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Abstract—In this work we address the problem of analyzing
video sequences and representing meaningful space-time points
of interest. We base our work on the 3D shearlet transform.
In particular, we exploit the relation between coefficients with
similar shearings to build a local representation which turns out
to be really informative to understand the local spatio-temporal
characteristics of the points that we are considering.

I. INTRODUCTION

In this paper we consider a specific type of signal, video
sequences, where spatial shapes and structures evolve over
time. Usually, in video sequence analysis, the goal is to
identify space-time points of interest, which may be associated
with space-time discontinuities on the 2D+T signal. In recent
years such points have been studied with a reference to space-
scale theory [1], see for instance [2, 3, 4].

In the meanwhile, many multi-scale methods have been
introduced to deal with multi-dimensional signals. Among
them, shearlets [5] emerge by their ability to efficiently capture
anisotropic features [6], to provide an optimal sparse repre-
sentation [7, 8], to detect singularities [9, 10] and to be stable
against noise and blurring [11, 12]. For for further details,
implementations, and references see [13] and the website
http://www.shearlab.org/.

The effectiveness of shearlets is supported by a well-
established mathematical theory [14] and it is tested in many
applications in image processing by providing efficient algo-
rithms [13, 15].

It is natural to expect that 3D-shearlet representation will
be applicable to the analysis of 2D + T signals even if the
latter carry rather peculiar properties and behaviors. Based on
this representation, we propose a procedure to analyze the
shearlet coefficients of video sequences and we show that they
efficiently enhance different types of local spatio-temporal
points of interest.

The paper is organized as follows. In Section 2 we review
the discrete shearlet transform specialized to the 2D+T case
and we show that the directional informations encoded with
the shearlets coefficients are naturally associated with spatial-
temporal points of interest. Then, in Section 3, we propose
a procedure to represent shearlets coefficients, in order to
describe different types of space-time features. The proce-
dure is motivated by the fact that the directional information
embedded in a space-time neighborhood is more complex to
treat than the purely 2D case. Our contribution is in deriving

an efficient way to collect neighboring information. Section 4
shows an empirical evidence of our claim on a synthetic and
a real case. Section 5 is left to a final discussion.

II. SHEARLET THEORY: AN OVERVIEW

Shearlets in arbitrary space dimensions were first introduced
in [14] in the continuous realm. Here we briefly review the
construction of the discrete shearlet transform of a 2D + T
signal f by adapting the approach given in [16] for 3D signals.

Denoted by L2 the Hilbert space of square-integrable func-
tions f : R2 × R → C with the usual scalar product 〈f, f ′〉,
the discrete shearlet transform SH[f ] of a signal f ∈ L2 is
the sequence of coefficients

SH[f ](`, j, k,m) = 〈f,Ψ`,j,k,m〉
where {Ψ`,j,k,m} is a family of filters parametrized by
a) a label ` = 0, . . . , 3 associated with four regions P` in the

frequency domain;
b) the scale parameter j ∈ N;
c) the shearing vector k = (k1, k2) where k1, k2 =
−d2j/2e, . . . , d2j/2e;

d) the translation vector m = (m1,m2,m3) ∈ Z3.
For ` = 0 the filters, which do not depend on j and k, are

Ψ0,m(x, y, t) = ϕ(x− cm1)ϕ(y − cm2)ϕ(t− cm3), (1)

where c > 0 is a step size and ϕ is a 1D-scaling function.
The system {Ψ0,m}m takes care of the low frequency cube

P0 = {(ξ1, ξ2, ξ3) ∈ R̂3 | |ξ1| ≤ 1, |ξ2| ≤ 1, |ξ3| ≤ 1}.
For ` = 1 the filters are defined in terms of translations and
two linear transformations

A1,j =




2j 0 0
0 2j/2 0
0 0 2j/2


 S1,k =




1 k1 k2

0 1 0
0 0 1


 ,

namely the parabolic dilations and the shearings, so that

Ψ1,j,k,m(x, y, t) = 2jψ1

(
S1,kA1,j

(
x
y
t

)
−
( cm1

ĉm2

ĉm3

))
, (2)

where c is as in (1) and ĉ > 0 is another step size (in the rest
of the paper we assume that c = ĉ = 1 for sake of simplicity).
The Fourier transform of mother shearlet ψ1 is of the form

ψ̂1(ξ1, ξ2, ξ3) = ψ̂(ξ1)P (ξ1, ξ2)ϕ̂(ξ2)P (ξ1, ξ3)ϕ̂(ξ3), (3)
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where P is a given polynomial 2D fan filter [17], ψ is the 1D
wavelet function associated with the scaling function ϕ (here
f̂ denotes the Fourier transform of a function f ). Note that,
according to (2), the coarsest scale corresponds to j = 0. The
system {Ψ1,j,k,m} takes care of the high frequencies in the
pyramid along the x-axis

P1 = {(ξ1, ξ2, ξ3) ∈ R̂3 | |ξ1| ≥ 1, |ξ2
ξ1
| ≤ 1, |ξ3

ξ1
| ≤ 1}.

For ` = 2, 3 we have a similar definition by interchanging the
role of x and y (for ` = 2) and of x and t (for ` = 3).

Our algorithm is based on the following nice property of the
shearlet coefficients. As shown in [18, 19, 20] if f is locally
regular in a neighborhood of m, then SH[f ](`, j, k,m) has a
fast decay when j goes to infinity for any ` 6= 0 and k. If f has
a surface singularity at m with normal vector (1, n1, n2) ∈ P1,
then SH[f ](`, j, k,m) has a fast decay for any ` 6= 1 or k 6=
(d2j/2n1e, d2j/2n2e) =: k∗, whereas if ` = 1 and k = k∗ the
shearlet coefficients have slow decay (a similar result holds if
the normal direction of the surface singularity belongs to the
other two pyramids). This results allows to associate to any
shearing vector k = (k1, k2) a direction (without orientation)
parametrized by two angles, namely latitude and longitude,
given by

(cosα cosβ, cosα sinβ, sinα) α, β ∈ [−π
2
,
π

2
]. (4)

The correspondence explicitly depends on ` and, for the first
pyramid, it is given by

tanα =
2−j/2k2√
1 + 2−jk2

1

tanβ = 2−j/2k1 α, β ∈ [−π
4
,
π

4
].

The fact that shearlets are sensitive to orientations allows to
select different spatial-temporal features. For example, assume
that the region of interest is a rigid body whose boundary is
described at the initial time t = 0 by the curve

x = x(s) y = y(s) s ∈ [0, 1].

The evolution of the body in time describes a 3D-volume
whose boundary is the surface parametrized by





x = x(s, t)

y = y(s, t)

t = t

s ∈ [0, 1], t ∈ [0, T ],

where for each s ∈ [0, 1], t 7→ (x(s, t), y(s, t)) is the time
evolution of the point (x(s), y(s)) on the curve at time t = 0.
A computation shows that the normal vector to the surface is

N(s, t) = n(s, t) + τ(s, t) ∧ v(s, t), (5)

where τ(s, t) and n(s, t) are the tangent and the normal
vectors (in the xy-plane) to the boundary of the body at time
t in the point (x(s, t), y(s, t)) and v(s, t) is the corresponding
2D-velocity vector1 (Figure 1). Hence, if the boundary has not

1In (5) the 2D-vectors are regarded as 3D-vectors where the t-component
is zero.

corners, but at time t = t0 there is a discontinuous change of
velocity ∆v(s, t0), then

∆N(s, t0) = τ(s, t0) ∧∆v(s, t0) ∀s ∈ [0, 1],

which has a non-zero component only along the t-axis. This
behaviors looks like an edge in the plane t = t0. On the
contrary, if (x(s0), y(s0)) is a spatial corner of the body, but
the velocity is always smooth, then

∆N(s0, t) = ∆n(s0, t) + ∆τ(s0, t) ∧ v(s0, t) ∀t ∈ [0, T ]

which has non-zero components both in the xy-plane,
∆n(s0, t), and along the t-axis, ∆τ(s0, t) ∧ v(s0, t), so that
we have an edge given by the temporal trajectory of the spatial
corner.

To compute the shearlet coefficients we use the digital im-
plementation described in [16] based on the relation between
the pair scaling function/wavelet (ϕ,ψ) and the quadrature
mirror filter pair (h, g), which in our application is the filter
pair introduced in [21].

(a) at a fixed time t (b) evolution over time

Fig. 1: A cartoon-like object with the main relevant geomet-
rical and dynamical quantities (see text for details).

III. REPRESENTATION OF SPATIO-TEMPORAL POINTS

In this section we propose a representation which allows
us to aggregate local spatio-temporal information provided by
shearlets in order to enhance different types of discontinuities
of a 2D + T signal.

We consider a point m̂ for the fixed scale ĵ and the subset
of shearings

K =
{
k = (k1, k2) | k1, k2 = −d2j/2e, . . . , d2j/2e

}
.

The procedure we carry out in the discrete case is depicted
in Figure 2 and consists of two parts, which we describe in
the following.
1 - Reorganize the coefficients of a point neighborhood.

(a) We reorganize the information provided by
SH[f ](`, ĵ, k, m̂) in three M × M matrices,
each one associated with a pyramid `, where
each entry is related to a specific shearing:
C`(r, c) = SH[f ](`, ĵ, krc, m̂) with ` = 1, 2, 3,
where we introduce r and c, which are the
discretized correspondents of the indexes k1 and k2

used in the continuous case. Figure 2 (a) shows the
three matrices for a specific space-time point.
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Fig. 2: The main steps of the 2D + T signal representation
procedure: (a) we compute matrices C1(r, c), C2(r, c) and
C3(r, c), (b) we create the object C, (c-d) we map subsets
of elements (i.e. shearlet coefficients) of C to different parts
of a vector and (e) we obtain the representation for our point.

(b) We merge the three matrices in a single one, by
recombining them relatively to the maximum shear-
let coefficient (Figure 2 (b)). The obtained overall
representation C is centered on kmax, the shearing
corresponding to the coefficient with the maximum
value in the set SH[f ](`, ĵ, k, m̂), with ` ∈ {1, 2, 3}
and k ∈ K. The matrix C models how the shearlet
coefficients vary in a neighborhood of the direction
where there is the maximum variation, and it is built
in a way so that the distance of every entry of C with
respect to the center is proportional to the distance
of the corresponding angles (as defined in (4)) from
the angles associated with kmax. We will see how
different kinds of spatio-temporal elements can be
associated with different kinds of local variations in
C. These different patterns can be better appreciated
with a 3D visualization (see Figure 3).

2 - Compute a compact rotation-invariant representation

(a) We group the available shearings in subsets s̄i,
according to the following rule: s̄0 = {kmax} and s̄i
will contain the shearings in the i-th ring of values
from kmax in C (as highlighted Figure 2 (c)). We
extract the values corresponding to the coefficients
for s̄1 (by looking at the 8-neighborhood of kmax),
then we consider the adjacent outer ring (that is,
the 24- neighborhood without its 8-neighborhood) to
have the coefficients corresponding to s̄2, and so on
(Figure 2 (d) and (e)).

(b) We build a vector containing the values of the
coefficients corresponding to each set as follows:

D(m̂) = coeff _
s̄0

coeff _
s̄1

coeff _
s̄2

. . . ;

where _ is the concatenation operator, we define
coeffs̄i to be the set of coefficients associated with
each shearings subset s̄i:

coeffs̄0 = SH[f ](`kmax
, ĵ, kmax, m̂)

coeffs̄i =
{
SH[f ](`s̄i , ĵ, ks̄i , m̂), ks̄i ∈ s̄i

}
,

where `kmax
is the pyramid associated with the

shearing kmax and where `s̄i represents the pyramid
associated to each shearing ks̄i .

(c) Finally we obtain the representation D(m̂) for point
m̂. The size of the descriptor is strictly dependent
on the number of shearings that we are considering
within our shearlet system.

(a) selected points (b) edge (c) corner

Fig. 3: Example of visualization in 3D of the result of the
process, for these example we selected a static spatial edge
(the blue circle) and a static spatial corner (the red circle),
which are characterized by two different behaviors of change.

At this point, the object D(m̂) entangles the relations
between the direction of maximum variation smax for a given
point m̂ and the directions corresponding to the other shearings
k 6= smax. Figure 3 shows a possible way to visualize the
values contained in the matrix C for two different points,
the idea is to view the object C as a height-map so that to
have an insight about the directions in which we found the
highest variations (the visualization in Figure 3 (c) is the one
corresponding to the object C shown in Figure 2 (b)).

In the next section we show how this representation can be
useful to characterize each point in our signal with respect to
its spatio-temporal nature.

IV. EVALUATIONS

In this section we show the the effectiveness of shearlet
coefficients in capturing differences among different space-
time discontinuities. We consider a synthetic example and a
real world video sequence.

A. Synthetic data

The first sequence is a stationary square, which at frame 64
starts to move up with constant speed until frame 108, when
the square stops to move. To avoid boundary problems, the
sequence is composed of white frames before frame number 20
and after frame number 108. Figure 4 (a-c) shows a selection
of meaningful frames in the synthetic sequence, while Figure
4 (d) shows the 3D shape we obtain by stacking the video
frames one on top of the other.

The very simple synthetic sequence contains three spatio-
temporal features, which can be easily identified on the
3D shape: 3D corners, edges, and surface points. We test
the shearlet-based representation introduced in the previous
section on these three classes of points. These elements are
highlighted in Figure 5 (a-c), while in Figure 5 (d-f) we show
our representations averaged over all the points of a specific
class.
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These figures show that our representation is very distinctive
and easily allows to detect the kind of spatio-temporal features.

(a) 20-64 (b) 65-107 (c) 108 (d) resulting shape

Fig. 4: (a-c) sample frames of the video sequence used to
generate the shape taken into account in this section, and
(d) the shape resulting from the behavior of the black square
within the sequence.

(a) 3D corners (b) edges (c) surface points

(d) (e) (f)

Fig. 5: Examples of points on the 3D shape considered (a-c)
and corresponding average shearlet-based representation (d-f).

B. Real world data

We now consider a real video from the KTH dataset [22].
In the video sequence a subject is executing a boxing action,
repeatedly moving his arms back and forth.
Figure 6 shows three meaningful frames and in (d) the 3D
shape obtained by stacking the person’s silhouette as the action
takes place.

(a) frame 13 (b) frame 33 (c) frame 37 (d) resulting shape

Fig. 6: (a-c) sample frames of the boxing sequence and (d)
corresponding shape generated from the movement.

As in the case of synthetic data, we select points which
are associated to different spatio-temporal behavior and, for
each of them, we compute our shearlet-based descriptor. The
results can be appreciated in Figure 7, this time we sampled
four points located on the red line in Figure 7 (b) to create
the corresponding representation in Figure 7 (e), while in the

two other cases the points used are only the ones shown in
the corresponding pictures on the upper line.

(a) 3D corners (b) edges (c) surface points

(d) (e) (f)

Fig. 7: Examples of points on the 3D boxing shape (a-c) and
corresponding average shearlet-based representation (d-f).

While for surface points the behavior is similar both in the
synthetic and in the boxing scenario, things are a little bit
different in the two other cases. This is because both spatial
and temporal variations in real data are less significant, and
the signal discontinuities are not as strong. This can be seen
in Figure 7 (d), where the shearlet coefficients corresponding
to the changes occurring on the time dimension are less
pronounced (these changes are highlighted with the yellow
overlay). However, our representation correctly handles the
cases in which there is not any temporal change, keeping the
corresponding values near to zero (as in Figure 3 (c), where
the changes along the temporal dimension contribute for values
lower than 10−3).

C. Spatio-temporal Points Classification

Finally we try to classify the points belonging to the two
2D+T signals we considered in the previous sections. To do
so, we carry on two different processes in the two cases:
• for the synthetic shape, we classify each point of its

surface by calculating the distance between its repre-
sentation D(m) and the three average representations in
Figure 8, then each point is colored on the basis of the
representation it is most similar to.

• for the boxing sequence, we calculate the representation
D(m) for all the points of f by fixing t (thus, considering
a single frame within the whole sequence), then we
cluster them with a K-means algorithm. The different
colors in Figure 9 (b-c) represent the way all the points
have been grouped together by using a different number
of clusters K. It is possible to see how a greater number of
clusters allows to capture a richer dynamic characterizing
the movement represented in the sequence, while with a
lower number of groups we can just separate points with
a very low dynamic (the background, the shadow, or the
inner part of the subject’s body) from the stronger edges
contained in the chosen frame.
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(a) shape (b) classification

Fig. 8: Example of classification of the surface points of
our shape: surface points (blue), edges (red) and 3D corners
(green).

(a) frame (b) 3 clusters (c) 8 clusters

Fig. 9: Example of clustering of the all the points within a
fixed frame of our real world sequence, we show the results (b)
using 3 clusters and (c) using 8 clusters (see text for details).

V. CONCLUSION

In this paper we considered 2D + T signals and explored
the use of 3D shearlets with the purpose of representing
space-time interest points. Our analysis shows a potential for
this type of representation and encourages us to address, in
current work, space-time feature detection and, in perspective,
action recognition. The obtained results speak in favor of the
descriptor effectiveness.
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