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Anisotropic Representations And Function Spaces In Rn

Shai Dekel

(joint work with Pencho Petrushev and Tal Weissblat)

We investigate representation systems and function spaces over multi-level el-
lipsoid covers of Rn which may change rapidly from point to point and in depth,
from level to level (see previous papers [DHP, DDP]). At this time we are focused
on Triebel-Lizorkin spaces and in particular the Hardy spaces. We generalize pre-
vious work [B] and classic elements of the Hardy space theory in this setting such
as the various maximal function definition, atomic decompositions, the dual BMO
spaces, etc.
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Sparsity in Learning Theory

Christine De Mol

(joint work with Ernesto De Vito, Sofia Mosci, Lorenzo Rosasco, Magali Traskine
and Alessandro Verri)

In contemporary science, we are more and more often faced with the problem
of extracting meaningful information or inferring models from a data-rich envi-
ronment. For example, in bioinformatics, one measures by means of microarrays,
for each patient (or experiment) i, a high-dimensional vector of expression levels
xi of p genes. In a supervised learning setting, besides these “input” data, one
is given, for each patient i, a response or “output” yi which can be a real-valued
index (survival time or gravity of an illness) or else, in classification problems, a
discrete label discriminating between e.g. two different pathological states. A first
approach consists in assuming a linear relationship between output and input, i.e.
that yi is just the scalar product of xi with a p-dimensional vector β. Two distinct
problems are of interest: (i) the prediction or “generalization” problem consist-
ing in predicting the response y for new patients to come on the basis of their
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gene expression data and (ii) the identification of the vector β defining the model.
This latter problem is also referred to as “variable selection” when the vector
β is assumed to be sparse, i.e. to contain many zeroes corresponding to irrele-
vant predictors/variables. To cope with the fact that there are generically many
more variables (genes) than patients or experiments, i.e. to address the so-called
“large p, small n paradigm”, the problem can be reformulated as a multivariate
least-squares regression with a regularizing penalty whose aim is to provide the
dimension reduction necessary to get stable estimates of β. In so-called “ridge”
regression, one uses a quadratic penalty, namely the square of the euclidean norm
of the vector β (L2-norm), whereas in “lasso” regression [Ti], one uses instead
a L1-norm penalty which enforces sparsity and allows for variable selection. In
the presence of correlation among the variables, however, the lasso presents some
drawbacks which can be overcome by the use of an additional L2-norm penalty.
This allows to select sparse groups of correlated variables without knowing in ad-
vance the composition of the groups (for known groups one could use instead the
so-called “group lasso” or “joint sparsity” strategies). This “elastic-net” strategy
was proposed by Zou and Hastie [ZH] for fixed-design linear regression. In the pa-
per [DDR], we extend this setting to the framework of supervised learning theory,
i.e. of random-design nonlinear regression. The regression function fβ is assumed
to have a sparse expansion, with coefficients βγ , on the elements (atoms or fea-
tures) ϕγ of a possibly infinite dictionary: fβ(x) =

∑
γ βγϕγ(x). For example,

one could consider frames of wavelets or of some of their relatives. On the ba-
sis of a collection of examples (training set) made of n independent input-output
random pairs (Xi, Yi), i = 1, . . . , n (the inputs belong to a separable metric space
and the outputs to R or to a separable Hilbert-space), distributed according to an
unknown probability distribution, we define the following elastic-net estimator for
the regression function

βn
λ = argminβ

[
1

n

n∑

i=1

|Yi − fβ(Xi)|2 + λ
∑

γ

(uγ |βγ | + εvγ |βγ |2)

]

where λ is a tunable positive regularization parameter, whereas ε > 0 is considered
as fixed, and where uγ and vγ are two sets of weights (positive and bounded from
below) encoding the regularity of the regression function through the assumptions∑

γ uγ |βγ | < ∞ and
∑

γ vγ |βγ |2 < ∞. In [DDR], by means of appropriate con-
centration inequalities, we derive consistency results for this estimator as n → ∞,
both for prediction and for variable/feature selection. Our results include finite-
sample bounds and an adaptive scheme to select the regularization parameter λ.
Thanks to the additional quadratic penalty, stability is guaranteed with respect to
the fluctuations arising from random design and no assumptions have to be made
to restrict the possible correlations between the features as usually done in the
literature dealing with pure lasso strategies.

The paper [DMTV] deals with an application to bioinformatics and proposes
a new method, based on linear regression with an elastic-net penalty, to select
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relevant groups of correlated genes from microarray data. Using a two-stage ap-
proach and an appropriate tuning of the regularization parameters, we are able to
demonstrate the good performances of the method on benchmark microarray data
sets and to produce expanding gene lists which are almost perfectly nested when
increasing the parameter ε. The proposed methodology could also be applied to
other practical problems where the goal is to select relevant variables or features
in the presence of high correlation among certain groups of these variables.
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Hard Thresholding Pursuit: An Algorithm for Compressive Sensing

Simon Foucart

We introduce a new iterative algorithm to find s-sparse solutions x ∈ CN of
underdetermined linear systems Az = y, A ∈ Cm×N , y ∈ Cm. The algorithm,
called Hard Thresholding Pursuit, is a simple combination of the Iterative Hard
Thresholding [BD1, BD2] algorithm and of the Compressive Sampling Matching
Pursuit [NT] or Subspace Pursuit [DM] algorithms. It reads:
Start with an s-sparse x0 ∈ CN , typically x0 = 0, and iterate the scheme

Sn+1 =
{
indices of s largest entries of xn + A∗(y − Axn)

}
,(HTP1)

xn+1 = argmin
{
‖y − Az‖2, supp(z) ⊆ Sn+1

}
,(HTP2)

until the stopping criterion Sn+1 = Sn is met.
We first notice that the sequence (xn) is eventually periodic, so that, assuming
convergence of the algorithm, its limit is exactly achieved after a finite number of
iterations. Next, we give a short and elegant proof of the following theorem:
Suppose that the 3sth order restricted isometry constant of the matrix A ∈ Cm×N

satisfies δ3s < 1/
√

3. Then, for any s-sparse x ∈ CN , the sequence (xn) defined
by the Hard Thresholding Pursuit algorithm with y = Ax converges towards x at
a geometric rate given by

‖xn − x‖2 ≤ ρn ‖x0 − x‖2, ρ :=

√
2δ2

3s

1 − δ2
2s

< 1.

We remark that the same result (with a different ρ) holds for fast versions of the
algorithm, where the projection step (HTP2) is replaced by any number of gradient
descent iterations. We also remark that the result extends to the case of non-sparse


