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Abstract-Shearlets are a relatively new directional multi-scale 
framework for signal analysis, which have been shown effective 

to enhance signal discontinuities such as edges and corners at 
multiple scales. In this paper we address the problem of detecting 
and describing blob-like features in the shearlets framework. We 
derive a measure which is very efl"ective for blob detection and 
closely related to the Laplacian of Gaussian. We demonstrate 
the measure satisfies the perfect scale invariance property in the 
continuous case. In the discrete setting, we derive algorithms for 
blob detection and feature point description. Finally, we report 
an experimental evidence that our method is very suitable to 
deal with compressed and noisy images, thanks to the sparsity 
property of shearlets. 

I. INTRODUCTION 

Feature detection consists in the extraction of perceptually 

interesting low-level features (edges, ridges, corners or blobs) 

over an image, in preparation of higher level processing 

tasks. In the last decade scale-space theory has provided an 

effective framework for detecting features at multiple scales 

and for devising scale invariant image descriptors. Blob­

like features are local key points where the image signal is 

approximately uniform which have been employed primarily 

in image matching and image recognition. In early works they 

have been enhanced through the Laplacian of the Gaussian 

(LoG) operator [1]. Later, difference of Gaussians (DoG) has 

been introduced as an efficient approximation of the Laplacian 

[2], while the Hessian determjnant [1] was suggested as 

an alternative operator with a higher sensitivity and better 

invariance properties. Computationally efficient variants have 

also been devised [3]. Since feature detection often precedes 

feature matching, local features need to be associated with an 

appropriate descriptor. For a reliable feature matching, it is 

important to identify a descriptor able to deal with geometric 

transformations, illumjnation changes, and the presence of 

noise. Therefore over the years there has been a lot of work 

in devising feature descriptors able to address different types 

of variations [2]-[5]. 

Unsurprisingly, image feature detection at multiple scales 

has also been addressed in the context of wavelet theory [6]­

[8]. This framework allows for a natural derivation of the 

feature scale [6], [8] and for the design of perfect scale­

invariant measurements [9]. Also it provides an optimally 

sparse representation, very effective in the presence of noise. 

In the special case the mother wavelet is the derivative of 

the Gaussian, the wavelet transform is equivalent to the scale­

space representation [6]. 
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In recent years there have emerged a large class of repre­

sentations with a further sensitivity to directional information 

than classical wavelets. Here it is worth mentioning directional 

wavelets [10], contourlets [11], curvelets [12], and shearlets 

[13]. 

In this paper we focus on shearlets representation and we 

show how the use of shearlet coefficients may enhance blob 

structures in an image. Indeed, shearlets enjoy different in­

teresting properties which are meaningful to feature detection 

and description: 

1) For shearlets two consecutive scales are related by an 

anisotropic dilation with ratio 1/ v2 that provides an optimal 

sparse representation up to a log factor for natural images [14]. 

2) The shearlet coefficients directly encode directional in­

formation, unlike scale-space representations and traditional 

wavelets where one could derive directional information only 

as a post-processing step. 

3) Shearlets provide an optimal sparse representation for 

two-dimensional signals having singularity along curves [14]. 

On the contrary, the coefficients of the noise are uniformly 

distributed over all the components. Hence, an accurate pro­

cessing of the shearlet coefficients ensures both a sparse repre­

sentation stable under compression and an effective denoising 

without adding artifacts [15]. 

4) In contrast to the scale-space approaches, with shearlets 

we have a large choice of admissible templates allowing to 

tune the shearlet transform to specific applications, e.g, the 

Gaussian derivative to locate edges or corners as in [16], [17], 

or the Mexican hat to analyze blob structures or ridge points. 

5) Shearlets also appear to have a potential in providing 

meaningful descriptions [18], [19], although this capability has 

not been largely explored so far. 

In this paper we leverage the sparsity and directional sensi­

tivity of shearlets to design a robust algorithm for detecting and 

describing blob-like features in images. The use of a COlmnon 

underlying theory allows us to develop a detection-description 

pipeline which requires one main computation step only, i.e. 

the shearlet transform. 

In order to develop a shearlet-based blob detector, we first 

provide an analysis of the perfect scale invariance properties 

of shearlets in the continuous case, similar to the study carried 

out by Lindberg for the scale-space [20]. Then, we derive a 

discretized formulation of the problem, obtaining a discrete 

measure which will be the main building block of the blob 

detector. 

We present an experiment on a set of images, where we 
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underline the appropriateness of the method to address image 

matching at different compression and noise levels. In this 

specific aspect resides one of the main contribution of our 

work from the application standpoint: the sparsity properties 

of the shearlet transform are very appropriate to deal with 

noise and compression artifacts. 

The paper is organized as follows. In Section II we review 

the shearlet transform. Section III provide the theoretical justi­

fications of scale invariance for feature detection by shearlets. 

In Section IV we propose the shearlet-based blob detection 

algorithm, while the descriptor is introduced in Section V. 

Section VI evaluates the proposed methods for image matching 

at different compression and noise levels. Section VII is left 

to a final discussion. 

II. THE SHEARLET TRANSFORM 

A shearlet is generated by the dilation, shearing and trans­

lation of a function 7/J E L2(JR2), called the mother shearlet, 

in the following way 

7/Ja,s,t(x) = a-3/47/J ( (8 1) (x - t)) (1) 

where t E JR2, a E JR+ and S E JR are the translation, dilation 

and shearing parameters respectively. The anisotropic dilation 

a controls the scale of the shearlets, by applying a different 

dilation factor along the two axes. The shearing parameter S 

determines the orientation of the shearlets. The normalization 

factor a-3/4 ensures that II7/Ja,s,tll = 117/J11 , where 117/J11 is the 

norm in L2(JR2). The shearlet transform S1-l(J) of a signal 

f E L2(JR2) is defined by 

S1-l(J) (a, s, t) = (J,7/Ja,s,t) 

where (J,7/Ja,s,t) is the scalar product in L2(JR2). 

(2) 

In the classical setting the mother shearlet 7/J is assumed to 

factorize in the Fourier domain as ,(fJ (WI, W2) = ,(fJI (Wd,(fJ2 ( �� ) 
where ,(fJ is the Fourier transform of 7/J, 7/Jl is a one dimensional 

wavelet and ,(fJ2 is any non-zero square-integrable function. 

Different approaches are proposed in [21], [22]. However, for 

sake of simplicity, in this work we consider only classical 

shearlets. 

A. Digital Shearlets 

Digital shearlets are defined by sampling continuous shear­

let systems on a discrete subset of the space of parameters 

JR+ x JR3 and by sampling the signal on a grid. 

In the literature there are many different discretization 

schemes, see [22], [23]. In this work we adopt the Fast Finite 

Shearlet Transform (FFST) [24] which performs the entire 

shearlet construction in the Fourier domain. It is possible 

to choose as 7/JI wavelets whose analytic form is given in 

the Fourier domain, whereas in [16] and [22] wavelets are 

associated with a multiresolution analysis. 

In this scheme, the signal is discretized on a square grid of 

size N, which is independent on the dilation and shearing pa­

rameter, whereas the scaling, shear and translation parameters 

are discretized as 

aj = 2-j, j = 0, . . .  ,jo - 1, 
Sj,k = kTj/2, -l2j/2J � k � l2j/2J, 

tm = (rr;; , rr;:), m E I 

where jo is the number of considered scales and I = 

{ (ml,m2 ) : ml,m2 = O, ... ,N -I}. With respect to the 

original implementation we use a dyadic scale 2-j instead of 

4 -j to reduce the difference among two consecutive scales, 

which is consistent with the discretization lattice in [22]. 

We conclude by observing that the computational com­

plexity of the FFST is approximately O(N210g N). A more 
detailed analysis can be found in [17]. 

III. SCALE SELECTION WITH SHEAR LETS 

According to Lindeberg [25], the formal definition of scale 

selection refers to the estimation of characteristic scales in 

image data and the automatic selection of locally appropriate 

scales in a scale-space representation. A particularly useful 

methodology for computing estimates of characteristic scales 

is by detecting local extrema over scales of differential ex­

pressions in terms of ,,-normalized derivatives [1]. 

In this section, we show how shearlet coefficients can also 

detect the correct scale while providing directional informa­

tion. In the second part of the section we discuss how we can 

obtain a measure of scale invariance in the discrete setting. 

A. Scale Invariance in the Continuous Setting 

Since the dilation defining the shearlets is not isotropic, we 

can not expect that the shearlet transform itself is invariant 

under (isotropic) scale changes. However, we will show how 

a related quantity has the perfect scale invariance property, 

as demonstrated by the following result, whose proof can be 

found in the appendix of [26]. 

Theorem 1. The cumulative shearlet transform 

B[f](a, z) = a-5/4 i S1-l(J) (a, s, az)ds, (3) 

with a E JR+ and z E JR2, is scale invariant, i.e. for all f E 

L2 (JR2) 
B[Ja] (a, z) = B[J](ex-1a, z) 

where fa(x) = f(x/ex) with ex E JR+. 

(4) 

As in the scale-space theory, for the 2D sinusoidal signals 

(5) 

the cumulative shearlet transform can be explicitly computed 

and it is equal to 

(6) 

provided that 7/JI is even, so that the maximum of the modulus 

over z is 

(7) 
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Scale PnraIIlcter j 

Fig. 1. B behavior across scales for different points, coherently color-coded. 

By choosing (PI as the ID-Mexican hat wavelet 

(8) 

we can rewrite Eq. (7) as 

which shares the same behavior of the maximum of the LoG. 

Moreover, if we consider the shearlet coefficient and that both 

'l/Jl and 'l/J2 are even, a computation as above shows that 

max IS1i(J)(a, s, t) I = a3/41{Pl (aex )11{P2( s +:;-1 )I. 
tEIR2 271' a 

Since {P2 is a bump function, fixed the scale a, the shear let 

coefficients have a maximum around an interval centered at 

s = -f3 / ex. If {P2 is a Gaussian bump and (PI is as in (8) 

As we can notice, (9) is capable to produce perfect scale 

invariance for any combinations of the frequencies parameters 

ex and f3 in the sinusoidal function f. 

B. Scale Invariance in the Discrete Setting 

In the previous section, we defined a scale invariant shearlet 

transform in the continuous setting. Now, let us formally 

define the discrete counterpart of Eq. (3), which we call the 

B measure. 

Definition 1. The B measure is the scale-normalized sum of 

the discrete shearlet transform coefficients across the shearing 

parameter. 

5j 2. B(m,j) = C. L S1i(I)(j, k, m), (10) 
J k 

where j, k, m are the discretized scaling, shearing and trans­

lation parameters. 

The normalization factor Cj takes into account that for each 

scale j there is a different number of orientations. 

We stress that the choice of 'l/Jl and 'l/J2 influences the type 

of local features that are enhanced by the shearlet transform. 

Thus, in order to detect blob features, as suggested by Eq. 

(9) we selected 'l/Jl as the Mexican hat wavelet and 'l/J2 as a 

smooth function with compact support whose analytic form is 

given in [24]. 

Fig. 1 illustrates the behavior of the B measure across 

scales for different key points of a real image. We consider 

in particular five locations corresponding to blob structures of 

different size and one texturized region. It is easy to observe 

that although there is no perfect scale invariance, the peaks are 

clearly visible and their position reflect the different spatial 

extents of the corresponding image structures. 

IV. BLOB DETECTION WITH SHEARLETS 

In this section we deal with the problem of automatically 

detecting blobs and describe our Shearlet Blob Detector (SBD) 

algorithm. Similarly to the method proposed by Lowe to 
extract DoG features [2], our approach consists of different 

steps of measures, computation and refinement. 

1) Accurate feature point localization: A location m at a 

certain scale j is recognized as a candidate keypoint if the 

function B(m,j), computed over a spatial 3 x 3 x 3 (2D 

space x scales) neighborhood centered on m assumes a local 

extremum (maximum or minimum) in it and its value is above 

a threshold. 

(m,]) = argmaxmin local B(m,j). (11) 
m,J 

Then, the local extrema of the B function are interpolated 

in space and scale with the Brown and Lowe method [27] to 

reduce the effect of considering a limited number of scales. 

2) Edge responses elimination: The function B has strong 

responses along edges, especially at fine scales. Therefore, in 

order to increase stability of the detected points, we need to 

eliminate the feature points that have high edge responses. 

That is, those detected points with high values of 

1 
4l2j/2 J 

L (S1i(I)(j, k, m) - S1i(I)(j, kmax, m))2 , 
k 

where 4l2j /2 J is the total number of shearings for scale j, 
and kmax is the shearing with largest shearlet response, 

kmax = argmaxIS1i(I)(j,k,m)l. (12) 
k 

3) Accurate orientation assignment: In this step an orienta­

tion is assigned to each feature point. This is an important step 

in view of the computation of rotation invariant local feature 

descriptors. By means of the shearlet transform, the predom­

inant orientation at a point m and scale j is easily obtained 

by finding the index kmax given by Eq. (12). However, the 

orientation estimation at coarse scales may have low accuracy 

since for small j a few shearings are employed. The effects 

can be attenuated by finding the extremum of a parabola fitted 

to [kmax, S1i(I)(j, kmax, m)] and its respective neighboring 

shears. 

V. FEATURE DESCRIPTION WITH SHEARLETS 

In this section we propose a local feature descriptor based 

on the shearlet transform, the Shearlet Local Description 

algorithm (SLD). The idea behind is to encode the shearlet 
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coefficients computed from the SBD and thus complete the full 

detection-description pipeline with a single main computation, 

the shearlet transform in this case. 
Given a feature point, our descriptor encodes the shearlet 

coefficients information from a square region centered on the 

feature point position m, scaled with respect its estimated scale 

j and rotated according to its predominant orientation B. 
1) Spatial sampling: For each detected feature point, we 

sample a regular grid of 24 points per side around m with a 

sampling step of p = 2)0 -) , covering a length of 24p. The grid, 

is then divided in 16 overlapped subregions of size 9p x 9p, 

hence using 81 shearlet coefficients. Notice that the overlap 

allows us to cope with small spatial feature point shifts. 
2) Region rotation: In order to gain rotation invariance, 

the grid points are rotated according to the feature point main 

orientation B. To maintain the rotation invariance, the shearing 

parameter k also has to be aligned according to B. 
3) Descriptor construction: The SLD descriptor collect 

statistics (mean and absolute mean) of the shearlets coefficients 

in each subregion. Moreover, the contributions of each subre­

gion are weighted using a Gaussian and then concatenated to 

build the full descriptor of size JR2xcX16, where c is number of 

used shearings, usually c = 4. According to [3], the Gaussian 

weighting increase robustness towards geometric deformations 

and localization errors . 
4) Descriptor normalization: Finally, in order to gain in­

variance to linear contrast changes, we normalized the descrip­

tor to a unit vector, using the £2 normalization. 
The computational cost of the proposed methods heavily 

depends on the computation of the shearlet transform. We 

are awere that the FFST implementation is not the most 

efficient. However, our choice is motivated by the possibility of 

changing modularly the mother wavelet 1/;1 to design different 

feature detection algorithms (edges, corners and now blobs). 

In future works we will consider more efficient alternatives 

like [13], [28], [29]. 

VI. EXPERIMENTAL RESULTS 

In this section we provide an experimental assessment of 

our full pipeline, detection plus description, to address image 

matching at different compression and noise levels. 
The evaluation of our methods versus other state of the art 

detectors and descriptors following the classical Mikolajczyk's 

protocol [4] can be found in [26]. 

As anticipated in the introduction, a theoretical analysis 

proves that shearlet transform provides a sparse representation 

where the points of interest are associated with high coef­

ficients, whereas the noise contribution is equally distributed. 

Hence there is a theoretical guarantee that descriptors based on 

shearlets thresholding are stable under compression and noise. 

This section is aimed to assess this behavior on real data. We 

discuss the use of our full pipeline (SBD+SLD) on a dataset 

of images, and consider the problem of matching images 

characterized by different levels of compression and noise. We 

evaluate our results on the INRIA Copydays datasetl, which 

IThe datasets is available at https://lear.inrialpes.fr/�jegou!data.php 
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(b) Gaussian noise corruption 

Fig. 2. Comparison of blob detectors with their respective descriptor on the 
INRIA Copydays dataset. Left: matching score against amount of compression 
(a) and noise corruption (b). Right: recaU vs I-precision curve between 
untransformed and 15 QF compressed (a) and 13 dB of SNR noise corrupted 
images. 

contains 157 natural images that are progressively compressed, 

from 3 (very low quality) to 75 (typical web quality) quality 

factor (QF). For the evaluation in noisy environments, the 

images were also progressively corrupted with Gaussian noise. 

We compare our method with the SIFT [2] and SURF [3] 

methods (DoG+SIFT and fastHessian+SURF, respectively), 

along with the DoG+LIOP [5] detector-descriptor combina­

tion. For the evaluation, we consider the Matching Score (MS) 

[30] which is the ratio between the number of correct matches 

and the number of detected features. Fig. 2 (left) shows the 

comparison, where the matching superiority of our approach 

can be appreciated in both JPEG compression (a) and noise 

corruption (b). 

As a further evidence, we also provide the recall (number of 

correct matches / number of correspondences) vs I -precision 

(number of false matches / number of matches) curve (see Fig. 

2, right) obtained when matching the (untransformed) images 

with the compressed instances (15 quality factor) in (a) and 

noisy instances (13 dB of Signal to Noise Ratio) in (b). Note 

that our approach consistently outperforms the competitors. 

For a visual impression of the overall performances on the 

entire dataset, average values, are reported in both figures. 

The results we obtained are in good agreement with the 

theoretical intuition that shearlets are an appropriate choice in 

particular when dealing with noisy and compressed signals. 
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VII. CONCLUSIONS 

In this paper we considered the shearlet representation as a 

multi-scale framework for the detection and the description 

of scale-invariant interest points. We first provided a com­

parative analysis of scale invariance in the shearlets domains. 

In the continuous case, we followed the reasoning proposed 

by Lindeberg [31] for scale-space. Then, we considered the 

discrete setting where we addressed the problem of detecting 

and describing blob-like features by means of the shearlet 

transform, exploiting it capability of embedding naturally both 

scale and orientation information. More specifically, we pro­

posed a Shearlet Blob Detector (SBD) algorithm and a Shearlet 

Local Descriptor (SLD) algorithm, which we experimentally 

assessed for image matching considering a dataset of images 

affected by different degrees of noise or compression degrada­

tion. The results shows how our shearlet-based pipeline, which 

includes both detection and description, provided superior 

results to the SIFT and SURF methods. 

In future works different shearlet transform alternatives 

will be worth investigating. In particular, compactly supported 

shearlets in the space domain [21] have been recently shown to 

have nice properties for edge detection [32] since they could 

allow us to capture effectively the spatial locality of image 

features. In addition, by using the 3D shearlet transform [33], 

we also have the interest of extending the proposed shearlet 

detectors to 3D signals and video image sequences (2D + 

time). 
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