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Abstract. We classify the connected Lie subgroups of Sp(2,R) whose ele-

ments have the triangular form (1.2). The classification is up to conjugation
within the symplectic group Sp(2,R). Their study is motivated by the need

of a unified approach to continuous 2D signal analyses, as those provided by

wavelets and shearlets.

1. Introduction

The continuous wavelet transform [6, 10, 19, 20] and its many variants, such as,
for example, the shearlet transform [4, 5, 13, 16], lie in the background of a growing
body of techniques, that may be collectively referred to as signal analysis, whose
common feature is perhaps the decomposition of functions, primarily in L2(Rd), by
means of superpositions of projections along selected “directions”. Symmetry and
finite dimensional geometry often play a prominent rôle in the way in which these
directions are generated or selected, and hence, with this notion of signal analysis,
topological transformation groups and their representations provide a natural setup.
In particular, the restriction of the metaplectic representation of Sp(d,R) to its Lie
subgroups produces a wealth of useful reproducing formulae [2, 3], all based on
linear geometric actions either in the time or in the frequency domain, and is thus
one of the most natural environments both for a unified approach and for the search
of new strategies. In fact, the deep connections of the metaplectic representation
with harmonic analysis in phase space is thoroughly investigated [9, 12], and one
of the keys to its understanding is the Wigner transform.

The central importance of the symplectic group has motivated both a general
theory of “mock” metaplectic representations (and the abstract harmonic analysis
thereof [7]), and a more applications-oriented approach, where the main focus is
the actual study of these formulae in connection with the classical themes of signal
analysis [11]. In this work, that consists of two parts, we introduce the class E of
Lie subgroups of Sp(d,R) that we believe is the “right” class for signal analysis and
we illustrate its relevance in 2D-analysis by exhibiting the full list of reproducing
formulae that it yields, up to the appropriate notion of equivalence. In some sense,
therefore, we obtain a complete picture, at least as far as continuous “geometric”
transforms are concerned, of reasonable 2D signal analyses. In the first part (this
paper) we classify the groups, modulo conjugation within Sp(2,R). In part II we
address the analytic issues: by appealing to the theory developed in [7] we are
able to show exactly which groups are reproducing and which are not. The full
description of the associated admissible vectors is also achieved. In part II, we
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also introduce a rather subtle notion of analytic equivalence, that we call orbit
equivalence.

We say that a Lie subgroup G of Sp(d,R) is a reproducing group if there exists
η ∈ L2(Rd), to be called an admissible vector, such that the reproducing formula

(1.1) f =
∫
G

〈f, µgη〉µgη dg,

holds (weakly) for every f ∈ L2(Rd), where dg is a left Haar measure of G and µ is
the metaplectic representation restricted to G. For simplicity, we actually restrict
ourselves to connected subgroups. As pointed out in previous work [2, 3, 7], many
known continuous formulae (notably those associated to wavelets, shearlets and
some of their variants) arise in this way, or are at least equivalent to them via
natural intertwining operators such as the Fourier transform, perhaps combined
with geometric (affine) transformations of phase space. But much more is true. All
the reproducing groups that we are aware of, share a structural feature: they are
block triangular1 semidirect products of a particular type. Written as d× d blocks,
their elements have the form

(1.2) g(σ, h) =
[
h 0
σh th−1

]
where σ ranges in a non trivial vector space Σ of symmetric d × d matrices (the
vector components) and h ranges, independently of σ, in a non trivial connected
Lie subgroup H of GL(d,R) (the homogeneous component), that acts on Σ via

h†[σ] = th−1σh−1.

From the point of view of analysis, one should think of Σ as encoding translations
and H as the group of geometric “deformations” such as, for example, shearings or
possibly anisotropic dilations, or combinations of both. Thus, a group in the class
E is, by definition, a connected semidirect product G = Σ oH. All these groups lie
inside the standard maximal parabolic subgroup Q of Sp(d,R) described in (2.2),
but, in general, they are not parabolic, nor do they fill up the class of connected
Lie subgroups of Q, as we show below. Hence, this is a non trivial class and we
actually conjecture that if G is a connected reproducing subgroup of Sp(d,R), then,
modulo extensions by compact factors, G is conjugate within Sp(d,R) to a closed
subgroup of Q; for any such group G, in turn, there exists a naturally associated
group in the class E that is reproducing if and only if G is such (see part two).

In the two papers, of which this is the first, we accomplish one of the main
objectives of our research project, namely the classification, for d = 2, of all the
reproducing groups in E , together with the relevant analytic information. The
classification we are after, of course, must be done modulo some reasonable and
pertinent notion of equivalence. This is a rather delicate issue, as we now illustrate,
and is one of the central points of our work. The most natural notion of equivalence
is algebraic. In Lie theoretic terms, it is just conjugation modulo MA, where MAN
is the Langlands decomposition of Q. The matrices in MA are the block diagonal
elements in Q and conjugation by them preserves the class E . As explained in
Proposition 3.4, every y ∈MA sends any G ∈ E into yGy−1 ∈ E and actually maps
vector components into vector components (i.e. Σ to Σ′, because MA normalizes

1By conjugating with a suitable permutation one can either adopt the lower or upper triangular
shape, as desired.
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N) and homogeneous components into homogeneous components (i.e. H to H ′,
because MA normalizes itself). No other symplectic matrix has this property on
all of E . Furthermore, this equivalence yields the equivalence of the restrictions of
the metaplectic representation, groups in the same equivalence class are either all
reproducing or none of them is, and the sets of admissible vectors in a reproducing
class are in one-to-one correspondence via the unitary equivalences induced by µ(y).

Another natural equivalence is conjugation by any element in Sp(d,R). It is very
important because, although not adapted to E , any conjugation induces equivalence
of the restrictions of the metaplectic representation, and transfers the reproducing
property, with admissible vectors that correspond to eachother via natural unitary
equivalence. In Section 3.4 we analyze in full detail this general conjugation problem
and we finally prove the classiciation below; for notation see Section 4.

Theorem 1.1. The following is a complete list, up to Sp(2,R)-conjugation, of the
groups in E2 with 1 ≤ dim Σ ≤ 2.
Two dimensional groups:

(2.1) Σ1 oHα(σ1), α ∈ [0,+∞]
(2.2) Σ2 oHα(σ2), α ∈ [0,+∞]
(2.3) Σ3 oH0(σ3)
(2.4) Σ3 oH1(σ3)
(2.5) Σ3 oHα,0(σ3), α ∈ [−1, 0]

Three dimensional groups:

(3.1) Σ1 oH0(σ1)
(3.2) Σ2 oH0(σ2)
(3.3) Σ3 oK0(σ3)
(3.4) Σ3 oK∞(σ3)
(3.5) Σ3 o Lγ(σ3), γ ∈ R
(3.6) Σ⊥1 oHα(σ1), α ∈ [0,+∞]
(3.7) Σ⊥2 oHα(σ2), α ∈ [0,+∞]
(3.8) Σ⊥3 o tH0(σ3)
(3.9) Σ⊥3 o tH1(σ3)

Four dimensional groups:

(4.1) Σ3 oH0(σ3)
(4.2) Σ⊥1 oH0(σ1)
(4.3) Σ⊥2 oH0(σ2)
(4.4) Σ⊥3 o tLγ(σ3), γ ∈ [−1, 0]

Five dimensional groups:

(5.1) Σ⊥3 o tH0(σ3).

2. The parabolic group Q and its subgroups

We fix the size d where the L2-signals live. The symplectic group is

Sp(d,R) = {g ∈ GL(2d,R) : tgJg = J},

where J =
[

Id
−Id

]
is the standard symplectic form. Its Lie algebra is evidently

sp(d,R) =
{
g ∈ gl(2d,R) : tgJ + Jg = 0

}
,
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and its elements are of the form

(2.1) X =
[
A B
C − tA

]
,

where A is an arbitrary d × d matrix and B,C ∈ Sym(d,R), the vector space of
d×d real symmetric matrices. The standard maximal parabolic subgroup Q of the
symplectic group that we are interested in is the closed Lie group

(2.2) Q =
{[

h 0
σh h]

]
: h ∈ GL(d,R), σ ∈ Sym(d,R)

}
,

whose Lie algebra is:

(2.3) q =
{[
A 0
σ − tA

]
: A ∈ gl(d,R), σ ∈ Sym(d,R)

}
.

The Langlands decomposition [15] Q = MAN is easily checked to be

M =
{[
h 0
0 th−1

]
: deth = ±1

}
A =

{[
λId 0
0 λ−1Id

]
: λ > 0

}
N =

{[
Id 0
σ Id

]
: σ ∈ Sym(d,R)

}
.

We call MA ' GL(d,R) the homogeneous component and N ' Sym(d,R) the
vector component. As is well-known, MA normalizes N , so that Q is the semidirect
product of MA and the abelian normal factor N , namely

(2.4) Q = Sym(d,R) o GL(d,R), q = Sym(d,R) o gl(d,R).

To see this explicitly, notice that each element of Q is the product

(2.5) g(σ, h) =
[
Id 0
σ Id

] [
h 0
0 h]

]
=
[
h 0
σh h]

]
,

where σ ∈ Sym(d,R) and h ∈ GL(d,R) and each such product is automatically
symplectic. The above factorization is formally

(2.6) g(σ, h) = g(σ, Id)g(0, h).

Now, the product of two matrices in Q is

g(σ, h)g(σ′, h′) =
[

hh′ 0
(σ + h†[σ′])hh′ (hh′)]

]
= g(σ + h†[σ′], hh′),

where

(2.7) h†[σ] = th−1σh−1.

Thus, the group law is given by

(2.8) g(σ, h)g(σ′, h′) = g(σ + h†[σ′], hh′),

the identity is I2d = g(0, Id) and inverses are given by

(2.9) g(σ, h)−1 = g(−thσh, h−1) = g(−(h−1)†[σ], h−1).

Notice that
† : GL(d,R)× Sym(d,R)→ Sym(d,R), †(h, σ) = h†[σ]
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is actually a group action and σ 7→ h†[σ] is a group automorphism of N . More
generally, if we take a Lie subgroup H of GL(d,R) and an additive Lie subgroup Σ
of Sym(d,R) in such a way that H leaves Σ invariant under the action (2.7), then
we obtain the semidirect product Σ oH, which is a Lie subgroup of Q. Clearly, in
any such group, formulae (2.8) and (2.9) still hold true. If we fix Σ as above, then
there is a largest group normalizing it, namely

(2.10) H(Σ) =
{
h ∈ GL(d,R) : h†[σ] ∈ Σ, for all σ ∈ Σ

}
.

Observe that Σ o H is connected if and only if both Σ and H are connected,
and, if Σ is connected, then it is a subspace of Sym(d,R).

We now characterize the Lie subgroups of Q. If G is such a group, we denote by
π : Q→ GL(d,R) the smooth group homomorphism g(σ, h) 7→ h.

Proposition 2.1. Take G be a Lie subgroup of Q and define

(2.11) H = π(G) Σ = {σ ∈ Sym(d,R) : g(σ, Id) ∈ G}.
Then H is a Lie subgroup of GL(d,R), Σ is a Lie subgroup of Sym(d,R) which is
invariant with respect to the action of H, σ 7→ h†[σ] and there exists a measurable
map τ : H → Sym(d,R) that satisfies

τ(Id) = 0

τ(h) + h†[τ(h′)]− τ(hh′) ∈ Σ(2.12)

for every h, h′ ∈ H. The triple (Σ, H, τ) identifies the group, in the sense that

(2.13) G = {g(σ + τ(h), h) : σ ∈ Σ, h ∈ H}.
Conversely, if (Σ, H, τ) is any such triple, then G as in (2.13) is a Lie subgroup of
Q satisfying (2.11).

Proof. The first part is essentially known, see [8], Proposition 1.11.8. We sketch
the main steps. Take a Lie subgroup G of Q. A standard result on Lie groups, see
e. g. Theorem 2.7.3 in [21], ensures that H := π(G) is a Lie subgroup of GL(d,R).
Since ker(π) is closed in G, hence a Lie subgroup of Q, the set

Σ =
{
σ ∈ Sym(d,R) : g(σ, e) ∈ G

}
' ker(π)

is a Lie subgroup of Sym(d,R), and is contained in H(Σ) (recall (2.10)) because
ker(π) is normal in G. The quotient Lie group H = G/ ker(π) admits a global
measurable section s : H → G that maps Id to g(0, Id) (see [18] or [22]). Since
G ⊂ Q, we may write s(h) = g(τ(h), h). Therefore, if g ∈ G, then we may write
g = g(σ + τ(h), h), where h = π(g) and σ ∈ Σ. Since G is a group, the product
(2.8) shows that

(2.14) σ + h†[σ′] +
(
τ(h) + h†[τ(h′)]− τ(hh′)

)
∈ Σ

so that τ(h) + h†[τ(h′)]− τ(hh′) ∈ Σ.
Conversely, fix a triple (Σ, H, τ) as in the statement. We prove that there exists

a Lie subgroup G of Q such that (2.11) holds. Define G as in (2.13), a subgroup of
Sp(d,R) because

g(σ+τ(h), h)g(σ′+τ(h′), h′) = g(σ+h†[σ′]+
(
τ(h) + h†[τ(h′)]− τ(hh′)

)
+τ(hh′), hh′)

and by the assumptions

σ + h†[σ′] +
(
τ(h) + h†[τ(h′)]− τ(hh′)

)
∈ Σ.
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A similar argument applies to inverses. In order to prove that G is a Lie subgroup,
we follow this strategy: first we show that G is a standard Borel group2 with an
invariant σ-finite measure. As a consequence of a theorem of Mackey’s, we will be
able to endowG with the Weil topology, so thatG becomes a locally compact second
countable group. Finally, applying a classical result on Lie groups we see that G
admits a unique smooth structure converting it into a Lie subgroup of Sp(d,R).

We claim that G is a Borel subset of Sp(d,R). Since Σ and H are Lie groups,
they are standard Borel spaces with respect to the corresponding Borel σ-algebras
B(Σ) and B(H). Hence the product Σ×H is a standard Borel space with respect
to B(Σ)⊗B(H) and the injection ξ : Σ×H → Sp(d,R), ξ(σ, h) = g(σ+ τ(h), h), is
a Borel measurable map. Since ξ is a one-to-one map from a standard Borel space
into another standard Borel space, its range G is a Borel subset of Sp(d,R) and
ξ is a Borel isomorphism from Σ × H onto G, the latter being endowed with the
restriction of B(Sp(d,R)).

We choose (left) Haar measures dσ and dh on Σ and H, respectively. For any
fixed h ∈ H, the map σ 7→ h†[σ] is a group homomorphism of Σ onto itself, so that
the image measure of dσ under h†[·] is again a Haar measure. Hence there exists a
unique α(h) > 0 such that for all positive Borel measurable functions ϕ on Σ∫

Σ

ϕ(h†[σ])dσ = α(h)
∫

Σ

ϕ(σ)dσ.

Since h 7→
∫

Σ
ϕ(h†[σ])dσ is Borel measurable, so is h 7→ α(h). Furthermore, the

uniqueness of α(h) implies that h 7→ α(h) is a group homomorphism of H, that is,
α is a continuous positive character of H. Write dg as the image measure of the
measure α · dσ ⊗ dh under ξ. We claim that dg is a G-invariant σ-finite measure
on G. Since both Σ and H are σ-compact and α is continuous, then α · dσ ⊗ dh is
σ-finite as well as dg. Moreover, for any positive Borel measurable function ϕ on
G and g0 = g(σ0 + τ(h0), h0) ∈ G∫

G

ϕ(g0g)dg =
∫

Σ×H
ϕ(g(σ0 + h†0[σ] + τ(h0) + h†0[τ(h)], h0h))α(h)dσ dh

=
∫
H

∫
Σ

ϕ(g(σ0 + σ′ + τ(h0) + h†0[τ(h)], h0h))α(h0h)dσ′ dh

=
∫
H

∫
Σ

ϕ(g(σ′′ + τ(h0h), h0h))α(h0h)dσ′′ dh

=
∫

Σ

∫
H

ϕ(g(σ′′ + τ(h′), h′))α(h)dσ′′ dh′ =
∫
G

ϕ(g)dg,

where the equality in the second line is due to Fubini’s theorem, the change of
variable h†0[σ] = σ′ and the fact that α is a character; the equality in the third
line is a consequence of the fact that dσ is the Haar measure on Σ; finally, the
fourth line follows by Fubini’s theorem, the change of variable h′ = h0h and the
H-invariance of dh.

Next we apply the theorem of Mackey’s, see for example Theorem 8.41 of [22],
that states that there exists exactly one topology on G which converts it into a
locally compact second countable space whose Borel structure is the original one.
From now on, we regard G as endowed with this topology.

2For notation and basic results on these issues, see [22], Chapter VIII.
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Clearly, the inclusion i of G into Sp(d,R) is a Borel measurable group homomor-
phism. Hence i is continuous, (see Lemma 8.28 of [22]). Finally, by Proposition 1
Ch. IV §. XIV in [1], there exists exactly one C∞-structure on G which converts it
into a Lie group and Proposition 1 Ch. IV §. XII in [1] implies that the inclusion
is a C∞-map. Hence, G is a Lie subgroup of Sp(d,R). �

Remark 2.1. The correspondence between the triples (Σ, H, τ) and the Lie sub-
groups G of Q is not one-to-one. Indeed, two different maps τ and τ ′ define the
same group G if and only if τ ′(h)− τ(h) ∈ Σ for all h ∈ H and, if this happens, we
say that τ and τ ′ are equivalent. From now on we thus parametrize the Lie sub-
groups of Q writing G = (Σ, H, τ), with the understanding that τ is only defined
up to equivalence.

Remark 2.2. One could go about the proof of Proposition 2.1 in a different way,
using the standard result according to which, under the foregoing assumptions,
there exists a locally defined smooth section, hence one could assume τ to be smooth
around the identity, and then use this to define a smooth atlas on G via translations.

Remark 2.3. The problem of characterizing the Lie subgroups of Q can be stated
in a slightly different form, in the framework of Lie group extensions [14]. Since Q
is the semi-direct product of Sym(d,R) and GL(d,R), Q is a (Lie group) extension
of Sym(d,R) by GL(d,R). In the language of group extensions, i0 : Sym(d,R)→ Q
(the canonical injection) and π0 : Q→ GL(d,R) (the canonical surjection) give rise
to a short exact sequence, that is i0(Sym(d,R)) = kerπ0.
Proposition 2.1 shows that any Lie subgroup G of Q is a Lie group extension
of Σ = kerπ (a Lie subgroup of Sym(d,R)) by H = π(G) (a Lie subgroup of
GL(d,R)). Furthermore, the canonical inclusion j is a group homomorphism of G
into Q compatible with i0 and π0, in the sense that the diagram

Σ i−−−−→ G
π−−−−→ Hy yj y

Sym(d,R) i0−−−−→ Q
π0−−−−→ GL(d,R)

commutes, where the vertical arrows are the natural inclusions. The factor sets
corresponding to the extension G are: the map

(h, h′) 7→ τ(h) + h†[τ(h′)]− τ(hh′)

from H ×H into Σ and the map h 7→ h†[·] from H into the group automorphisms
of Σ. Conversely, for any pair (G, j) where G is a Lie group extension of a Lie
subgroup of Sym(d,R) by a Lie subgroup of GL(d,R) and where j : G → Q is a
group homomorphism compatible with both i0 and π0, j(G) turns out to be a Lie
subgroup of Q.

For any fixed Σ andH, the maps τ satisfying (2.12) characterize all the extensions
G of Σ by H for which there is a group homomorphism compatibile with i0 and π0.

Remark 2.4. Several special instances of (2.12) are of interest. The easiest is when
τ is (equivalent to) zero, a case that plays a prominent rôle in our paper. When
this happens, G becomes the semi-direct product Σ o H, because (2.14) reduces
to σ + h†[σ′]. The family of subgroups of Q for which τ = 0 and both factors are
connected and not trivial , will be denoted by E . We shall formalize this below (see
Definition 3.2).
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Remark 2.5. The next simpler case is perhaps when τ(h) = τ0 − h†[τ0] for some
τ0 ∈ Sym(d,R). The class of maps τ of this kind will be denoted by T . This
happens if and only if we conjugate a group Σ oH by means of g(τ0, Id):

g(τ0, Id)g(σ, h)g(τ0, Id)−1 = g(σ + τ0 − h†[τ0], h).

We shall often identify the functions τ ∈ T with the symmetric matrices that
uniquely determine them. For example, we can take

Σ =
{[x 0

0 0

]
: x ∈ R

}
, H =

{[1 0
y 1

]
: y ∈ R

}
,

thereby obtaining Σ oH, consisting of the symplectic matrices
1 0 0 0
y 1 0 0
x 0 1 −y
0 0 0 1

 .
If we conjugate Σ oH with g(τ0, Id), where τ0 is the symmetric matrix

τ0 =
[
1 0
0 −1

]
,

we obtain

G =
{

1 0 0 0
y 1 0 0

x+ y2 y 1 −y
2y 0 0 1

 : x, y ∈ R
}
,

a subgroup of Q of the form (Σ, H, τ) for which τ is not equivalent to zero.

Remark 2.6. A slightly more general class of groups G = (Σ, H, τ), that includes
the previous one, corresponds to maps τ that satisfy

τ(h) + h†[τ(h′)]− τ(hh′) = 0.

Then Hτ = {g(τ(h), h) ∈ G : h ∈ H} is a Lie subgroup of Q. Using the same
arguments as those in the proof of Theorem 2.1, one sees that τ is a C∞ map
from H into Sym(d,R). Furthermore, G is the semi-direct product of Σ and Hτ ,
and is isomorphic (as Lie group) to Σ oH via the mapping Σ oH → G given by
(σ, h) 7→ (σ + τ(h), h). For example, take

G =
{

et 0 0 0
0 e−t 0 0
set −te−t e−t 0
−tet 0 0 et

 : t, s ∈ R
}
.

Here

h =
[
et 0
0 e−t

]
, σ =

[
s 0
0 0

]
, τ(h) =

[
0 −t
−t 0

]
.

It is easily checked that τ is not of the form τ(h) = τ0 − h†[τ0] for any symmetric
τ0, but τ(h) + h†[τ(h′)]− τ(hh′) = 0.

Remark 2.7. If G = (Σ, H, τ) is connected, then so is H, but Σ may well be
disconnected. The statement concerning H is clear, since π is continuous. Consider

G = {
[
Rθ 0
θRθ Rθ

]
: θ ∈ R} ⊂ Q,
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where Rθ is the clockwise rotation matrix as in (3.3) below. Clearly G is connected,
but (2.11) tells us that Σ = 2πZ, and is therefore not connected.

Finally, take τ : H → Sym(2,R) such that G = (Σ, H, τ). We show that it is
not possible to choose τ is such a way that τ(h) + h†[τ(h′)] − τ(hh′) = 0 for all
h, h′ ∈ H. Assuming the converse, then h 7→ g(τ(h), h) is an injective measurable
(hence smooth) group homomorphism of the compact group H into G. However,
G is isomorphic to R, so that it does not have compact subgroups other than {0}.

3. Classification of E2
In part II of this paper we shall prove the following result, which illustrates our

interest in the case when τ = 0 (see Definition 3.2 below).

Proposition 3.1. If G = (Σ, H, τ) is a subgroup of Q, then also G0 = (Σ, H, 0) is
such. Furthermore, G is reproducing if and only if G0 is reproducing and they both
have the same set of admissible vectors.

By Proposition 3.1, the study of reproducing formulae for subgroups of Q reduces
to subgroups for which τ = 0. Two critical and somehow opposite situations may
still occur, namely when either Σ = 0 or when H = 0. In the latter case, the group
(Σ, {0}, 0) cannot possibly be reproducing because it is abelian, hence unimodu-
lar (see [7]). In the former case, the semi-direct product structure of ({0}, H, 0)
disappears and our results are not applicable. In fact, this case falls in the wider
scope of generalized wavelet theory (see e.g. [17]). Other possible complications
involve connectedness issues. Thus, for simplicity we restrict ourselves to connected
groups.

Definition 3.2. We denote by E the collection of all connected subgroups of Q
associated to triples of the form (Σ, H, 0) with dim Σ > 0 and dimH > 0. Thus a
group in E is a semidirect product Σ oH where both Σ and H are connected and,
in particular, Σ is a vector space. When necessary, we write Ed to specify the size.

The most natural equivalence relation in E is induced by conjugation modulo
MA, because it sends E to itself. We thus start by deriving a full description of
the set of equivalence classes modulo MA. Different equivalence classes, however,
might still yield the same signal analysis, and in some instances this is indeed the
case. This is due to two possible phenomena. The first is again algebraic, and is
conjugation modulo some other w ∈ Sp(d,R) (as we shall see, typically a Weyl
group element). In general such conjugations do not preserve E but groups in
different classes modulo MA can be equivalent modulo w. The second is analytic
and subtler, and will be discussed in part II of this work.

3.1. Classification modulo MA of E2. A first useful general reduction of the
problem comes from analysis: it is shown in [7] that if Σ o H ∈ E is reproducing,
then n := dim Σ ≤ d. We therefore assume 1 ≤ n ≤ d. The second reduction is
given by a suitable notion of “duality” that is induced by the orthogonality within
Sym(d,R) relative to the usual inner product 〈σ, τ〉 = tr(στ). For any subset Σ of
Sym(d) we write

Σ⊥ = {τ ∈ Sym(d) : 〈σ, τ〉 = 0 for all σ ∈ Σ}.
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As seen below in Proposition 3.3, the natural companion notion for the homoge-
neous factor H is transposition. Hence for any subgroup H of GL(d,R), we write

tH = {th : h ∈ H}.

Proposition 3.3. The following are equivalent:

(i) Σ oH ∈ E;
(ii) Σ⊥ o tH ∈ E.

Proof. If σ ∈ Σ, τ ∈ Σ⊥ and h ∈ H, then

〈(th)†[τ ], σ〉 = tr(h−1τ th−1σ) = tr(τ th−1σh−1) = 〈τ, h†[σ]〉.

Therefore h†[Σ] = Σ if and only if (th)†[Σ⊥] = Σ⊥. �

The next proposition shows that conjugation via g(0, h) ∈ MA maps E into
itself and, more precisely, that it preserves both the homogeneous and the normal
factors. It also records that it preserves the subclass of reproducing groups. We
use the notation ig for conjugation by g within any group G, that is

igx = gxg−1, g, x ∈ G.

Proposition 3.4. Take Σ o H ∈ E and h ∈ GL(d,R). Then ig(0,h)(Σ o H) ∈ E.
More precisely, if Σ′ oH ′ ∈ E, then the following are equivalent:

(i) ig(0,h)(Σ oH) = Σ′ oH ′

(ii) h†[Σ] = Σ′ and ih(H) = H ′.

(iii) ig(0,h])(Σ⊥ o tH) = Σ′⊥ o tH ′

(iv) (h])†[Σ⊥] = (Σ′)⊥ and ih](tH) = t(H ′).

In this case, conjugation by g(0, h) establishes one to one correspondences between:

• E-subgroups of Σ oH and E-subgroups of Σ′ oH ′;
• reproducing E-subgroups of Σ oH and reproducing E-subgroups of Σ′oH ′.

Proof. The equivalence of (i), (ii), (iii) and (iv) is a matter of writing down the
various operations. Clearly, if Σ0 o H0 is a subgroup of Σ o H, then ig(0,h) maps
it into the subgroup (h†[Σ0]) o (ih(H0)) of Σ′ o H ′, and conversely. As for the
reproducing property, we know that any conjugate image by some g ∈ Sp(d,R) of
a reproducing subgroup of Sp(d,R) is reproducing (see part II). �

From now on d = 2. Our strategy for achieving the classification is the following:

- We start from the case n = 1 and therefore write Σ = span{σ}. By Proposi-
tion 3.4, we assume that σ is in Sylvester canonical form (there are only three
meaningful possibilities) and compute in each case H(Σ) and its Lie algebra h(Σ).

- We classify all the Lie subalgebras of h(Σ) up to conjugation by H(Σ) and com-
pute the corresponding connected Lie subgroups, thereby obtaining all the sub-
groups in E2 with n = 1.

- We use Proposition 3.3 and describe all the subgroups in E2 with n = 2 as those
that are dual to some G as before, with n = 1. Indeed, dim Sym(2,R) = 3 and
hence dim(span{σ}⊥) = 2. This completes the picture because n ≤ d = 2.
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3.2. Reduction to canonical form. Whenever σ ∈ Sym(d,R), we write

H(σ) =
{
h ∈ GL(d,R) : h†[σ] = λσ for some λ ∈ R∗

}
instead of H(span{σ}), and also

F (σ) =
{
h ∈ GL(d,R) : h†[σ] = ±σ

}
.

Both H(σ) and F (σ) are subgroups of GL(d,R). We make a first observation.

Proposition 3.5. Let d = 2. The map ϕ : R+×F (σ)→ H(σ) defined by ϕ(et, h) =
he−t/2 is a group isomorphism.

Proof. First of all, if (et, h) ∈ R+ × F (σ), then

(he−t/2)†[σ] = eth†[σ] = ±etσ

and hence he−t/2 ∈ H(σ). Clearly, ϕ is a group homomorphism. If he−t/2 = Id,
then et/2Id = h ∈ F (σ) and it follows that etσ = ±σ. Therefore t = 0 and h = Id.
Hence ϕ is injective. Finally, take h ∈ H(σ). Then h†[σ] = λσ for some λ ∈ R∗.
Upon writing λ = sign(λ)|λ| =: εes, with ε = ±1, we get

(es/2h)†[σ] = e−sh†[σ] = εσ,

so that es/2h ∈ F (σ). But then h = ϕ(es, es/2h), whence surjectivity. �

By Sylvester’s law of inertia, there exists g ∈ GL(d,R) such that g†[Ipqr] = σ,
where p+ q+ r = d and Ipqr is the canonical metric with signature (p, q, r), namely

Ipqr =

Ip 0 0
0 −Iq 0
0 0 0

 .
We decompose F (Ipqr) = O(p, q, r) ∪O∗(p, q, r), where

O(p, q, r) = {g ∈ GL(d,R) : tgIpqrg = Ipqr}
O∗(p, q, r) = {g ∈ GL(d,R) : tgIpqrg = −Ipqr}

and observe that O∗(p, q, r) is empty whenever p 6= q because tgIpqrg has signature
(p, q, r), whereas −Ipqr has signature (q, p, r). The former is a group, the latter is
not, and the product of two elements of O∗(p, q, r) is in O(p, q, r).

Corollary 3.6. H(Ipqr) = {esh : s ∈ R, h ∈ O(p, q, r) ∪O∗(p, q, r)}.

Proof. Follows from Proposition 3.5 and the definitions of O(p, q, r) and O∗(p, q, r).
�

By Proposition 3.4, σ = Ipqr, and since span{σ} = span{−σ}, we may assume
p ≥ q. In the case d = 2, there are exactly three interesting possibilities for
(p, q, r), namely (2, 0, 0), (1, 1, 0) and (1, 0, 1), because the case (0, 0, 2) yields σ = 0.
Correspondingly, we put

(3.1) σ1 =
[
1 0
0 1

]
, σ2 =

[
1 0
0 −1

]
, σ3 =

[
1 0
0 0

]
.
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3.3. Classification. As outlined earlier, we carry out the classification starting
from the canonical forms (3.1). Hereafter, I denotes the identity matrix and J the
standard symplectic form. Furthermore, we put

(3.2) σ4 =
[
0 0
0 1

]
, σ5 =

[
0 1
1 0

]
As for rotations and boosts we put

(3.3) Rθ = exp θJ =
[

cos θ sin θ
− sin θ cos θ

]
, At = exp tσ5 =

[
cosh t sinh t
sinh t cosh t

]
.

Evidently, SO(2) = {Rθ : θ ∈ [0, 2π)} and SO0(1, 1) = {At : t ∈ R}. Occasionally,
we write Λ in place of σ2, when we want to regard it as a “rotation with negative
determinant”, rather than a canonical representative in the space of symmetric
matrices, as in (3.1). In fact, the full orthogonal groupO(2) = O(2, 0, 0) decomposes

O(2) = SO(2) ∪ Λ · SO(2).

Also, we denote by T the group of lower triangular matrices in GL(2,R). Finally,
we often write ε for a number in {±1}.

3.3.1. Signature (2, 0, 0). Corollary 3.6 gives

H(σ1) = R+ ×O(2).

The Lie algebra of H(σ1) is

h(σ1) = so(2)⊕ R = {αJ + βI : α, β ∈ R}.

Both H(σ1) and h(σ1) are abelian direct sums. The nontrivial Lie subalgebras of
h(σ1) are its one-dimensional subspaces. We put

h∞(σ1) = span{J}

and, for α ∈ R,
hα(σ1) = span{I + αJ}.

Proposition 3.7. Take α1, α2 ∈ R ∪ {∞}. Then hα1(σ1) is conjugate to hα2(σ1)
by an element of H(σ1) if and only if α1 = ±α2.

Proof. Take g ∈ H(σ1). Since scalars commute with everything, we can assume
that g ∈ O(2) = SO(2) ∪ Λ · SO(2). Observe that RθJR−θ = J and ΛJΛ = −J ,
so that span{J} is fixed under conjugation by g. It follows that h∞(σ1) is not
conjugate to any other algebra in the class. Finally,

Rθ(αJ + I)R−θ = (αJ + I), ΛRθ (αJ + I)R−θ Λ = Λ (αJ + I) Λ = −αJ + I

imply the result. �

Next, we identify the connected Lie subgroups corresponding to the various Lie
algebras and then apply duality, in the sense of Proposition 3.3. To this end we set

H0(σ1) = SO(2)× R+

H∞(σ1) = SO(2)

Hα(σ1) = {etRαt : t ∈ R}, α ∈ [0,+∞).
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These are the connected Lie subgroups of Q whose Lie algebras are h(σ1), h∞(σ1)
and hα(σ1), respectively. Notice that

Σ⊥1 =
{[u v
v −u

]
: u, v ∈ R

}
.

Proposition 3.8. The following is a complete list, up to MA-conjugation, of the
groups in E2 whose normal factor is equal or orthogonal to Σ1 = span{σ1}:

(1.i) Σ1 oH0(σ1) (1.iii) Σ⊥1 oH0(σ1)
(1.ii) Σ1 oHα(σ1), with α ∈ [0,+∞] (1.iv) Σ⊥1 oHα(σ1), with α ∈ [0,+∞].

Proof. Items (1.i) and (1.ii) are clear, and arise by taking first the full two-dimensional
algebra h(σ1) and then its one-dimensional subalgebras. Now, the groups H0(σ1)
and H∞(σ1) are closed under transposition, whereas tHα(σ1) = H−α(σ1). How-
ever, Λ†[Σ⊥1 ] = ΛΣ⊥1 Λ = Σ⊥1 and ΛH−α(σ1)Λ−1 = Hα(σ1). Hence, applying
Proposition 3.3 we obtain the groups in (1.iii) and (1.iv). �

3.3.2. Signature (1, 1, 0). Here the relevant group is O(1, 1) = O(1, 1, 0) together
with

O∗(1, 1) = {h ∈ GL(2,R) : thI1,−1h = −I1,−1}.

By Corollary 3.6, we obtain

H(σ2) = R+ ×
(
O(1, 1) ∪O∗(1, 1)

)
.

Its Lie algebra h(σ1) can be written as

h(σ2) = so(1, 1)⊕ R = {ασ5 + βI : α, β ∈ R}.

The non trivial subalgebras are the vector subspaces of h(σ2) of dimension 1. Put

h∞(σ2) = span{σ5}

and, for α ∈ R,

hα(σ2) = span{I + ασ5}.

Proposition 3.9. Take α1, α2 ∈ R ∪ {∞}. Then hα1(σ2) is conjugate to hα2(σ2)
by an element of H(σ2) if and only if α1 = ±α2.

Proof. Take g ∈ H(σ2). Since scalars commute with everything, we can assume
that g ∈ O(1, 1) ∪O∗(1, 1). The following relations are straightforward:

O(1, 1) = {±At,±ΛAt : t ∈ R}, O(1, 1)∗ = σ5 ·O(1, 1).

Since At σ5A
−1
t = σ5 and Λσ5 Λ = −σ5, the algebra h∞(σ2) is not conjugate to

any other one in the class. Finally, we have

At(I + ασ5)A−1
t = I + ασ5

ΛAt(I + ασ5)A−1
t Λ = Λ(I + ασ5)Λ = I − ασ5

σ5(I + ασ5)σ5 = I + ασ5,

whence the result. �



14 G. ALBERTI, L. BALLETTI, F. DE MARI, AND E. DE VITO

Finally, it follows from exp t(I + ασ5) = etAαt that the connected subgroups of
Q whose Lie algebras are h(σ2), h∞(σ2) and hα(σ2), respectively, are

H0(σ2) = SO0(1, 1)× R+

H∞(σ2) = SO0(1, 1)

Hα(σ2) = {etAαt : t ∈ R}, α ∈ [0,∞).

Notice that

Σ⊥2 =
{[u v
v u

]
: u, v ∈ R

}
.

Proposition 3.10. The following is a complete list, up to MA-conjugation, of the
groups in E2 whose normal factor is equal or orthogonal to Σ2 = span{σ2}:

(2.i) Σ2 oH0(σ2) (2.iii) Σ⊥2 oH0(σ2)
(2.ii) Σ2 oHα(σ2),with α ∈ [0,+∞] (2.iv) Σ⊥2 oHα(σ2),with α ∈ [0,+∞].

Proof. Argue as in the proof of Proposition 3.8, but notice that this time H0(σ2),
H∞(σ2) and Hα(σ2) are all closed under transposition. �

3.3.3. Signature (1, 0, 1). The group O(1, 0, 1) is easily computed to be

O(1, 0, 1) =
{[±1 0

b a

]
: a, b ∈ R, a 6= 0

}
,

and O∗(1, 0, 1) = ∅. The Lie algebra of O(1, 0, 1) is

so(1, 0, 1) =
{[0 0
b a

]
: a, b ∈ R

}
.

Clearly, the identity component O0(1, 0, 1) is isomorphic to the “ax+ b” group. By
Corollary 3.6, the symmetrizers are

H(σ3) =
{
`a,b,c =

[
c 0
b a

]
: a, b, c ∈ R, ac 6= 0

}
= T,

h(σ3) =
{[c 0
b a

]
: a, b, c ∈ R

}
that is, the group of all nonsingular lower triangular matrices and its Lie algebra.
We choose {I, σ4, B} as a basis of h(σ3), where

(3.4) σ4 =
[
0 0
0 1

]
, B =

[
0 0
1 0

]
.

First, we analyze the one-dimensional subalgebras in h(σ3) up to conjugation by
H(σ3). To this end, parametrizing as in real projective space RP2, we put

h∞(σ3) = span{I}
hγ(σ3) = span{γI +B}, γ ∈ R

hγ,β(σ3) = span{γI + βB + σ4}, γ, β ∈ R.

Proposition 3.11. Among the one dimensional Lie algebras listed above, the only
conjugacies by elements in H(σ3) = T are the following:

(a) hγ(σ3) is conjugate to h1(σ3), for every real number γ 6= 0,
(b) hγ,β(σ3) is conjugate to hγ,β′(σ3), for every γ, β, β′ ∈ R.
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Proof. A direct computation gives

`a,b,cB `
−1
a,b,c =

a

c
B,(3.5a)

`a,b,c σ4 `
−1
a,b,c = −b

c
B + σ4.(3.5b)

From (3.12) we infer that h0(σ3) cannot be conjugate to either h∞(σ3) or to any of
the algebras hγ(σ3), for any γ 6= 0. Also, (3.12) yields

`γ,0,1 (γI +B) `−1
γ,0,1 = γ(I +B)

and statement (a) follows. Again, (3.12) yields

`a,b,c (γI +B) `−1
a,b,c = γI +

a

c
B,

which shows that none of the algebras hγ(σ3) can possibly be conjugate to any of
the algebras hγ,β(σ3). Finally, from (3.12) and (3.13) we have

`a,b,c (γI + βB + σ4) `−1
a,b,c = γI +

βa− b
c

B + σ4,

whence (b). �

By the above proposition, the relevant one-dimensional subalgebras of h(σ3) are
h0(σ3), h1(σ3), h∞(σ3) and the family {hγ,0(σ3) : γ ∈ R}. The corresponding
one-dimensional connected Lie subgroups of H(σ3) are

H0(σ3) =
{[1 0
t 1

]
: t ∈ R

}
H1(σ3) =

{
et
[
1 0
t 1

]
: t ∈ R

}
H∞(σ3) =

{
et
[
1 0
0 1

]
: t ∈ R

}
Hγ,0(σ3) =

{[eγt 0
0 e(γ+1)t

]
: t ∈ R

}
, γ ∈ R.

Next we put

k0(σ3) = span{I, σ4}
k∞(σ3) = span{I,B}
lγ(σ3) = span{B, γI + σ4}, γ ∈ R.

Proposition 3.12. Up to conjugation by elements in H(σ3), there are no two di-
mensional Lie subalgebras of h(σ3) other than those listed above, which are mutually
not conjugate.

Proof. We begin by observing that the only non trivial bracket among the elements
in {I, σ4, B} is of course [σ4, B] = B. Assume that h is a two dimensional subalgebra
of h(σ3) and suppose that h = span{X1, X2}, with

X1 = α1σ4 + β1B + γ1I

X2 = α2σ4 + β2B + γ2I.

Evidently, requiring that h is a Lie algebra is equivalent to asking that

(3.6) [X1, X2] = (α1β2 − α2β1)B
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belongs to h. If B ∈ h, then this is obvious. In this case we may suppose that
X1 = B and consequently X2 = ασ4 + γI. If α = 0 we get k∞(σ3), otherwise we
set α = 1 and we get lγ(σ3). If B 6∈ h, then (3.6) yields (α1β2 − α2β1) = 0. This
means that the vectors α1σ4 + β1B and α2σ4 + β2B are linearly dependent; hence
there exists a linear combination λX1 + µX2 that is equal to I, which we choose
as basis vector for h in place, say, of X2. By subtracting off γ1I from X1, we may
thus suppose that the other basis vector is X1 = α1σ4 + β1B. If α1 = 0, then we
get again k∞(σ3). Hence we put α1 = 1 and obtain that

h = span{I, βB + σ4}

for some β ∈ R. But this is conjugate to k0(σ3), because by (3.12) and (3.13) we
have

`a,b,c (βB + σ4) `−1
a,b,c =

βa− b
c

B + σ4,

which can be made equal to σ4 because a 6= 0.
It remains to be shown that there are no conjugate pairs in the list. This follows

by inspection, taking into account that the only possibilities are given by (3.12)
and (3.13). �

By the above proposition, the relevant two-dimensional subalgebras of h(σ3)
are k0(σ3), k∞(σ3), and the family {lγ(σ3) : γ ∈ R}. The corresponding two-
dimensional connected Lie subgroups of H(σ3) are

K0(σ3) =
{[et 0

0 es

]
: s, t ∈ R

}
K∞(σ3) =

{[et 0
s et

]
: s, t ∈ R

}
Lγ(σ3) =

{[eγt 0
s e(γ+1)t

]
: s, t ∈ R

}
, γ ∈ R.

Finally, in this case

Σ⊥3 =
{[ 0 v/

√
2

v/
√

2 u

]
: u, v ∈ R

}
.

Proposition 3.13. The following is a complete list, up to MA-conjugation, of the
groups in E2 whose normal factor is equal or orthogonal to Σ3 = span{σ3}:

(3.i) Σ3 oH0(σ3) (3.ix) Σ⊥3 o tH0(σ3)
(3.ii) Σ3 oH0(σ3) (3.x) Σ⊥3 o tH0(σ3)
(3.iii) Σ3 oH1(σ3) (3.xi) Σ⊥3 o tH1(σ3)
(3.iv) Σ3 oH∞(σ3) (3.xii) Σ⊥3 o tH∞(σ3)
(3.v) Σ3 oHγ,0(σ3), γ ∈ R (3.xiii) Σ⊥3 oHγ,0(σ3), γ ∈ R
(3.vi) Σ3 oK0(σ3) (3.xiv) Σ⊥3 oK0(σ3)
(3.vii) Σ3 oK∞(σ3) (3.xv) Σ⊥3 o tK∞(σ3)
(3.viii) Σ3 o Lγ(σ3), γ ∈ R (3.xvi) Σ⊥3 o tLγ(σ3), γ ∈ R.

3.4. Classification modulo Sp(d,R) of E2. The question we want to answer is:
when are two groups in E2 conjugate by g ∈ Sp(d,R)? We now state the main
technical lemma, which is a consequence of the Bruhat decomposition. Remember
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that σ4 is as in (3.4) and T is the group of lower triangular matrices in GL(2,R).
We use the following notation

w0 :=


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 .
Lemma 3.14. Suppose that Σ1 oH1,Σ2 oH2 ∈ E2 are not conjugate modulo MA.
If g ∈ Sp(d,R), is such that g(Σ1 oH1)g−1 = Σ2 oH2, then g is of the form

(3.7) g = g(σ′, h′)−1w0g(a0σ4, h),

for some σ′ ∈ Sym(d,R), h, h′ ∈ GL(2,R), some a0 ∈ R. This can only happen if
h†[Σ1] ⊆ σ⊥4 and hH1h

−1 ⊆ T . Furthermore a0 6= 0 only if

hH1h
−1 ⊆ {

[
α 0
β 1

]
: α > 0, β ∈ R}.

The proof of Lemma 3.14 is based on the Bruhat decomposition of Sp(2,R), that
expresses Sp(2,R) as the disjoint union

Sp(2,R) =
⋃
w∈W

PwP

of the double cosets PwP of the minimal parabolic group P , parametrized by the
elements in the Weyl group W . More precisely,

P =
{[

` 0
σ` `]

]
: ` ∈ T, σ ∈ Sym(d,R)

}
,

and, with slight abuse of notation, a representative3 of the Weyl group element
w ∈W may be taken in in Sp(2,R) as a matrix of the form

w =
[
S+ −S−
S− S+

] [
π 0
0 π

]
where π is either I2 or σ5, and where S− = I2 − S+, with S+ one of

s0 =
[
1 0
0 0

]
, s1 =

[
0 0
0 1

]
, I2 =

[
1 0
0 1

]
, 0 =

[
0 0
0 0

]
.

As is well-known, W has 8 elements. Evidently, w0 corresponds to S+ = s0 and
π = I2. Notice that, W is a semidirect product and in particular

(3.8)
[
σ5 0
0 σ5

] [
s0 −s1

s1 s0

] [
σ5 0
0 σ5

]
=
[
s1 −s0

s0 s1

]
.

Also, notice that
[
σ5 0
0 σ5

]
∈MA.

Proof of Lemma 3.14. First of all, put G1 = Σ1 oH1, G2 = Σ2 oH2 and, according
to the Bruhat decomposition, write g = p−1

2 wp1 with p1, p2 ∈ P and w ∈ W .
Therefore

(3.9) p2G2p
−1
2 = w(p1G1p

−1
1 )w−1.

3Formally, W = N(D)/D where D is the maximal torus in Sp(2,R) consisting of its positive
diagonal matrices, and N(D) is its normalizer. We are indicating a set of representatives in N(D).
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Clearly, Fj := pjGjp
−1
j is a subgroup of Q, for j = 1, 2. Also, we can assume that

the permutation factor π in w is the identity, because it belongs to MA ⊂ Q. By
the same token, by (3.8), we can suppose that S+ 6= s1. Our assumption is thus

F2 = wF1w
−1.

The proof now proceeds by inspecting the three remaining cases for w.
Suppose w = −J , that is S+ = 0. Upon writing F1 = (Σ, H, τ) and taking any

element with h = I2 ∈ H, a straightforward computation gives

−J
[
I2 0
σ I2

]
J =

[
I2 −σ
0 I2

]
,

in contradiction with F2 ⊆ Q unless σ = 0. In this case, though, G1 6∈ E2. Hence
we may exclude w = −J .

Next, suppose w = I4, that is S+ = I2. Going back to (3.9), we have then
G2 = pG1p

−1 for some p ∈ P . But this yields p ∈MA, against the hypothesis.
Finally, suppose w = w0, namely S+ = s0. The conjugation gG1g

−1 = G2 can
be formally written as in (3.9), with the understanding that under the assumption
w = w0 we might have to absorb into p1 a permutation term π coming from the
Weyl group. We factor

p1 =


1 0
0 1
c b 1 0
b 0 0 1




1 0
0 1
0 0 1 0
0 a 0 1

[h h]

]
= g(bσ5 + cσ3, I2)g(aσ4, h).

As already observed, we cannot assume that h ∈ T . Now, it is easy to check that

(3.10) w0g(bσ5 + cσ3, I2)w−1
0 =


1 0
−b 1
c 0 1 b
0 0 0 1

 ∈ Q.
Therefore, we have

p2G2p
−1
2 = w(p1G1p

−1
1 )w−1

= [w0g(bσ5 + cσ3, I2)w−1
0 ]w0g(aσ4, h)G1g(aσ4, h)−1w−1

0 [w0g(bσ5 + cσ3, I2)w−1
0 ]−1

and by (3.10) we can absorb the term in square brackets into p2 ∈ Q. This proves
(3.7), because p2 = g(σ′, h′) and p1 = g(a0σ4, h) for some a0 ∈ R.

So far we thus have that (3.7) holds with p2 ∈ Q, w = w0 and p1 = g(a0σ4, h).
Looking at the right hand side of this version of (3.7), we observe that

p1G1p
−1
1 = (Σ′, H ′, τ1) = G′

where h†[Σ1] = Σ′, H ′ = hH1h
−1 and, by Remark 2.5,

τ1(h′) = a0

(
σ4 − h′†[σ4]

)
, h′ ∈ H ′.

We start by writing the elements in G′ as

gτ1(σ′, h′) =
[
I2
σ′ I2

] [
I2

τ1(h′) I2

] [
h′

h′]

]
and then we study the effect of conjugation by w0. We thus parametrize

σ′ =
[
c b
b a

]
, h′ =

[
α γ
β δ

]
,
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where we must interpret a(σ′), b(σ′), c(σ′) and similarly α(h′), β(h′), γ(h′), δ(h′).
Computing, we see that

w0gτ1(σ′, I2)w−1
0 =


1 0 0 0
−b 1 0 −a
c 0 1 b
0 0 0 1


is in Q if and only if a = a(σ′) ≡ 0 as a function on Σ′. This is formulated by
Σ′ = h†[Σ1] ⊆ σ⊥4 . Next

w0gτ1(0, h′)w−1
0 =

[
∗ x
∗ ∗

]
with

x = s0h
′s1 − s1τ1(h′)h′s1 − s1h

′]s0.

Now, only the first summand has a nonzero entry in the upper-left corner, and it
is equal to γ. Therefore γ = γ(h′) ≡ 0 s a function on H ′. This is hH1h

−1 ⊆ T .
Similarly, only the second summand has a nonzero entry in the lower-left corner.
Since τ1(h′) = a0(σ4 − h′†[σ4]), we have

(3.11) τ1(h′)h′ = a0(σ4h
′ − h′]σ4) = a0

[
0 β/αδ
β δ − 1/δ

]
,

whose lower-right corner is a0(δ − 1/δ). Therefore, a0 can be different from zero
only if the continuous function δ is δ(h′) = ±1. However, we are working with
connected groups, hence δ = 1 and so H ′ = hH1h

−1 ⊆ {
[
α 0
β 1

]
: α > 0, β ∈ R}. �

Remark 3.1. The last statement of Lemma 3.14 has a consequence for the classifica-
tion problem. Fix G = ΣoH ∈ E , say for example one among the canonical groups
determined in the previous section. If G is conjugate to some other group via an
element not in MA, then there must exist h ∈ GL(2,R) such that h†[Σ] ⊆ σ⊥4 and
hHh−1 ⊆ T . The first of these conditions forces the determinant of all elements in
Σ to be less than or equal to zero. Therefore, remembering (3.1), only the following
cases can be considered:
(a) if n = 1, then either Σ = Σ2 or Σ = Σ3;
(b) if n = 2, then Σ = Σ⊥3 .

Remark 3.2. Lemma 3.14 may be formulated in a different way. Given G ∈ E , if
there exists g 6∈ MA such that gGg−1 ∈ E , then there must exist h0 ∈ GL(2,R)
such that

(3.12) G = g(0, h0)−1(Σ, H, τ)g(0, h0)

with Σ ⊆ σ⊥4 , H ⊆ T and τ(h) = a0(σ4 − h†[σ4]), hence τ ∈ T (see Remark 2.5).
In this case there exists τ ′ ∈ T such that

(3.13) w0(Σ, H, τ)w−1
0 = (Σ′, H ′, τ ′).

The next lemma shows that if (3.12) and (3.13) hold for some h0, then they also
hold for th0, for all t ∈ T . This will be used to put (Σ, H, τ) in canonical form.

Lemma 3.15. Suppose that Σ ⊆ σ⊥4 , H ⊆ T and τ(h) = a0(σ4 − h†[σ4]) are such
that (3.13) holds with τ ′ ∈ T , for some symmetric τ0. Then for all t ∈ T there
exists τ ′′ ∈ T such that

w0g(0, t)(Σ, H, τ)g(0, t)−1w−1
0 = (Σ′′, H ′′, τ ′′).
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Proof. We parametrize the lower triangular matrices in T by

(3.14) t =
[
α
αβ δ

]
.

Then

w0g(0, t)w−1
0 = g(

[
0 β
β 0

]
,

[
α 0
0 δ−1

]
) := g′

and so g′(Σ′, H ′, τ ′)g′−1 = (Σ′′, H ′′, τ ′′), where

Σ′′ =
[
α 0
0 δ−1

]†
[Σ′]

H ′′ =
[
α 0
0 δ−1

]
H ′
[
α 0
0 δ−1

]−1

τ ′′ =
[

0 β
β 0

]
+
[
α 0
0 δ−1

]†
[τ ′].

In the last line we have identified τ ′, τ ′′ ∈ T with the corresponding symmetric
matrices. �

We apply the above lemmata to our classification problem as follows. Take any
group G in canonical form. If there exists g 6∈ MA that conjugates G to another
group in the class E , then, by Lemma 3.14, there exists h ∈ MA that maps the
vector part Σ inside σ⊥4 . By Lemma 3.15 we know that any other ht ∈ MA can
be used for this purpose, with t ∈ T , and hence we can reduce the analysis to
three possible cases: σ⊥4 itself if Σ is bidimensional, and two cases if n = 1, as the
following proposition clarifies.

Proposition 3.16. Suppose that Σ is a one dimensional vector subspace of σ⊥4 .
Then there exists t ∈ T such that t†[Σ] is generated by:

(i) σ5 if the signature is (1, 1, 0), and H(σ5) ∩ T are the diagonal matrices in
GL(2,R);

(ii) σ3 if the signature is (1, 0, 1), and H(σ3) = T .

Proof. Denote by

σ0 =
[
c b
b 0

]
the generator of Σ and parametrize as in (3.14) the elements in T . Then

t†[σ0] =
[
(cδ − 2bαβ)/α2δ b/αδ

b/αδ 0

]
.

If b = 0 we get case (ii), otherwise we put b = 1 and we get (i). �

Next we perform the conjugation by w0, as in (3.13), under the necessary condi-
tions on Σ and H that must be satisfied, but without assuming that the conjugation
produces a group in E , so that for the resulting triple (Σ′, H ′, τ ′) we don’t know
that τ ′ ∈ T . We start by computing Σ′ and H ′.

Lemma 3.17. Take Σ ⊆ σ⊥4 , H ⊆ T and τ(h) = a0(σ4 − h†[σ4]) such that
w0(Σ, H, τ)w−1

0 ⊂ Q and parametrize

σ =
[
c(σ) b(σ)
b(σ) 0

]
∈ Σ, h =

[
α(h) 0

β(h)α(h) δ(h)

]
∈ H.
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Then (Σ′, H ′, τ ′) := w0(Σ, H, τ)w−1
0 is as follows: Σ′ consists of all the matrices

(3.15) σ′ =
[
c(σ) + b(σ)β(h) β(h)

β(h) 0

]
as gτ (σ, h) varies in the subset of (Σ, H, τ) whose elements have the form

(3.16) σ =
[

c(σ) −a0β(h)
−a0β(h) 0

]
h =

[
1 0

−β(h) 1

]
,

the group H ′ consists of all the matrices

(3.17) h′ =
[

α(h) 0
−(a0β(h) + b(σ))α(h) δ(h)−1

]
as gτ (σ, h) varies freely in (Σ, H, τ), and τ ′ is not necessarily4 in T .

Proof. With our notation, but omitting the various dependencies, we have

gτ (σ, h) =


α 0 0 0
βα δ 0 0

(c+ bβ)α bδ + a0βδ
−1 α−1 −βδ−1

(b+ a0β)α a0(δ − δ−1) 0 δ−1

 ,
and hence

(3.18) w0gτ (σ, h)w−1
0 =


α 0 0 0

−(b+ a0β)α δ−1 0 a0(δ − δ−1)
(c+ bβ)α βδ−1 α−1 bδ + a0βδ

−1

βα 0 0 δ

 ,
Rember that the hypothesis w0(Σ, H, τ)w−1

0 ⊂ Q, hence of the form (Σ′, H ′, τ ′), is
equivalent to requiring that a0(δ − δ−1) = 0 (see the proof of Lemma 3.14). The
upper-left 2×2 block is as in (3.17), and by setting it to be equal to I2, the lower-left
2× 2 block is (3.15), and this happens if and only if gτ (σ, h) is as in (3.16). �

Remark 3.3. Observe that case (i) of Proposition 3.16 is ruled out from our clas-
sification problem by the above lemma. Indeed, in that case, c(σ) = 0 and h is
diagonal, so the group elements satisfying (3.16) have β(h) = 0, whence σ′ = 0.

Remark 3.4. In both the remaining two cases (Σ = Σ3 and Σ = σ⊥4 ), we can always
take β(h) = 0 and c(σ) = 1 in (3.16). Therefore we always obtain that σ3 ∈ Σ′. As
a result, the only canonical groups that are possibly conjugate to other groups in
the class E are those listed in Proposition 3.13, because σ5Σ⊥3 σ5 = σ⊥4 .

Finally, we complete the picture drawn in Lemma 3.17.

Lemma 3.18. Hypotheses and notation as in Lemma 3.17, with either Σ = Σ3 or
Σ = σ⊥4 . For every pair of real numbers a′, b′ define the function

(3.19) Ψ(σ, h) = β(h)− b′
(
1− δ(h)α(h)−1

)
+ a′ (a0β(h) + b(σ)) δ(h)2.

Then τ ′ ∈ T if and only if there exist a′, b′ such that for all h ∈ H and all σ ∈ Σ

(3.20) a′(1− δ2(h)) = 0,
[

1 0
Ψ(σ, h) 1

]
∈ H, a0Ψ(σ, h)σ5 ∈ Σ.

In this case, the symmetric matrix associated to τ ′ is
[

0 b′

b′ a′

]
.

4See the following Lemma 3.18 for further information on τ ′.
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Proof. Look at (3.18). The lower-left 2× 2 block factors as[
c(σ) + 2b(σ)β(h) + a0β(h)2 β(h)

β(h) 0

] [
α(h) 0

−(b(σ) + a0β(h))α(h) δ(h)−1

]
,

where the second is evidently h′(σ, h). Now, τ ′ ∈ T if and only if the first factor,
that we denote by ω(σ, h), satisfies

(3.21) ω(σ, h)− τ ′(h′(σ, h)) = ω(σ, h)−
(
τ ′ − h′(σ, h)†[τ ′]

)
∈ Σ′

for some symmetric (constant) matrix τ ′. For any such

τ ′ =
[
c′ b′

b′ a′

]
a direct computation gives that h′(σ, h)†[τ ′] is equal to[

c′α−2 + 2b′α−1δ (a0β + b) + a′δ2 (a0β + b)2
δ
[
b′α−1 + a′δ (a0β + b)

]
δ
[
b′α−1 + a′δ (a0β + b)

]
a′δ2

]
Now, the lower-right entry of ω(σ, h)−

(
τ ′−h′(σ, h)†[τ ′]

)
is a′(δ2−1), and must van-

ish. This is the first of (3.20). The upper-right entry of ω(σ, h)−
(
τ ′−h′(σ, h)†[τ ′]

)
is precisely Ψ(σ, h). As we have already observed, σ3 ∈ Σ′. Therefore (3.21) holds
true if and only if Ψ(σ, h)σ5 ∈ Σ′. By Lemma 3.17, this occurs if and only if the
remaining two conditions in (3.20) are satisfied. �

Remark 3.5. Notice that if there exists h ∈ H such that δ(h) 6= 1 then both a0 and
a′ = 0.

Remark 3.6. Lemma 3.18 expresses necessary and sufficient conditions for the con-
jugation via w0 to send a group (Σ, H, τ) with τ ∈ T , in a group of the same kind.
The image group, however, is determined in Lemma 3.17

Remark 3.7. Notice that if we choose a′ = b′ = 0, and a0 = 0, then (3.20) is
satisfied if and only if for every h ∈ H[

1 0
β(h) 1

]
∈ H.

In this case, τ = τ ′ = 0 and conjugation by w0 sends the group Σ o H ∈ E into
another group in E , namely σ⊥4 oH ′.

We are in a position to apply these results to our classification problem. We
take a group G ∈ E in canonical form and we want to know if it is conjugate to
another such, or not. By Lemma 3.14, we must find g ∈ MA (and Lemma 3.15
tells us that any such choice is legitimate) such that gGg−1 = Σ oH, where either
Σ = Σ3 or Σ = σ⊥4 , by Remark 3.3. Hence it is enough to consider the groups in
the list of Proposition 3.13. At this point we look at H and check whether there
are entries δ(h) 6= 1, in which case the condition a0(1 − δ(h)2) = 0 forces a0 = 0
and the first of (3.20) forces a′ = 0. If not, we must allow for a0 6= 0 and a′ 6= 0.
Next we verify if the various conditions in (3.20) are satisfied for some a′, b′. In
this case, we know that w0(Σ, H, τ)w−1

0 = (Σ′, H ′, τ ′) with both τ, τ ′ ∈ T , which
is equivalent to saying that Σ oH is conjugate to a Σ′ oH ′ yet to be determined.
Finally, using Lemma 3.17 we find all the elements of the form (3.16) and thus
compute Σ′ and H ′ by means of (3.15) and (3.17), respectively. The last step is to
identify the MA-canonical form of Σ′ oH ′.
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We now apply the above procedure to the groups in the list of Proposition 3.13.
With slight abuse of notation, we write σ5 in place of g(0, σ5) and we write G1 ∼ G2

to mean that they are conjugate. Recall that σ5Σ⊥3 σ
−1
5 = σ⊥4 .

(3.i) and (3.xiv). Σ3 o T 0 ∼ Σ⊥3 oK0(σ3).

(i) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0;
(ii) with the choice τ ′ = 0, Ψ(σ, [ α 0

βα δ ]) = β with β ∈ R and [ 1 0
β 1 ] ∈ H, hence

(3.20) are satisfied;
(iii) Σ′ = σ⊥4 , H ′ = K0(σ3) and σ5(σ⊥4 oK0(σ3))σ−1

5 = Σ⊥3 oK0(σ3).

(3.ii). Σ3 oH0(σ3) has only (not trivial) MA-conjugations.

(i) If a0 = 0, then H ′ = {I2} since α(h) = β(h) = 1 and b(σ) = 0; hence and
Σ′ o {I2} = Σ′ can not be conjugate to an element of the class E with q ∈ Q;

(ii) if a0 6= 0, then Σ′ = Σ3 and H ′ = H0(σ3).

(3.iii). Σ3 oH1(σ3) has only MA-conjugations.

(i) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0.
(ii) Ψ(σ, [ e

t 0
tet et

]) = t with t ∈ R, but [ 1 0
t 1 ] /∈ H if t 6= 0, hence (3.20) are not

satisfied.

(3.iv) and (3.v) with γ = − 1
2 . Σ3 oH∞(σ3) ∼ Σ3 oH− 1

2 ,0
(σ3).

(i) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0;
(ii) with the choice τ ′ = 0, Ψ(σ, [ e

t 0
0 et

]) = 0, hence (3.20) are trivially satisfied;
(iii) Σ′ = Σ3 and H ′ = {[ et 0

0 e−t
] : t ∈ R} = H− 1

2 ,0
(σ3).

(3.v) with γ 6= − 1
2 : Σ3 oHγ,0(σ3) ∼ Σ3 oH− γ

2γ+1 ,0
(σ3).

(i) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0;
(ii) with the choice τ ′ = 0, Ψ(σ, [ e

γt 0
0 e(γ+1)t ]) = 0, hence (3.20) are trivially satis-

fied;
(iii) Σ′ = Σ3 and H ′ = {[ eγt 0

0 e−(γ+1)t ] : t ∈ R} = H− γ
2γ+1 ,0

(σ3).

(3.vi). Σ3 oK0(σ3) has only MA (not trivial) conjugations.

(i) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0;
(ii) with the choice τ ′ = 0, Ψ(σ, [ et 0

0 es
]) = 0, hence (3.20) are trivially satisfied;

(iii) Σ′ = Σ3 and H ′ = K0(σ3), so that w0(Σ3 oK0(σ3))w−1
0 = Σ3 oK0(σ3).

(3.vii) and (3.xiii) with γ = − 1
2 . Σ3 oK∞(σ3) ∼ Σ⊥3 oH− 1

2 ,0
(σ3).

(i) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0;
(ii) with the choice τ ′ = 0, Ψ(σ, [ e

t 0
set et

]) = s with s ∈ R and [ 1 0
s 1 ] ∈ H, hence

(3.20) are satisfied;
(iii) Σ′ = σ⊥4 , H ′ = {[ et 0

0 e−t
] : t ∈ R} and σ5(σ⊥4 oH ′)σ−1

5 = Σ⊥3 oH− 1
2 ,0

(σ3).

(3.viii) with γ 6= − 1
2 and (3.xiii) with γ 6= − 1

2 , (3.viii) with γ = − 1
2

and (3.xii). If γ 6= − 1
2 , then Σ3 o Lγ(σ3) ∼ Σ⊥3 o H− γ+1

2γ+1 ,0
(σ3); if γ = − 1

2 ,

then Σ3 o L−1/2(σ3) ∼ Σ⊥3 oH∞(σ3).

(i) If γ 6= −1, there is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0; if γ = 1, we
choose a0 = 0 (see iv);

(ii) with the choice τ ′ = 0, Ψ(σ, [ e
γt 0

seγt e(γ+1)t ]) = s with s ∈ R and [ 1 0
s 1 ] ∈ H,

hence (3.20) are satisfied;
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(iii) Σ′ = σ⊥4 , H ′ = {[ eγt 0
0 e−(γ+1)t ] : t ∈ R} and σ5(σ⊥4 o H ′)σ−1

5 = Σ⊥3 o
H− γ+1

2γ+1 ,0
(σ3) if γ 6= −1/2 and σ5(σ⊥4 oH ′)σ−1

5 = Σ⊥3 oH∞(σ3) if γ = −1/2;

(iv) if γ = −1 and a0 6= 0, choose b′ = 0 and a′ = −a−1
0 so that Ψ(σ, h) = 0, but

Σ′ = Σ3 and H ′ = L−1 so that w0(Σ3 o L−1(σ3))w−1
0 = Σ3 o L−1(σ3).

(3.ix). Σ⊥3 o tH0(σ3) has only (not trivial) MA-conjugations.

(i) σt5H
0(σ3)σ−1

5 = T 0;
(ii) Σ′ = σ⊥4 and H ′ = T 0.

(3.x). Σ⊥3 o tH0(σ3) has only (not trivial) MA-conjugations.

(i) σt5H0(σ3)σ−1
5 = H0(σ3);

(ii) Σ′ = σ⊥4 and H ′ = H0(σ3).

(3.xi). Σ⊥3 o tH1(σ3) has only MA-conjugations.

(i) σt5H1(σ3)σ−1
5 = H1(σ3);

(ii) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0;
(iii) Ψ(σ, [ e

t 0
tet et

]) = t with t ∈ R, but [ 1 0
t 1 ] /∈ H if t 6= 0, hence (3.20) are not

satisfied.

(3.xii) and (3.viii) with γ = − 1
2 . See above.

(3.xiii) with γ 6= − 1
2 and (3.viii) with γ 6= − 1

2 . See above.
(3.xiv) and (3.i). See above.
(3.xv) and (3.xvi) with γ = − 1

2 . Σ⊥3 o tK∞(σ3) ∼ Σ⊥3 o tL− 1
2
(σ3)

(i) σt5K∞(σ3)σ−1
5 = K∞(σ3);

(ii) There is h ∈ H such that δ(h) 6= 1, hence a0 = a′ = 0;
(iii) with the choice τ ′ = 0, Ψ(σ, [ e

t 0
set et

]) = s with s ∈ R and [ 1 0
s 1 ] ∈ H, hence

(3.20) are satisfied;
(iv) Σ′ = σ⊥4 , H ′ = {[ et 0

set e−t
] : t ∈ R} and σ5(σ⊥4 oH ′)σ−1

5 = Σ⊥3 o tL− 1
2
(σ3).

(3.xvi) with γ 6= − 1
2 . Σ⊥3 o tLγ(σ3) ∼ Σ⊥3 o tL− γ

2γ+1
(σ3)

(i) σt5Lγ(σ3)σ−1
5 = {[ e(γ+1)t 0

se(γ+1)t eγt
] : s, t ∈ R} = L−(γ+1)(σ3);

(ii) with the choice τ ′ = 0, Ψ(σ, [ e
(γ+1)t 0

se(γ+1)t eγt
]) = s with s ∈ R and [ 1 0

s 1 ] ∈ H,
hence (3.20) are satisfied;

(iii) Σ′ = σ⊥4 , H ′ = {[ e(γ+1)t 0
se(γ+1)t e−γt

] : t, s ∈ R} and, since γ 6= −1/2,

σ5H
′σ−1

5 = {[ e−γt se(γ+1)t

0 e(γ+1)t ] : t, s ∈ R} = tL− γ
2γ+1

(σ3).

This proves Theorem 1.1.

4. Notation and symbols

We shall use the following non standard notation. The letters g, h are to be
regarded as invertible matrices and σ as a symmetric matrix.

g] = tg−1

ig(h) = ghg−1

g†[σ] = tg−1σg−1.
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If G is Lie group, the connected component of the identity will be denoted G0. We
consider the symmetric matrices

σ1 =
[
1 0
0 1

]
, σ2 =

[
1 0
0 −1

]
, σ3 =

[
1 0
0 0

]
, σ4 =

[
0 0
0 1

]
, σ5 =

[
0 1
1 0

]
.

For i = 1, 2, 3 we write Σi = span{σi}. Their orthogonal complements are

Σ⊥1 =
{[u v
v −u

]
: u, v ∈ R

}
= span{σ2, σ5},

Σ⊥2 =
{[u v
v u

]
: u, v ∈ R

}
= span{σ1, σ5},

Σ⊥3 =
{[0 v
v u

]
: u, v ∈ R

}
= span{σ4, σ5}.

For t ∈ R we set

Rt =
[

cos t sin t
− sin t cos t

]
, At =

[
cosh t sinh t
sinh t cosh t

]
.

The notation relative to the Lie subgroups of GL(2,R) is as follows:
SO(2) = {Rt : t ∈ R}
SO0(1, 1) = {At : t ∈ R}
T =

{
[ c 0
b a ] : a, b, c ∈ R, ac 6= 0

}
H0(σ1) = SO(2)× R+

H∞(σ1) = SO(2)
Hα(σ1) = {etRαt : t ∈ R}, α ∈ R
H0(σ2) = SO0(1, 1)× R+

H∞(σ2) = SO0(1, 1)
Hα(σ2) = {etAαt : t ∈ R}, α ∈ R
H0(σ3) = T 0

H0(σ3) =
{

[ 1 0
t 1 ] : t ∈ R

}
H1(σ3) =

{
et [ 1 0

t 1 ] : t ∈ R
}

H∞(σ3) =
{
et [ 1 0

0 1 ] : t ∈ R
}

Hγ,0(σ3) =
{[

eγt 0
0 e(γ+1)t

]
: t ∈ R

}
, γ ∈ R

K0(σ3) =
{[

et 0
0 es

]
: s, t ∈ R

}
K∞(σ3) =

{[
et 0
s et

]
: s, t ∈ R

}
Lγ(σ3) =

{[
eγt 0
s e(γ+1)t

]
: s, t ∈ R

}
, γ ∈ R.
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