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Analysis of Elastic-Net Regularization
LORENZO ROSASCO
(joint work with Christine De Mol, Ernesto De Vito)

In many learning problems, a major goal besides prediction is that of selecting
the variables that are relevant to achieve good predictions. In the problem of vari-
able selection we are given a set (¢, ) er of functions from the input space X" into
the output space ) and we aim at selecting those functions which are needed to
find a good representation of the regression function f* on the basis of n input-
output samples. In last decade many different algorithms have been introduced
to solve such problem, such as forward stepwise regression, Lasso and greedy al-
gorithms. However these procedures have drawbacks if there are highly correlated
features. To overcome this problem, Zou and Hastie suggest a new method, called
the elastic-net regularization [3]. In our work we study several properties of this
estimation procedure with the setting of statistical learning (see [2] for details).
In particular, we prove consistency for prediction and variable selection under
some adaptive and non-adaptive choices for the regularization parameter. As an
extension of the setting originally proposed in [3], our setting is random-design
regression where we allow the response variable to be vector-valued and we con-
sider prediction functions which are linear combination of elements (features) in an
infinite-dimensional dictionary. The elastic-net scheme is defined by the minimiza-
tion of the empirical risk penalized with a (weighted) elastic-net penalty, that is,
given a sample (X1,Y7),...,(X,,Y,) of i.i.d random pairs in (X, )), the estimator
vector 3, is
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where (w-)~er is a family of positive weights enforcing more or less sparsity, A
is a regularization parameter controlling the trade-off between the empirical error
and the penalty, and ¢ is a tuning positive parameter that controls the trade-off
between the ¢1-penalty (pure Lasso) and the /o-penalty (regularized least-squares
regression). The ¢;-penalty has selection capabilities since it enforces sparsity of
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the solution, whereas the /s-penalty induces a linear shrinkage on the coefficients
leading to stable solutions.

Under the assumption that the features satisfy sup,cx > cr ¢~ () 13, < co and
the noise Y; — f*(X;) has exponential tails, that is,

. leXp <||m~ - f;(X»ny) sl Xi] ol

we prove that, if the regularization parameter A = \,, satisfies lim,,_,o, A, = 0 and
lim,, o0 (Any/n — 2logn) = +o0, then

lim |8} — B%]]2 = 0 with probability one,
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where the vector (3%, which we call the elastic-net representation of f*, is the
minimizer of

min Z wy|By| + EZ 18, subject to Zﬂ%% = f*.
yeT
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The vector 3° exists and is unique provided that the regression function f* ad-
mits a sparse representation on the dictionary, i.e. f* = Zver B for at least
a vector 3 € (3 such that >  pw,[G]] is finite. Notice that, when the fea-
tures are linearly dependent, there is a problem of identifiability since there are
many vectors 3 such that f* = > ver Py~ The elastic-net regularization scheme
forces B)» to converge to 5. As a consequence of the above convergence re-
sult, one easily deduces the consistency of the corresponding prediction function
frn = ZWGF(B:LW)’YQO’Y’ that is, lim, . E[|f, — f*|?] = 0 with probability one.
When the regression function does not admit a sparse representation, we can still
prove the previous consistency result for f,, provided that the regression function
is bounded and the linear span of the features is dense in L2(X, Q,Y), where Q is
the marginal distribution of X. Both the above convergence results are based on
the fact that 3 is the fixed point of the following contractive map

1
(1) b= T+eA
where 7 is a suitable relaxation constant, ®;®, is the matrix with entries
(R Pr)yy = =30, < @y(Xi), oy (Xi) >y, LY is the vector (@1Y), =
LS | < 9y(X5),Y: >y. Moreover, Sy () is the soft-thresholding operator act-
ing componentwise as follows

Sy (] — ¥ ®,,)3 + 1Y)

Aw~ . AW~

By—= i By> 2
SrBly=9 0 i (B[
Byt i By <5

As a by-product of (1), 82 has only a finite number of non-zero components,

corresponding to the features whose weight satisfies w, < %, where C,, is a known

constant. Moreover 37 can be computed by means of an iterative algorithm. This
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procedure is completely different from the modification of the LARS algorithm
used in [3] and is akin instead to the algorithm developed in [1].

Finally, we use a data-driven choice for the regularization parameter, based
on the so-called balancing principle, to obtain non-asymptotic bounds which are
adaptive to the unknown regularity of the regression function. More precisely,
letting A, = Aog” be a geometric sequence with ¢ > 1, we define

4D
———— forall j=0,...,k},
NS or all j }
where D is a suitable constant. If 3¢ is such that for some unknown a € (0,1) it
satisfies the a-priori bound

AF = max{\|[|3) — g1, <

167 — 6°]]2 = O(\Y) where
B = argmin Y — f5(X)[B]+ XY (ws 18, + 62),
pet ~yel

then we prove that Hﬂ’\:{ — B2 = O(n_ﬁ)_
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Spectral Regularization for Multi-task Learning
MASSIMILIANO PONTIL
(joint work with Andreas Argyriou, Charles Micchelli, Yiming Ying)

We are interested in the problem of learning multiple regression or classification
functions (tasks) simultaneously. We present a method for learning a set of features
which are shared across the tasks [1]. The method is based on a non-convex
regularizer which encourages the number of such features to be small. We highlight
the observation that the method is equivalent to solving a convex optimization
problem, for which there is an iterative algorithm. The algorithm has a simple
interpretation and converges to an optimal solution.

1. Notation. We begin by introducing our notation. We let R be the set of
real numbers and R, the subset of nonnegative ones. If w,u € R? we define
(w,u) = Zle wiu; and ||w||2 = /(w,w). If A is a d x T matrix we denote by
a’ € RT and a; € R the i-th row and the ¢t-th column of A respectively. We denote
by Si  the set of symmetric and positive definite matrices. If D is a d X d matrix,

we define trace(D) := Zle D;;. If w € RY, we denote by Diag(w) or Diag (wi)le



