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Abstract

We introduce a novel construct of multiscale tight frames on general domains. The frame elements are
obtained by spectral filtering of the integral operator associated with a reproducing kernel. Our construction
extends classical wavelets as well as generalized wavelets on both continuous and discrete non-Euclidean
structures such as Riemannian manifolds and weighted graphs. Moreover, it allows to study the relation
between continuous and discrete frames in a random sampling regime, where discrete frames can be seen as
Monte Carlo estimates of the continuous ones. Pairing spectral regularization with learning theory, we show
that a sample frame tends to its population counterpart, and derive explicit finite-sample rates on spaces of
Sobolev and Besov regularity. On the other hand, our results prove the stability of frames constructed on
empirical data, in the sense that all stochastic discretizations have the same underlying limit regardless of
the set of initial training samples.
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1. Introduction

Wavelet systems have long been employed in time-frequency analysis and approximation theory to break
the uncertainty principle and resolve local singularities against global smoothness. Nonlinear approximation
over redundant families of localized waveforms has enabled the construction of efficient sparse representa-
tions, becoming common practice in signal processing, source coding, noise reduction, and beyond. Sparse
dictionaries are also an important goal in machine learning, where the extraction of few relevant features
can significantly enhance a myriad of learning tasks, making them scale with enormous quantities of data.
However, the role of wavelets in machine learning is still unclear, and the impact they had in signal pro-
cessing has, by far, not been matched. One objective constraint to a direct application of classical wavelet
techniques to modern data science is of geometrical kind: real data are typically high-dimensional and inher-
ently structured, often featuring or hiding non-Euclidean topologies. On the other hand, a representation
built on empirical samples poses an additional problem of stability, accounted for by how well it generalizes
to future data. In this paper we introduce a data-driven construction of wavelet frames on non-Euclidean
domains, and provide a result of asymptotic stability in high probability.

With a jump from Haar’s seminal work [22] and since the founding contributions of Grossmann and
Morlet [21], a general theory of wavelet transforms and a wealth of specific families of wavelets have rapidly
arisen [6, 9, 16, 26, 27], first and foremost on Rd, but soon thereafter also on non-Euclidean structures such
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as manifolds and graphs [7, 8, 18, 19, 23]. Generalized wavelets usually consist of frames with some kind
of broad to tighter link to ideas from multi-resolution analysis. At the very least, elements of a wavelet
frame ought to be associated with locations and scales, decomposing signals into a sum of local features
in increasing resolution. On a basic conceptual level, many of these generalized constructions stem from a
reinterpretation of the frequency domain as the spectrum of a differential operator. Indeed, wavelets on R

are commonly generated by dilating and translating a well-localized function ψ,

ψa,b(x) = |a|−1/2ψ
(
x−b
a

)
a 6= 0, b ∈ R;

but taking the Fourier transform, they can be rewritten as

ψa,b(x) =

∫
|a|1/2ψ̂(aξ)e2πı(x−b)ξdξ =

∫
Ga(ξ)vξ(b)vξ(x)dξ, (1)

withGa(ξ) = |a|1/2ψ̂(aξ) and vξ(x) = e2πıxξ. This allows to reinterpret the wavelet ψa,b(x) as a superposition
of Fourier harmonics vξ(x), modulated by a spectral filter Ga(ξ). Moreover, each vξ can be seen as an
eigenfunction of the Laplacian ∆ = −d2/dx2. Hence, in principle, we may retrace an analogous construction
whenever some notion of Laplacian is at hand. In particular, Riemannian manifolds and weighted graphs
are examples of spaces where this is possible, using the Laplace-Beltrami operator or the graph Laplacian.
A more detailed overview of related work based on these or similar ideas is postponed to Section 5.

Thus far, the study of generalized wavelets on non-Euclidean domains has primarily focused on either
the continuous or the discrete setting. It is nonetheless natural to investigate the relationship between the
two. Regarding for instance a graph as a sample of a manifold, we may ask ourselves whether and in what
sense the frame built on the graph tends to the one living on the manifold. In this paper we present a
unified framework for the construction and the comparison of continuous and discrete frames. Returning
for a moment to the real line, let us consider the semigroup e−t∆ generated by the Laplacian. This defines
an integral operator

e−t∆f(x) =

∫
Kt(x, y)f(y)dy,

with Kt(x, y) being the heat kernel. Such a representation suggests that the generalized Fourier analysis,
already revisited as spectral analysis of the Laplacian, can now be translated in terms of a corresponding
integral operator. With the attention shifting from the Laplacian to an integral kernel, the idea is then to
recast the above constructions inside a reproducing kernel Hilbert space. Exploiting the reproducing kernel,
one can in particular extend a discrete frame out of the given samples, and thus compare it to its natural
continuous counterpart.

Our construction yields empirical frames Ψ̂N on sets of N data. We will show that Ψ̂N converges in high
probability to a continuous frame Ψ on a reproducing kernel Hilbert space H as N → ∞, thus providing a
proof of its stability in an asymptotic sense. The empirical frames Ψ̂N can be seen as Monte Carlo estimates
of Ψ. Repeated random sampling will in fact produce a sequence of frames Ψ̂N on an increasing chain of
finite dimensional reproducing kernel Hilbert spaces ĤN

ĤN ⊂ ĤN+1 ⊂ · · · ⊂ H
Ψ̂N Ψ̂N+1 −→ Ψ

,

which approximates Ψ on H up to a desired sampling resolution quantifiable by finite sample bounds in
high probability.

Overturning this perspective, one may also look at our result as a form of stochastic discretization of
continuous frames. Going from the continuum to the discrete is an important problem in frame theory and
applications of coherent states. Given a continuous frame of a Hilbert space, the discretization problem
[2, Chapter 17] asks to extract a discrete frame out of it. Originally motivated by the need of numerical
implementations of coherent states arising in quantum mechanics [10, 32], the problem was then generalized
to continuous frames [1] and addressed in several theoretical efforts [14, 17, 20], until it found a complete
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yet not constructive characterization in [15]. Sampling the continuous frame is tantamount to sampling
the parameter space on which the frame is indexed. For a wavelet frame, this means the selection of a
discrete set of scales and locations. While the discretization of the scales can be readily obtained by a
dyadic parametrization, the difficult part is usually sampling locations, that is, the domain where the frame
is defined. How to do this is known in many cases and consists in an attentive selection of nets of well
covering but sufficiently separated points. Already sensitive in the Euclidean setting, this procedure can be
hard to generalize and implement in more general geometries [8]. In this respect, our Monte Carlo frame
estimation provides a randomized approach to frame discretization as opposed to a deterministic sampling
design. Clearly, our Monte Carlo estimate is not solving the discretization problem in its original form, since
it defines frames only on finite dimensional subspaces. It is rather providing an asymptotic approximate
solution, computing frames on an invading sequence of subspaces ĤN ⊂ H. We should also remark that,
due to covering properties, standard frame discretization always entails a loosening of the frame bounds;
hence, in particular, only non-tight frames may be sampled, even when the starting continuous frame is
Parseval. As a result, signal reconstruction with respect to the discretized frame will in general require the
computation of a dual frame, which is a problem on its own. On the contrary, in our randomized construction
we preserve the tightness, albeit at the expense of a (possibly large) loss of resolution power H \ ĤN .

The remainder of the paper is organized as follows. The general notation used throughout the paper
is listed in Table 1. In Section 2 we give an overview of our main results. In Section 3 we introduce
the general framework and define the fundamental objects used in our analysis. The focus is on kernels,
reproducing kernel Hilbert spaces, and associated integral operators. In Section 4 we present our frame
construction based on spectral calculus of the integral operator. Our theory encompasses continuous and
discrete frames within a unified formalism, paving the way for a principled comparison of the two. In
particular, interpreting discrete locations as samples from a probability distribution, we propose a Monte
Carlo method for the estimation of continuous frames. In Section 5 we compare and contrast our approach to
the existing literature. In Section 6 we prove the consistency of our Monte Carlo wavelets and obtain explicit
convergence rates under Sobolev regularity of the signals. This is done combining techniques borrowed from
the theory of spectral regularization with bounds of concentration of measure. In Section 7 we study the
convergence rates in Besov spaces. In Section 8 we draw our conclusions and point at some directions for
future work.

Table 1: Notation

symbol definition symbol definition

〈·, ·〉H, ‖·‖H inner product and norm in a RKHS H PS orthogonal projection onto a closed subspace S

σ(A) spectrum of a linear operator A supp(ρ) support of a measure ρ

‖ · ‖ operator norm 〈·, ·〉ρ, ‖·‖ρ inner product and norm in L2(X ; ρ)

‖ · ‖HS Hilbert-Schmidt norm δx Dirac measure at x

v ⊗ w the operator u ∈ H 7→ 〈u, v〉Hw ∈ H v[i] i-th component of a vector v

span{S} linear span of a set S M[i, j] (i, j)-th entry of a matrix M

S topological closure of a set S X . Y X ≤ CY for some constant C > 0

S1 ⊕ S2 direct sum of two subspaces S1 and S2 X ≍ Y X . Y and Y . X

2. Overview of the main result

To illustrate our construction in a simple form, let us consider a graph of vertices XN = {x1, . . . , xN}
and pairwise similarities encoded in a positive definite matrix K̂ ∈ CN×N . The space of signals on the graph
XN is then isomorphic to CN . Computing the eigenvalues λ̂i and eigenvectors ûi of the matrix K̂, we can
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define, in consonance with (1),

ϕ̂j,k[ℓ] :=
∑

i

Fj(λ̂i)ûi[k]ûi[ℓ] j ≥ 0, k = 1, . . . , N, (2)

for a suitable spectral filter Fj(λ). We will show (Proposition 4.7) that (2) is a Parseval frame on the
space of graph signals. Now, suppose XN is embedded in a compact Riemannian manifold X . Furthermore,
suppose X admits a positive definite kernel K : X × X → C such that K̂[i, ℓ] = K(xi, xℓ)/N , and let
H := span{K(·, x) : x ∈ X} denote the reproducing kernel Hilbert space associated with K. The kernel
allows to define the out-of-sample extension of a signal u ∈ CN to H by

(Ŝ∗u)(x) =
1

N

∑

ℓ

K(x, xℓ)u[ℓ], (3)

where Ŝ : H → CN is the sampling operator Ŝf [ℓ] = f(xℓ). By means of (3), we thus define

ψ̂j,k(x) :=
∑

i

Gj(λ̂i)v̂i(xk)v̂i(x) j ≥ 0, k = 1, . . . , N, (4)

where v̂i = λ̂
−1/2
i Ŝ∗ûi and Gj(λ) = λ̂−1/2Fj(λ). The family of functions (4) is a Parseval frame for the finite

dimensional reproducing kernel Hilbert space ĤN = span{K(·, x) : x ∈ XN} ⊂ H, and it is isomorphic to
the frame (2) (Proposition 4.7). Notice though that, despite being isomorphic to a frame which is defined
only on XN , the frame functions (4) are well-defined on the entire manifold X . In particular, for any signal
f in the reproducing kernel Hilbert space H, we can study the wavelet expansion

f ≈
∑

j≤τ

N∑

k=1

〈f, ψ̂j,k〉Hψ̂j,k. (5)

This series approximates f up to a resolution τ and a sampling rate N . Our main result (Theorem 6.6)
states that, cutting off the frequencies at a threshold τ = τ(N) and letting N go to infinity, the error of (5)
goes to zero,

∥∥∥f −
∑

j≤τ(N)

N∑

k=1

〈f, ψ̂j,k〉Hψ̂j,k

∥∥∥
H

−→
N→∞

0,

at a rate that depends on the regularity of the signal f . In other words, the frame constructed on the graph
is asymptotically resolving the signal defined on the manifold. This result is derived as a finite-sample bound
in high probability.

3. RKHS and integral operators

We now prepare the technical ground on which our results will built (see also [31]). Let X be a lo-
cally compact, second countable topological space endowed with a Borel probability measure ρ. Given a
continuous, positive semi-definite kernel

K : X × X → C,

we denote the associated reproducing kernel Hilbert space (RKHS) by

H := span{Kx : x ∈ X},

where Kx := K(·, x) ∈ H, and the closure is taken with respect to the inner product 〈Kx,Ky〉H := K(x, y).
Elements of H are continuous functions satisfying the following reproducing property:

f(x) = 〈f,Kx〉H for all f ∈ H. (6)
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The space H is separable, since X is separable. We further assume K is bounded on X and denote

κ := sup
x∈X

√
K(x, x) = sup

x∈X
‖Kx‖H <∞,

which implies that H is continuously embedded into the space of bounded continuous functions on X .
We define the (non-centered) covariance operator T : H → H by

T :=

∫

X

Kx ⊗Kx dρ(x), (7)

where the integral converges strongly. The operator T is positive and trace-class (therefore compact)
with σ(T) ⊂ [0, κ2]. Hence, the spectral theorem ensures the existence of a countable orthonormal set
{vi}i∈Iρ∪I0 ⊂ H and a sequence (λi)i∈Iρ ⊂ (0, κ2] such that

Tvi =

{
λivi i ∈ Iρ
0 i ∈ I0

.

Let L2(X ; ρ) be the space of square-integrable functions on X with respect to the measure ρ, and denote
Xρ := supp(ρ). We define the integral operator LK : L2(X ; ρ) → L2(X ; ρ) by

LKF (x) :=

∫

X

K(x, y)F (y) dρ(y).

The spaces H and L2(X ; ρ) and the operators T and LK are related through the inclusion operator S : H →
L2(X ; ρ) defined by

Sf(x) := 〈f,Kx〉H .

The adjoint operator S∗ : L2(X ; ρ) → H acts as the strongly converging integral

S∗F =

∫

X

F (x)Kx dρ(x).

We have T = S∗S and LK = SS∗. Hence, σ(T)\{0} = σ(LK)\{0}, and the eigenfunctions {ui}i∈I ⊂ L2(X ; ρ)
of LK satisfy

Svi =

{√
λiui i ∈ Iρ

0 i ∈ I0
.

Mercer’s theorem gives

K(x, y) =
∑

i∈Iρ∪I0

vi(x)vi(y) for x, y ∈ X ,

K(x, y) =
∑

i∈Iρ

λiui(x)ui(y) for x, y ∈ Xρ,
(8)

where the series converge absolutely and uniformly on compact subsets.
Defining

Hρ := span{Kx : x ∈ Xρ} = span{vi : i ∈ Iρ},
we can identify Hρ as a (non-closed) subspace of L2(X ; ρ). The closure of Hρ in L2(X ; ρ) is

Hρ := span{ui : i ∈ Iρ},

and the following decompositions hold true:

H = Hρ ⊕ ker S, L2(X ; ρ) = Hρ ⊕ ker S∗.
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For f ∈ Hρ, we can relate the norms in H and L2(X ; ρ) as

‖f‖ρ = ‖
√
Tf‖H. (9)

In other words,
√
T induces an isometric isomorphism between Hρ and Hρ. We define the partial isometry

U : H → L2(X ; ρ), such that UHρ = Hρ, by

Uf =
∑

i∈Iρ

〈f, vi〉H ui.

As examples of this setting, we may think of X as Rd, or a non-Euclidean domain such as a compact
connected Riemannian manifold or a weighted graph. In these cases, we can take K as the heat kernel
associated with the proper notion of Laplacian, be it the Laplace-Beltrami operator or the graph Laplacian.

4. Wavelet frames by reproducing kernels

In this section we build Parseval frames in the RKHS H and in L2(X ; ρ). Our construction is centered
around eigenfunctions of the integral operator (7) and functions on the corresponding eigenvalues. Con-
tinuous frames emerged in the mathematical physics community for the study of coherent states, which
satisfy an integral resolution of the identity. This naturally leads to the notion of continuous frame, as a
generalization of the more common discrete frame [2, 16].

Definition 4.1 (frame). Let H be a Hilbert space, A a locally compact space and µ a Radon measure on
A with suppµ = A. A family Ψ = {ψa : a ∈ A} ⊂ H is called a frame for H if there exist constants
0 < A ≤ B <∞ such that, for every f ∈ H, we have

A ‖f‖2H ≤
∫

A

|〈f, ψa〉H|2 dµ(a) ≤ B ‖f‖2H .

We say that Ψ is tight if A = B, and Parseval if A = B = 1.

In the above definition it is implicitly assumed that the map a 7→ 〈Ψa, f〉H is measurable for all f ∈ H.
It is important to note that this definition depends on the choice of the measure µ. In the case of a counting
measure, we recover the standard definition of discrete frame.

4.1. Filters

To construct our wavelet frames, we first need to define filters, i.e. functions acting on the spectrum of
T that satisfy a partition of unity condition.

Definition 4.2 (filters). A family {Gj}j≥0 of measurable functions Gj : [0,+∞) → [0,+∞) such that

λ
∑

j≥0

Gj(λ)
2 = 1 for all λ ∈ (0, κ2] (10)

is called a family of filters.

By the spectral theorem, Gj(T) is a (possibly unbounded) positive operator on H such that σ(Gj(T)) =
Gj(σ(T)) ⊂ (0, Gj(κ

2)], with domain of definition

Dj :=
{
f ∈ H :

∑

i∈Iρ∪I0

Gj(λi)
2 |〈f, vi〉H|2 <∞

}
.

It follows that
D := span{vi : i ∈ Iρ ∪ I0} ⊂ Dj for all j ≥ 0,

and

Gj(T)vi =

{
Gj(λi)vi, i ∈ Iρ
Gj(0)vi, i ∈ I0

.

An easy way to define filters is by differences of suitable spectral functions.
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Definition 4.3 (spectral functions). A family {gj}j≥0 of measurable functions gj : [0,∞) → [0,∞) satisfying

0 ≤ gj ≤ gj+1, lim
j→∞

λgj(λ) = 1 for all λ ∈ (0, κ2] (11)

is called a family of spectral functions.

Given a family of spectral functions {gj}j≥0, filters {Gj}j≥0 can be obtained setting

G0(λ) :=
√
g0(λ), Gj+1(λ) :=

√
gj+1(λ) − gj(λ) for j ≥ 0. (12)

The filters thus defined give rise to a telescopic sum:
∑

j≤τ

Gj(λ)
2 = gτ (λ). (13)

Taking the limit for τ → ∞, condition (10) is satisfied thanks to (11). Conversely, starting from a family of
filters {Gj}j≥0, we can define spectral functions {gj}j≥0 by

gj(λ) :=
∑

ℓ≤j

Gℓ(λ)
2 for j ≥ 0,

which enjoys (11) due to (10). Therefore, the notion of filter and that of spectral function are equivalent,
and we will refer to them interchangeably.

The definition in (12) allows to find a wealth of filters by tapping into regularization theory [12]. In the
forthcoming analysis, we will use the following notion of qualification.

Definition 4.4 (qualification). The qualification of a spectral function gj : [0,∞) → [0,∞) is the maximum
constant ν ∈ (0,∞] such that

sup
λ∈(0,κ2]

λν |1− λgj(λ)| ≤ Cνj
−ν for all j ≥ 0,

where the constant Cν does not depend on j.

In the theory of regularization of ill-posed inverse problems [12], the qualification represents the limit
whithin which a regularizer may exploit the regularity of the true solution. In particular, methods with
finite qualification suffer from a so-called saturation effect.

Some standard examples of spectral functions, together with their qualifications, are listed in Table 2.

Table 2: Spectral regularizers and their qualifications. Landweber iteration and Nesterov acceleration require γ < 1/κ2 and
β ≥ 1. In heavy ball, αj , βj are suitably selected sequences depending on ν, where ν is any positive real (see [29]).

method gj(λ) qualification

Tikhonov regularization
1

λ+ 1/j
1

iterated Tikhonov (m iterations)
(λ + 1/j)m − (1/j)m

λ(λ+ 1/j)m
m

Landweber iteration 1
λ(1 − (1− γλ)j) ∞

asymptotic regularization 1
λ(1− exp(−jλ)) ∞

heavy ball (ν-method) (1− αjλ+ βj)gj−1(λ)− βjgj−2(λ) + αj ν

Nesterov acceleration (1− γλ)
(
gj−1(λ) +

j−2
j−1+β (gj−1(λ) − gj−2(λ)

)
+ γ ν ≥ 1/2
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Additional examples of admissible filters widely used in the construction of wavelet frames (see e.g.
[8, 13]) are given by the following:

Example 4.5 (localized filters). Let g ∈ C∞([0,∞)) such that supp(g) ⊂ (2−1,∞), 0 ≤ g ≤ 1, and g(λ) = 1
for all λ ≥ 1. Define

λgj(λ) := g(2jλ).

Then the family {gj}j≥0 satisfies the properties (11). Furthermore, the corresponding filters (12) are local-

ized, meaning that, defining Fj(λ) :=
√
λGj(λ), we have

supp(F0) ⊂ (2−1,∞), supp(Fj) ⊂ (2−j−1, 2−j+1) for j ≥ 1.

4.2. Frames

We are now ready to define our wavelet frames. We first form frame elements in H, and then use the
partial isometry U : H → L2(X ; ρ) to obtain frames in L2(X ; ρ).

Definition 4.6 (wavelets). Let {Gj}j≥0 be a family of filters as in Definition 4.2, and assume

Kx ∈ Dj for all j ≥ 0 and almost every x ∈ Xρ. (14)

We define the families of wavelets

Ψ := {ψj,x : j ≥ 0, x ∈ Xρ} ⊂ H, Φ := {ϕj,x : j ≥ 0, x ∈ Xρ} ⊂ L2(X ; ρ),

where

ψj,x := Gj(T)Kx, ϕj,x := UGj(T)Kx for j ≥ 0 and x ∈ Xρ. (15)

Observe that, since ψj,x and φj,x are defined for x ∈ Xρ, we actually have Ψ ⊂ Hρ ⊂ H, and Φ ⊂ Hρ ⊂
L2(X ; ρ). In particular, the orthogonality of Hρ and ker S entails 〈Kx, Gj(T )vi〉H = 0 for all i ∈ I0. By the
reproducing property (6), condition (14) is thus equivalent to

∑

i∈Iρ

Gj(λi)
2 |vi(x)|2 <∞ for all j ≥ 0 and almost every x ∈ Xρ.

If Gj is a bounded function, then Gj(T) is a bounded operator, hence Dj = H. In this case, which includes
the spectral functions listed in Table 2, condition (14) is trivially satisfied.

Using the spectral decomposition of Gj(T) and the reproducing property, we obtain

ψj,x(y) =
∑

i∈Iρ

Gj(λi)vi(x)vi(y), ϕj,x(y) =
∑

i∈Iρ

√
λiGj(λi)ui(x)ui(y). (16)

These expressions allow to interpret Ψ and Φ as families of wavelets, in the sense of (1). We interpret x as
the location and j as the scale parameter; the functions Kx localize the signal in space, whereas the filters
Gj regularize or localize in frequency. Note also the analogy with (8), in the light of which (16) may be seen
as a filtered Mercer representation.

With the following proposition we show that (15) defines Parseval frames.

Proposition 4.7. Assume the setting in Section 3, and let Ψ,Φ be defined as in Definition 4.6. Then, for
every f ∈ H we have ∑

j≥0

∫

X

∣∣〈f, ψj,x〉H
∣∣2 dρ(x) =

∥∥PHρf
∥∥2
H
, (17)

and for any F ∈ L2(X ; ρ) we have

∑

j≥0

∫

X

∣∣〈F, ϕj,x〉ρ
∣∣2 dρ(x) =

∥∥PHρ
F
∥∥2
ρ
. (18)
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Proof. The equality (18) follows from (17) and the fact that U is unitary from Hρ to Hρ. To establish (17),
in view of Lemma A.1 it suffices to consider functions in the dense subspace D ⊂ H. Thus, let f ∈ D. Since
Gj(T) is self-adjoint on Dj , and D ⊂ Dj for all j, we have

〈f, ψj,x〉H = 〈f,Gj(T)Kx〉H = 〈Gj(T)f,Kx〉H ,

which integrated over x ∈ X gives

∫

X

∣∣〈f, ψj,x〉H
∣∣2 dρ(x) = 〈TGj(T)f,Gj(T)f〉H =

〈
TGj(T)

2 f, f
〉
H
. (19)

Summing over j ≥ 0 and using (10), we therefore obtain

∑

j≥0

〈
TGj(T)

2 f, f
〉
H

=
∑

i∈Iρ

(
|〈f, vi〉H|2

∑

j≥0

λiGj(λi)
2
)
=

∑

i∈Iρ

|〈f, vi〉H|2 =
∥∥PHρf

∥∥2
H
.

The frame property can also be expressed as a resolution of the identity. Such a formulation will be
particularly useful in Section 6.

Proposition 4.8. Under the assumptions of Proposition 4.7, there exists a positive bounded operator Tj :
H → H such that

Tj =

∫

X

ψj,x ⊗ ψj,x dρ(x), (20)

where the integral converges weakly. Furthermore,

Tj = TGj(T)
2, (21)

∑

j≤τ

Tj = Tgτ (T), (22)

and the following resolution of the identity holds true:

PHρ =
∑

j≥0

Tj . (23)

Proof. From (19) we have, for all f ∈ D,

∫

X

∣∣〈f, ψj,x〉H
∣∣2 dρ(x) ≤ ‖TGj(T)

2‖‖f‖2H,

where TGj(T)
2 is bounded since λGj(λ)

2 ≤ 1 by (10). Hence, thanks to Lemma A.1, there exists a positive
bounded operator Tj as in (20). Moreover, (19) implies (21) by the density of D. The equality (22) follows
from (21) and (13). Lastly, (23) is a reformulation of (17).

Depending on the choice of the measure ρ, Proposition 4.7 gives the frame property for either a continuous
or a discrete setting. Namely, consider a discrete set {x1, . . . , xN}, and let

ρ̂N :=
1

N

N∑

k=1

δxk
.

With the choice of the discrete measure ρ̂N , (7) defines the discrete (non-centered) covariance operator

T̂ : H → H by

T̂ :=
1

N

N∑

k=1

Kxk
⊗Kxk

.

9



Furthermore, Definition 4.6 produces the family of wavelets

ψ̂j,k := Gj(T̂)Kxk
for j ≥ 0 and k = 1, . . . , N,

which, by Proposition 4.7, constitutes a discrete Parseval frame on

ĤN := Hρ̂N
= span{Kxk

: k = 1, . . . , N} ≃ C
N .

In Section 6 we will make reference to this construction to define Monte Carlo wavelets, where the points
x1, . . . , xN are drawn at random from Xρ.

4.3. Two generalizations

We discuss here two generalizations of the framework presented in Section 4.2. First, one may readily
consider more general scale parameterizations. Namely, let Ω be a locally compact, second countable topo-
logical space, endowed with a measure µ defined on the Borel σ-algebra of Ω, finite on compact subsets, and
such that suppµ = Ω. Adjusting the definitions accordingly, such as replacing the sums over all non-negative
integers j in (10) and (17) with integrals over Ω with respect to µ, the proof of Proposition 4.7 follows along
the same steps. In this context, Definition 4.2 can be seen as a special case where Ω is countable and µ
is the counting measure. Second, the assumption that the kernel K is bounded, implying that LK admits
an orthonormal basis of eigenvectors, is not necessary for our construction of Parseval frames. Indeed, it is
enough to assume that ∫

X

|f(x)|2 dρ(x) < +∞ for all f ∈ H.

This implies that H is a subspace of L2(X ; ρ) and the inclusion operator S is bounded. The integral (7)
converges now in the weak operator topology, and the covariance operator T is positive and bounded. Thus,
the Riesz–Markov theorem entails that, for all f ∈ H, there is a unique finite measure νf on [0,+∞) such

that νf ([0,+∞)) = ‖f‖2H and

〈Tf, f〉H =

∫

[0,+∞)

λdνf (λ).

By spectral calculus, there exists a unique positive operator Gj(T) : Dj → H such that

〈Gj(T)f, f〉H =

∫

[0,+∞)

Gj(λ)dνf (λ),

where now

Dj :=
{
f ∈ H :

∫

[0,+∞)

Gj(λ)
2dνf (λ) <∞

}
.

Assume further that
D∞ := {f ∈ H : f ∈ domGj(T)

2 for all j ≥ 0}
is a dense subset of H. Assumption (14) and Definition 4.6 are still valid. Moreover, the proof of Proposition
4.7 remains essentially unchanged. The only difference is in the following lines of equalities: for a given
f ∈ D∞, we have

∑

j≥0

〈
Gj(T)

2Tf, f
〉
H

=
∑

j≥0

( ∫

[0,+∞)

λGj(λ)
2dνf (λ)

)
=

∫

(0,+∞)

(∑

j≥0

λGj(λ)
2
)
dµf (λ)

=

∫

(0,+∞)

1 dµf(λ) =
∥∥PHρf

∥∥2

H
,

where the second equality is due to Tonelli’s theorem.
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5. Comparison with other frame constructions

The approach we adopt in Section 4 differs from the existing literature in several crucial aspects. We now
give an overview of similarities and differences. As argued in Section 1, many techniques for the analysis
of signals on non-Euclidean domains, such as graphs and manifolds, are based on spectral filtering of some
suitable operator. There are, generally speaking, two distinct yet related perspectives.

Starting from a discrete setting, in graph signal processing one considers a weight (or adjacency) matrix
to define a certain graph operator L, such as the graph Laplacian [23] or the diffusion operator [7]. The
frame elements are then defined in the spectral domain as ψj,x := g(jL)δx, where g is an admissible wavelet
kernel, j a scale parameter, and δx the indicator function of a vertex x. This is conceptually similar to (15),
though there are also several distinctions. First, following [19], our construction results in Parseval frames.
This simplifies the computational effort, since Parseval frames are canonically self-dual, and thus signal
reconstruction goes without the computation of a dual frame. Moreover, to localize the frame in space we
use the continuous kernel function Kx, instead of the impulse δx. Since in our setting the kernel K is used
both to define the underlying integral operator and to localize the frame elements, we can use the theory of
RKHS to establish a connection between continuous and discrete frames, as we will show in Section 6. In
typical constructions of frames on graphs, a more judicious effort is usually required to elaborate analogous
convergence results.

On the other hand, a different line of research has been primarily focused on smooth manifolds, or inspired
by them to extend the analysis of signals on general (continuous) spaces. We distinguish two approaches.
First, as in [25, 28], one can take an arbitrary orthonormal basis {wi}i≥0 of a separable Hilbert space of
functions defined on a quasi-metric measure space, together with a suitable sequence of positive reals (li)i≥0,
to construct a kernel-like functionKH(x, ·) := ∑

i≥0H(li)wi(x)wi. This mirrors the basis expansion of frame
elements (16), but in our case a specific orthonormal basis is taken, that is, the eigenbasis of the integral
operator, and (li)i≥0 are the corresponding eigenvalues. Due to the use of an arbitrary basis and sequence,
an additional effort (or a set of assumptions) needs to be made in order to ensure the desired properties, such
as the decay of the approximation error as the number of eigenvalues resolved by the function H increases.
Some of the results are similar to those in our paper, albeit estimation errors or sample bounds have not
been established in this context.

A second type of methods builds frames for function spaces on compact differentiable manifolds associated
with certain positive operators (predominantly the Laplace–Beltrami operator). In [8, 18], filter functions
gj are applied to the given operator L, giving gj(

√
L) for j ≥ 0. One then needs to ensure that this defines

an integral operator with a corresponding kernel ψj(
√
L)(x, y), which often poses a technical challenge, and

relies on the relationship between the operator L and local metric properties of the manifold. We avoid
this by using a positive definite kernel from the start. The next step is to sample points {xjk}

mj

k=1 from the
manifold for each scale j, in such a way that they form a δj-net and satisfy a cubature rule for functions in

the desired space. Frame elements are then defined by Cj,k ψj(
√
L)(xjk, ·), for some suitable weights Cj,k.

The resulting family of functions constitutes a non-tight frame on the entire function space. On the contrary,
our sampled frames are Parseval frames on finite-dimensional subspaces. As we are going to show in the
next section, in order to establish convergence we do not require a stringent selection of points; instead,
we sample at random, which allows for a straightforward algorithmic approach, independent of the specific
geometry of the underlying space.

6. Monte Carlo wavelets

In this section we study the relationship between continuous and discrete frames, regarding the latter as
Monte Carlo estimates of the former. We begin by restricting our attention to H, and we will then extend
the analysis to L2(X ; ρ). In the following, we adopt notations, definitions and assumptions of Sections 3
and 4. For the sake of simplicity, we further assume supp(ρ) = X , so that Hρ = H. By Proposition 4.7, the
family Ψ defined in (15) describes a Parseval frame on the entire Hilbert space H.

11



Definition 6.1 (Monte Carlo wavelets). Suppose we have N independent and identically distributed samples

x1, . . . , xN ∼ ρ. Consider the empirical covariance operator T̂ : H → H defined by

T̂ :=
1

N

N∑

k=1

Kxk
⊗Kxk

.

Let {Gj}j≥0 be a family of filters as in Definition 4.2. We call

Ψ̂N :=
{
ψ̂j,k := Gj(T̂)Kxk

: j ≥ 0 and k = 1, . . . , N
}

a family of Monte Carlo wavelets.

The family Ψ̂N of Definition 6.1 corresponds to the family Ψ of Definition 4.6 with respect to the
empirical measure ρ̂N := 1

N

∑N
k=1 δxk

. Hence, thanks to Proposition 4.7, Ψ̂N defines a discrete Parseval
frame on the finite dimensional space

ĤN := span{Kxk
: k = 1, . . . , N}.

Now, let Ψ be the family of wavelets in the sense of Definition 4.6 with respect to the (continuous) measure ρ.
Again by Proposition 4.7, Ψ is a (continuous) Parseval frame on the (infinite dimensional) space H. Taking

more and more samples, we obtain a sequence of frames Ψ̂N on a chain of nested subspaces of increasing
dimension:

ĤN ⊂ ĤN+1 ⊂ · · · ⊂ H.

We thus interpret Ψ̂N as a Monte Carlo estimate of Ψ. In this view, we are interested in studying the
asymptotic behavior of Ψ̂N as N → ∞, and, in particular, the convergence of Ψ̂N to Ψ.

6.1. Convergence in H
Let

Tj :=

∫

X

ψj,x ⊗ ψj,xdρ(x), T̂j :=
1

N

N∑

k=1

ψ̂j,k ⊗ ψ̂j,k

be the frame operators associated with the scale j, and its empirical counterpart. By Proposition 4.8, we
have

IdH =
∑

j≥0

Tj , IdĤN
=

∑

j≥0

T̂j .

For f ∈ H, given a threshold scale τ ∈ N and a sample size N , we let

f̂τ,N :=

τ∑

j=0

T̂jf (24)

be the empirical approximation of f using the first τ scales of the frame Ψ̂N . The reconstruction error of
f̂τ,N can be decomposed into

∥∥∥f − f̂τ,N

∥∥∥
H

≤
∥∥∥
∑

j>τ

Tjf
∥∥∥
H
+
∥∥∥

τ∑

j=0

(
Tj − T̂j

)
f
∥∥∥
H
. (25)

The first term is the approximation error, arising from the truncation of the resolution of the identity.
The second term is the estimation error, which stems from estimating the measure by means of empirical
samples. Next, we derive quantitative error bounds for both terms, and then balance the resolution τ in
terms of sample size N to obtain our convergence result.
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Approximation error. Note that Proposition 4.7 already implies ‖∑j>τ Tjf‖H τ→∞−−−−→ 0, as it is the tail of
a convergent series. To quantify the speed of convergence with respect to τ , approximation theory suggests
that f has to obey some notion of regularity. In the following we assume a smoothness of Sobolev kind (see
[13] and Section 7), also known in statistical learning theory as the source condition (see [5]):

f = Tαh for some h ∈ H and α > 0.

Proposition 6.2. Assume that gj has qualification ν ∈ (0,∞] and f ∈ range(Tα) for some α > 0. Let
β := min{ν, α}. Then ∥∥∥

∑

j>τ

Tjf
∥∥∥
H

.
∥∥T−αf

∥∥
H
κ2(α−β)τ−β .

Proof. By (22) we have
∑

j>τ Tj = IdH − Tgτ (T). Hence,

∥∥∥
∑

j>τ

Tjf
∥∥∥
2

H
=

∑

i∈Iρ

|1− λigτ (λi)|2 |〈f, vi〉H|2 =
∑

i∈Iρ

(
λβi |1− λigτ (λi)|

)2 ∣∣〈T−βf, vi
〉
H

∣∣2

≤
(
sup
i∈Iρ

λβi |1− λigτ (λi)|
)2 ∑

i∈Iρ

∣∣〈T−βf, vi
〉
H

∣∣2 . τ−2βκ4(α−β)
∥∥T−αf

∥∥2
H
.

Estimation error. To bound the second term in (25), we rely on concentration results for covariance operators
[31].

Proposition 6.3. Assume that λ 7→ λgτ (λ) is Lipschitz continuous on [0, κ2] with Lipschitz constant L(τ).
Then, for every f ∈ H and t > 0, with probability at least 1− 2e−t we have

∥∥∥
τ∑

j=0

(
Tj − T̂j

)
f
∥∥∥
H

. ‖f‖H κ2
√
tL(τ)N−1/2.

Proof. Using (22) and Lemma A.2 we have

∥∥∥
τ∑

j=0

(
Tj − T̂j

)
f
∥∥∥
H

=
∥∥∥
(
Tgτ (T)− T̂gτ (T̂)

)
f
∥∥∥
H

≤
∥∥∥Tgτ (T)− T̂gτ (T̂)

∥∥∥
HS

‖f‖H ≤ L(τ)
∥∥T− T̂

∥∥
HS

‖f‖H .

Bounding ‖T− T̂‖HS with the concentration estimate [31, Theorem 7] we obtain

∥∥T− T̂
∥∥
HS

. κ2
√
tN−1/2

with probability no lower than 1− 2e−t.

All examples of filters given in Section 4.1 satisfy the Lipschitz condition required in Proposition 6.3.

Lemma 6.4. Let gj be a spectral function from Table 2. Then the function λ 7→ λgτ (λ) is Lipschitz
continuous on [0, κ2], with Lipschitz constant L(τ) . τ for the first four spectral functions, and L(τ) . τ2

for the last two. Moreover, let gj be defined as in Example 4.5, with |g′| ≤ B. Then the function λ 7→ λgτ (λ)
is Lipschitz continuous on [0, κ2], with Lipschitz constant L(τ) ≤ B2τ .

Proof. For the first four spectral functions of Table 2, the claim follows by bounding the explicit derivative
of λ 7→ λgτ (λ); for the last two, from an application of Markov brothers’ inequality (see [29, Supplemental,
Lemma 1]). For filters of Example 4.5, we differentiate λ 7→ g(2τλ) and use |g′| ≤ B.
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Remark 6.5. In this paper we are not interested in the constants. We rely on the Hilbert norm since it
provides both a simple bound on

∥∥T− T̂
∥∥
HS

and, by the Lipschitz assumption, the stability bound
∥∥Tgτ (T)−

T̂gτ (T̂)
∥∥
HS

‖f‖H ≤ L(τ)
∥∥T− T̂

∥∥
HS

. Our result can be improved by using the sharper bound

∥∥T− T̂
∥∥ ≤ C

∥∥T‖max
{√r(T)

N
,
r(T)

N
,

√
t

N
,
r(T)

N

}
,

where r(T) = trace(T)
‖T‖ (see Theorem 9 in [24] and the techniques in the proof of Theorem 3.4 in [4] to bound

∥∥Tgτ (T)− T̂gτ (T̂)
∥∥).

Reconstruction error and convergence. Combining Propositions 6.2 and 6.3, we can finally prove the con-
vergence of our Monte Carlo wavelets. In order to balance approximation and estimation error, we need to
tune the resolution τ with the number of samples N and the smoothness α of the signal, in so far as the
qualification ν of the filter allows.

Theorem 6.6. Assume that gτ has qualification ν ∈ (0,∞], f ∈ range(Tα) for some α > 0, and λ 7→ λgτ (λ)
is Lipschitz continuous on [0, κ2] with Lipschitz constant L(τ) . τp, p ≥ 1. Let β := min{α, ν} and set

τ := ⌈N
1

2(β+p) ⌉.

Then, for every t > 0, with probability at least 1− 2e−t we have

∥∥f − f̂τ,N
∥∥
H

.
∥∥T−αf

∥∥
H

(
κ2(α−β) + κ2α+2

√
t
)
N− β

2(β+p) .

Proof. Starting from the decomposition (25), we bound the two terms by Propositions 6.2 and 6.3. The
approximation error is O(τ−β), while the estimation error is O(τpN−1/2). We thus choose τ to balance
them out, and collect the constants.

If supp ρ 6= X , we have instead a frame on Hρ, and the corresponding resolution of the identity IdHρ =∑
j≥0 Tj . The reconstruction error would thus include an additional bias term:

∥∥f − f̂τ,N
∥∥
H

≤ ‖Pker Sf‖H +
∥∥∑

j>τ

Tjf
∥∥
H
+
∥∥∥

τ∑

j=0

(
Tj − T̂j

)
f
∥∥∥
H
.

Classical spectral functions from Table 2 satisfy the assumptions of Theorem 6.6. We report the explicit
rates in Table 3. A convergence result for filters of Example 4.5 will be provided at the end of Section 7.

Table 3: Error rates for signals f ∈ range(Tα) and several spectral regularizers.

method error rate in ‖·‖H error rate in ‖·‖ρ
Tikhonov regularization N− min{α,1}

2min{α,1}+2 N− min{α+1/2,1}
2 min{α+1/2,1}+2

iterated Tikhonov (m) N− min{α,m}
2min{α,m}+2 N− min{α+1/2,m}

2 min{α+1/2,m}+2

Landweber iteration N− α
2α+2 N−α+1/2

2α+3

asymptotic regularization N− α
2α+2 N−

α+1/2
2α+3

heavy ball (ν) N− min{α,ν}
2min{α,ν}+4 N− min{α+1/2,ν}

2 min{α+1/2,ν}+4

Nesterov acceleration N− min{α,ν≥1/2}
2min{α,ν≥1/2}+4 N− min{α+1/2,ν≥1/2}

2 min{α+1/2,ν≥1/2}+4
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6.2. Convergence in L2(X ; ρ)

Error rates in L2(X ; ρ) can be extracted using the isometry between Hρ and Hρ. Suppose again for
simplicity that supp ρ = X . In view of (9), for f ∈ Hρ = H we have

∥∥f − f̂τ,N
∥∥
ρ
=

∥∥√T(f − f̂τ,N)
∥∥
H
.

Decomposing the error into its approximation and estimation components, we can repeat the same analysis
as in the proof of Theorem 6.6. The estimation bound simply gets an additional κ factor. Assuming f ∈ TαH
with α > 0, for the approximation term we have

∥∥√T
∑

j>τ

Tjf
∥∥
H

≤ sup
i∈Iρ

(
λβi (1− λigτ (λi))

) ∑

i∈Iρ

∣∣〈T1/2−βf, vi
〉
H

∣∣ .
∥∥T−αf

∥∥
H
κ2(α−β)+1τ−β ,

with β := min(α + 1/2, ν). Therefore, the approximation rate increases by 1/2 (qualification permitting).
Combining all together, we obtain the following bound in L2(X ; ρ).

Corollary 6.7. Assume that gτ has qualification ν ∈ (0,∞], f ∈ range(Tα) for some α > 0, and λ 7→ λgτ (λ)
is Lipschitz continuous on [0, κ2] with Lipschitz constant L(τ) . τp, p ≥ 1. Let β := min{α + 1/2, ν} and
set

τ := ⌈N 1
2(β+p) ⌉.

Then, for every t > 0, with probability at least 1− 2e−t we have

∥∥f − f̂τ,N
∥∥
ρ
.

∥∥T−αf
∥∥
H

(
κ2(α−β)+1 + κ2α+3

√
t
)
N− β

2β+2 .

See Table 3 for specific rates regarding spectral functions from Table 2.

6.3. Monte Carlo wavelet approximation as noiseless kernel ridge regression

We conclude this section with an observation that draws a link between Monte Carlo wavelets and the
regression problem. Let f̂τ,N be the Monte Carlo wavelet approximation (24) of f ∈ H at resolution τ given
samples x1, . . . , xN . Then

f̂τ,N =
τ∑

j=0

Gj(T̂)
2T̂f = gτ (T̂)T̂f.

With the choice of the Tikhonov filter gj(λ) = (λ + τ−1)−1 (Table 2), and defining

y = [f(x1), . . . , f(xN )]⊤, K[i, j] = K(xi, xj), α =
(
K+ N

τ I
)−1

y,

we have

f̂τ,N =
(
T̂ + 1

τ IdH
)−1

T̂f =
(
Ŝ∗Ŝ + 1

τ IdH

)−1

Ŝ∗Ŝf =
(
Ŝ∗Ŝ + 1

τ IdH

)−1

Ŝ∗y = Ŝ∗
(
Ŝ Ŝ∗ + 1

τ I
)−1

y

=
1

N

N∑

i=1

K(·, xi)
[(

1
NK+ 1

τ I
)−1

y
]
[i] =

N∑

i=1

K(·, xi)
[(

K+ N
τ I

)−1

y
]
[i] =

N∑

i=1

α[i]K(·, xi).

This is the (unique) solution to the kernel regularized least squares problem

min
f̂∈H

1

N

N∑

i=1

|yi − f̂(xi)|2 + λ‖f̂‖2H,
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where yi = y[i] and λ = τ−1. Therefore, f̂τ,N is the kernel ridge estimator for the noiseless regression
problem

yi = f(xi) i = 1, . . . , N,

and the squared reconstruction error ‖f − f̂τ,N‖2ρ is the generalization error of f̂τ,N .
Contrasting this with the optimal rate (in the minimax sense) for kernel ridge regression [5] entails that

the rate in Table 3 is suboptimal for Tikhonov regularization, and presumably for all other regularizers.
This is well expected from the crude Lipschitz bound used in Proposition 6.3. The scope of the present
work was to establish a first result of convergence of randomly sampled frames, rather than identifying the
optimality of the convergence rates. Refinement of our bounds will be object of future investigation (see
also Remark 6.5).

7. Sobolev and Besov spaces in RKHS

The convergence rates of the frame reconstruction error in Theorem 6.6 depend on the approximation
rates in Proposition 6.2, hence on the regularity of the original signal f , as quantified by the condition
f ∈ range(Tα). Thinking of T as the inverse square root of the Laplacian allows to interpret range(Tα) as a
Sobolev space. The theory of smoothness function spaces [33] plays a critical role in harmonic analysis, and
serves also as a base for the definition of statistical priors in learning theory [3]. In this section we examine
general notions of regularity and their effect on the reconstruction error. Many of the reported results on
Besov spaces are well known [13], but we nonetheless include them here to be self contained and to adapt
them to our setting and notation. As in the previous section, we assume supp(ρ) = X .

Sobolev spaces as domains of powers of a positive operator. By virtue of the spectral theorem, for every
α > 0, Tα is a positive, bounded, injective operator on H, with σ(Tα) ⊂ (0, κ2α]. Thus, T−α is a positive,
closed, densely-defined, injective operator with σ(T−α) ⊂ [κ−2α,∞). We put the following

Definition 7.1 (Sobolev spaces). For α > 0, we define the Sobolev space Hα by

Hα := dom(T−α) = range(Tα),

equipped with the norm
‖v‖Hα :=

∥∥T−αv
∥∥
H
.

Hα is a Hilbert space. Moreover, we have

Hα =
{
f ∈ H :

∑

i∈Iρ

λ−2α
i |〈f, vi〉H|2 <∞

}
,

which expresses Hα in terms of the speed of decay of the Fourier coefficients, thus generalizing the standard
Sobolev spaces Hα =Wα,2. Theorem 6.6 establishes the convergence of Monte Carlo wavelets for signals in
the class Hα.

Besov spaces as approximation spaces. Besov spaces on Euclidean domains are traditionally defined by the
decay of the modulus of continuity. A characterization that is best suited to generalize to arbitrary domains,
and to which we also adhere, is through approximation and interpolation spaces [13, 30, 33]. We begin with
the approximation perspective by defining a scale of Paley–Wiener spaces.

Definition 7.2 (Paley–Wiener spaces). For ω > 0, the Paley–Wiener space PW(ω) is defined by

PW(ω) :=
{
f ∈ H : 〈f, vi〉H = 0 for λi < ω−1

}
= span

{
vi : λi ≥ ω−1

}
.

The associated approximation error for f ∈ H is

E(f, ω) := inf
g∈PW(ω)

‖f − g‖H =
∥∥PPW(ω)⊥f

∥∥
H

=
( ∑

λi<ω−1

|〈f, vi〉H|2
)1/2

.
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The space PW(ω) is a closed subspace of H, and
⋃

w>0 PW(ω) is dense in H. Note that E(f, ω) ω→0−−−→
‖f‖H and E(f, ω) ω→∞−−−−→ 0. Approximation spaces classify functions in H according to the rate of decay of
their approximation error.

Definition 7.3 (Besov spaces). For s > 0 and q ∈ [1,∞), we define the Besov space Bs
q as the approximation

space

Bs
q :=

{
f ∈ H :

(∫ ∞

0

(ωsE(f, ω))q dω
ω

)1/q

<∞
}
,

equipped with the norm

‖f‖Bs
q
:= ‖f‖H +

(∫ ∞

0

(ωsE(f, ω))q dω
ω

)1/q

. (26)

The space Bs
∞ is defined with the usual adjustment.

Discretizing the integral in (26), we obtain the equivalent norm

‖f‖H +
(∑

j≥0

(
2jsE(f, 2j)

)q )1/q

≍ ‖f‖Bs
q
. (27)

In particular, a function f ∈ Bs
q if and only if the sequence

(
2jsE(f, 2j)

)
j≥0

∈ ℓq. It is easy to see that the

scale of spaces Bs
q obeys the following lexicographical order [30, Proposition 3]:

Bs
q ⊃ Bt

p for s < t, (28)

Bs
q ⊂ Bs

p for q < p.

Besov spaces as interpolation spaces. The Sobolev space Hα is continuously embedded into Bs
q for every

α > s. Indeed, for f ∈ Hα we have the Jackson-type inequality E(f, ω) ≤ ω−α‖f‖Hα, hence
∑

j≥0

(2jsE(f, 2j))q ≤ ‖f‖qHα

∑

j≥0

2−jq(α−s) <∞.

Furthermore, Bs
q interpolates between Hα and H.

Definition 7.4 (interpolation spaces). For quasi-normed spaces E and F, θ ∈ (0, 1) and q ∈ (0,∞), the
quasi-normed interpolation space (E,F)θ,q is defined by

(E,F)θ,q :=

{
f ∈ E+ F :

∫ ∞

0

(
t−θK(f, t)

)q dt
t
<∞

}
,

where K(f, t) is Peetre’s K-functional

K(f, t) := inf
f0+f1=f

f0∈E,f1∈F

‖f0‖E + t ‖f1‖F .

The space (E,F)θ,∞ is defined with the usual adjustment.

Standard interpolation theory [13, 33] gives

Bs
q = (H,Hα) s

α
, q for s ∈ (0, α) and q ∈ [1,∞], (29)

with

‖f‖Bs
q
≍ ‖f‖H +

(∫ ∞

0

(
t−θK(f, t)

)q dt
t

)1/q

. (30)

In the next proposition we show that, as in the Euclidean setting, the Besov space Bs
2 coincides with the

Sobolev space Hs of the same order. As in the classical setting, this is particular to the case q = 2. This is
probably a known fact, but we could find neither a proof nor a statement.
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Proposition 7.5. For every s > 0, Bs
2 = Hs with equivalent norms.

Proof. Let α = 2s. Then (29) and (30) give Bs
2 = (H,Hα) s

α , 2 = (H,H2s) 1
2 , 2

and

‖f‖2Bs
2
≍ ‖f‖2H +

∫ ∞

0

t−1K(f, t)2
dt

t
. (31)

Let A : Hα → H denote the canonical embedding Ag = g. Then, for f ∈ H and t > 0 we have

K(f, t)2 = inf
f0+Ag=f

f0∈H,g∈Hα

(‖f0‖H + t ‖g‖Hα)
2 = inf

g∈Hα
(‖f −Ag‖H + t ‖g‖Hα)

2 ≍ G(f, t2), (32)

with
G(f, λ) := inf

g∈Hα
‖f −Ag‖2H + λ ‖g‖2Hα .

This infimum is attained by g = (A∗A+ λIdHα)−1A∗f . Since

(A∗A+ λIdHα)−1A∗ = A∗(AA∗ + λIdH)−1,

defining B := AA∗ : H → H we obtain

A(A∗A+ λIdHα)−1A∗ = B(B + λIdH)−1.

Let A∗ = U(AA∗)1/2 = UB1/2 be the polar decomposition of A∗, where U : H → Hα is unitary. We have

G(f, λ) =
∥∥(IdHα − B(B + λIdHα)−1)f

∥∥2

H
+ λ‖UB1/2(B + λIdHα)−1f‖2Hα .

Since (IdH − B(B + λIdH)−1)(B + λIdH) = λIdH, it follows that

G(f, λ) = λ2‖(B + λIdH)−1f‖2H + λ‖B1/2(B + λIdH)−1f‖2H
= λ

[
λ〈(B + λIdH)−2f, f〉H + 〈B(B + λIdH)−2f, f〉H

]

= λ〈(B + λIdH)−2(λIdH +B), f〉H
= λ〈(B + λIdH)−1f, f〉H. (33)

Plugging (32) and (33) into (31) we get

∫ ∞

0

t−1K(f, t)2
dt

t
≍

∫ ∞

0

t−1G(f, t2)dt
t

=

∫ ∞

0

〈
(B + t2IdHα)−1f, f

〉
H
dt =

∫ ∞

0

∫ ∞

0

1

σ + t2
〈dπB(σ)f , f〉 dt,

where πB is the spectral measure of B. By Fubini we have

∫ ∞

0

∫ ∞

0

1

σ + t2
dt 〈dπB(σ)f , f〉 =

∫ ∞

0

1√
σ
arctan

( t√
σ

)∣∣∣∣
∞

0

〈dπB(σ)f , f〉

≍
∫ ∞

0

σ−1/2 〈dπB(σ)f, f〉 = 〈B−1/2f, f〉H =
∥∥B−1/4f

∥∥2
H
.

Therefore, f ∈ Bs
2 if and only if f ∈ dom(B−1/4). It now suffices to show B−1/4 = T−s, whence ‖B−1/4f‖2H =

‖f‖2Hs. For any f ∈ H and g ∈ Hα we have

〈f,Ag〉H = 〈A∗f, g〉Hα =
〈
T−αAA∗f,T−αAg

〉
H

=
〈
T−2αBf, g

〉
H
.

Since Hα is dense in H, this implies T−2αB = IdH. Hence, B = T2α = T4s, which completes the proof.
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Besov spaces by wavelets coefficients. The Besov norm can also be expressed by means of wavelet coefficients.
Let

Fj(λ) :=
√
λGj(λ),

where Gj is a filter as in Definition 4.2. The partition of unity (10) becomes

∑

j≥0

Fj(λ)
2 = 1 for all λ ∈ (0, κ2]. (34)

Moreover, in view of (19), for a frame Ψ as in Definition 4.6 we have

‖〈f, ψj,·〉‖L2(X ;ρ) = ‖Fj(T)f‖H ,

and the frame property (17) can be rewritten as

‖f‖2H =
∑

j≥0

‖Fj(T)f‖2H . (35)

If we further assume the localization property (cf. Example 4.5)

supp(F0) ⊂ (2−1,∞), supp(Fj) ⊂ (2−j−1, 2−j+1) for j ≥ 1, (36)

a weighted ℓq-norm of the sequence (‖Fj(T)f‖H)j≥0 gives an equivalent characterization of the space Bs
q .

Proposition 7.6 ( [13, Theorem 3.18] ). Let {Fj}j≥0 be a family of measurable functions Fj : [0,∞) →
[0,∞) satisfying (34) and (36). Then, for every f ∈ Bs

q we have

‖f‖Bs
q
≍ ‖f‖H +

(∑

j≥0

(
2js ‖Fj(T)f‖H

)q )1/q

.

Proof. We upper and lower bound the discretized norm in (27). Using (35) (which holds thanks to (34))
and (36), we have

E(f, 2ℓ)2 =
∥∥PPW(2ℓ)⊥f

∥∥2
H

=
∑

j≥0

∥∥Fj(T)PPW(2ℓ)⊥f
∥∥2
H

=
∑

j≥0

∑

i∈Iρ

∣∣∣
〈
Fj(T)PPW(2ℓ)⊥f, vi

〉
H

∣∣∣
2

=
∑

j≥0

∑

i∈Iρ

∣∣∣
〈
PPW(2ℓ)⊥f, Fj(T)vi

〉
H

∣∣∣
2

=
∑

j≥0

∑

λi<2−ℓ

λi∈(2−j−1,2−j+1)

Fj(λi)
2 |〈f, vi〉H|2

=
∑

j≥ℓ

∑

λi∈(2−j−1,2−j+1)

Fj(λi)
2 |〈f, vi〉H|2 =

∑

j≥ℓ

∑

i∈Iρ

Fj(λi)
2 |〈f, vi〉H|2 =

∑

j≥ℓ

‖Fj(T)f‖2H .

Thus, by the discrete Hardy inequality (Lemma A.3), we get

(∑

ℓ≥0

(2ℓsE(f, 2ℓ))q
)1/q

≤
(∑

ℓ≥0

(
2ℓs

∑

j≥ℓ

‖Fj(T)f‖H
)q)1/q

≤ Csq

(∑

j≥0

(
2js ‖Fj(T)f‖H

)q )1/q

,

with Csq = 2sq

2sq−1 . Conversely, Fj(T)g = 0 for every g ∈ PW(2j), and therefore

‖Fj(T)f‖H = ‖Fj(T)(f − g)‖H ≤ ‖Fj(T)‖H ‖f − g‖H ≤ ‖f − g‖H ,

whence
‖Fj(T)f‖H ≤ inf

g∈PW(2j)
‖f − g‖H = E(f, 2j).
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Convergence of spectrally-localized Monte Carlo wavelets. Proposition 7.6 can be used to obtain approxima-
tion bounds for frames built with filters satisfying the localization property (36).

Proposition 7.7. Under the conditions of Proposition 7.6, for every f ∈ Bs
q and ǫ ∈ (0, s), we have

∥∥∥
∑

j>τ

Tjf
∥∥∥
H

.

{
‖f‖Bs

q
2−τs for q ∈ [1, 2]

‖f‖Bs−ǫ
2

2−τ(s−ǫ) for q ∈ (2,∞]
.

Proof. By Proposition 7.6, we have
∑

j>τ

‖Fj(T)f‖qH =
∑

j>τ

2−jsq
(
2js ‖Fj(T)f‖H

)q
. 2−(τ+1)sq ‖f‖qBs

q
.

Also, (34) implies
∣∣∣
∑

j Fj(λi)
2
∣∣∣
2

≤ ∑
j Fj(λi)

2. Hence, for q ≤ 2 we obtain

∥∥∥
∑

j>τ

Tjf
∥∥∥
2

H
=

∑

i∈Iρ

∣∣∣
∑

j>τ

Fj(λi)
2
∣∣∣
2

|〈f, vi〉H|2 ≤
∑

j>τ

∑

i∈Iρ

Fj(λi)
2 |〈f, vi〉H|2 =

∑

j>τ

‖Fj(T)f‖2H

=
∥∥(‖Fτ+j(T)f‖)j≥1

∥∥2
ℓ2

≤
∥∥(‖Fτ+j(T)f‖)j≥1

∥∥2
ℓq

≤
(
2−(τ+1)s ‖f‖Bs

q

)2
.

If q > 2, then Bs
q ⊂ Bs−ǫ

2 for every ǫ ∈ (0, s), thanks to (28), and the claim follows.

Putting together Proposition 7.7 and Proposition 6.3 yields a convergence result for Monte Carlo wavelets
with localized filters.

Theorem 7.8. Assume that Fj satisfies (36), f ∈ Bs
q with q ∈ [1, 2], and λ 7→ λgτ (λ) is Lipschitz continuous

on [0, κ2] with Lipschitz constant L(τ) . 2τ . Set

τ = ⌈logN 1
2s+2 ⌉.

Then, for every t > 0, with probability at least 1− 2e−t we have
∥∥f − f̂τ,N

∥∥
H

. ‖f‖Bs
q

(
1 + κ2

√
t
)
N− s

2s+2 .

Compared to Theorem 6.6, Theorem 7.8 requires the resolution τ to grow only logarithmically with
respect to the sample size N . Note that the conditions of Theorem 7.8 exclude the spectral functions of
Table 2, since they do not satisfy (36). Examples of admissible filters are given instead by Example 4.5,
which have local support (36) but exponential Lipschitz constant.

8. Concluding remarks and future directions

We presented a new construction of tight frames which extends wavelets on general domains based on
spectral filtering of a reproducing kernel. Depending on the measure considered, our construction leads
to continuous or discrete frames, covering non-Euclidean structures such as Riemannian manifolds and
weighted graphs. Besides standard frequency-localized filters commonly used in wavelet frames, we defined
admissible spectral filters resorting to methods from regularization theory, such as Tikhonov regularization
and Landweber iteration. Regarding discrete measures as empirical measures arising from independent
realizations of a continuous density, we interpreted discrete frames as Monte Carlo estimates of continuous
frames. We proved that the Monte Carlo frame converges to the corresponding deterministic continuous
frame and provided finite-sample bounds in high probability, with rates that depend on the Sobolev or Besov
class of the reproduced signal. This demonstrates the stability of empirical frames built on sampled data.

In future work we intend to study the numerical implementation of our Monte Carlo wavelets, along
with possible applications in graph signal processing, regression analysis and denoising. Further theoretical
investigation may include Lp Banach frame extensions, nonlinear approximation rates, Lipschitz bound
refinements, and explicit localization properties for specific families of kernels.
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A. Appendix

We recall the following result, whose proof can be collected from [16].

Lemma A.1. Let (Ω;µ) be a measure space and H a Hilbert space. Given a weakly measurable mapping
ω 7→ Ψω from Ω to H, assume there exists a dense subset D ⊂ H, and a constant C > 0, such that, for
every f ∈ D, ∫

Ω

|〈f,Ψω〉H|2 dµ(ω) ≤ C‖f‖2. (37)

Then (37) holds for every f ∈ H. Furthermore, there exists a positive bounded operator A : H → H such
that, for every f, g ∈ H,

〈Af, g〉H =

∫

Ω

〈f,Ψω〉H 〈Ψω, g〉H dµ(ω).

Proof. For f ∈ H, define the measurable mapping

V f : Ω → C V f(ω) := 〈f,Ψω〉H .

Let S := {f ∈ H : V f ∈ L2(Ω;µ)}. The subspace S is dense in H since S ⊃ D, and the operator
V : S → L2(Ω;µ) is closed. Indeed, fix a sequence (fn) ⊂ S converging to f ∈ H and such that (V fn)
converges to F ∈ L2(Ω;µ). Then, possibly passing to a subsequence, there is a subset E ⊂ Ω of measure
zero such that, for all ω 6∈ E,

F (ω) = lim
n→∞

V fn(ω) = lim
n→∞

〈fn,Ψω〉H = 〈f,Ψω〉H .

Then f ∈ S and F = V f . Moreover,

‖V f‖2L2(Ω;µ) = lim
n→∞

‖V fn‖2L2(Ω;µ) ≤ C lim
n→∞

‖fn‖2H = C ‖f‖2H .

Thus, V is a bounded operator, and the closed graph theorem implies S = H, i.e.(37) holds for all f ∈ H.
The second statement follows by defining A := V ∗V .

The simple proof of the following bound is due to A. Maurer.

Lemma A.2. Let A,B be self-adjoint operators on a separable Hilbert space H, and let F : R → C be a
Lipschitz continuous function with Lipschitz constant L. Then

‖F (A)− F (B)‖HS ≤ L‖A− B‖HS.

Proof. Let {ei}i∈I and {fj}j∈J be orthonormal bases of H such that Aei = λiei and Bfj = µjfj . Then

‖F (A)− F (B)‖2HS =
∑

i∈I,j∈J

|〈(F (A) − F (B))ei, fj〉H|2 =
∑

i∈I,j∈J

|F (λi)− F (µj)|2|〈ei, fj〉H|2

≤ L2
∑

i∈I,j∈J

|λi − µj |2|〈ei, fj〉H|2 = L2‖A− B‖HS.

We include a proof of the discrete Hardy inequality [11, equation 5.2] where we explicitly compute the
Hardy constant.

Lemma A.3 (Hardy inequality). Let (bj)j≥0 and (aj)j≥0 be two sequences such that

|bj | ≤
(∑

k≥j

|ak|p
)1/p

for 0 < p ≤ q.

Then, for every s > 0, we have

∑

j≥0

(
2js |bj|

)q ≤ 2sq

2sq − 1

∑

j≥0

(
2js |aj |

)q
,

provided all the sums are finite.
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Proof. Let α = q
p , and let β be such that sp > β > 0. Since p ≤ q, we have ‖·‖ℓq ≤ ‖·‖ℓp , hence

∑

j≥0

(
2js |bj |

)q ≤
∑

j≥0

2jsq
∥∥∥(aj+k)k≥0

∥∥∥
q

ℓq
≤

∑

j≥0

2jsq
∥∥∥(aj+k)k≥0

∥∥∥
q

ℓp
=

∑

j≥0

2jsq
(∑

k≥j

2−kβ2kβ |ak|p
)α

.

Assume now α ∈ (1,∞). Applying the Hölder inequality with 1/α+ 1/α′ = 1 we have

∑

k≥j

(
2−kβ

) (
2kβ |ak|p

)
≤

(∑

k≥j

2−kβα′
)1/α′(∑

k≥j

2kβα |ak|αp
)1/α

=
2β

(2βα′ − 1)
1/α′ 2

−jβ
(∑

k≥j

2kβα |ak|αp
)1/α

.

Plugging this in and using αp = q we get

∑

j≥0

(
2js |bj |

)q ≤ C1

∑

j≥0

2jsq2−jβα
(∑

k≥j

2kβα |ak|αp
)
= C1

∑

j≥0

2j(sq−βα)
(∑

k≥j

2kβα |ak|q
)
,

with

C1 :=
2αβ

(2βα′ − 1)
α/α′ .

Changing the order of summation we get

∑

j≥0

(
2js |bj|

)q ≤ C1

∑

j≥0

2jβα |aj |q
∑

k≤j

2k(sq−βα) ≤ C1C2

∑

j≥0

2jsq |aj |q = C1C2

∑

j≥0

(
2js |aj |

)q
,

with

C2 :=
2sq−βα

2sq−βα − 1
,

since ∑

k≤j

2k(sq−βα) =
1

2sq−βα − 1

(
2(j+1)(sq−βα) − 1

)
≤ 2sq−βα

2sq−βα − 1
2j(sq−βα).

We have

C1C2 =
2sq

(2βα′ − 1)
α/α′

(2sq−βα − 1)
.

If α = 1 (p = q), then α′ = ∞, in which case C1 = 1 and therefore

C1C2 =
2sq−β

2sq−β − 1

for all β ∈ (0, sq). Thus, we may set C := 2sq

2sq−1 .
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[4] G. Blanchard, N. Mücke, Optimal Rates for Regularization of Statistical Inverse Learning Problems, Foundations of

Computational Mathematics 18 (4) (2018) 971–1013.
[5] A. Caponnetto, E. De Vito, Optimal Rates for the Regularized Least-Squares Algorithm, Foundations of Computational

Mathematics 7 (2007) 331–368.
[6] C. K. Chui, An introduction to Wavelets, vol. 1 of Wavelet Analysis and its Applications, Academic Press, Boston, MA,

1992.
[7] R. R. Coifman, M. Maggioni, Diffusion wavelets, Applied and Computational Harmonic Analysis 21 (2006) 53–94.
[8] T. Coulhon, G. Kerkyacharian, P. Petrushev, Heat Kernel Generated Frames in the Setting of Dirichlet Spaces, Journal

of Fourier Analysis and Applications 18 (5) (2012) 995–1066.
[9] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for

Industrial and Applied Mathematics, 1992.
[10] I. Daubechies, A. Grossmann, Y. Meyer, Painless Nonorthogonal Expansions, Journal of Mathematical Physics 27 (1986)

1271–1283.
[11] R. A. DeVore, V. A. Popov, Interpolation of Besov spaces, Transactions of the American Mathematical Society 305 (1)

(1988) 397–414.
[12] H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, vol. 375 of Mathematics and its Applications,

Kluwer Academic Publishers Group, Dordrecht, 1996.
[13] H. G. Feichtinger, H. Führ, I. Pesenson, Geometric Space-Frequency Analysis on Manifolds, Journal of Fourier Analysis

and Applications 22 (6) (2016) 1294–1355.
[14] M. Fornasier, H. Rauhut, Continuous Frames, Function Spaces, and the Discretization Problem, Journal of Fourier Analysis

and Applications 11 (3) (2005) 245–287.
[15] D. Freeman, D. Speegle, The discretization problem for continuous frames, Advances in Mathematics 345 (2019) 784–813.
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