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Abstract In this work we address the problem of analyzing video sequences
by representing meaningful local space-time neighborhoods. We propose a
mathematical model to describe relevant points as local singularities of a 3D
signal and we show that these local patterns can be nicely highlighted by the
3D shearlet transform, which is at the root of our work. Based on this math-
ematical framework, we derive an algorithm to represent space-time points
which is very effective in analyzing video sequences. In particular, we show
how points of the same nature have a very similar representation, allowing us
to compute different space-time primitives for a video sequence in an unsuper-
vised way.

Keywords Shearlet transform - 2D+4T signal analysis - space-time local
primitives
1 Introduction

Spatial local keypoints and appropriate local descriptors have been extensively
considered in image processing and computer vision and they have been suc-
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cessfully studied on a variety of multi-scale models [28,29]. They have then
been applied to image matching or to the higher level image classification
problem, often in conjunction with appropriately designed global descriptors.

In the past decade the video processing scenario has been characterized
by a growing interest towards the so-called space-time interest points which
incorporate appearance as well as dynamic local information. From the pio-
neering work of Laptev [20], who proposed a reformulation of Harris corners
[15] for the space-time, soon followed by alternative and possibly richer ap-
proaches [6,35,31,106,36] we have appreciated the power of these key points
as low level building blocks for motion analysis and action recognition. An
exhaustive overview of related state-of-the-art can be found in [1], see also
[37].

Space-time interest points are usually associated with the concept of points
characterized by some special behavior both in space and time (e.g., non
smooth in both directions). Thus the classical computational framework starts
with a key point detection stage, often in conjunction with an appropriate key
point descriptor [27,32,33,17]. Generally, keypoints are detected by looking
for singularities both in space and time [26]. In this paper we argue that in
the space-time domain there is a richer set of information to be exploited:
different interesting local primitives can be observed and associated with an
appropriate meaning in space and time. These primitives also include interest-
ing spatial structures ( spatial corners or edges) moving smoothly or smooth
surfaces undergoing significant velocity changes.

The mathematical framework we consider is the one of shearlets [25].
Among the multi resolution image representations, shearlets emerge by their
ability to efficiently capture anisotropic features [18], to provide an optimal
sparse representation [11,22], to detect singularities [14,24] and to be stable
against noise and blurring [9,2]. For further details, implementations, and ref-
erences see [20]. The effectiveness of shearlets is supported by a well-established
mathematical theory [3] and it is tested in many applications in image pro-
cessing by providing efficient algorithms [20,8,7]. Shearlets have seldom been
applied to spatio-temporal data, with the exception of shearlet-based video
denoising and inpainting [23] — see also [30], comparing shearlet-based per-
formances on video enhancement and denoising tasks with previously existing
techniques .

In this work we exploit different properties of shearlets. In particular, we
focus on the ability of shearlet coefficients to detect the wavefront set of a signal
both in 2D [18] and in the 3D setting [12,21], by directly encoding meaningful
directional informations, as, for example, the normal direction at each point of
a surface singularity. From the computational viewpoint we adopt 3D shearlets
implemented in ShearLab (see http://wuw.shearlab.org/).

The contribution of the paper is two-fold. On the theoretical side we pro-
pose a toy mathematical model to descrive some of the significant properties
of the complex behaviour of a real video sequence. We consider a rigid com-
pact 2D region that, by moving in time, generates a 2D+T volume V. The
spatial-temporal points are now associated with the wavefront set of the 3D
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“cartoon-like” signal [21]

f(@,y,t) = {1 (z,y,t) GV.

We show that the corresponding shearlet coefficients provide a clear signature
of different spatial temporal primitives. Clearly, our model does not capture
the full complexity of a real video sequence, for instance it does not deal with
occlusions, but it provides an important insight of what happens in the real
world by highlighting the kind of spatio-temporal primitive each space-time
point belongs to.

Motived by our theoretical framework, we propose an algorithm to repre-
sent key points highlighting their appearance and dynamic properties. First,
we consider the 3D shearlet transform of a video sequence. Then, we derive a
shearlet-based rotation-invariant representation of each point with respect to
its space-time neighborhood at a fixed scale. This representation describes the
behavior of the signal in the neighbourhood and helps us discriminating among
different type of points. We discuss how this representation does not vary too
much on sets of known spatial and spatio-temporal key points such as edges,
corners, and space-time interest points [26] . We also show how to identify the
main primitives in a video signal, by adopting an unsupervised approach and
clustering points to obtain the most significant space-time primitives within
the signal.

The real video sequences we use to discuss our findings are taken from the
Chalearn (che vuoi [10]) and the KTH (bozing, handwaving and walking [32])
datasets, while synthetic data have been generated in-house.

This paper is organized as follows. Section 2 reviews shearlets on 2D+T
signals. In Section 3 introduces the concept of spatio-temporal primitives. In
Section 4 we describe our approach to represent points in their space-time
neighbourhood and discuss the expressiveness of the representation on both
synthetic and real data. Section 5 discusses the results we obtain when clus-
tering points with respect to the proposed representation. Section 6 is left to
a conclusive discussion.

2 The 3D-shearlet frame

In this section, we briefly review the construction of the shearlet frame for
2D+T signals. We follow the presentation in [19], which is a standard reference
for the proofs and other informations.

We first set the notation. We denote by L? the Hilbert space of functions
f :R® — C such that

/ |f (2, y,t)]* dz dy dt < 400,
RS
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where dxdydt is the Lebesgue measure of R3, by || f|| the corresponding norm
and by (f, f') the scalar product between two functions f, f/ € L?. Given an
element f € L?, we denote by f its Fourier transform, i.e.

FE1,60,63) = / flz,y, t)e 2miEretevtest) g dy dt,
]R3

provided that f is integrable, too.
We recall that a frame for L? is a family {¢;};cs of functions such that
each 1); is in L? and

AllFIP <Y KA P < BIFIP - Vf e L,

iel

where A, B are positive constants, called frame bounds. The shearlet frame
Fspy is defined in terms of four different subfamilies labeled by the index
{=0,...,3 as it follows.

The first family

Fswo = {pm | m € 2%},
associated with the index £ = 0, takes care of the low frequencies cube
Po={(61.62.6) € R | 6] < 1|&a| < 116| <1}
and it is given by
om(x,y,t) = p(x — cmy,y — cma, t — cmgs),

where m = (my, ma, m3) € Z3 labels the translations, ¢ > 0 is a step size, and

o(x,y,t) = d1(x)d1(y) b1 (1),

where ¢ is a 1D-scaling function.

The other three families are associated with the high frequency domain.
Each of them corresponds to the pyramid whose symmetry axis is one of the
cartesian axes &1, &2, &3 in the Fourier domain, see Fig 1. For example, for £ = 1
the pyramid is

Pr= {(61.60.65) € B | 61| > 1, |§—2| <118 <1},
1 &

and similarly for the other two pyramids.
Fixed £ = 1,2, 3, each

]:SH,@ = {w@,j,k,’m ‘ ] S N7k S Kj7m S Z3}7

where ‘
K; = {k = (k1, k2) € Z2, max{ |ku|, |ko| } < [27/2]}, (1)

is defined in terms of parabolic dilations



Space-time analysis and shearlets 5

Fig. 1: The three pyramids P;, P2 and Ps, with displayed in black the area
belonging to the positive part of the corresponding symmetry axis and in red
the one related to its negative part.

270 0 2i/2 0 0 2i/2 0 0
Ay =027 0|, Asy; = 02 0 |, A3;=( 0 20720
0 0 2i/2 0 0 2i/2 0 0 2

where the index j refers to the dyadic scale (note that j = 0 corresponds to
the coarsest scale), and shearings

1kqy ko 100 1 00
517]@ =101 0], Sg’k = |k 1lko|, Sg,k = 010},
001 001 ki ko 1

where the index k = (ki,k2) € K; controls the shearing and runs over the
index K, defined in (1). Explicitly, the functions ¢ ; x.m are given by

. r—ci1my
Ve, gem (T, Y, t) = 274y (Se,kAz,j (y*c‘z"w >) ) (2)
t763m3
where for £ = 1, ¢; = cand ¢3 = ¢3 = ¢, where ¢ is another step size (for £ = 2,3
the values of ¢, ca, c3 are interchanged accordingly) and the parameter m =
(m1, ma, m3) € Z* labels the translations, as for the family Fsy o. Following
[23], the generating function v is of the form

B =i (PG ohe) (PGanw).  ©

where P is suitable polynomial 2D Fan filter [5], 1 is the 1D wavelet function
associated with the scaling function ¢ defining the family {¢,, }. Similar equa-
tions hold for ¢ = 2,3 by interchanging the role of £1,&; and £3. We observe
that to obtain a frame it is necessary to assume some technical condition on
the smoothness of ¢; and on the vanishing momenta of 11, see [20].

The shearlet transform of a signal f € L? is given by

(fs om) if =0

SH[f](¢, ], k,m) = {<f’ Yejpm) i 0=1,23,
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where j € N, k € K;, m € Z3. We stress the fact that, as shown in (1), the
number of shearing parameters K; depends on j. In the experiments we use
the digital implementation described in [23], which is based on the well known
relation between the pair (¢1,1) and the quadrature mirror filter pair (h, g),
i.e.

$1(z) = V2Y_ h(n)¢(2x —n) (4)
nez

di(z) = V2 g(n)¢i (22 — n). ()

neEZ

where h is a 1D lowpass filter and ¢ is the corresponding highpass filter.
Furthermore, a maximum number J of scales is considered and it assumed
that the signal f at the finest scale is given by

Flay )= > frm 27261270 — emy) g1 (27y — ema) 1 (27t — ems).

meZz3

so that frm ~ f(emi1277 em2277, em3277) since ¢; is well localized around
the origin. The digital shearlet transform depends on the number of scales
J + 1, the directional Fan filter P in (3) and the low pass filter h associated
with the scaling function ¢; by (4).

Our algorithm is based on the following nice property of the shearlet co-
efficients. As shown in [12,13,21] if the signal f is locally regular in a neigh-
borhood of m, then SH[f](¢, j,k, m) has a fast decay when j goes to infinity
for any ¢ # 0 and k € K;. Suppose now that f has a surface singularity at
em with normal vector (1,m1,m9) € Py and set k* = ([29/2n,7], [27/%ny]). If
¢ = 2,3, then SH[f]|({,j,k,m) has a fast decay for any k € K, whereas if
¢ = 1 we have the same good behaviour only if k # k*, whereas if k = k*
the shearlet coefficients have a slow decay (a similar result holds if the normal
direction of the surface singularity belongs to the other two pyramids). This
behaviour of the shearlet coefficients allows to associate to any shearing vec-
tor k = (k1, ko) a direction (without orientation) parametrized by two angles,
latitude and longitude, o and 8. Thus the direction associated with k is given
by

. . T
(cos cwcos 3, cos asin 3, sin ) a,B € [—5,5] (6)

The correspondence explicitly depends on ¢ and, for the first pyramid, it

is given by
—j/2
tana = L/kz tan =27k «a,B¢€ [—E, I}.

V1 +2-7k? 44

The above formula shows that the ability to resolve different directions strongly
depends on the number of available shearings in K;j . In particular, at coarsest
scales we detect the normal direction of singularity surfaces at a low resolution.
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Through a simple example we illustrate the above behaviour. We consider
a black cube and we fix a point of a side of the cube parallel to the yt plane. We
compute the shearlet coefficients moving along the normal direction outside
the cube. The behaviour is shown in Figure 2 where in the first column we
show a xt-section of the cube at a given ¢. In the second column we plot the
value of the shearlet coefficients at the point on the surface in the first pyramid
P1. We show the coefficients associated with the grid of directions represented
by the shearings in Kj;, unrolling them along the z axis. In this example
k1,ky € {—2,1,0,1,2} and the value 12 in Fig. 2(b) corresponds to ki =
ko = 0, as expected. The coefficients of the other pyramids contain negligible
values ~ 107'6. In the third column, we fix the shearing corresponding to
the peak and see how the coefficients evolve by moving along the normal
direction corresponding to the red line in figure (a). The coefficients decay as
we move away from the discontinuity, giving us an empirical evidence of the
appropriateness of 3D shearlets in localizing interest points.

o 5 10 15 20 25 0
) 55 % % 40 45 s s 6 e 10 75
shearing X

(a) (b) (c)

Fig. 2: Coefficients analysis on a 3D surface (see text). (a) A section of a
surface parallel to the yt plane. (b) A plot representing the coefficients varying
at different shearings, on the x axis there are the indexes corresponding to all
the shearings in K; for the pyramid P; where the central pick corresponds
to the shearing vector £ = (0,0). (c) The coefficients decay for neighboring
points along the surface normal (red line).

Figure 3 shows a similar analysis on a 3D edge produced by two surfaces,
one parallel to plane xt and the other parallel to plane yt. In this case we
identify two significant peaks in two different pyramids (the main peaks in (b)
and (e)).

Within every pyramid (P; for Figure 3 (a-c) and P5 for Figure 3 (d-f)) we
see a behavior similar to the case of the 3D surface (Figure 2 (b)). However,
the secondary peaks have higher values, for the spatio-temporal neighborhood
around the point has a richer behavior. These peaks are also due to the fact
that we visualize two-dimensional information (the shearlet coefficients asso-
ciated with a 2D grid of directions) as a 1D function, thus they appear to be
distant on the 1D unrolled function.
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The plots we show in this section have been obtained thanks to the a priori
information we have on the normal direction which is in general not available
in real data. This issue will be addressed in the following sections, where we
identify a representation procedure applicable in the general case.

0 5 10 15 20 2 o
shearing X

(a) (b) (c)

o 5 10 s B & 20 E) w0 50 60 0 80
shearing y

(d) (e) ()

Fig. 3: Coeflicients analysis on a 3D edge (see text). (a) and (d) show a
section of the edge parallel to zy plane, where we highlight the two normal
vectors. (b) and (e) show the coefficients varying at different shearings in the
two meaningful pyramids P; and Ps where both central picks correspond to
the shearing vector & = (0,0). (c¢) and (f) show the decay of coefficients for
neighboring points along the corresponding normal directions.

3 Spatio-Temporal Primitives

Clearly, a video is a temporal sequence of 2D spatial images and it can be
regarded as a 2D+T signal that fits the above theoretical framework.

In this context, 2D spatial discontinuities in an image, such as edges and
corners, generate different space-time behaviors as the image evolve in time.
Moreover, the temporal evolution of a given point in the image is continuous,
but may undergo a loss of regularity in correspondence of velocity changes.
Therefore, if we analyze the behavior of the signal in space-time, we may
observe different types of primitives (see also Figure 4):
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— Spatio-temporal surfaces, caused by 2D edges with a smooth velocity
spanning surfaces in space-time.

— Spatio-temporal edges cither caused by 2D corners moving smoothly or
by 2D edges undergoing a velocity change. These two primitives could be
discriminated by detecting the orientation of the 3D edge, see Fig. 4 (b)
and Fig. 4 (c).

— Spatio-temporal corners or vertices caused by 2D corners undergoing
a velocity change.

These spatio-temporal primitives are easily associated with classical 3D fea-
tures: surfaces, edges, and vertices, and can be analyzed by adapting 3D signal
representation models. It should be observed, though, that 2D+T features have
a very specific nature that characterizes them beyond their three-dimensional
structure. For instance, we could further cluster these primitives in still and
moving entities (corresponding to different orientations in the 2D+T space).
Also, the third component (time) has a different intrinsic scale, and very pre-
cise constraints since spatial features do not disappear all of a sudden and
time can only proceed forward. In the reminder of the paper we refer to 2D
edges when considering image discontinuities and 3D or spatio-temporal edges
when discussing the behavior in space time. As for corners, we will refer to 2D
corners in space and to vertices or 3D corners in space-time.

71 71 2 2
@ (b) © @

Fig. 4: Spatio-temporal primitives which can take place in the space-time do-
main, by considering how the image in the background of each one of these
moves over time: (a) a 2D edge moving smoothly spawns a spatio-temporal
surface (b) a 2D edge undergoing a velocity change thus producing a 3D edge,
(c) a 2D corner moving smoothly also producing a 3D edge, (d) a 2D corner
undergoing a velocity change proding a 3D vertex.

We now observe that, thanks to the sensitivity to singularity and orien-
tation of shearlets we may identify different spatial-temporal primitives. To
better understand the relationship between coefficients and primitives we start
by considering a toy model for a space region evolving over time. We assume
that the region of interest is a rigid planar body C moving in the time interval
[0,T]. We further assume that the boundary of C can be parametrized at the
initial time ¢ = 0 by the simple closed curve

v(s) =z(s)i+y(s)j sel0,L]
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where L is the length of the boundary, s is the arc-length oriented and the
curve is oriented so that the interior of the body is on the left side, see Fig. 5.
We denote by i and j to be the canonical unit vectors of the z-axis and y-axis,
respectively. Since the body is rigid the time evolution of each point v(s) is
given by

V(s,t) = r(t) + R(#)(v(s) = r(0)) = z(s,8) i+ y(s, 1) ],

where r(t) is the time evolution of the center of mass of the body and R(t) is the
time-dependent rotation around the center of mass. The evolution of the body
in time describes a 3D-volume whose boundary is the surface parametrized by

o(s,t) =x(s,t)i+y(s,t)j+tk  sel0,L],tel0,T],
where k is the canonical unit vector of the t-axis.

We now compute the normal vector to the surface at spatial-temporal point
o(s,1)

oo oo ! J k
N(s,t) = 8—(5,75) X E(s,t) =det | 22(s,1) %(s,t) 0
s 9z (5.1) 9 (s,1) 1
=n(s,t) + 7(s,t) x v(s,t)
where

Oz . Oy .

T(Sat) - %(Svt)l + %(S,t).]

_ Oy, . Oz,

n(s,t) - %(Svt)l - %(Sat).]

Oz . Oy .

U(Sat) - E(sat)l + E(Sat).]

are the tangent and normal external unit vectors to the boundary of C at
spatial point (z(s,t),y(s,t)) and v(s,t) is the corresponding velocity, where
all of them are regarded as 3D vectors. Since s is the arc-length, the tangent
vector 7(s,t) has norm 1 and n(s,t) corresponds to the external normal unit
vector since it is obtained by clockwise rotating the tangent vector 7(s,t) by
/2, see Figure 5.

Let us consider the following four basic setups or behaviours:

1. The boundary is smooth, so that both 7(s,t) and n(s,t) are smooth, and
the velocity is always smooth. Then the surface parametrized by o is ev-
erywhere smooth and in each point there is a tangent plane whose normal
vector is given by N(s,t), (see Fig. 4 (a)); if the velocity is zero, then the
normal vector IV is simply given by n. Here we expect a single coefficient
to have an high value, exactly the one directed along the surface normal.
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N

7(s,t) v (s, t)

n(s,t)

v(s, t)

XI

Fig. 5: A body at time ¢ with the main relevant geometrical and dynamical
quantities.

2. The boundary is smooth, so that both 7(s,t) and n(s,t) are smooth, but
the velocity at time ¢ = tg is not regular. Hence, the two surfaces

{o(s,t) | s€[0,L],t €[0,to]}  and  {o(s,t)| s €[0,L],t € [to, T]}

create a 3D edge in the plane ¢ = ¢y and N(s,t) is discontinuous at ¢ = ¢
for all s € [0, L] with sharp variation given by

AN (s,t0) = 7(s,tg) x Av(s,tg) Vs € [0,1],
where Af is the jump of f (with respect the second variable) at ¢, i.e.
Af(S,to) = lim f(S,t) — lim f(S,t),
t—ts t—ty

and AN(s,tp) has a non-zero component only along the t-axis and lives
on the 3D edge (see Fig. 4 (b)). In this case the shearlet coefficients would
include two maximum values associated with the two surfaces.

3. The velocity is smooth, but (z(so),y(so)) is a 2D corner of the boundary,
then the two surfaces

{o(s,t) | s €[0,s0],t € 10,71} and {o(s,t) | s € [s0,L],t € [0,T]}

create a 3D edge parametrized by the temporal evolution of the 2D corner
((s0),y(s0)). Hence, N(s,t) is discontinuous at so for all ¢ € [0,7] with
sharp variation given by

AN(S(), t) = A’I’L(S(), t) + AT(S(), t) X U(S(], t) Vt € [0, T],

where AN (sg,t) is the jump of N (with respect the first variable) at sg
and it has two contributions: the former is in the zy-plane and the latter
along the t-axis. As above the vector AN(sg,t) lives on the 3D edge (see
Fig. 4 (c)). Again, the shearlet coefficients would include two maximum
values associated with the two surfaces.
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4. The boundary has a 2D corner at point (z(sg), y(so)) and there is a change
of velocity at time t = ¢ eighter in the direction or in the speed. At the
spatial-temporal point (z(so,t0),y(s0,%0), o) there is a vertex, which is the
junction of the four surfaces

Sl == {U(Svt) | ERS [O,So],t S [07t0]} 82 = {G(S7t) | s € [SO7L]7t S [OatO]}
Sz ={o(s,t) | s€[0,s0],t € [to,T]}  Sa={o(s,t)|s € [s0,L],t € [to,T]},

where &7 has a 3D edge in common with Sy and it has a 3D edge in common
with S3 (and a similar relation for the other three surfaces). At the vertex
there are four normal vectors (see Fig. 4 (d)).

This toy model may be adapted to real data, as we will see in the next
sections. We start by observing examples of different local behaviors within
video sequences. In Figure 6 (top) we may observe the evolution of the tip
of a foot changing direction at the end of a step; this behavior produces a
spatio-temporal corner or vertex. In the center of the figure we analyze the
tip of a fist in the extension phase of a punching action, producing a spatio-
temporal (or 3D) edge. Finally, at the bottom, we may observe the side of an
arm translating as a person is walking, producing a spatio-temporal surface.

IEEEEEEEERER

Fig. 6: Space-time features in real data. Top: the tip of a foot changing direction
at the end of a step produces a spatio-temporal corner; middle: the tip of a
fist in the extension phase of a punching action produces a spatio-temporal

edge; bottom: the side of an arm translating as a person is walking leads to a
spatio-temporal surface.

4 Enhancing space-time features with shearlets

In this section we propose a method to represent local spatio-temporal informa-
tion provided by shearlets in order to enhance different types of discontinuities
of a 2D + T signal.
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4.1 The method

We consider a spatial temporal point 7 = (&, 9, ) for the fixed scale j and the
subset of shearings

K = {k: = (k1 ko) | K ko = —[2972],... (23/21},

where M = 2[27/2] 4+ 1 is the cardinality of K, where we suppressed the de-
pendence on j from K and M. The procedure we carry out in the discrete
case is depicted in Figure 7 and consists of two parts, which we describe in the
following. In the first part we merge the coefficients obtained from the different
pyramids, in the second one we derive a representation for the point neigh-
borhood considered. This representation should be meaningful of a specific

space-time primitive.
(d) @

(e)

\SEN

(a) (c)

Fig. 7: The main steps of the 2D + T signal representation procedure. For each
space-time point 7i2: (a) we compute matrices Cq, Cy and Cs, (b) we create the
object C which includes the space-time coefficients of the point neighborhood,
(c-d) we map subsets of elements (i.e. shearlet coefficients) of C to different
parts of a vector and (e) we obtain the representation for our point.

Reorganize the coefficients of a point neighborhood.

(a) We reorganize the information provided by SH[f](¢, 7, k,7) in three M x
M matrices, each one associated with a pyramid /= 1, 2, 3, where each entry
is related to a specific shearing: Cy(r,c) = SH[f]({, ], kye, ) with £ =
1,2,3, where r,c = 1,..., M and k,. is the corresponding shearing in K;
defined in (1). As usual in this kind on analysis, we discard the informations
related to the shearlet coefficients in the low frequency pyramid ¢ = 0 since
they are related to the smoothness of the signal. Figure 7 (a) shows the
three matrices for a specific space-time point.
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(b) We merge the three matrices in a single one, by recombining them rel-
atively to the maximum shearlet coefficient (the central element of the
column depicted in Figure 7 (b)). For a given scale j and a fixed set of
shearings K, the central element of C corresponds to kj,q., the shear-
ing corresponding to the coefficient with the maximum value in the set
SHIf](£,7,k,m), with £ € {1,2,3} and k € K;. The eight values of C
around the center (the blue ring in Figure 7 (¢)) correspond to the value
associated with the first 8-neighbourhoods of k;,4;. These shearing can
be in one of the three cones and, hence, the corresponding values are the
entries of one of the three matrices Cy, Co and Cj. This tiling procedure
is repeated to cover to full index set K;. This property is needed to ob-
tain a rotation invariant representation in the next steps of this pipeline,
since the values in C are redistributed similarly when considering two sim-
ilar spatio-temporal primitives, even if they are oriented differently in the
space-time domain. The matrix C models how the shearlet coefficients vary
in a neighborhood of the direction where there is the maximum variation,
and it is built in a way so that coefficients which are referred to shearings
which are close one to the other end up being close in C. We will see how
different kinds of spatio-temporal elements can be associated with different
kinds of local variations in C.

Compute a compact rotation-invariant representation

(a) We group the available shearings in subsets 5;, according to the following
rule: 89 = {kmas} and §; will contain the shearings in the i-th ring of values
from kpq. in C (as highlighted Figure 7 (c)). We extract the values cor-
responding to the coefficients for §; (by looking at the 8-neighborhood of
Emaz), then we consider the adjacent outer ring (that is, the 24- neighbor-
hood without its 8-neighborhood) to have the coefficients corresponding to
59, and so on (Figure 7 (d) and (e)). By construction the elements of C'
are grouped in subsets, each of them associated with a ring, and the first
and last element of each subset are closed each other. For the subsets 3;
for ¢ > 2 not all the coefficients are selected, this is due to the way the
object C is built. Selecting all elements would introduce redundancy in the
representation, hence only some parts of them are considered to build it.

(b) We build a vector concatenating the values of the coefficients correspond-
ing to each set as it follows. We first define coeff;, to be the set of coefficients
associated with each shearings subset 3;:

coe S0 — SH[f](ékmaz737kmaxam)
coelfy, = { SHIfI(Cs,, ks, 1) s, € 5 )

where fy, .. is the pyramid associated with the shearing kj,q, and where
{5, represents the pyramid associated with each shearing ks,. Then, we set

D(mn) = coeffs,” coeffs, " coeffs,” .. .;
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where ™ denotes the concatenation between vectors. The size of the rep-
resentation is strictly dependent on the number M of shearings and it
depends on the chosen scale, as we introduced previously.

At this point, the object D(m) entangles the relations between the di-
rection of maximum variation S,,., for a given point m and the directions
corresponding to the other shearings k # $p,42-

4.2 FExpressiveness of coefficients

We analyse the space-time neighborhood coefficients C for different types of
points. First, we consider a simple synthetic sequence, with a dark square on a
white background. At the beginning of the sequence the square is still, then at
frame 64 it starts translating up with constant speed until frame 108, when the
square stops again until the end of the sequence. To avoid boundary problems,
the sequence is composed of white frames before frame number 20 and after
frame number 108. Figures 8 (a-c) shows a selection of meaningful frames in
the synthetic sequence, while Figures 8 (d-f) show the volume we may obtain
by stacking the video frames (and in particular the square silhouette) one
on top of the other. In this synthetic example we easily identify three types
spatio-temporal features, clearly visible on the 3D shape: surface points, 3D
edges, and vertices; in (d-f) we show manually selected points. Figures 8 (g-
i) shows average C computed on space-time point neighborhood of all the
marked points of a given type. In spite of averaging, the 3D visualization we
present highlights the neighborhood structure and allows us to show how C
allows us to distinguish between different kinds of spatio-temporal structures.
This speaks in favor of the expressiveness of 3D shearlet coefficients for the
local space-time analysis we are considering.

At this point an observation is in order. In the case of surfaces, we identify
only one meaningful peak around which we reorganize the other (negligible)
contributions. Instead, in the case of 3D edges and 3D corners, C presents
a more peaks than expected. In the case of 3D edges we would expect two
peaks, but in the construction of C, the second peak is replicated, due to the
complexity of the point and the periodicity of the matrix C' on each subset
associated with the different rings. A similar behaviour is already observed in
Fig 3.

Furthermore, with respect to the theory, the 3D vertex in Fig. 8(f) corre-
sponds to the intersection of three surfaces, instead of four. This is due to the
fact that we are dealing with a synthetic image with blank frames below the
frame 20. The 3D vertices at frame 64 are at the intersection of four surfaces,
as expected, however two of them are coplanar, so that we have only three
distinct normal directions.

Figure 9 shows that the space-time neighborhood coefficients C have a
similar behavior in real data. It highlights two points of a real image sequence,
an edge (in blue) and a corner (in red). The behavior of the neighborhood
coefficients is coherent with what previously discussed.
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m u =

(a) frames 20-64 (b) frames 65-107 (c) frames 108

time
time
time

x y x y x y

(d) surfaces (e) 3D edges (f) 3D vertices

- 4 4

(g) average C - surfaces  (h) average C - 3D edges (i) average C - 3D vertices

Fig. 8: (a-c) sample frames of the synthetic video sequence. (d-f) Manually
selected points on the 2D+T surface (g-i) and corresponding average C.

As a further evidence we analyze the average C over sets of key points
automatically detected by well know algorithms in image processing and com-
puter vision. We consider two spatial features, edges [1] and corners [31] and
a space-time feature, STIP [26].

Edges. Figure 10 shows the average coeflicients of all edge points obtained by
the Canny detector applied to a 2D frame extracted from video sequence.
It is worth noting that, since the our algorithm also detects corner points
and moving edges, the 3D visualization also includes small lateral peaks.

Corners. Figure 11 shows the behavior of corner points, automatically de-
tected by the classical Harris algorithm. In this case we report the visual-
ization for the subset of still and moving corners, which are more distinctive
as expected, since our representation takes into account space-time infor-
mation, while Harris corner detector does not.

STIP. Figure 12 shows the average descriptor for the points detected as
Laptev STIPs on a different image frame. It is well known that STIP de-
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(a) selected points (b) edge (c) corner

Fig. 9: Example of visualization in 3D of the result of the process, for these
example we selected a static spatial edge (the blue circle) and a static spatial
corner (the red circle), which are characterized by two different behaviors of
change.

Fig. 10: (a) Frame points automatically extracted by Canny edge detector; (b)
a 3D visualization of C averaged on all the edge points.

tector identifies very few points, meaningful both in space and time. The
choice of this specific image frame has been done considering the limita-
tions of the detection algorithm, which performs particularly well only in
the presence of very sharp space-time variations. This is clearly identified
by the behavior of the neighborhood coefficients, indeed we observe peaks
both in space and time directions.

5 Identifying coherent groups of points

So far we have discussed the behavior of 3D shearlet coefficients in the space-
time neighborhood of a point or a set of previously detected points. Here
we discuss how we can group sets of points by similarity, with the goal of
identifying automatically different types of space-time primitives.

We fix a frame in a video sequence, we compute the shearlet coefficients of
a suitable temporal neighborhood of the frame, and we apply our algorithm to
assign the local representation D to each point of the given frame. Hence, we
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(a) still corners (b) average descriptor

(c) moving corners (d) average descriptor

Fig. 11: Harris corners. (a) Still Harris corners (b) and the shape visualiza-
tion of their average descriptor. (¢) Moving Harris corners (d) and the shape
visualization of their average descriptor.

(b)

Fig. 12: Laptev STIPs and a 3D visualization of C averaged on all the edge
points.

cluster the points with a k-means algorithm in p clusters and we consider the
clusters centroids as an unsupervised estimate of our space-time primitives of
the video frame.

Figure 13 shows the results obtained for different choices of p. The sequence
is acquired by a still camera and represents a subject boxing in the air. The
frame we selected to present the results represents the exact moment in which
the subject is inverting the direction of movement of his arm — as in Figure 12.
Let us briefly comment the results for different choices of p, which highlight
space-time points at different granularities:
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(a) frame

(e)p=5 f)p=6 (gp="7 (h)p=8

Fig. 13: Clusters of space-time primitives for different choices of p (best seen
in pdf).

— p = 2: the first partition obtained creates two groups, a set of points
containing almost all the points in the sequence without a significant local
change neither in space nor in time (background points and those belonging
to the inner part of the body of the subject) and another one containing
points which are undergoing some spatio-temporal change.

— p = 3: the clustering process better separates the points belonging to the
background and those related to the shape of the subject, without addi-
tionally differentiating these points. Background is divided in two parts,
depending on the texture.

— p = 4: the additional cluster allows us to separate points that belong to
spatio-temporal elements with a higher dynamics, for example the arm of
the subject boxing in the air.

— p = 5: a new cluster does not provide significant changes.

— p = 6: different elements are now separated in a very nice way, the edges
belonging to the arm are grouped in a separate cluster w.r.t. the edges
belonging to the back and the legs, also, it is possible to see how points
which look like spatial corners are grouped together (in the yellow cluster),
without any differentiation regarding their spatio-temporal behaviour.

— p = 7: no additional information.

— p = 8: the points colored in white represent the last cluster added within
this trial, we can see how these elements could correspond to spatial corners
with particular dynamics (the fist is inverting direction, the corners joining
the arm to the head and to the chest undergo some changes, and the front
tip of the jacket is moving while the subject is punching). These points
are also highlighted in Figure 14 (h) and the corresponding average C
in Figure 15 (h). Their similarity with the STIP points in Figure 12 is
apparent.
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(a) cluster # 1 from p=8 (b) cluster # 2 from p=8 (c) cluster # 3 from p=8

(d) cluster # 4 from p=8 (e) cluster # 5 from p=8 (f) cluster # 6 from p=8

(g) cluster # 7 from p=8 (h) cluster # 8 from p=8

Fig. 14: The points belonging to the different 8 clusters calculated on a frame
of the bozing sequence (see text).

This result highlights many nice properties of our descriptor: the separations
of all the points of the image frame into different sets, with respect to their
spatio-temporal behavior, is obtained thanks to a space-time continuity of the
representation inherited by the shearlet transform; as p grows we may identify
an interesting nested structure; even in an entirely unsupervised approach
most of the points clusters automatically detected can be associated with
known feature points, such as edges or corners.

As a last observation we discuss whether the estimated space-time clusters
are persistent among different video frames and different video. The intuition
is that the answer should be negative since the estimated space-time primitives
are learnt by a short temporal observation and thus different primitives may
be present or not. To this purpose, we compare sets of primitives estimated on
different frames and compare them through the Euclidean distance, building
similarity matrices. Note that, in every matrix, the entries of the two sets have
been reordered so that to keep the values corresponding to the best similarity
obtained along the diagonal, and that the assignment of the entries of the
two centroids sets has been carried on by means of the Hungarian algorithm.
Figure 16 shows the self similarity within a set of space-time primitives. We
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(a) C for cluster # 1 (c) C for cluster # 3

(d) C for cluster # 4 (e) C for cluster # 5 (f) C for cluster # 6

(g) C for cluster # 7 (h) C for cluster # 8

Fig. 15: The 3D visualization of the C objects related to the centroids of the
clusters shown in Figure 14(a-g).

consider this example as a baseline observation, showing how the primitives
are somewhat redundant (this is visible by the block structure of the matrix
that shows how different primitives are similar to one another). If we compare
centroids obtained at different frames of the same sequence (Figure 17) we
observe again a very similar dominant diagonal, possibly due to the fact we
are observing a periodic action. If we compare video frames from different
type of actions we obtain noisier similarity matrices. Figure 18 compares a
boxing frame with a handwaving frame; in this case the dominant diagonal
is still present, showing that each primitive has at least a counterpart on the
other frame. In fact the two actions, even if they are quite different, have
many things in common: they are upper body actions, with abrupt changes of
direction and are executed at a similar pace, thus we expected them to share
at least a subset of very similar spatio-temporal primitives. Finally, Figure
19 compares the boxing with a walking frame, two very different types of
dynamics, as confirmed by the noisy similarity matrix we obtain.
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(b) clusters (c) self-similarity

Fig. 16: Self-similarity matrix for a video frame of the bozing sequence.
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Fig. 17: Similarity matrix between two video frames of the bozing sequence
(the reference frame is shown at Fig 16).
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Fig. 18: Similarity matrix between a video frame of the bozing sequence (Fig
16) and a frame of the handwaving sequence.

6 Conclusions

In this paper we discussed how to analyse space-time signals, or more specif-
ically video sequences, in the framework of shearlets. The goal of our work
was to evaluate the behavior of the signal in a space-time local neighborhood.
Starting from a theoretical analysis, followed by toy as well as real examples,
we discussed what are the typical patterns one may find in space-time sig-
nals. Then we derived a point representation based on signal coefficients and
show that it appears to be stable on set of points of the same nature, while
also meaningfully highlighting their spatio-temporal behavior. Based on this
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Fig. 19: Similarity matrix between a video frame of the bozing sequence (Fig
16) and a frame of the walking sequence.

property we derived an unsupervised approach to identify different space-time
primitives of a video frame. This primitives are the centroids of space-time
points clusters obtained by the k-means algorithm. Our analysis shortens the
gap between theory and algorithms and allows us to derive a computational
model which may be applied to motion analysis and action recognition.

In this paper we considered one frame at a time with its temporal neigh-
borhood. We are currently investigating how to integrate the analysis at the
level of the entire video. We conclude by observing that shearlets may lead to
a perfect scale invariant representation. On 2D signals, this has been clearly
demonstrated in the theory and exploited in practice in [7]. Furthermore, it
would be of interest to exploit the multi-scale property of the shearlet coeffi-
cients to detect spatial-temporal patterns at different scales. This requires a
representation with a large number of different scales and, at the present, this
poses some implementation problems, whose solution will be the objective of
future work.
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