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Abstract. The regularization parameter choice is a fundamental problem in

supervised learning since the performance of most algorithms crucially depends

on the choice of one or more of such parameters. In particular a main the-

oretical issue regards the amount of prior knowledge on the problem needed

to suitably choose the regularization parameter and obtain learning rates. In

this paper we present a strategy, the balancing principle, to choose the regular-

ization parameter without knowledge of the regularity of the target function.

Such a choice adaptively achieves the best error rate. Our main result ap-

plies to regularization algorithms in reproducing kernel Hilbert space with the

square loss, though we also study how a similar principle can be used in other

situations. As a straightforward corollary we can immediately derive adap-

tive parameter choice for various kernel methods recently studied. Numerical

experiments with the proposed parameter choice rules are also presented.

1. Introduction

Most supervised learning algorithms depends on some tuning parameter, whose
correct choice is crucial to ensure a good performance of the solution. Examples
are the regularization parameter in regularized least squares regression [19] or the
complexity of the hypothesis space in empirical risk minimization [40]. Theoretical
analyses often show that the error incurred by the algorithm is sum of two terms,
sample and approximation errors, having opposite behavior with respect to the
tuning parameter [11], so that in this context a natural parameter choice is given by
balancing the two error contributions. In many cases this choice provides optimal
convergence rates in a mini-max setting [4, 8, 36, 7] and we refer to it as best
paremeter choice.

However, this parameter choice raises conceptual and practical issues since es-
timates of the approximation error depends on some a priori knowledge of the
problem which is usually not available. Indeed the so called no free lunch theo-
rem shows that any data-independent parameter choice can not achieve the best
convergence rate [21]. To overcome this problem, a data-driven choice is needed,
ensuring that error rate of the solution to achieve the unknown optimal rate. In
the statistical literature this problem is known as the problem of adaptive model
selection [21, 15]. In regression model with fixed design, classical model selection
schemes include Akaike criterion, BIC among the others (see [22] for references). In
the setting of learning, where the design is random, some well known techniques for
adaptive parameter choice are based on complexity regularization (see [16, 2, 21, 5]
for general references and also [3, 25]), on data splitting- e.g. hold-out and cross-
validation (see [16] and more recently [17, 39, 9]) and aggregation [38].
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Based on the relation between learning theory and the theory of regularization
in inverse problems – see [32, 40, 19, 35, 13] and references therein, in this paper we
study a data driven method for a regularization parameter choice, namely the bal-
ancing principle, that has received a lot of attention in the theory inverse problems.
Such a method is a development of an approach proposed by [24] in the context of
Gaussian regression, that has been studied in the context of inverse problems in the
paper by [20] and eventually developed in a series of papers (see [26] and references
therein). Instances of Lepskii methods has been considered in statistical learning
for aggregation of classifiers [38] and for empirical risk minimization algorithms
[23]. Here we develop on the approach proposed in [20] which is very naturally
while considering regularized kernel methods. We stress that the usual approaches
to a posteriori parameter choice in inverse problems cannot be used directly in the
context of learning since used methods are based on estimates of the stability of
regularization methods measured in the space where the element of interest (re-
gression or target function) should be recovered. Indeed, in the context of learning
theory, typically, such estimates are measured with respect to the expected risk
which depends on the unknown probability measure.

The method we propose is simple, it requires no data splitting, and achieves
adaptively the best possible error rates (given by the a priori error bound). The
proposed method allows us to easily derive adaptive parameter choices achieving
optimal rates for several kernel methods [8, 36, 41, 4, 7] and we believe it might
serve as a general way to obtain adaptive regularization schemes on kernel spaces.
The plan of the paper follows. In Section 2 we give some background on the
setting of supervised learning and discuss in some detail the problem of adaptive
regularization parameter choice. In Section 3 we informally present and discuss our
main results. In Section 4 we state and prove such results. We conclude in Section
5 with some numerical experiments.

2. Regularized Learning and Adaptive Parameter Choice

In this section after recalling a few basic concepts in supervised learning and
fixing the notation we discuss the problem of adaptive regularization parameter
choice that motivates the study in this paper.

2.1. Some Background on Supervised Learning. We consider the problem of
supervised learning as a multivariate function approximation problem from random
samples [32, 40, 16, 11, 21].
Data Model. The data we are given is a training set,

z = (x,y) = (x1, y1), . . . , (xn, yn),

where x ∈ X ⊂ Rd and y ∈ Y ⊆ R in regression or y = ±1 in classification. The
model underlying the data is a fixed but unknown probability measure ρ on X ×Y
and z is identically and independently distributed according to ρ. Our goal is not
to recover the whole probability ρ, but a target function fρ : X → Y minimizing
the expected risk

E(f) =
∫

X×Y

`(y, f(x))dρ(x, y)

where ` : Y × R → R+ is the loss function, for example the square loss.
Hypotheses Space. In practice, learning algorithms cannot work in the whole
target space where the expected risk is defined and the search for a solution is
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confined to a hypotheses space H. Once the target space is fixed the best possible
solution is the (so called) best in the model fH such that

E(fH) = min
f∈H

E(f).

Note that existence and uniqueness of the solution to the above problem typically
requires conditions on H and `. In the following we assume throughout that fH
exists. Examples of hypotheses spaces are splines, convex or linear combination of
learners, piecewise linear or polynomial functions and a choice we will focus on are
reproducing kernel Hilbert (RKH) spaces [1, 11].
Algorithms and Performance Measures. An algorithm can be seen as a map
z → fz, that given a training set provides us with an estimator fz of fH. If we want
to measure the quality of such an estimate we have to decide on an approximation
measure and use some probabilistic tool since fz is a random variable. We will
measure the approximation either with respect to the expected risk, or with respect
to a norm ‖·‖ if the estimator and the target function belong to some normed
hypotheses space. From the probabilistic point of view, a minimal, yet natural,
requirement is consistency,

lim
n→∞

P (E(fz)− E(fH) > ε) = 0, ∀ε ∈ R+,

ensuring that the performance improves as we get more samples and eventually
reaches the best possible error. More quantitative requirements concern conver-
gence rate and give information on the performance for finite samples. In words,
we try to estimate, with a given confidence, how far the error of our estimator is
from the best possible error for fixed number of examples n. These latter results
are usually expressed via tail inequalities of the form

(1) P (E(fz)− E(fH) > ε(n, η)) ≤ η,

where 0 < η ≤ 1, or equivalently

(2) E(fz)− E(fH) ≤ ε(n, η),

where the above inequality holds with probability at least 1−η. Similarly when the
hypotheses space is a normed space we might also consider probabilistic bounds as
measured by the corresponding norm, so that with probability at least 1− η

(3) ‖fz − fH‖H ≤ ε(n, η).

For example when the hypotheses space is a RKH space, estimates in the RKH
norm allows us to get estimates on various norms (see discussion in [36]).

A substantial difference between asymptotic and finite sample results is that
the latter requires some prior assumption on the target function [16, 21, 15]. The
impact of such a fact on the design of a fully data driven algorithm is somewhat
at the the basis of the study in this paper. We discuss this point in details in the
next section.

2.2. Algorithms Depending on a Regularization Parameter. In the previous
section we considered an algorithm as a map z → fz, but in practice most algorithms
can be seen as a two steps procedure. The first step defines a family of solutions
depending on a real parameter

z → fλ
z , λ > 0,
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whereas the second step determines how to choose such a parameter as a function
of the training set and/or the number of training set points, i.e. λn = λ(n, z). The
final estimator fz = fλn

z is obtained only when both steps are defined.
A possible idea for choosing λ is based on the following observation. Suppose we

have, in analogy to (3), a reliable probabilistic error estimate of the excess risk, i.e.

(4) E(fλ
z )− E(fH) ≤ ε(λ, n, η)

for all λ > 0. Then we can simply take the parameter λo(n) minimizing such
an estimate. If the bound is tight such a choice can be shown to be optimal in
a suitable sense (see Remark 1 below). The above reasoning hides an important
conceptual and practical problem. Typically estimates like (4) are the sum of two
competing terms, i.e.

(5) ε(λ, n, η) = S(n, η, λ) +A(λ).

The nature of such terms is different:
• the term S(n, η, λ) is the so called sample error, it quantifies the error due

to random sampling and is typically studied via concentration inequalities
giving rise to an explicit bound, which does not depend on the unknown
probability distribution. Usually S(n, η, λ) is a decreasing function both on
the number of examples and on the regularization parameter λ.

• The term A(λ) is called approximation error, it does not depend on the
data, but only on the unknown probability distribution. By a theoretical
argument, one can always assume that it is an increasing function of λ,
going to zero when λ goes to zero, but the rate strongly depends on fH.

If a bound like (4) is given, we can see that the best possible choice λo(n) arises from
the balancing of these two competing terms, namely from a sample-approximation
(or bias-variance) trade-off. If both terms are known we can simply take the value
of λ minimizing their sum or we can consider the value of λ making the contribution
of the two terms equal (the crossing point in Figure 1). The two choices might in
general different but if the sample and approximation errors depend polynomially
on λ, they are equivalent in terms of learning rates, that is dependence on the
number of samples n. In the following we consider this latter value as the best
trade-off between sample and approximation error, that is the value λo solving

(6) S(n, η, λ) = A(λ).

The corresponding error is, with probability at least 1− η

(7) E(fλo(n)
z )− E(fH) ≤ 2S(n, η, λo) = 2A(λo).

Before developing further our reasoning let us give an example.

Example 1 (Regularized Least Squares). Consider the regularized least square
algorithm

min
f∈H

{ 1
n

n∑
i=1

(yi − f(xi))2 + λ ‖f‖2H},

where H is a RKH space and ‖·‖H the corresponding norm. For some u such that∫
|u(x)|2dρX(x) <∞, assume the target function to satisfy

(8) fH = Lr
Ku, LKf(x) =

∫
X

K(x, s)f(s)dρ
X

(x),
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where ρX denotes the marginal probability of ρ on X and K is the kernel generating
the RKH space which is assumed to be bounded. In this case one can prove [8, 36,
4, 7] that the following bound holds with probability at least 1− η

E(fλ
z )− E(fH) ≤ C log(4/η)(

1
λn

+ λ2r), 1/2 < r ≤ 1,

where E(f) =
∫

(y − f(x))2dρ(x, y) and C does not depend to n, η, λ. The best
possible choice for λ and the corresponding rates are

λo(n) = n−
1

2r+1 , O(n−
2r

2r+1 ), 1/2 < r ≤ 1,

where the regularity of the target function is encoded in the index r.

The above discussion (and the example) shows how the parameter choice λo(n)
depends on the regularity properties of fH that are usually not known. This obser-
vation motivates the interest into adaptive parameter choices. Namely, we aim at
defining a parameter choice independent to the prior assumption encoded in A, but
still achieving the best possible rate. Clearly, the best achievable rate depends on
A, that is on the problem at hand, and still the hope is to design a data driven pro-
cedure to select a parameter which adaptively achieves such a rate. More formally
we aim at finding some parameter choice λ+ = λ+(n, z) such that

(9) E(fλ+
z )− E(fH) ≤ 2CA(λo(n))

for some positive constant C.
The subject of adaptive statistical estimation has received considerable atten-

tion in recent years. As we mentioned in the introduction, examples of methods
proposed in the literature include: complexity regularization [16, 2, 21, 5] , which is
highly related to the structural risk minimization principle, cross validation proce-
dures [16, 17, 39, 9] and aggregation [38]. In the next section we describe a possible
approach to the problem of adaptive parameter choice which is an instance of this
latter method. In particular we develop on a formulation of a method originally due
to Lepskii [24] that has become popular in the inverse problems literature where
it is usually referred to as the balancing principle (see [26] and references therein).
It is worth noting that variation of Lepskii type choices, also called pre-testing or
comparison methods, have been previously considered in the context of statistical
learning in the setting of aggregation of classifiers [38] and for empirical risk mini-
mization algorithms [23]. The balancing principle as proposed in inverse problems
is particularly natural while considering regularized learning algorithms.

We conclude this section with two remarks.

Remark 1 (Optimality and Minimax Results). In this paper we refer to the value
λ0(n), defined by (6), as the best choice and to the corresponding rate as the best
possible rate. However, the rate will be optimal in a minimax sense if the bound we
started from (see (4), (5)) is tight. We do not discuss this problem and we refer to
[21, 15, 8] for further information.

Remark 2 (Optimality and Order Optimality). In our analysis we can usually
compute the value of essentially all the constant appearing, but we do not expect
such constants to be optimal. For this reason we often take fairly crude estimate
and in fact we mainly focus on recovering the correct dependence on the number of
samples. To some extent this is related to the difference between order optimality
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and optimality in inverse problems [18]. Obtaining optimal values for the constants
is clearly an interesting problem deserving further study.

3. Adaptive Regularized Learning

In this section we informally describe the main results in the paper. As we
previously mentioned, the parameter strategy we are going to discuss, namely the
balancing principle, has become popular in the context of deterministic as well
as stochastic inverse problems (see [20, 30, 27, 28] and references therein). In
the following we start from this latter formulation and adapt it to the context of
supervised learning.

Our main result deals with adaptive parameter selection for kernel methods when
the error is measured via the excess risk, but we first present a preliminary result
when the hypotheses space is a normed space and we measure the error via the
norm in the space. These latter results can be of interest in their own and help
appreciating the main intuition underlying the balancing principle.

3.1. Adaptive Learning when the Error Measure is Known. We assume
both the estimator and the target to be elements of some normed space whose
norm we denote with ‖·‖, so that we can consider

‖fz − fH‖2 .
The important fact is that we assume such norm to be known (note that on the
contrary E(·) is not). Such a norm can be for example the norm ‖·‖H in a (normed)
hypotheses space or the empirical norm induced by the sample, that is

‖f‖2ρz
=

1
n

n∑
i=1

(f(xi))2.

Again we assume that, for some regularization algorithm a bound of the form (5)
is available, i.e. with probability 1− η∥∥fλ

z − fH
∥∥ ≤ S(n, η, λ) +A(λ).

In the following we assume that the sample error is of the form

S(n, η, λ) =
α(η)

ω(λ)γ(n)

where α(η) > 1. This latter assumption is typically satisfied and is made only to
simplify the bounds and the exposition. For example, in the case of regularized
least squares (see Example 2 below) ω(λ) =

√
λ, γ(n) =

√
n and α(η) = log(4/η).

Since α(η) > 1, we can factorize the term α(η) and we have, with probability at
least 1− η, a bound of the form

(10)
∥∥fλ

z − fH
∥∥ ≤ α(η)(

1
ω(λ)γ(n)

+A(λ)),

where ω, A are assumed to be continuous, monotonically increasing functions and
A(0) = 0. The corresponding best parameter choice λo(n) solves (6) and gives,
with probability 1− η, the rate∥∥∥fλo(n)

z − fH

∥∥∥ ≤ 2α(η)A(λo(n)).

To define a parameter strategy we first consider a suitable discretization for the
possible values of the regularization parameter, that is an ordered sequence (λi)i∈N
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Figure 1. The figure represents the behavior of sample and ap-
proximation errors, respectively S(n, η, λ) and A(λ), as functions
of λ, for fixed n, η.

such that the best value λo(n) falls within the considered grid (see Section 4 for
details). The balancing principle estimate for λo(n) is defined via

λ+ = max{λi :
∥∥∥fλi

z − f
λj
z

∥∥∥ ≤ 4α(η)
ω(λj)γ(n)

, j = 0, 1, . . . , i}.

Such estimates no longer depend on A and the reason why we can expect it to be
still sufficiently close to λo(n) is better illustrated by Figure 1 and by the following
reasoning.

Observe that if we take two values α, β such that α ≤ β ≤ λo(n) then with
probability at least 1− η∥∥fα

z − fβ
z

∥∥ ≤ ‖fα
z − fH‖+

∥∥fβ
z − fH

∥∥(11)

≤ α(η)
(
A(α) +

1
γ(n)ω(α)

)
+

α(η)
(
A(β) +

1
γ(n)ω(β)

)
≤ 4

α(η)
γ(n)ω(α)

.

The intuition is that when such a condition is violated we are close to the intersec-
tion point of the two curves, that is to λo(n). Such an intuition can be proved to
be correct under mild assumptions. In fact, we will prove that, if

(12) ω(λ)A(λ) ≤ cλ,

for a suitable c > 0, and

(13) ω(λi+1) ≤ qω(λi), q > 1,

then the following bound holds with probability at least 1− η∥∥fλ+
z − fH

∥∥ ≤ 6qα(η)A(λo(n)).

The above parameter choice requires an extensive comparison of solutions at
different values λi. The procedure can be simplified, at the price of slightly spoiling
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the constant in the above inequality. In fact, we can take a geometric sequence
λi = λstartµ

i, with µ > 1, λstart ≤ 1/(cγ(n)) and introduce the choice

λ̄ = max{λi :
∥∥∥fλj

z − f
λj−1
z

∥∥∥ ≤ 4α(η)
γ(n)ω(λj−1)

, j = 0, 1, . . . , i},

requiring only comparison of solutions for adjacent parameter values. Again under
mild assumptions one can prove that the following bound holds with probability at
least 1− η ∥∥∥f λ̄

z − fH

∥∥∥ ≤ α(η)C̄A(λo(n)),

where C̄ does not depend on n and can be explicitly given.
We discuss some cases where the above results apply. The letter C is used to
indicate constants independent to λ and n. We first go back to the RLS algorithm.

Example 2 (Regularized Least Squares). Error estimates for the RLS algorithm
are known both for the expected risk (see Example 1) and the RKH norm [8, 36, 4].
In this latter case with probability 1− η∥∥fλ

z − fH
∥∥
H ≤ C log(4/η)(

1
λ
√
n

+ λr−1/2), 1/2 < r ≤ 3/2,

(under the same assumption of Example 1). It is straightforward to check that
the above estimate satisfies the conditions allowing an application of the balancing
principle to achieve optimal rates in an adaptive way.

Example 3 (Spectral Regularization). More generally the RLS algorithm can be
seen as a special case of a large class of regularized kernel methods, namely spec-
tral regularization, studied in [4] and including also L2-boosting [6, 42] and kernel
principal component regression [22, 34]). All such algorithms can be written as

fλ
z (x) =

n∑
i=1

αiK(x, xi) with α =
1
n
gλ(

K
n

)y,

where Kij = K(xi, xj), α = (α1, . . . , αn) and gλ(σ) → σ−1 as λ→ 0 (see [14, 4, 7]
for details).

The prior assumption (8) can be generalized to fH = φ(LK)v, ‖v‖H ≤ R (for a
large class of functions φ, including φ(σ) = σs, s > 0), where LK is the integral
operator in (8) restricted to H. The following bound is proved in [4], with probability
at least 1− η ∥∥fλ

z − fH
∥∥
H ≤ C log(4/η)

(
1

λ
√
n

+ φ(λ)
)

for any1 λ ≥ n−1/2.

Example 4 (Tikhonov Regularization with Convex Loss). The RLS algorithm can
be generalized to

min
f∈H

{ 1
n

n∑
i=1

`(yi, f(xi)) + λ ‖f‖2H}.

Recall that if the loss function is convex and bounded, it is also locally Lipschitz
continuous so that

E(fλ
z )− E(fH) ≤ Lλ

∥∥fλ
z − fH

∥∥
H ,

1In [4] a slightly weaker condition is considered.
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where the Lipschitz constant Lλ might depend on λ. The following bound is proved
in [33] (see also [10] for a more general setting), with probability at least 1− η∥∥fλ

z − fH
∥∥
H ≤ C log(2/η)

(
Lλ

λ
√
n

+ φ(λ)
)
.

For a large number of loss functions (see [33]) the constant Lλ can be explicitly com-
puted and ω(λ) = Lλ/λ, φ satisfy the assumptions required to apply the balancing
principle.

Example 5 (Elastic Net Regularization). The elastic-net algorithm proposed in
[43], is studied in [12] in the context of learning with an infinite dimensional over-
complete dictionary (ψγ)γ∈Γ. In this case we let `2(Γ) be the space of β = (βγ)γ∈Γ

such that
∑

γ∈Γ |βγ |2 <∞ and look for the estimator βλ
n minimizing

min
β∈`2(Γ)

{ 1
n

n∑
i=1

yi −
∑
γ∈Γ

βγψγ(xi)

2

+ λ

∑
γ∈Γ

|βγ |+ ε
∑
γ∈Γ

β2
γ

}.
where ε, λ > 0. If we assume the target function to have an expansion fH =∑

γ∈Γ β
∗
γψγ such that

∑
γ∈Γ |β∗γ | < ∞, then, for λ > 1/

√
n, it is possible to prove

[12] that with probability at least 1− η∥∥βλ
n − β∗

∥∥
2
≤ C log(4/η)

(
1

λ
√
n

+ φ(λ)
)

where ‖·‖2 is the norm in `2(Γ). Again the above bound can be shown to satisfy the
assumption needed to use the balancing principle.

3.2. Adaptive Learning for the Expected Risks. Our further goal is the adap-
tation with respect to the error as measured by the expected risk. Note that in
this latter case there is no straightforward application of the balancing principle
since it would require comparison of E(fλi

z ) − E(fλi−1
z ) and hence a knowledge of

the distribution ρ.
To deal with this situation we make two restrictions: 1) we consider regulariza-

tion algorithms fλ
z into a hypotheses space H which is a RKH space, 2) we consider

regularization algorithms based on the square loss function, so that

E(f) =
∫

X×Y

(y − f(x))2dρ(x, y).

Then we assume that error estimates for fixed λ are available both for the expected
risk

(14) E(fλ
z )− E(fH) ≤ α(η)2(

λ

(ω(λ)γ(n))2
+ λA(λ)2),

and the RKH space norm

(15)
∥∥fλ

z − fH
∥∥
H ≤ α(η)(

1
ω(λ)γ(n)

+A(λ)),

where in this case we assume 2 that α(η) > max{log(2/η)1/4, 1} and γ(n) =
√
n.

The way we wrote the estimates is no coincidence since it corresponds to how the
two error estimates are typically related (see for example [4, 36]) and we are going

2The constant in the bounds can be different but, for the sake of simplicity, we assume them

to be equal to 1.
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to assume such a relation to hold. Such an assumption is motivated by the relation
between expected risk for the square loss and the RKH space norm, and we discuss
it in Section 4.2.

Note that, because of this relation, the best parameter choice λo(n) is the same
in both cases and is given by the solution of (6) but the rates are different, in fact
we have

(16) E(fλo(n)
z )− E(fH) ≤ α(η)2λo(n)A(λo(n))2

for the expected risk and

(17)
∥∥∥fλo(n)

z − fH

∥∥∥
H
≤ α(η)A(λo(n))

for the RKH space norm. The fact that the best possible parameter choice is the
same for both error measures is a promising indication. A possible idea would be
to remember [1] that for the RKH space norm

|f(x)| ≤ Cx ‖f‖H , ∀x ∈ X, f ∈ H
so that we can think of using the bound in the RKH space norm to bound the
expected risk and use the balancing principle as presented above. Unfortunately in
this way we are not going to match the best error rate for the expected risk, as can
be seen comparing (16) and (17).

To achieve adaptation with respect to the expected risk we preliminary need a
result (see Proposition 1) showing that if (14) and (15) hold for λ ≥ n−1/2 then
with probability at least 1− η∥∥fλ

z − fH
∥∥2

ρz
≤ Ĉ2α(η)2(

λ

(ω(λ)γ(n))2
+ λA(λ)2),

where we recall that

‖f − fH‖2ρz
=

1
n

n∑
i=1

(f(xi)− fH(xi))2.

The above result shows that if we have error estimates for the expected risk and
the norm in H, we can also prove an error estimate for the empirical norm induced
by the sample.
Now, both the empirical norm and the RKH space norm are known so that we can
use the balancing principle to define

λρz = max{λi :
∥∥∥fλi

z − f
λj
z

∥∥∥2

ρz

≤
4Ĉα(η)

√
λj

γ(n)ω(λj)
, j = 0, 1, . . . , i},

and

λH = max{λi :
∥∥∥fλi

z − f
λj
z

∥∥∥
H
≤ 4α(η)
γ(n)ω(λj)

, j = 0, 1, . . . , i},

that we know are going to achieve the best rates in the corresponding norms by a
direct application of the balancing principle. Our main result shows that the choice

(18) λ̂ = min{λρz , λH}
allows us to achieve best error rates for the expected risk in an adaptive way. In
fact we will prove that if λω(λ), λA(λ) are monotonically increasing functions with
A(0) = 0 and (12), (13) hold, then with probability at least 1− η

E(f λ̂
z )− E(fH) ≤ 6qCα(η)2λo(n)A(λo(n))2
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where the value of C can be explicitly given. As an application of the above result
we show how it allows an optimal adaptive parameter choice for the class of spectral
regularization algorithms studied in [14, 4]. First we illustrate the application to
regularized least square algorithm.

Example 6 (Regularized Least Squares). As we previously mentioned, for reg-
ularized least square algorithm (see Example 1) we have with probability at least
1− η

E(fλ
z )− E(fH) ≤ C log(4/η)(

1
λn

+ λ2r), 1/2 < r ≤ 1,

but also ∥∥fλ
z − fH

∥∥
H ≤ C log(4/η)(

1
λ
√
n

+ λr−1/2), 1/2 < r ≤ 3/2.

Applying the above result we have that the parameter choice (18) satisfies with
probability at least 1− η

E(f λ̂
z )− E(fH) ≤ 6qC log(4/η)n−

2r
2r+1 , 1/2 < r ≤ 1.

Example 7 (Spectral Regularization). In Example 3 we have seen that RLS is a
particular instance of a class of spectral algorithms for supervised learning. For this
latter class of methods the following bound on the expected risk is known [4] to hold
with probability at least 1− η

E(fλ
z )− E(fH) ≤ C log(4/η)(

1
λn

+ λφ(λ)2),

where φ is a function encoding the smoothness of the target function (see Example
3 and [4] for details). Again it is easy to see that the assumptions to apply the
balancing principle hold.

We end this section with the following remark.

Remark 3 (Computing Balancing Principle). The proposed parameter choices can
be computed exploiting the properties of RKH spaces. In fact for f =

∑n
i=1 αiK(xi, ·)

we have

‖f‖2H =

〈
n∑

i=1

αiK(xi, ·),
n∑

i=1

αiK(xi, ·)

〉
H

=
n∑

i,j=1

αiαjK(xi, xj) = αKα,

where we used the reproducing property 〈K(x, ·),K(s, ·)〉H = K(x, s) [1]. Then we
can check that for fβ

z =
∑n

i=1 α
β
i K(xi, ·), fλ

z =
∑n

i=1 α
λ
i K(xi, ·) we have∥∥fβ

z − fλ
z

∥∥2

H = αβKαβ − 2αβKαλ + αλKαλ

= (αβ − αλ)K(αβ − αλ).

Similarly one can see that∥∥fβ
z − fλ

z

∥∥2

ρz
= (αβ − αλ)K2(αβ − αλ).
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4. Mathematical Results

In this section we give the proofs of the results we previously presented. Follow-
ing the discussion of previous section we first prove the results when the error is
measured with respect to some known norm.

4.1. Results for Known Norm. Our main assumptions regard the error estimate
for fixed λ and specify suitable conditions on A and ω.

Assumption 1. For λ > 0 both fλ
z and fH belong to some normed space and

moreover with probability at least 1− η∥∥fλ
z − fH

∥∥ ≤ α(η)
(

1
ω(λ)γ(n)

+A(λ)
)

where:
• ω(λ) is a continuous, increasing function;
• A(λ) is a continuous, increasing function with A(0) = 0;
• ω(λ)A(λ) ≤ cλ,

and α(η) > 1. Moreover, assume that the bound holds uniformly with respect to λ,
meaning that the collection of training sets for which it holds with confidence 1− η
does not depend on λ.

Recall that in this case the best parameter choice, solving (6), achieves the error
estimate (9) and it can be shown that the last condition in Assumption 1 ensures
λo(n) ≥ 1/(cγ(n)). Note that, if we now restrict out attention to some discrete
sequence λstart ≤ 1/(cγ(n)), then it is easy to see that the best estimate for λo(n)
is

λ∗ = max{λi|A(λi) ≤
1

ω(λi)γ(n)
}

which still depends on A. Finally recall that by the balancing principle we select
λ+ = λ+(n, z) by

λ+ = max{λi :
∥∥∥fλi

z − f
λj
z

∥∥∥ ≤ 4α(η)
ω(λj)γ(n)

, j = 0, 1, . . . , i}

The following theorem shows that the choice λ+ provides the same error estimate
of λo(n) up to a constant factor.

Theorem 1. If Assumption 1 holds and moreover, for λstart ≤ 1/(cγ(n)), we have

(19) ω(λi+1) ≤ qω(λi), q > 1,

then with probability at least 1− η∥∥fλ+
z − fH

∥∥ ≤ 6qα(η)A(λo(n)).

Proof. Note that all the inequalities in the proof are to be intended as holding with
probability at least 1− η. Recall that by (11) for λ, β such that λ ≤ β ≤ λo(n) we
have ∥∥fλ

z − fβ
z

∥∥ ≤ 4α(η)
ω(λ)γ(n)

.

It is easy to prove that λ∗ ≤ λ+. Indeed by definition λ∗ ≤ λo(n), and we know
that, for any λj ≤ λ∗ ≤ λo(n),∥∥∥fλj

z − fλ∗
z

∥∥∥ ≤ 4α(η)
ω(λj)γ(n)

,
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so that, in particular, λ∗ ≤ λ+. From the definition of λ+ and λ∗ we get∥∥fλ+
z − fH

∥∥ ≤
∥∥fλ+

z − fλ∗
z

∥∥ +
∥∥fλ∗

z − fH
∥∥(20)

≤ 4α(η)
ω(λ∗)γ(n)

+ α(η)
(
A(λ∗) +

1
ω(λ∗)γ(n)

)
≤ 4α(η)

ω(λ∗)γ(n)
+

2α(η)
ω(λ∗)γ(n)

≤ 6α(η)
ω(λ∗)γ(n)

.

Finally to relate λ∗ and λo(n), we let λ∗ = λ` so that λ∗ = λ` ≤ λo(n) ≤ λ`+1. Since
ω(λ) is increasing, we can use (19) to get ω(λo(n)) ≤ ω(λ`+1) ≤ qω(λ`) = qω(λ∗).
The above reasoning yields

(21)
1

ω(λ∗)
≤ q

ω(λo(n))

and if we plug the above inequality into (20), the definition of λo(n) gives∥∥fλ+
z − fH

∥∥ ≤ 6qα(η)
1

ω(λo(n))γ(n)
= 6qα(η)A(λo(n))

so that the theorem is proved. �

We now consider the case when the sequence of values for the regularization
parameter is defined by a geometric sequence λi = λstartµ

i, with µ > 1, λstart ≤
1/(cγ(n)) and consider the parameter choice λ̄ = λ̄(n, z) defined by

λ̄ = max{λi :
∥∥∥fλj

z − f
λj−1
z

∥∥∥ ≤ 4α(η)
ω(λj−1)γ(n)

, j = 0, 1, . . . , i}.

Next theorem studies the error estimate obtained with such a choice.

Theorem 2. If Assumption 1 holds and moreover, there are b > a > 1 such that
for any λ > 0,

(22) ω(2λ)/b ≤ ω(λ) ≤ ω(2λ)/a,

then with probability at least 1− η∥∥∥f λ̄
z − fH

∥∥∥ ≤ Cα(η)A(λo(n))

where C might depend on a, b, µ.

Proof. The proof follows exactly the one for deterministic inverse problems though
inequalities here are to be intended with probability at least 1−η. The key observa-
tion is that we can easily control the distance between the solutions corresponding
to λ∗ and λ̄. In fact if we let λ∗ = λ` and λ̄ = λm clearly m ≥ ` and we can use
the definition of λ̄ to write∥∥∥f λ̄

z − fλ∗
z

∥∥∥ ≤
m∑

j=`+1

∥∥∥fλj
z − f

λj−1
z

∥∥∥(23)

≤ 4α(η)
1

γ(n)

m∑
j=`+1

1
ω(λj−1)

≤ 4α(η)
1

γ(n)

m−`−1∑
j=0

1
ω(λ∗µj)

.
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Now for any µ > 1, α > 1 let p, s ∈ N be such that 2p ≤ µ ≤ 2p+1 and 2s ≤ α ≤
2s+1. Then using (22) we get

1
ω(αλ∗)

≤ 1
ω(2sλ∗)

≤ 1
asω(λ∗)

≤ 1
alog2 αω(λ∗)

ω(λi) = ω(µλi−1) ≤ bp+1ω(λi−1) ≤ blog2 2µω(λi−1).

The last inequality shows that (19) is satisfied with q = blog2 2µ and also
m−`−1∑

j=0

1
ω(λ∗µj)

≤ 1
ω(λ∗)

alog2 2µ

alog2 µ − 1
.

Finally we can use the above inequality and the definition of λ∗ to get∥∥∥f λ̄
z − fH

∥∥∥ ≤
∥∥fλ∗

z − fH
∥∥ +

∥∥∥f λ̄
z − fλ∗

z

∥∥∥
≤ 2α(η)

1
γ(n)ω(λ∗)

+ 4α(η)
alog2 2µ

alog2 µ − 1
1

γ(n)ω(λ∗)

≤ 2α(η)
(

1 + 2
alog2 2µ

alog2 µ − 1

)
blog2 2µ

γ(n)ω(λo(n))
.

The theorem is proved recalling the definition of λo(n). �

4.2. Results for the expected risk. In this section we prove the main result of
the paper allowing adaptive regularization for kernel based algorithms. We assume
the space X to be a separable metric space and consider a RKH space such that
the corresponding reproducing kernel K : X ×X → R is measurable and bounded,
that is

(24) κ = sup
x∈X

√
K(x, x).

We denote with ρX the marginal probability on X of the distribution ρ and with
ρ(y|x) the conditional probability. As we previously mentioned we restrict our
attention to the square loss function so that

E(f) =
∫

X×Y

(y − f(x))2dρ(x, y).

If
∫
y2ρ(x, y) < ∞ the expected risk is a well defined functional on the space

L2(X, ρX) of square integrable functions that is f : X → R such that

(25) ‖f‖2ρ =
∫

X

f(x)2dρX(x) <∞.

In this case some facts are well known (see for example [11, 21]). The minimizer of
E(f) over L2(X, ρX) is the regression function

fρ(x) =
∫

Y

y dρ(y|x)

and for f ∈ L2(X, ρX) we can write

E(f)− E(fρ) = ‖f − fρ‖2ρ .

In other words the norm given by (25) provides a natural way to measure the
approximation since it puts weights on points that are more likely to be sampled.
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Then, it is clear that the application of the balancing principle is not straightforward
since we should evaluate ∥∥fβ

z − fλ
z

∥∥
ρ
.

The main result of this section shows that when the estimator belongs to a RKH
space we can still define a data driven parameter choice achieving the best possible
error estimate also in this case. The following concentration result will be crucial.

Proposition 1. Assume that H is a RKH space with bounded kernel (24). For
f ∈ H we have with probability at least 1− η

| ‖f‖ρ − ‖f‖ρz
| ≤ Cκ(

log(2/η)
n

)1/4 ‖f‖H ,

where

‖f‖2ρz
=

1
n

n∑
i=1

f(xi)2

is the empirical norm and C2
κ = 2

√
2κ2.

Proof. Let Kx = K(x, ·), if f ∈ H, by the reproducing property we have f(x) =
〈f,Kx〉H. Then we can write

‖f‖2ρ =
∫

X

〈f,Kx〉H 〈f,Kx〉H dρX(x)

=
〈
f,

∫
X

〈f,Kx〉HKxdρX(x)
〉
H

=: 〈f, Tf〉H .

Reasoning in the same way we get

‖f‖2ρz
=

1
n

n∑
i=1

〈f,Kxi
〉H 〈f,Kxi

〉H

=

〈
f,

1
n

n∑
i=1

〈f,Kxi
〉HKxi

〉
H

=: 〈f, Txf〉H .

The operators T, Tx can be shown to be positive and of Hilbert-Schmidt type [8].
From the above reasoning it follows that ∀f ∈ H

(26) | ‖f‖ρ − ‖f‖ρz
| ≤

√
‖T − Tx‖ ‖f‖H .

The quantity ‖T − Tx‖ have been studied in [8, 4] and we just sketch how to deal
with it. Since T , Tx and 〈·,Kx〉HKx are Hilbert Schmidt operators then

‖T − Tx‖ ≤ ‖T − Tx‖HS .

The random variable ξ : X → HS(H), from the input space to the space of Hilbert-
Schmidt operators, defined by

ξ = 〈·,Kx〉HKx − T

is a Hilbert space valued random variable with zero mean, since T = E (〈·,Kx〉HKx),
and bounded by 2κ2. Concentration inequalities for Hilbert space valued random
variable [31] immediately yields with probability at least 1− η

‖T − Tx‖ ≤ ‖T − Tx‖HS ≤
(log(2/η))1/2C2

κ√
n

.

The theorem is proved plugging the above estimate into (26). �
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We are now in position to state our main result. The following assumption is
the analogous to Assumption 1.

Assumption 2. Let H be a RKH space and assume it exists fH s.t.

E(fH) = min
f∈H

E(f).

Assume that fλ
z belongs to H and for λ ≥ n−1/2 the following bounds hold with

probability at least 1− η

(27)
∥∥fλ

z − fH
∥∥

ρ
≤ α(η)

√
λ

(
1√
nω(λ)

+A(λ)
)

and

(28)
∥∥fλ

z − fH
∥∥
H ≤ α(η)

(
1√
nω(λ)

+A(λ)
)
,

where
•
√
λω(λ) is a continuous, increasing function;

•
√
λA(λ) is a continuous, increasing function with A(0) = 0,

• ω(λ)A(λ) ≤ cλ,

and α(η) > max{log(2/η)1/4, 1}. Moreover, assume the bound to hold uniformly
with respect to λ, meaning that the collection of training sets for which it holds with
confidence 1− η does not depend on λ.

We note that the above assumption essentially stands on the observation that for
functions in the RKH space, the following equality holds ‖f‖ρ =

∥∥T 1/2f
∥∥
H (see the

proof above), so that estimates in the two norms are highly related. Assumption 2
and Proposition 1 immediately yields the following result.

Corollary 1. If Assumption 2 holds then with probability at least 1− η∥∥fλ
z − fH

∥∥
ρz
≤ α(η)Ĉ

√
λ

(
1

ω(λ)
√
n

+A(λ)
)
,

with Ĉ = 1 + α(η)Cκ.

Proof. From Proposition 1∥∥fλ
z − fH

∥∥
ρz
≤

∥∥fλ
z − fH

∥∥
ρ

+
α(η)Cκ

n1/4

∥∥fλ
z − fH

∥∥
H ,

so that the proof follows plugging (27), (28) in the above inequality and noting that
n−1/4 ≤

√
λ since, λ ≥ n−1/2. �

We now recall the adaptive parameter choice we are going to consider. Let

λρz = max{λi :
∥∥∥fλi

z − f
λj
z

∥∥∥
ρz

≤
4α(η)Ĉ

√
λj√

nω(λj)
, j = 0, 1, . . . , i},

λH = max{λi :
∥∥∥fλi

z − f
λj
z

∥∥∥
H
≤ 4α(η)√

nω(λj)
, j = 0, 1, . . . , i},

and

(29) λ̂ = min{λρz , λH}.
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Theorem 3. Assume that Assumption 2 holds. Let λstart ≤ 1/(c
√
n). If

(30) ω(λi+1) ≤ qω(λi),

then the following bound holds with probability at least 1− η∥∥∥f λ̂
z − fH

∥∥∥
ρ
≤ qCα(η)λo(n)A(λo(n)),

where the value of C can be explicitly given.

Proof. We previously note a few useful facts. Let Θ(λ) = ω(λ)A(λ). First, from
Assumption 2- item 3, if we take λ = λo(n) we have

(31) Θ(λo(n)) ≤ cλo(n) ⇒ 1√
n
≤ cλo(n) ⇒ 1

n1/4
≤ c

√
λo(n).

Second, noting that (30) implies ω(λi+1)/
√
λi+1 ≤ qω(λi)/

√
λi and recalling the

reasoning to get (21), we have
√
λ∗

ω(λ∗)
≤
q
√
λo(n)

ω(λo(n))
.

This immediately yields

(32)
1

ω(λρz)
≤ q

ω(λo(n))
,

since λρz ≥ λ∗, and

(33)
√
λH

ω(λH)
≤
q
√
λo(n)

ω(λo(n))
,

since λH ≥ λ∗ and
√
λωλ is a decreasing function.

We now consider the two cases: λρz < λH and λρz > λH.
Case 1. First, consider the case λ̂ = λρz < λH. From Proposition 1 we have∥∥∥f λ̂

z − fH

∥∥∥
ρ

≤
∥∥∥fλρz

z − fH

∥∥∥
ρz

+
α(η)Cκ

n1/4

∥∥∥fλρz
z − fH

∥∥∥
H

(34)

≤
∥∥∥fλρz

z − fH

∥∥∥
ρz

+
α(η)Cκ

n1/4

∥∥∥fλρz
z − fλH

z

∥∥∥
H

+

α(η)Cκ

n1/4

∥∥fλH
z − fH

∥∥
H .

We consider the various terms separately. Applying Theorem 1 and Corollary 1 we
get

(35)
∥∥∥fλρz

z − fH

∥∥∥
ρz

≤ 6qα(η)Ĉ
√
λo(n)A(λo(n)).

Applying again Theorem 1 and with aid of (31) we also have

(36)
α(η)Cκ

n1/4

∥∥fλH
z − fH

∥∥
H ≤ 6qα(η)2cCκ

√
λo(n)A(λo(n)).

Recalling the definition of λH we also have

(37)
∥∥∥fλρz

z − fλH
z

∥∥∥
H
≤ 4α(η)√

nω(λρz)
.
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We can now use (31), (32) and the definition of λo(n) to get

(38)
α(η)Cκ

n1/4

∥∥∥fλρz
z − fλH

z

∥∥∥
H
≤ 4qα(η)2cCκ

√
λo(n)A(λo(n)).

If we now plug (35), (36), (38) in (34) we get∥∥∥f λ̂
z − fH

∥∥∥
ρ
≤ qα(η)C

√
λo(n)A(λo(n)),

with C = 6Ĉ + 10α(η)cCκ.
Case 2. Consider the case λ̂ = λH < λρz . From Proposition 1 we have∥∥∥f λ̂

z − fH

∥∥∥
ρ

≤
∥∥fλH

z − fH
∥∥

ρz
+
α(η)Cκ

n1/4

∥∥fλH
z − fH

∥∥
H(39)

≤
∥∥∥fλH

z − f
λρz
z

∥∥∥
ρz

+
∥∥∥fλρz

z − fH

∥∥∥
ρz

+

α(η)Cκ

n1/4

∥∥fλH
z − fH

∥∥
H

Applying Theorem 1 and using (31) we immediately get

(40)
α(η)Cκ

n1/4

∥∥fλH
z − fH

∥∥
H ≤ 6qcα(η)2Cκ

√
λo(n)A(λo(n)).

Another straightforward application of Theorem 1 and Corollary 1 gives

(41)
∥∥∥fλρz

z − fH

∥∥∥
ρz

≤ 6qα(η)Ĉ
√
λo(n)A(λo(n)).

Finally we have from the definition of λρz

(42)
∥∥∥fλH

z − f
λρz
z

∥∥∥
ρz

≤ 4α(η)Ĉ
√
λH√

nω(λH)
,

so that using (33), (31) and the definition of λo(n) we can write

(43)
∥∥∥fλH

z − f
λρz
z

∥∥∥
ρz

≤ 4α(η)qĈ
√
λo(n)A(λo(n)).

The proof is finished plugging (40), (41) and (43) in (39) to get∥∥∥f λ̂
z − fH

∥∥∥
ρ
≤ α(η)qC

√
λo(n)A(λo(n)),

where C = 6α(η)Cκ + 10Ĉ. �

5. Numerical experiments

In this section we consider some numerical experiments discussing how the bal-
ancing principle can be approximatively implemented in the presence of very small
samples. When the number of samples is very small, as it is often the case in prac-
tice, we observed that one cannot completely rely on the theoretical constructions
since the bound are conservative and tend to select a large parameter which will
oversmooth the estimator. For our numerical experiments, besides the standard
regularized least square algorithm, we consider also the more complex situation
when the kernel is not fixed in advance but is found within the regularization pro-
cedure. We first give a brief summary of this latter approach. Indeed, once a
regularized kernel based learning method is applied, two questions should be an-
swered. One of them is how to choose a regularization parameter. The balancing
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principle discussed in previous sections provides an answer to this question. An-
other question is how to choose the kernel, since in several practically important
applications a kernel is not a priori given. This question is much less studied. It
has been discussed recently in [29], where it has been suggested to select a kernel
K = K(λ) from some set K such that

(44) K(λ) = arg min{Qz(K,λ),K ∈ K},

where

Qz(K,λ) = min
f∈HK

(
1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2HK
),

and HK is the RKH space generated by K. By definition selected kernel K = K(λ)
is λ-dependent, so that this kernel choice rule is only applicable for a priori given
regularization parameter λ.
At the same time, under rather general assumptions [4] the best in the model
fHK

∈ HK can be approximated by minimizers fλ
z ∈ HK of Qz(K,λ) in such a

way that Assumption 2 is satisfied. Then in accordance with the Theorem 3 the
parameter choice rule λ = λ̂ = λ̂(K) given by (29) allows an accuracy which is only
by a constant factor worse than optimal one for fixed K ∈ K.
Let Λ: R+ → R+ be the function such that its value at point λ is the number
λ̂ = λ̂(K(λ)) calculated in accordance with (29) for estimators based on the kernel
K(λ) ∈ K given by (44). If λ̊ is a fix point of Λ, i.e. λ̊ = λ̂(K (̊λ)), then K (̊λ) can be
seen as the kernel of optimal choice in the sense of [29], since it satisfies the criterion
Qz(K,λ) → min for the regularization parameter λ = λ̊, which is order-optimal for
this kernel.
The existence of this fixed point λ = λ̊ depends on the set K, and deserves con-
sideration in the future. In computational experiment below we find such fix point
numerically for an academic example from [29]. At this point it is worth to note
that parameter choice rule (29) can be capacity independent in a sense that it does
not require a knowledge of spectral properties of underlying kernel K. This feature
of the rule (29) makes its combination with the rule (44) numerically feasible.
To simplify a numerical realization of the rule (29) and especially in the presence
of very small samples, one can approximate the values λρz , λH using well-known
quasi-optimality criterion [37]. As it was observed in [30] this criterion can be seen
as a heuristic counterpart of the parameter choice rule λ = λ̄ theoretically justified
by Theorem 2. It also operates with norms σ(j) = ‖fλj

z − f
λj−1
z ‖, λj = λstart · µj ,

and selects λq−0 = λl such that for any j = 1, 2, ..., N . σ(j) ≥ σ(l), i.e.

l = arg min{σ(j), j = 1, 2, ..., N}.

In our experiments we approximate λρz and λH by

λq−0
ρz

= λl, l = arg min{σρz(j) = ‖fλj
z − f

λj−1
z ‖ρz , j = 1, 2, ..., N},

and

λq−0
H = λm, m = arg min{σH(j) = ‖fλj

z − f
λj−1
z ‖H, j = 1, 2, ..., N},

respectively. Then in accordance with (29) we choose a regularization parameter

(45) λ̂ = min{λq−0
ρz

, λq−0
H }.
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As in [29], we consider a target function

(46) fρ(x) =
1
10

(x+ 2(e−8( 4
3 π−x)2 − e−8( π

2−x)2 − e−8( 3
2 π−x)2)). x ∈ [0, 2π],

and a training set z = zn = {(xi, yi)}n
i=1, where xi = 2π(i−1)

n−1 , yi = fρ(xi) + ζi, and
ζi are random variables uniformly sampled in the interval [-0.02, 0.02].
In our first experiment we test approximate version (45) of the rule (29) using a
priori information that the target function (46) belongs to RKH space H = HK

generated by the kernel K(x, t) = Kρ(x, t) = xt+ e−8(t−x)2 , t, x ∈ [0, 2π].
Figure 2 and 3 display the values σρz(j), σH(j) calculated for regularized least
squares estimators fλj

z , which are constructed using the kernel Kρ for training sets
z = z21 and z = z51 respectively. Here and in the next experiment

λj ∈ {λstart · µj , j = 1, 2, ..., 20}, λstart = 10−6, µ = 1.5.

It is instructive to see that the sequences σρz(j), σH(j), j = 1, 2, ..., 20, exhibit
different behavior for training sets z21 and z51. At the same time, they attain
the minimal values at the same j. Therefore, in accordance with the rule (45)
we take λ̂ = λq−0

ρz
= λq−0

H = 1.5 · 10−6 in case of z = z21, while for z = z51

λ̂ = λq−0
ρz

= λq−0
H = 0.0033.

Figure 4 and 5 show that for chosen values of parameters the estimator f λ̂
z provides

an accurate reconstruction of the target function.
In our second experiment we do not use a priori knowledge of the space HK , K =
Kρ, containing the target function (46). Instead, we choose a kernel K adaptively
from the set.

K = {K(x, t) = (xt)β + e−γ(x−t)2 , β ∈ {0.5, 1, ..., 4}, γ ∈ {1, 2, ..., 10}}.

trying to find a fix point of the function Λ: λ → λ̂(K(λ)), where λ̂(K(λ)) is the
number (45) calculated for the kernel K(λ), which minimizes Qz(K,λ), z = z21,
over the set K.
In the experiment we take λ(s) ∈ {λj}20j=1 and find the minimizer K(λ(s)) ∈ K
by the simple full-search over the finite set K. Then next value λ(s+1) ∈ {λj}20j=1

is defined as the number (45) calculated for estimators fλj
z based on the kernel

K(λ(s)). This iteration procedure terminates when |λ(s+1) − λ(s)| ≤ 10−4. It gives
us required approximate fix point λ̊ = λ18 ≈ 0.0014 and corresponding kernel
K (̊λ) = K (̊λ;x, t) = xt + e−10(x−t)2 , which is a good approximation for the ideal
kernel Kρ(x, t). The estimator f λ̊

z based on the kernel K (̊λ) provides a good recon-
struction of the target function (46), as it can be seen in the Figure 6.
Presented numerical experiments demonstrate a reliability of the balancing princi-
ple, and show that it can be used also in learning the kernel function via regular-
ization.
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Figure 2: The values of σρz(j) (blue dots) and σH(j) (green crosses) for z = z21.

Figure 3: The values of σρz(j) (blue dots) and σH(j) (green crosses) for z = z51
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[2] Andrew Barron, Lucien Birgé, and Pascal Massart. Risk bounds for model selection via

penalization. Probab. Theory Related Fields, 113(3):301–413, 1999.

[3] P. L. Bartlett, S. Boucheron, and G. Lugosi. Model selection and error estimation. In Pro-

ceedings of the Thirteenth Annual Conference on Computational Learning Theory, pages

286–297, 2000.



22 E. DE VITO, S. PEREVERZYEV, L. ROSASCO

Figure 4: The estimator f λ̂
z (red line) and the target function fρ (green line) for

λ̂ = 1.5 · 10−6 and training set z = z21 (blue dots).

Figure 5: The estimator f λ̂
z (red line) and the target function fρ (green line) for

λ̂ = 0.0033 and training set z = z51 (blue dots).

[4] Frank Bauer, Sergei Pereverzev, and Lorenzo Rosasco. On regularization algorithms in learn-

ing theory. J. Complexity, 23(1):52–72, 2007.
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