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Abstract. Shearlets are a relatively new and very effective multi-resolu-
tion framework for signal analysis able to capture efficiently the anisotropic
information in multivariate problem classes. For this reason, Shearlets
appear to be a valid choice for multi-resolution image processing and
feature detection. In this paper we provide a brief review of the theory,
referring in particular to the problem of enhancing signal discontinuities.
We then discuss the specific application to corner detection, and provide
a novel algorithm based on the concept of a cornerness measure. The
appropriateness of the algorithm in detecting good matchable corners is
evaluated on benchmark data including different image transformations.

1 Introduction

Multi-resolution methods, which are concerned with the representation and the
analysis of images at multiple resolutions, are very appealing and effective in im-
age processing since image features that are difficult to detect at one resolution
may be easily detectable at another. In this general framework, Wavelets have of-
ten been chosen to represent the image content and, more specifically, to enhance
signal discontinuities [13]. However, Wavelets are known to have a limited capa-
bility in dealing with directional information. In recent years, several methods
were introduced to overcome these limitations (see, for instance, [1, 12, 17, 19]).
Among those, the Shearlet representation offers a unique combination of some
highly desirable properties: it has a single or finite set of generating functions,
it provides optimally sparse representations for a large class of multidimensional
data, it allows the use of compactly supported analyzing functions both in the
space and frequency domain. Last, but not less important, it has fast algorith-
mic implementations and it allows a unified treatment of the continuum and
digital realms. For these reasons, in this work we choose Shearlets as a reference
framework for feature detection.

In this paper we summarize some of Shearlets theoretical and computational
properties, while referring in particular to the problem of enhancing image sin-
gularities. We then apply these findings to the corner detection problem which
has not been fully addressed yet within the Shearlet framework. We take inspi-
ration from [21], but we adopt a different algorithm to compute the digitalized
Shearlet transform, which was first introduced in [7] for segmentation problems.



With respect to the latter we choose a mother function which is more suitable
for enhancing signal discontinuities.

There are several approaches for detecting corners in images. Since the pi-
oneering work of Harris and Stephens [6], and later of Shi and Tomasi [20],
the structure tensor of image gradients, also known as the autocorrelation ma-
trix, has become popular for corner detection. Wavelets have been applied to
corner detection [2, 16], although their limited capability in dealing with di-
rectional information is critical for this application. In order to overcome this
limitation, orientation sensitive wavelets, such as the Log-Gabor wavelets, have
been adopted [4]. Here we present an alternative way for addressing the problem
effectively by selecting a more appropriate orientation selective transform.

The paper is organized as follows: in Section 2 we briefly review the Shear-
let transform in the continuous and discrete case. In Section 3 we address the
general issue of detecting signal discontinuities with Shearlets, while in Section
4 we propose procedures for corner detection, whose effectiveness is discussed in
Section 5 following the Oxford evaluation procedure [15]. Section 6 is left to a
final discussion and to an account of future works.

2 A Review of the Shearlet Transform

In this section we review the main properties of Shearlets, referring the interested
reader to [10]. A shearlet is generated by the dilation, shearing and translation
of a function ψ ∈ L2(R2), called the mother shearlet, in the following way

ψa,s,t(x) = a−3/4ψ(A−1a S−1s (x− t)) (1)

where t ∈ R2 is a translation, Aa is a scaling (or dilation) matrix and Ss a
shearing matrix defined respectively by

Aa =

(
a 0
0
√
a

)
Ss =

(
1 −s
0 1

)
,

with a ∈ R+ and s ∈ R. The anisotropic dilation Aa controls the scale of
the Shearlets, by applying a different dilation factor along the two axes. The
shearing matrix Ss, not expansive, determines the orientation of the Shearlets.
The normalization factor a−3/4 ensures that ‖ψa,s,t‖ = ‖ψ‖, where ‖ψ‖ is the
Hilbert norm in L2(R2).
The Shearlet transform SH(f) of a signal f ∈ L2(R2) is defined by

SH(f)(a, s, t) = 〈f, ψa,s,t〉, (2)

where 〈f, ψa,s,t〉 is the scalar product in L2(R2). A possible classical choice for
the mother Shearlet ψ is

ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2(
ω2

ω1
) (3)



Fig. 1: Support of the Shearlets ψ̂a,s,t in the frequency domain.

where ψ̂ is the Fourier transform of ψ, and ψ̂1, ψ̂2 are usually two compactly sup-
ported functions in the one-dimensional frequency domain. The mother Shearlet
in the frequency domain becomes

ψ̂a,s,t(ω1, ω2) = a3/4 ψ̂1(aω1)ψ̂2

(
ω2 − sω1√

aω1

)
e−2πit·(ω1,ω2) (4)

and it has a support on two trapezoids at scale a oriented along a line of slope s
( Fig. 1). The Shearlet transform can be rewritten as

SH(f)(a, s, t) = a3/4
∫
R̂2

f̂(ω1, ω2)ψ̂1(aω1)ψ̂2

(
ω2 − sω1√

aω1

)
e2πit·(ω1,ω2)dω1dω2.

The mother function ψ satisfies some technical condition, which we do not discuss
in detail, see [10]. In the following we assume that ψ1 is a one-dimensional

wavelet and ψ̂2 is a bump function whose support is in [−1, 1].
The Shearlet transform is able to capture the geometry of signal singulari-

ties through its asymptotic decay at fine scales (a → 0). A group of theoretical
results [5,11] show that the Shearlet transform precisely describes the geometric
information of edges and other singular points of an image through their asymp-
totic behavior at fine scales. Explicitly, the Shearlet coefficient SH(I)(a, s, t)
goes to zero faster than any power of a either if t is a regular point (for any s) or
if t is an edge point and s 6= s0 where s0 is the normal orientation of the edge.
If t is an edge and s = s0, the decay is of the order a3/4. A similar behaviour
holds if t is a corner point and s coincides with one of the normal directions of
the corner, otherwise the decay is O(a9/4).

For numerical implementation, it is useful to restrict the range of a and s to
bounded intervals. This is achieved by a suitable tiling of the frequency plane

Ch = {(ω1, ω2) ∈ R2 : |ω2/ω1| ≤ 1, |ω1| > 1},
Cv = {(ω1, ω2) ∈ R2 : |ω1/ω2| ≤ 1, |ω2| > 1},
R = {(ω1, ω2) ∈ R2 : |ω1|, |ω2| ≤ 1}.



For each cone Ch,v there is a corresponding mother Shearlet

ψ̂h(ω1, ω2) = ψ̂1(ω1)ψ̂2

(
ω2

ω1

)
χCh

ψ̂v(ω1, ω2) = ψ̂1(ω2)ψ̂2

(
ω1

ω2

)
χCv

where χCh,v
is 1 on Ch,v and 0 outside. The low frequency regionR can be handled

by a scaling function φ̂(ω1, ω2). This construction is usually called cone-adapted
Shearlets.

The next step is to provide a discretization sampling of a, s and t. In the
literature there are many different discretization schemes. In this paper we adopt
the Fast Finite Shearlet Transform (FFST) [7] which performs the entire Shearlet
construction in the Fourier domain. In this scheme, the signal is discretized on a
square on size N , which is independent of the dilation and shearing parameter,
whereas the scaling, shear and translation parameters are discretized as

aj = 2−j , j = 0, . . . , j0 − 1,

sj,k = k2−j/2, −b2j/2c ≤ k ≤ b2j/2c,

tm =
(m1

N
,
m2

N

)
, m ∈ I

where j0 is the number of considered scales and I = {(m1,m2) : m1,m2 =
0, . . . , N − 1}. With these notations the Shearlet system becomes

ψx
j,k,m(x) = ψx

aj ,sj,k,tm
(x)

where x = h or x = v.
The discrete Shearlet transform of a digital image I is now defined as

SH(I)(j, k,m) =


〈I, φm〉
〈I, ψhj,k,m〉
〈I, ψvj,k,m〉

where j = 0, . . . , j0 − 1, |k| ≤ b2j/2c, m ∈ I. Based on the Plancherel formula

〈f, g〉 = 1
N2 〈f̂ , ĝ〉, the discrete shearlet transform can be efficiently computed

by applying the 2D fast Fourier transform (fft) and its inverse (ifft). Thus, a
discrete Shearlet transform algorithm can be summarized as

SH(I)(j, k,m) =


ifft(φ̂(ω1, ω2)fft(I))(m)

ifft(ψ̂1(2−jω1)ψ̂2(2j/2 ω2

ω1
− k)fft(I))(m) .

ifft(ψ̂1(2−jω2)ψ̂2(2j/2 ω1

ω2
− k)fft(I))(m)

(5)

3 Detecting discontinuities with Shearlets

In this section we discuss the ability of Shearlets to enhance local signal discon-
tinuities.



Fig. 2: Enhancement of signal discontinuities provided by Shearlets: two example
images and the results obtained by choosing the ψ̂1 as the Lemarie-Meyer wavelet
(center) or the Mallat wavelet (right).

Shearlets for enhancing discontinuities. In choosing the function ψ1 we
adopt the Mallat wavelet [14], a family of one dimensional wavelets which share
the same properties of the first derivative of the Gaussian:

ψ̂1(ω) = iω

(
sin(ω/4)

ω/4

)2n+2

. (6)

This choice is alternative to the classical Lemarie-Meyer wavelet [3,7] which is not
optimal for edge detection since the Lemarie-Meyer wavelet is an even function
and thus its Shearlet transforms suffer from large side-lobes around prominent
edges, which interfere with the detection of the edge location (see Fig. 2). As for
ψ2, instead, any smooth function with compact support in the frequency domain
can be considered. In our case we used the same bump function as in [3, 7].

Enhancing discontinuities at fixed scales. Signal discontinuities can be
identified as those points m ∈ I which, at scale j, the function Ej(m) has large
values, with

Ej(m)2 =
∑
k

(SH(I)(j, k,m))2. (7)

SH(I)(j, k,m) denotes the discrete Shearlet transform of I in Eq. (5).

Estimating the discontinuities orientation at fixed scales. The Shear-
let transform provides naturally this type of information, which can be easily
obtained at a fixed scale j by finding the index k that maximizes SH(I)(j, k,m),

θj(m) = arg max
k
|SH(I)(j, k,m)|. (8)

Fig. 3 shows different orientations at different scales j. The estimated directions
are color coded, i.e. each color represents a specific direction summarized in the
colorbar at the right of the figure. As we can observe, the Shearlet transform
accurately estimates the orientation. In addition, it can be noticed how accuracy
increases at fine scales (j → 3) due to the fact that at fine scales more shears k
have to be considered, −b2j/2c ≤ k ≤ b2j/2c.
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Fig. 3: Image discontinuities across scales. Top: Shearlet coefficients - Eq. (7).
Bottom: Orientations - Eq. (8). Coarse to fine from left to right.
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(b) Edge
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(c) Corner

Fig. 4: Shearlet orientation patterns for an edge (square) and a corner (circle).

Analysing discontinuities across scales. Orientation is an important cue to
classify different types of signal discontinuities. To this purpose, we may analyze
how the Shearlets coefficients vary across different orientations. Fig. 4 shows
a comparison of the orientation patterns in the case of an edge (square) and
a corner (circle) in a natural image. Let us first consider a fixed scale j = 2
(red plots). As we can observe, for the edge point a strong Shearlet response
is obtained on one direction only, while for the corner point it can be observed
strong Shearlet responses at two different, almost perpendicular, orientations.
If we perform the analysis across scales, it can be seen how on the edge point
the strongest Shearlet response is maintained on one direction only with the
exception of the finest scale where two high responses are obtained on two close
orientations. Instead, on the corner point, the two orientations with the strongest
Shearlet response slightly vary across scales. This is an expected behavior since,
depending of the scale at which the analysis is performed, a corner point can
have different main orientations.



4 Corner Detection with Shearlets

Corner patterns are associated with signal discontinuities in at least two direc-
tions and it is reflected on the behavior of Shearlet coefficients across different
orientations, as discussed in the previous section. In this work we favor corners
assiciated with at least two large coefficients, with a preference for patterns where
such coefficients are at about 90 degrees to one another (the ”ideal” corner).

Considering a generic image point m, at a fixed scale we compute a weighted
sum of its Shearlet coefficients across shears, where each weight is a value that
represents how perpendicular is the orientation of the shear with the orientation
of the shear with the maximum Shearlet response for that point. To this purpose,
we define a cornerness measure CM for a point m ∈ I and for a fixed scale j in
the following way

CMj(m) =
∑

u∈W (m)

∑
k

|SH(j, k, u)| sin(|θk − θkmax
|)

where SH(j, k, u) represents the discrete Shearlet transform coefficient for a
point u in a neighborhood of m, at scale j and shearing k, θk is the angle
associated to the shearing k, kmax = arg maxk |SH(j, k,m)| and W (m) is a
window centered at point m of an appropriate size. Then we may aggregate
the cornerness measure at different scales: CM(m) =

∑
j CMj(m). In this way

detected corner points that persist across scales are reinforced. Alg. 1 describes
a sketch of the algorithm.

Taking the advantage of the multi-scale representation produced by the
Shearlets, we may associate an appropriate scale to each detected corner m ∈ C:

j̄ = arg max
j

Kj

∑
k

|SH(j, k,m)| (9)

where Kj is a normalization factor that depends on the scale j. Fig. 5 shows the
result of the Shearlet multi-scale corner detection with automatic scale selection.

5 Experimental Results

In this section we assess the effectiveness of the corner detection procedure. The
evaluation is based on the standard Mikolajczyk’s software framework3. Image
sequences are provided, each one containing 6 images of natural textured scenes
with increasing geometric and photometric transformations. In our analysis we
discarded those that are not applicable in our scenario that does not consider
large zooming and rotations (normally addressed by appropriate descriptors).
For the evaluation metrics [15] we consider:

3 http://www.robots.ox.ac.uk/~vgg/research/affine/



Fig. 5: Shearlet corner detection with automatic scale estimation - sample out-
puts: j = 0 (Blue); j = 1 (Green); j = 2 (Red); j = 3 (Magenta).

– The number of correspondences |CR1i|, is the cardinality of the set containing
all the corner points correspondences between image I1 and the evaluated
image Ii. To estimate it, we employ the homography H1i which is provided
with the images and count the number of corners of image Ii which are close
to corners from I1, after H1i has been applied.

– The repeatability score RSi for an image Ii is the ratio of the number of
correspondences and the minimum number of corners detected in the images:

RSi = |CR1i|
min (|C1|,|Ci|) .

In this experimental analysis we consider the corner detection algorithm across
scales that we propose (Alg. 1 - reported in the following as SMCD) as well
as a variant of it where j is fixed and the only change in the algorithm is the
summation across scales which is not needed (henceforth SCD). As a threshold
we set 10% of the cornerness measure maximum value of each image. If more
than 500 detected corner points remains, only the 500 points with the maximum
cornerness measure are selected. We compare our algorithms with the classical
Harris [6] and Shi-Tomasi [20], the two methods LGWTOI and LGWTSMM
proposed in [4] based on Log-Gabor wavelets, and the more recent FAST [18].
The results are reported in Fig. 6:

– View-point changes: in (a) different corner detection methods perform in
a similar way, with a slightly higher number of correspondences in FAST
slightly outperforms the rest. In (b) SMCD and SCD at scale j = 1, 2 obtain
a higher repeatability score and number of correspondences.

– Image blur: in (c) Harris and LGWTSMM obtain a very high repeatability
score but with the lowest number of correspondences. The best trade-off
between the two different metrics is achieved by SCD at the coarsest scale j =



Algorithm 1 Shearlet Corner Detection.
Input I: input image, j0: number of scales considered, t: threshold.
Output C: set of detected corner points.

1: procedure SMCD(I, j0, t)
2: C = {};
3: SH = dst(I); // Discrete Shearlet Transform as in Eq. (5)
4: for all m ∈ I do
5: CM(m) =

∑
j

∑
u∈W (m)

∑
k |SH(j, k, u)| sin(|θk − θkmax |); //Multi-Scale

Cornerness
6: end for
7: nonmaxsup(CM); // Non Maxima Suppression as in [8]
8: for all m ∈ I do
9: if CM(m) > t then // Corner detection

10: C = C ∪ (m);
11: end if
12: end for
13: return C;
14: end procedure

0. Coherent results are noticeable in (d), where we also observe a remarkable
performance of our multi-scale variant SMCD.

– Illumination changes: in (e) we see how many methods (LGWTOI, FAST,
SMCD and SCD with j = 2, 3) obtained the high correspondences, but the
best trade-off with the repetibility score is achieved by SMCD.

6 Discussion

In this paper we addressed the problem of enhancing image singularities with
the Shearlet transform.

Shearlets are capable of capturing anisotropic information in multivariate
functions and are thus particularly appropriate for the detection of directional
sensitive features. We applied our analysis to the corner detection problem and
sketched an algorithm which allowed us to detect meaningful corner features
at a fixed scale and at multiple scales. The expressive power of the adopted
framework allowed us also to associate a scale with each detected key point. We
assessed our corner detection algorithm comparing our results with state of the
art methods. The analysis illustrated the appropriateness of our algorithm in
detecting matchable corners across different image transformations, with very
good performances in particular for blur and illumination changes.

We are currently working on a fully multi-scale corner detection pipeline,
which includes an optimal scale selection and a suppression of multiple corners
across scales, comparable with the scale-space approach. The general framework
adopted will allow us in the future to detect other types of image features (such
as blob-like features) and space-time features (such as STIP).
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(a) Graffiti (viewpoint change)
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(b) Wall (viewpoint change)
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(c) Bikes (image blur)
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(d) Trees (image blur)
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(e) Leuven (light change)

Fig. 6: Comparison of different corner detectors on five image sequences.

Our approach relies on classical choices for the mother Shearlet, but interest-
ing alternatives are available and would be worth investigating in future works.
For instance, compactly supported Shearlets [9] have been recently shown to
have nice properties for edge detection [11].
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