ⌋A∗yi
with γ = 0.2. For both Tikhonov regularization and Landweber iteration, we build a
grid of regularization parameters Λ = {λ1, . . . , λN} as in Assumption 3, namely with
λj = λ1Q

j−1 for j = 1, . . . , N and Q = (λN/λ1)1/(N−1). For Tikhonov we choose
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N = 50, λ1 = 10−4 and λN = 102, with a resulting Q ≈ 1.3257. For Landweber, we
choose N = 50, λ1 = 1/250, λ50 = 1, with a resulting Q ≈ 1.1193.

In Figure 1, the function λ ∈ Λ 7→ L̂(Xλ) is plotted for Tikhonov regularization.
For Landweber, we plot the function in terms of number of iterations k. According
to Section 2, the parameter proposed by our approach is λ̂ (or k̂ = ⌊1/λ̂⌋ in the case

of Landweber), where λ̂ is a minimizer of the curves in Figure 1.

6.1.2. Illustration of Theorem 2. In this section we investigate the depen-
dence from the noise level τ of the error of Xλ∗ , see equation (3.7) in Theorem 2. For
every fixed variance τ2 > 0 of ε, let λ∗(τ), or k∗(τ) in the case of Landweber, be a
minimizer of the expected error,

(6.2) λ∗(τ) ∈ arg min
λ∈(0,+∞)

L(Xλ),

which we approximate through the corresponding empirical error L̂(Xλ), given by
(6.1), with n = 103 training points (recall that L(Xλ∗(τ)), with λ∗(τ) defined as above,
is a lower bound for the left hand side in equation (3.7)). As stated in Theorem 2,
L(Xλ∗(τ)) goes to zero when τ vanishes. The parameter α in Assumption 6 plays

an important role in the bound, since L(Xλ∗(τ)) ≲ τ
4α

2α+1 . In particular, we expect
L(Xλ∗(τ)) to go to 0 faster when α increases. For Tikhonov, α = min{1, s} (since 1
is the qualification parameter for Tikhonov regularization). For Landweber, instead,
α = s. Therefore, in the experiments, we can vary α simply by choosing the value of
the smoothness parameter s. The influence of s on the decay rate of the reconstruction
error is shown in Figure 2 for different values of s. To determine λ∗(τ) in the case of
Tikhonov, we set a grid of 100 equidistant points {λi}100i=1, λ1 = 10−5, λ100 = 0.5, with
a constant spacing of 0.005 between consecutive points. We consider 50 different values
of the noise variance τ2, ranging from 10−5 to 0.1. For the Landweber method, we opt
for a set of 100 points {λi}100i=1, with λ1 = 1/150 and λ100 = 0.51, and hence the optimal
stopping time k∗ will be found in the range k = 1, . . . , 150. We consider 50 different
values of the noise variance τ2 within the interval [10−8, 10−4]. Finally, for Tikhonov
regularization, we choose the values s = 0.5, 0.7 and 0.9, while for Landweber we
choose s = 4, 5 and 6. The selected smoothness parameters allow us to gain a deeper
insight into the behaviour of the expected error with respect to the deterministic rate
obtained in Theorem 2. In Figure 2, we illustrate the quantity L(Xλ∗(τ))/τ

(4s)/(2s+1),
where it can be seen that all the curves, for every value of s, are bounded when τ
goes to zero. We can also observe that the quantity of interest is not going to zero,
therefore suggesting that the derived bounds are tight.

Finally, in order to explore Assumption 3, we will study the behaviour of the best
empirical regularization parameters, λ̂(τ) and k̂(τ), with respect to the noise variance
τ2 and the smoothness parameter s for both Tikhonov and Landweber methods. Here,
the empirical risk is computed with 100 training points for smoothness parameters
s = 0.5, 0.9 in the case of Tikhonov and s = 2, 4 in the case of Landweber. We fix 30
different values of the noise variance, τ2 ∈ [10−4, 0.1] with equal logarithmic spacing,
and we consider the following grids: Λ ⊆ [10−5, 1] with N = 50 and Q ≈ 1.2068 in the
case of Tikhonov regularization, and Λ ⊆ [1/250, 1] with N = 200, and Q ≈ 1.0281 for
Landweber. Note that the seleted range for the noise variance in Figure 2 is different
both for Tikhonov and Landweber. Indeed, the theoretical upper bound stated in
Theorem 2 does not necessarily need to be observed, experimentally, in the exact
same range for both cases.
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Fig. 2. Behaviour of L(fλ∗ ) with respect to the rate τT , T = (4s)/(2s+1), obtained in Theorem
2, for different smoothness parameters s in the case of both Tikhonov and Landweber. Both axes
are shown in logarithmic scale.

Finally, it can be seen that the empirical parameters λ̂(τ) and k̂(τ) exhibit a simi-
lar behaviour to the a priori optimal ones [23]: in the case of Tikhonov regularization,
it increases with the noise; i.e. λ ∼ τρ for some fixed ρ > 0 (see [23, Chapter 5]),
and in the case of Landweber, the number of iterations decreases with respect to the
noise. For instance, the optimal stopping time in the discrepancy principle behaves
as k ∼ (1/τ)2/(2s+1), s being the smoothness parameter, see [23, Theorem 6.5]. In
the latter case, it is clear that the smoothness of the solution has an effect in the
regularization parameter, since for bigger values of s, the required optimal number
of iterations is smaller. This behaviour can also be observed for our method in the
corresponding image in Figure 3. The case of Tikhonov regularization is simpler to
analyze. From (3.2), we observe that the regularization parameter should promote
those solutions that are smoother or, in other words, for bigger values of the smooth-
ness parameter s. This behaviour is actually confirmed by our experiments, as we
observe in Figure 3.

10 4 10 3 10 2 10 1
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(
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Tikhonov
s = 0.5
s = 0.9

10 4 10 3 10 2 10 1

102

k(
)

Landweber
s = 2
s = 4

2

Fig. 3. Value of λ̂, k̂ when varying the noise level for both Tikhonov Landweber. Both pa-
rameters have been selected over a training set of 100 points, constructed with different smoothness
parameters as shown in the plot. Solid lines represent the mean value, while the shaded regions
represent the 5th-percentiles and 95th-percentiles over 30 trials. Both axis are shown in logarithmic
scale.

6.1.3. Illustration of error bounds. In this section, we discuss some numeri-
cal experiments supporting the error bound stated in Corollary 1, both for Tikhonov
and Landweber regularization methods. We use the grid Λ introduced in Section 6.1.1,
and we let λΛ and kΛ be the parameters corresponding to the minimizers of the ex-
pected error –which we approximate with a minimizer of the empirical error with
nmax = 105 points–. on the grid Λ for Tikhonov and Landweber method, respec-
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tively. Moreover, we define the empirical error for every n ∈ {10, 20, ..., 150}, where
we sample fresh training points for every different value of n, and we denote by
λ̂(n) and k̂(n) the parameters corresponding to the minimizers of the empirical er-
ror with n points. We then define the quantity ∆(n) := L(Xλ̂(n)) − L(XλΛ) (or

∆(n) := L(Xk̂(n)) − L(XkΛ) respectively). As stated in Corollary 1, the excess risk

goes to zero, up to a certain additive constant, when n goes to infinity, as confirmed
by the plot in Figure 4.
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Fig. 4. Excess risk behaviour with respect to the number of training points for noise level
τ2 = 0.2. In the y-axis we plot the quantity ∆(n), showing that it goes to zero when n increases.
The solid lines represent the mean value, while the shaded regions represent the 5th-percentiles and
95th-percentiles over 30 trials.

6.1.4. Comparison with the quasi-optimality criterion. In this section we
compare our data-driven approach to the quasi-optimality criterion [45]. The latter
is one of the most common and simple-to-implement heuristic parameter selection
methods and does not require the noise level to be computed. Theoretical guarantees
on its performance are available in the stochastic inverse problem setting [6]. First,
note that the computational cost of the two methods can be very different. The
quasi-optimality criterion performs instance-wise as all the usual parameter selection
methods; i.e. given a set of test data {(yi, xi)}ntest

i=1 , ntest ∈ N, and a regularization

method Xλ, it outputs the best regularization parameter λ̂i for each yi, i = 1, ..., ntest.
This could lead to high computational costs when the number of test points is big.
Indeed, the method needs to be run as many times as the number of points, and
for each test point the computation of the whole regularization path is required (see
below). On the contrary, our algorithm requires to have access to a training set,

but then, on test problems, the learned parameter λ̂ will be the same for every i =
1, ..., ntest, and only one regularized problem needs to be solved. In the following we
compare the two approaches in terms of average performance on the test problems
for Tikhonov and Landweber methods. For Tikhonov regularization, we fix a grid of
regularization parameters Λ ⊆ [10−5, 10], with N = 50, Q ≈ 1.3257 and we denote
Xi,λj

the solution of the regularized problem for the parameter λj and datum yi,
i ∈ {1, . . . , ntest}. We fix ntest = 100. For each (yi, xi) in the test set, we select the
parameter with the quasi-optimality criterion, namely we set λqo

i = λj∗(i), where j∗(i)
is defined as

j∗(i) ∈ arg min
j∈0,...,50

∥Xi,λj −Xi,λj+1∥.

Our method instead provides a unique λ̂Λ, depending on the training set. For this
experiment, we fix a training set of 105 points. We then compare the average test
error corresponding to the two methods, where, for the quasi-optimality criterion we
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Llearn − Lqo, Tikhonov
noise var. τ2 = 10−4 τ2 = 10−3 τ2 = 10−2 τ2 = 1

mean −1.32 × 10−7 −5.46 × 10−5 −1.08 × 10−4 −0.2964
std 2.64 × 10−23 1.20 × 10−6 2.40 × 10−5 4.16 × 10−2

Table 1
Mean value and standard deviation of the error difference between our method and the quasi-

optimality criterion. Above, we compare methods in the case of Tikhonov regularization for different
values of the noise variance.

Llearn − Lqo, Landweber
noise var. τ2 = 10−4 τ2 = 10−3 τ2 = 10−2 τ2 = 1

mean −0.0605 −0.7880 −0.9999 −0.2937
std 6.93 × 10−18 2.22 × 10−16 1.11 × 10−16 0

Table 2
Mean value and standard deviation of the error difference between our method and the quasi-

optimality criterion. Above, we compare methods for the Landweber iteration with different values
of the noise variance.

consider

Lqo =
1

100

100∑
i=1

∥Xi,λqo
i

− xi∥2.

For Landweber iteration, we follow the implementation of the quasi-optimality crite-
rion proposed in [4], and we define λqo

i = λj∗ , where j∗(i) is defined as

j∗(i) ∈ arg min
j∈{1/500,...,1}

∥Xi,2⌊1/λj+1⌋ −Xi,⌊1/λj+1⌋∥,

and we compare the average test error as for the Tikhonov method.
We denote the test error corresponding to our method Llearn (for both Tikhonov

and Landweber) and we compute the quantity Llearn−Lqo for 30 different realizations
of the training set. We show in Tables 1 and 2 the mean value and standard deviation
of the proposed experiment for both Tikhonov and Landweber with source condition
s = 3. As the tables suggest, the data-driven selection method performs differently
than the quasi-optimality criterion for both the Tikhonov and Landweber regular-
ization. First, observe that, in the case of Tikhonov regularization, the difference
between the two studied methods is small when the noise variance is small. Instead,
when such noise variance increases, the learned regularization parameter performs
better. In the case of Landweber, instead, it can be seen in 2 that the learned reg-
ularization parameter performs considerably better for all of the proposed quantities
of the noise variance, maintaining at the same time considerably low values for the
standard deviation.

6.2. Sparsity inducing regularizers. In this section, we explore the theoret-
ical results in Section 5.1 for three different examples: denoising and deblurring of a
sparse signal, and Total Variation regularization for image denoising. We start with
the simplest case: denoising of a sparse signal.

6.2.1. Denoising of a sparse signal. Let x∗ ∈ Rd be an s-sparse signal; i.e.,
a signal with s nonzero entries, and consider the white noise model ε ∼ N(0, τ2Id),
with variance τ2 > 0. We consider the denoising problem

(6.3) y = x∗ + ε,
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where x∗ is such that ∥x∗∥2 ≤ 1 as required by Assumption 12. The most classical
approach to recover x∗ having access only to y is to solve the Lasso problem [43],

(6.4) min
x∈Rd

1

2
∥x− y∥22 + λ∥x∥1.

where the ℓ1 norm promotes sparsity [17]. In this case, it is easy to show that the
solution admits a closed-form expression, that is

Xλ = Sλ(y), λ ∈ (0,+∞),

where Sλ denotes the so-called soft-thresholding operator, introduced in [22], is defined
componetwise as

(Sλ(y))i :=

{
0, if |yi| ≤ λ,

yi − λsign(yi), if |yi| > λ,

for every i ≤ d. In this section, we will illustrate, from a numerical point of view,
Corollary 3 for this setting. We therefore aim at showing that the excess risk for this
problem goes to zero as n goes to infinity, up to a certain additive constant. To do
so, we first fix d = 1024, s = 16, τ2 = 0.1. Then, we fix a grid of regularization
parameters of N = 50 points Λ = {λ1, ..., λ50} ⊆ [10−4, 10], with Q ≈ 1.2648 and, for

every n ∈ {10, ..., 150} we define λ̂(n) as a minimizer of the empirical risk,

λ̂(n) ∈ arg min
λ∈Λ

1

n

n∑
i=1

D∥·∥1
(xi,Sλ(yi)).

where, for every n, we consider an independent set of training points {(yi, xi)}ni=1,
generated according to (6.3). Finally, we let λΛ be the minimizer of the expected error
(5.9), which we approximate with a minimizer of the empirical error with nmax = 105

training points. We let ∆(n) = L(Sλ̂(n)(y)) − L(SλΛ
(y)) denote the excess risk.

In Figure 5, we plot the quantity ∆(n) for every n ∈ {10, ..., 150}, showing that,
empirically, the excess risk goes to 0, up to a certain additive constant, when the
number of points goes to infinity.
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Fig. 5. Excess risk behaviour of the signal denoising problem with respect to the number of
training points. In the y-axis we plot the quantity ∆(n), showing that it goes to zero when n
increases. The solid lines represent the mean value, while the shaded regions represent the 5th-
percentiles and 95th-percentiles over 30 trials.
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6.2.2. Deblurring of a sparse signal. In this section, we consider the deblur-
ring of a sparse signal1. Our aim is to recover a sparse signal x∗ ∈ R256 that has been
corrupted via a convolution operator A and additive noise:

(6.5) y = Ax∗ + ε,

where x∗ is an 8-sparse signal such that ∥x∗∥2 ≤ 1, as required by Assumption 12,
and ε ∼ N(0, τ2Id) as pointed in Assumption 4. Moreover, the forward mapping A is
a linear convolution operator

x ∈ R256 7→ Ax = h ∗ x ∈ R256,

with h the second derivative of a Gaussian. More precisely, let ϕ(x) = e−x2/(2π2),
then h = ϕ′′ − µ(ϕ′′), being µ(ϕ′′) the expectation of ϕ′′. In order to recover x∗, we
solve the following variational problem

min
x

1

2
∥Ax− y∥2Y + λ∥x∥1,

running the FISTA algorithm with constant stepsize [9] until convergence; i.e. until
the difference between iterates is smaller than 10−6.

Next, we aim at illustrating Corollary 3; i.e., showing the error behaviour of the
learned regularization parameter when n goes to infinity. For this example, we fix
τ2 = 0.01 and the regularization method Xλ to be the output of running the FISTA
algorithm as explained above. Then, we fix the grid of admissible regularization
parameters to be Λ ⊆ [10−2, 1] with N = 50 and Q ≈ 1.0985. The ERM writes as

λ̂(n) ∈ arg min
λ∈Λ

1

n

n∑
i=1

D∥·∥1
(xi, Xλ(yi)).

where, for every n ∈ {10, ..., 150}, we consider independent sets of training points
{(yi, xi)}ni=1, that have been generated according to (6.5). Finally, let λΛ be the
minimizer of the expected error (5.9) –which we approximate through the empirical
error with nmax = 105 training points–, and define ∆(n) = L(Xλ̂(n)) − L(XλΛ

) to be

the excess risk. According to Corollary 3, it should go to zero as n goes to infinity,
up to a certain additive constant. We show in Figure 6 the quantity ∆(n) for every
n ∈ {10, ..., 150}.

Finally, we show one example of a reconstructed signal using our regularization
parameter choice. In order to learn the parameter λ̂, we first construct a training
set of ntrain = 100 clean/corrupted signals with the same distribution as the test
element that we want to reconstruct, with noie variance τ2 = 2.5 × 10−3. Then,
the regularization parameter will be the minimizer of the empirical risk (5.10) with
respect to the fixed training set. We show in the third row of Figure 7, the resulting
regularized solution with the learned regularization parameter.

6.2.3. Total Variation for image denoising. In this section, we use our data-
driven algorithm for choosing the regularization parameter of a Total Variation reg-
ularizer [14, 39]. To do so, we focus on the image denoising problem

(6.6) y = x∗ + ε.

1see https://www.numerical-tours.com/python/
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Fig. 6. Excess risk behaviour of the signal deblurring problem with respect to the number of
training points. In the y-axis we plot the quantity ∆(n), showing that it decreases to zero with n
going to infinity. The solid lines represent the mean value, while the shaded regions represent the
5th-percentiles and 95th-percentiles over 30 trials.
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Fig. 7. Deblurring of a sparse noisy, blurred signal with learned regularization parameter. In
the first row, we show the original signal; in the second, its blurred and noisy version; and in the
third row, the regularized solution with learned regularization parameter.

where x, y ∈ Rd×d, d ∈ N. A classical approach to solve (6.6) is to rely on the
following variational approach [41]

(6.7) min
x

1

2
∥x− y∥22 + λTV(x),

where
TV(x) = ∥Dx∥1,

and Dx = (D1x,D2x) ∈ R2d(d−1) is the discrete derivative, defined as in [13]. Then,
we propose as regularization method Xλ a solution of problem (6.7). Since (6.7) does
not have a closed-form solution, we compute it by running the FISTA algorithm on
the dual problem of (6.7), until convergence (i.e. until the difference between iterates
is smaller than 10−8). First, we show the error behaviour of the learned regularization
parameter plot for this example, illustrating Corollary 3.

We consider the MNIST dataset of 28 × 28 images of digits from 0 to 9, and
corrupt them as follows: every clean image x∗ ∈ R28×28, will be corrupted as in (6.6)
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with Gaussian noise ε ∼ N(0, τ2Id). We fix the noise variance to be τ2 = 0.01 for this
section. Then, we fix a grid of N = 50 points Λ = {λ1, ..., λ50} ⊆ [10−4, 10−1], with

Q ≈ 1.1514. For every n ∈ {10, ..., 100}, we let λ̂(n) be a minimizer of the empirical
risk,

λ̂(n) ∈ arg min
λ∈Λ

1

n

n∑
i=1

DTV(xi, Xλ(yi)).

where, for every n, we consider an independent training set of points {(yi, xi)}ni=1

randomly selected from a set of 3 × 103 images. The best regularization parameter
λΛ is the minimizer of the expected error (5.9), which we approximate with nmax =
7 × 103 training points constructed as in (6.6). With this, we define the excess risk
as ∆(n) = L(Xλ̂(n))−L(XλΛ

). As shown in Figure 8, the quantity ∆(n) goes to zero

when n goes to infinity, up to a certain constant, as indicated in Corollary 3.
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3.07

(n
)

Fig. 8. Excess risk behaviour of the Total Variation denoising problem with respect to the
number of training points. In the y-axis we plot the quantity ∆(n), showing that it goes to zero
when n increases. The solid lines represent the mean value, while the shaded regions represent the
5th-percentiles and 95th-percentiles over 30 trials.

Finally, as an illustrative example, we explore the performance of the studied
parameter selection method on test images from the MNIST dataset. We compute
four different data-driven regularization parameters for four different training sets,
each of 100 training points, and check the reconstruction results of the TV regularized
solution for two different digits in the test set. The results are shown in Figure 9. We
observe that the recovery results on single test images may vary depending on the set
of points that was used for training. This is expected, since our parameter selection
method has been designed in order to perform effectively on average.

7. Conclusions. In this paper, we studied the problem of learning the regu-
larization parameter for regularization methods in inverse problems. Such topic has
gained atention in the past years due to its promising results in many applications
[32, 33, 42], since it does not require to have any prior knowledge neither on the noise
level nor on the ground truth. By applying statistical learning techniques [16, 46], we
were able to characterize the error performance of this method following an empirical
risk minimization approach. Various numerical experiments have been included in
order to validate and illustrate the theoretical findings.

Our analysis studies a wide variety of regularization methods, including spec-
tral regularization methods (Tikhonov regularization, Landweber iteration, the ν-
method), non-linear Tikhonov regularization [23] and general convex regularizers such
as sparsity inducing norms [3] and Total Variation regularization [39].
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Fig. 9. Total Variation denoising algorithm for two digit in the test set. From left to right,
in every row, we plot the original image, its noisy version, and the recovery obtained with different
regularization parameters. We also include, accordingly, the Bregman distance with respect to the
original image and the value of the regularization parameter that has been used for such recovery.

An interesting research direction is the analysis of state-of-the-art approaches
involving deep learning methods. We believe that our results are a step forward
towards understanding the underlying theoretical principles that govern the iteraction
between classical regularization techniques and data-driven/learning approaches. This
comprehension is crucial as it could substantially enhance our confidence in using these
hybrid models, validating their combined use.

8. Acknowledgements. This project has been supported by the TraDE-OPT
project, which received funding from the European Union’s Horizon 2020 research and
innovation program under the Marie Sk lodowska-Curie grant agreement No 861137.
L. R. acknowledges the financial support of the European Research Council (grant
SLING 819789), the AFOSR projects FA9550-18-1-7009 (European Office of Aero-
space Research and Development), the EU H2020-MSCA-RISE project NoMADS -
DLV-777826, and the Center for Brains, Minds and Machines (CBMM), funded by
NSF STC award CCF-1231216. S. V. and L. R. acknowledge the support of the
AFOSR project FA8655-22-1-7034. The research by E.D.V., S. V. and C. M. has
been supported by the MIUR Excellence Department Project awarded to Diparti-
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