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Analysis of Elastic-Net Regularization

Lorenzo Rosasco

(joint work with Christine De Mol, Ernesto De Vito)

In many learning problems, a major goal besides prediction is that of selecting
the variables that are relevant to achieve good predictions. In the problem of vari-
able selection we are given a set (ϕγ)γ∈Γ of functions from the input space X into
the output space Y and we aim at selecting those functions which are needed to
find a good representation of the regression function f∗ on the basis of n input-
output samples. In last decade many different algorithms have been introduced
to solve such problem, such as forward stepwise regression, Lasso and greedy al-
gorithms. However these procedures have drawbacks if there are highly correlated
features. To overcome this problem, Zou and Hastie suggest a new method, called
the elastic-net regularization [3]. In our work we study several properties of this
estimation procedure with the setting of statistical learning (see [2] for details).
In particular, we prove consistency for prediction and variable selection under
some adaptive and non-adaptive choices for the regularization parameter. As an
extension of the setting originally proposed in [3], our setting is random-design
regression where we allow the response variable to be vector-valued and we con-
sider prediction functions which are linear combination of elements (features) in an
infinite-dimensional dictionary. The elastic-net scheme is defined by the minimiza-
tion of the empirical risk penalized with a (weighted) elastic-net penalty, that is,
given a sample (X1, Y1), . . . , (Xn, Yn) of i.i.d random pairs in (X ,Y), the estimator
vector βλ

n is

βλ
n = argmin

β∈$2

1

n

n∑

i=1

|Yi − fβ(Xi)|2 + λ
∑

γ∈Γ

(wγ |βγ | + εβ2
γ)

fβ =
∑

γ∈Γ

βγϕγ ,

where (wγ)γ∈Γ is a family of positive weights enforcing more or less sparsity, λ
is a regularization parameter controlling the trade-off between the empirical error
and the penalty, and ε is a tuning positive parameter that controls the trade-off
between the %1-penalty (pure Lasso) and the %2-penalty (regularized least-squares
regression). The %1-penalty has selection capabilities since it enforces sparsity of
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the solution, whereas the %2-penalty induces a linear shrinkage on the coefficients
leading to stable solutions.

Under the assumption that the features satisfy supx∈X

∑
γ∈Γ‖ϕγ(x)‖2

Y < ∞ and
the noise Yi − f∗(Xi) has exponential tails, that is,

E

[
exp

(
‖Yi − f∗(Xi)‖Y

L

)
− ‖Yi − f∗(Xi)‖Y

L
− 1

∣∣∣Xi

]
≤ σ2

2L2
,

we prove that, if the regularization parameter λ = λn satisfies limn→∞ λn = 0 and
limn→∞(λn

√
n − 2 log n) = +∞, then

lim
n→∞

‖βλn
n − βε‖2 = 0 with probability one,

where the vector βε, which we call the elastic-net representation of f∗, is the
minimizer of

min
β∈$2




∑

γ∈Γ

wγ |βγ | + ε
∑

γ∈Γ

|βγ |2


 subject to
∑

γ∈Γ

βγϕγ = f∗.

The vector βε exists and is unique provided that the regression function f∗ ad-
mits a sparse representation on the dictionary, i.e. f∗ =

∑
γ∈Γ β∗

γϕγ for at least
a vector β∗ ∈ %2 such that

∑
γ∈Γ wγ |β∗

γ | is finite. Notice that, when the fea-
tures are linearly dependent, there is a problem of identifiability since there are
many vectors β such that f∗ =

∑
γ∈Γ βγϕγ . The elastic-net regularization scheme

forces βλn
n to converge to βε. As a consequence of the above convergence re-

sult, one easily deduces the consistency of the corresponding prediction function
fn :=

∑
γ∈Γ(βλn

n )γϕγ , that is, limn→∞ E[|fn − f∗|2] = 0 with probability one.
When the regression function does not admit a sparse representation, we can still
prove the previous consistency result for fn provided that the regression function
is bounded and the linear span of the features is dense in L2(X , Q,Y), where Q is
the marginal distribution of X . Both the above convergence results are based on
the fact that βλ

n is the fixed point of the following contractive map

(1) β =
1

τ + ελ
Sλ (τI − Φ∗

nΦn)β + Φ∗
nY )

where τ is a suitable relaxation constant, Φ∗
nΦn is the matrix with entries

(Φ∗
nΦn)γ,γ′ = 1

n

∑n
i=1 < ϕγ(Xi), ϕγ′(Xi) >Y , Φ∗

nY is the vector (Φ∗
nY )γ =

1
n

∑n
i=1 < ϕγ(Xi), Yi >Y . Moreover, Sλ (β) is the soft-thresholding operator act-

ing componentwise as follows

[Sλ (β)]γ =






βγ − λwγ

2 if βγ > λwγ

2

0 if |βγ | ≤ λwγ

2

βγ + λwγ

2 if βγ < −λwγ

2

.

As a by-product of (1), βλ
n has only a finite number of non-zero components,

corresponding to the features whose weight satisfies wγ < Cn
λ , where Cn is a known

constant. Moreover βλ
n can be computed by means of an iterative algorithm. This
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procedure is completely different from the modification of the LARS algorithm
used in [3] and is akin instead to the algorithm developed in [1].

Finally, we use a data-driven choice for the regularization parameter, based
on the so-called balancing principle, to obtain non-asymptotic bounds which are
adaptive to the unknown regularity of the regression function. More precisely,
letting λk = λ0qk be a geometric sequence with q > 1, we define

λ+
n = max{λk|‖βλj

n − βλj−1
n ‖2 ≤ 4D√

nελj−1
for all j = 0, . . . , k},

where D is a suitable constant. If βε is such that for some unknown a ∈ (0, 1) it
satisfies the a-priori bound

‖βλ − βε‖2 = O(λa) where

βλ = argmin
β∈$2

E[‖Y − fβ(X)‖2
Y ] + λ

∑

γ∈Γ

(wγ |βγ | + εβ2
γ),

then we prove that ‖βλ+
n − βε‖2 = O(n− a

2(a+1) ).
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Spectral Regularization for Multi-task Learning

Massimiliano Pontil

(joint work with Andreas Argyriou, Charles Micchelli, Yiming Ying)

We are interested in the problem of learning multiple regression or classification
functions (tasks) simultaneously. We present a method for learning a set of features
which are shared across the tasks [1]. The method is based on a non-convex
regularizer which encourages the number of such features to be small. We highlight
the observation that the method is equivalent to solving a convex optimization
problem, for which there is an iterative algorithm. The algorithm has a simple
interpretation and converges to an optimal solution.

1. Notation. We begin by introducing our notation. We let R be the set of
real numbers and R+ the subset of nonnegative ones. If w, u ∈ Rd, we define
〈w, u〉 :=

∑d
i=1 wiui and ‖w‖2 =

√
〈w, w〉. If A is a d × T matrix we denote by

ai ∈ RT and at ∈ Rd the i-th row and the t-th column of A respectively. We denote
by Sd

++ the set of symmetric and positive definite matrices. If D is a d×d matrix,

we define trace(D) :=
∑d

i=1 Dii. If w ∈ Rd, we denote by Diag(w) or Diag (wi)
d
i=1


