ENTROPY CONDITIONS FOR L_r -CONVERGENCE OF EMPIRICAL PROCESSES

A. CAPONNETTO, E. DE VITO, AND M. PONTIL

ABSTRACT. The Law of Large Numbers (LLN) over classes of functions is a classical topic of Empirical Processes Theory. The properties characterizing classes of functions on which the LLN holds uniformly (*i.e.* Glivenko-Cantelli classes) have been widely studied in the literature. An elegant sufficient condition for such a property is finiteness of the Koltchinskii-Pollard entropy integral, and other conditions have been formulated in terms of suitable combinatorial complexities (*e.g.* the Vapnik-Chervonenkis dimension). In this paper, we endow the class of functions \mathcal{F} with a probability measure and consider the LLN relative to the associated L_r metric. This framework extends the case of uniform convergence over \mathcal{F} , which is recovered when r goes to infinity. The main result is a L_r -LLN in terms of a suitable uniform entropy integral which generalizes the Koltchinskii-Pollard entropy integral.

1. INTRODUCTION

Uniform Laws of Large Numbers (u-LLN) are widely studied results in Statistics. In the usual setting, we are given a finite set of points $\mathbf{x} = (x_1, \ldots, x_n) \in X^n$ sampled i.i.d. from a fixed but unknown probability measure P on X, and a class \mathcal{F} of real-valued functions on X. The aim of u-LLN is to establish conditions on the class \mathcal{F} which ensure the uniform convergence of the empirical average $P_n f = \frac{1}{n} \sum_i f(x_i)$ to the mean $Pf = \int_X f(x) dP(x)$, that is ¹

(1)
$$\forall P \in \mathcal{P}(X), \ \forall \epsilon > 0 \quad \lim_{n \to \infty} \mathbb{P}_{\mathbf{x}} \left[\sup_{f \in \mathcal{F}} |Pf - P_n f| \ge \epsilon \right] = 0,$$

where $\mathcal{P}(X)$ is the set of all probability measures on X. Function classes fulfilling condition (1) are called (universal) Glivenko-Cantelli classes.

Laws of Large Numbers (LLN) over classes of functions are classical results in Empirical Processes Theory. In particular, the characterization of Glivenko-Cantelli classes has been extensively studied in this literature. A number of techniques have been introduced to capture this concept, for example through the notions of VCdimension [15, 16, 17, 14], scale-sensitive VC-dimension [1], Koltchinskii-Pollard entropy integral [8, 9, 5], etc.

In this paper, we endow the class of functions \mathcal{F} with a probability measure and consider the LLN relative to an L_r metric. This framework extends the case

Date: March 13, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 60G15, 60G51.

Key words and phrases. Empirical Processes, Uniform Entropy, Rademacher Averages, Glivenko-Cantelli Classes.

¹In the paper we denote by $\mathbb{P}[E]$ the probability of the event E, and by $\mathbb{E}[F]$ the expectation of the random variable F.

of uniform convergence over \mathcal{F} , which is recovered when r goes to infinity. More precisely, we introduce the pseudo-norm

$$\left\|P\right\|_{\mu,r} = \left(\int_{\mathcal{F}} \left|Pf\right|^r d\mu(f)\right)^{\frac{1}{r}},$$

where μ is a prescribed probability measure on \mathcal{F} , and consider the convergence of the stochastic process $(P_n - P)$ relative to this norm. To illustrate our notation, let us consider a simple example where $X = \mathbb{R}$ and \mathcal{F} is the space of characteristics functions of half-lines, that is $\mathcal{F} = \{f_t : t \in \mathbb{R}\}$, where $f_t(x) = 1$ if $x \leq t$ and zero otherwise. In this case, the function $t \mapsto Pf_t$ is the cumulative distribution function associated to P and $||P - P_n||_{\mu,r}$ is the L_r distance between the true cumulative distribution function and the empirical distribution function, respectively.

The main result of the paper is a L_r -LLN involving a finiteness condition for a suitable generalization of the Koltchinskii-Pollard entropy integral.

We note that u-LLN play an important role in the foundations of Learning Theory. In particular, the notion of Glivenko-Cantelli class introduced in the former context is equivalent to the *learnability* notion of a class of functions \mathcal{F} , see, for example [1] and references therein. Hence, our results can also be seen as a relaxation of the learnability results in Learning Theory.

The paper is organized as follows. In Section 2, we introduce our framework and in particular we give the definition of *touchstone class* and induced L_r metric. In Section 3, we collect some known results about the convergence of empirical measures P_n to the unknown measure P relative to the uniform semi-norm $\|\cdot\|_{\mathcal{F}}$. In particular, we define the Koltchinskii-Pollard entropy integral $I(\mathcal{F})$ of the class \mathcal{F} , which is used in Theorem 1 to bound the uniform deviation of the process $P_n - P$. In Section 4, we study the L_r -LLN in terms of a suitable uniform entropy integral which generalizes the Koltchinskii-Pollard entropy integral. This section contains the main results of the paper. In Subsection 4.1, we define the uniform entropy integral relative to the L_r metric, and show its relation to the Koltchinskii-Pollard entropy integral (Theorem 2). In Subsection 4.2, we generalize the results of Section 3 to the L_r setting (Theorem 3). Proofs of the results given in Section 4 are postponed to Appendices A and B.

2. Touchstone classes and L_r semi-norms

Let X be a locally compact separable metric space, for example any closed subset of \mathbb{R}^k . We denote by $\mathcal{M}(X)$ the space of (signed) bounded measures over X and by $\mathcal{P}(X)$ the subset of probability measures. Given $M \in \mathcal{M}(X)$ and a bounded measurable function $f: X \to \mathbb{R}$, we define pairing as

(2)
$$Mf = \int_X f(x) dM_+(x) - \int_X f(x) dM_-(x),$$

where $M = M_+ - M_-$ is Hahn decomposition of M as sum of two positive bounded measures. The above pairing suggests that any class of functions \mathcal{F} defines a metrics on $\mathcal{P}(X)$ by means of

(3)
$$d(P,P') = \sup_{f \in \mathcal{F}} |Pf - P'f|.$$

For example, if \mathcal{F} is the unit ball in the Banach space $C_0(X)$ of continuous functions on X vanishing at infinity, then d is the distance induced by the total variation,

3

see, for example, [2, Appendix C.18]. Another classical example is the Kolmogorov-Smirnov distance, which is obtained when $X = \mathbb{R}$ and \mathcal{F} is the class of step functions on \mathbb{R} (see Example 1 below).

According to the definition (3) two probability measures are ϵ -close to each other whenever for every $f \in \mathcal{F}$ they have ϵ -close pairings with f. In a sense, approximating a probability measure P, relative to the metric d is equivalent to simultaneously approximating as many linear functionals as the functions in \mathcal{F} . However, in various situations this notion of distance may often be excessively strong. In fact, we would like two probability measures to be ϵ -close even if they do not have ϵ -close evaluations over a tiny fraction of the functionals induced by \mathcal{F} . The formalization of this idea can be accomplished by suitably endowing \mathcal{F} with a probability measure μ , and considering, for some $r \geq 1$, the pseudo-distance

(4)
$$d_r(P,P') = \left(\int_{\mathcal{F}} \left|Pf - P'f\right|^r d\mu(f)\right)^{\frac{1}{r}}.$$

The distance d given by (3) will be recovered as the limit of d_r when r goes to infinity.

Inspired by [12] we name touchstone class a class of functions \mathcal{F} inducing a metric over $\mathcal{P}(X)$ through equation (4). The definition below formalizes the notion of touchstone class.

Definition 1. A touchstone class over X is a family \mathcal{F} of functions from X to [-1,1] equipped with a structure of locally compact separable metric space. \mathcal{F} is endowed with a probability measure μ , satisfying the properties

- (a) the map $(f, x) \mapsto f(x)$ is measurable from $\mathcal{F} \times X$ into [-1, 1];
- (b) for every $f \in \mathcal{F}$ there exists a measurable subset $A_f \subset \mathcal{F}$ with²

$$\mu\left(A_f \cap B(f,\delta)\right) > 0 \qquad \forall \delta > 0$$

and, for all $x \in X$ and $\epsilon > 0$, there is $\delta > 0$ such that

$$|f'(x) - f(x)| \le \epsilon \qquad \forall f' \in A_f \cap B(f, \delta).$$

The measurability is always relative to the σ -algebra induced by metric of \mathcal{F} . In most applications (see for example Examples 1 and 2 below) the metric space structure over \mathcal{F} is naturally induced by a suitable space of parameters \mathcal{T} through a parametrization function $t \mapsto f_t$. Assumption (a) ensures that every function in \mathcal{F} is measurable and bounded on X, so that the following definition makes sense (see Proposition 1 below).

Definition 2. Let (\mathcal{F}, μ) be a touchstone class and $M \in \mathcal{M}(X)$. We define the semi-norms

$$\begin{split} \|M\|_{\mu,r} &= \left(\int_{\mathcal{F}} |Mf|^r d\mu(f)\right)^{\frac{1}{r}}, \qquad r \in [1,\infty) \\ \|M\|_{\mu,\infty} &= \operatorname{ess\,sup}_{f \in \mathcal{F}} |Mf| \\ \|M\|_{\mathcal{F}} &= \operatorname{sup}_{f \in \mathcal{F}} |Mf| \end{split}$$

²Here $B(f, \delta)$ is the open ball in \mathcal{F} , with center f and radius δ .

The pseudo-metric introduced in equations (3) and (4) can be expressed in the form

$$d(P, P') = ||P - P'||_{\mathcal{F}} \\ d_{\infty}(P, P') = ||P - P'||_{\mu,\infty} \\ d_r(P, P') = ||P - P'||_{\mu,r}.$$

As shown by next proposition, Assumption (b) ensures that

(5)
$$\lim_{r \to \infty} d_r(P, P') = d_{\infty}(P, P') = d(P, P')$$

Clearly this assumption implies that the support of μ is \mathcal{F} , but this condition is not sufficient. Two examples of sufficient conditions are that the map $f \mapsto f(x)$ is continuous for all $x \in X$, or that \mathcal{F} is discrete (in the definition, let $A_f = \{\mathcal{F}\}$ or $A_f = \{f\}$, respectively). However, Definition 1 embraces important examples where both \mathcal{F} is not discrete and the mappings $f \mapsto f(x)$ are not continuous (see Examples 1 and 2 at the end of this section).

Proposition 1. With the above notation, we have, for every $M \in \mathcal{M}(X)$, that

- the map r → ||M||_{µ,r} is continuous on [1,∞], increasing and bounded from above by ||M||_F;
- (2) $||M||_{\mu,\infty} = ||M||_{\mathcal{F}}$.

Proof. For every $f \in \mathcal{F}$, Mf is well defined since f is measurable and bounded. Given $r \geq 1$, Fubini theorem implies that the map $f \mapsto Mf$ is r-integrable with respect to μ , so that $||M||_{\mu,r}$ is finite.

Part (1) follows from the finiteness of μ and well known properties of L_r norms (see, for example, [11, Theorem 5.8.35]).

We prove part (2) by contradiction. Assume that there is $M \in \mathcal{M}(X)$ and $f \in \mathcal{F}$ such that $|Mf| > ||M||_{\mu,\infty}$ and, without loss of generality, Mf > 0. Let $A_f \subset \mathcal{F}$ as in Assumption (b) in Definition 1, and $\epsilon = (Mf - ||M||_{\mu,\infty})/2$, we claim that there is $\delta > 0$ such that

(6)
$$|Mf' - Mf| \leq \epsilon \quad \forall f' \in A_f \cap B(f, \delta),$$

and, hence,

$$Mf' \ge \frac{Mf + \|M\|_{\mu,\infty}}{2} > \|M\|_{\mu,\infty} \qquad \forall f \in A_f \cap B(f,\delta).$$

By assumption $\mu(A_f \cap B(f, \delta)) > 0$, so

$$\operatorname{ess\,sup}\left\{|Mf'|: f' \in A_f \cap B(f,\delta)\right\} > \|M\|_{\mu,\infty},$$

which is a contradiction.

Finally let us prove claim (6) by contradiction, assuming that for every $i \in \mathbb{N}$ there is $f'_i \in A_f \cap B(f, \frac{1}{i})$ such that $|Mf'_i - Mf| > \epsilon$. However, by assumption, the sequence $(f'_i(x))_{i \in \mathbb{N}}$ converges to f(x) for all $x \in X$. Since f'_i and f are bounded functions, the Lebesgue dominated convergent theorem implies that

$$\lim_{i \to \infty} Mf'_i = Mf,$$

which is a contradiction.

We now present two simple examples of the described construction. In the following sections they will be used to illustrate the forthcoming developments.

Example 1. Characteristic functions of orthants. We let $X = \mathbb{R}^k$ and

$$\mathcal{F} = \{ f_t : t \in \mathbb{R}^k \},\$$

where $f_t(x) = \mathbf{1}\{x_i \leq t_i, \forall i \in \{1, ..., n\}\}$, with $\mathbf{1}\{a\}$ the indicator function of the predicate a, and x_i the *i*-th component of the vector $x \in \mathbb{R}^k$.

Here $\mathcal{T} = \mathbb{R}^k$ plays the role of parameter space for \mathcal{F} , therefore we endow \mathcal{F} with the metric induced by the Euclidean structure of \mathbb{R}^k .

We let μ be an arbitrary probability measure on the metric space \mathcal{F} , satisfying the condition supp $\mu = \mathcal{F}$. In this example the evaluation functionals $f \mapsto f(x)$ are not continuous at t = x, nevertheless Assumption (b) in Definition 1 may be fulfilled thank to the upper semi-continuity property of the functions in \mathcal{F} . In fact, it easy to verify that a suitable choice for the sets A_f is

$$A_{f_t} = \{ f_{t'} : t'_i \ge t_i, \forall i \in \{1, \dots, k\} \} \qquad \forall t \in \mathbb{R}^k.$$

Example 2. Binary digits. We use the binary expansion of real numbers in (0, 1). For every $x \in (0, 1)$ we define the sequence $(b_i(x))_{i \in \mathbb{N}}$ of numbers in $\{0, 1\}$, fulfilling the equation³ $x = \sum_i b_i(x)2^{-i}$.

We let $X = (0, \overline{1})$ and,

$$\mathcal{F} = \{b_t : t \in \mathbb{N}\}.$$

In this case, the parameter space is $\mathcal{T} = \mathbb{N}$, and \mathcal{F} inherits its metric from it. Since \mathcal{F} is discrete, recalling the discussion following Definition 1, we conclude that for arbitrary μ fulfilling $\mu(\{f\}) > 0$ for every $f \in \mathcal{F}$, the choice $A_f = \{f\}$ verifies the assumptions in Definition 1.

In the next sections, we fix a touchstone class \mathcal{F} and a probability measure $P \in \mathcal{P}(X)$. For any sample $\mathbf{x} = (x_1, \ldots, x_n)$ drawn i.i.d from P, we denoted by $P_n = \frac{1}{n} \sum_i \delta_{x_i}$ the corresponding empirical measure and we study the convergence of P_n to P with respect to d_r , $1 \leq r \leq \infty$. As discussed above, if $r = +\infty$, $d_{\infty} = d$, so that the results are well known, see for instance [5, 13, 6]. The convergence is possible if and only if \mathcal{F} is a Glivenko-Cantelli class and an explicit non-asymptotic upper bound on $d(P, P_n)$ can be given in terms of the Koltchinskii-Pollard entropy integral $I(\mathcal{F})$. We review these results in the following section, as a preliminary step toward the generalization presented in Section 4.

3. UNIFORM ENTROPY CONDITION AND GLIVENKO-CANTELLI PROPERTY

Let us begin by introducing the notion of Rademacher averages, which play a central role in our subsequent analysis.

³For rational x, the expansion is not unique. In this case ties are broken by choosing the unique finite expansion.

Definition 3. The empirical Rademacher averages of a touchstone class \mathcal{F} , relative to the samples $\mathbf{x} = (x_1, \ldots, x_n)$ are defined by ⁴

$$R_n(\mathcal{F}) = \mathbb{E}_{\sigma} \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i f(x_i) \right|$$

where $\sigma = (\sigma_1, \ldots, \sigma_n)$ is a n-tuple of Rademacher variables⁵.

The following proposition states a fundamental bound for $d(P, P_n)$, the Symmetrization Lemma, in terms of Rademacher averages.

Proposition 2. Let $P \in \mathcal{P}(X)$ and $\mathbf{x} = (x_1, \ldots, x_n)$ be *i.i.d.* samples drawn from *P*. For every $\delta \in (0, 1)$, with probability at least $1 - \delta$, it holds

$$d(P, P_n) \le 2\mathbb{E}_{\mathbf{x}} R_n(\mathcal{F}) + \sqrt{\frac{2\log \frac{1}{\delta}}{n}}.$$

Proof. We appeal to [13, Lemma 2.3.1] to assert that $\mathbb{E}_{\mathbf{x}}d(P, P_n) \leq 2\mathbb{E}_{\mathbf{x}}R_n(\mathcal{F})$. The result follows by McDiarmid's inequality (see, for example, [4, Theorem 9.2]) recalling that the functions in \mathcal{F} take values in [-1, 1].

To proceed further in our analysis and define the Koltchinskii-Pollard entropy of \mathcal{F} , we need the notion of covering number.

Definition 4. For every $P \in \mathcal{P}(X)$ and $\epsilon > 0$ we define $\mathcal{C}(\epsilon, \mathcal{F}, P)$ as the set of all covers of \mathcal{F} by sets of the form

$$c_{\bar{f}} = \{ f \in \mathcal{F} : \left\| f - \bar{f} \right\|_{L_2(X,P)} < \epsilon \} \qquad \bar{f} \in \mathcal{F},$$

and the covering number of ${\cal F}$ as 6

$$N(\epsilon, \mathcal{F}, L_2(X, P)) = \inf\{|C| : C \in \mathcal{C}(\epsilon, \mathcal{F}, P)\}.$$

We refer to [13, Definition 2.2.3] for information on covering numbers.

The notion of uniform entropy defined below is central in Empirical Processes Theory (see for example [13, Chapter 2.5]).

Definition 5. For every $\epsilon > 0$ we define the uniform entropy of a touchstone class \mathcal{F} as

$$H(\epsilon, \mathcal{F}) = \sup_{n} \sup_{P_n} \log N(\epsilon, \mathcal{F}, L_2(X, P_n)),$$

where the supremum is over measures of the form $P_n = \frac{1}{n} \sum_i \delta_{x_i}$.

The following theorem gives an upper bound on $d(P, P_n)$ in terms of the Koltchinskii-Pollard entropy integral $I(\mathcal{F})$.

$$\bar{R}_n(\mathcal{F}) = \mathbb{E}_\sigma \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(x_i).$$

This definition is equivalent to Definition 3. Specifically, one can show that $\frac{1}{2}R_n(\mathcal{F}) \leq \bar{R}_n(\mathcal{F}) \leq R_n(\mathcal{F})$.

⁵The Rademacher variables $(\sigma_1, \ldots, \sigma_n)$ are $\{-1, 1\}$ -valued and independent, with $\mathbb{P}[\sigma_i = 1] = \mathbb{P}[\sigma_i = -1] = \frac{1}{2}$.

⁶We denote by |C| the cardinality of the set C.

 $^{^{4}}$ Often, in the literature the absolute value in the definition of the empirical Rademacher averages is removed, that is, one consider the quantity

7

Theorem 1. Let P be in $\mathcal{P}(X)$ and $\mathbf{x} = (x_1, \ldots, x_n)$ be i.i.d. samples drawn from P. For every $\delta \in (0, \frac{1}{2})$, with probability at least $1 - \delta$, it holds

(7)
$$d(P, P_n) \le \frac{C}{\sqrt{n}} \left(I(\mathcal{F}) + \sqrt{\log \frac{1}{\delta}} \right),$$

where C is a universal constant and $I(\mathcal{F})$ is the Koltchinskii-Pollard entropy integral of \mathcal{F} defined as

$$I(\mathcal{F}) = \int_0^\infty \sqrt{H(\epsilon, \mathcal{F})} d\epsilon.$$

Proof. We first note that the Koltchinskii-Pollard entropy integral is well defined since $H(\epsilon, \mathcal{F})$ is monotone with respect to ϵ . The inequality follows from Proposition 2 and [13, Corollary 2.2.8].

From Theorem 1 it follows that finiteness of the Koltchinskii-Pollard entropy integral (the *uniform entropy condition*) is a sufficient condition for the Glivenko-Cantelli property of \mathcal{F} . That is, we have the following corollary.

Corollary 1. If $I(\mathcal{F}) < \infty$ then \mathcal{F} is a Glivenko-Cantelli class.

Notice that in general the converse result does not hold, that is, it is not true that the Glivenko-Cantelli property implies finiteness of $I(\mathcal{F})$. However the equivalence holds for classes \mathcal{F} of binary-valued functions (see [6]).

Finally let us consider our examples.

Example 1 (cont.) We estimate the covering number of the binary-valued class of function \mathcal{F} by the standard VC-bound (see [13, Theorem 2.6.4] and [13, Example 2.6.1])

$$N(\epsilon, \mathcal{F}, L_2(X, P)) \le \left(\frac{K}{\epsilon}\right)^{2k}$$

which holds for some constant K and every $\epsilon \in (0, 1)$ and $P \in \mathcal{P}(X)$.

By direct integration and noting that the covering number is exactly equal to 1 for $\epsilon \geq 1$, we get $I(\mathcal{F}) \leq C'\sqrt{k}$, for a suitable constant C'. Hence, by Corollary 1 \mathcal{F} is Glivenko-Cantelli.

The pseudo-metric d is named Kolmogorov-Smirnov distance, and has been widely studied in statistics literature (*e.g.* [7, 4, 10]).

Example 2 (cont.) In this case, $I(\mathcal{F})$ is infinite. This fact can be proved first showing, by reasoning as in [14, Example 4.11.4], that the VC-dimension of \mathcal{F} is infinite. Hence since finiteness of VC-dimension is a necessary condition for the Glivenko-Cantelli property (over binary-valued classes), by Corollary 1 we conclude that $I(\mathcal{F}) = \infty$.

4. L_r convergence results

In this section we present the main result of the paper, Theorem 3, which generalizes to the L_r metric the uniform convergence result given in Theorem 1.

The central concept in this analysis is a suitable generalization $I_r(\mathcal{F}, \mu)$ of the Koltchinskii-Pollard uniform entropy integral $I(\mathcal{F})$ defined in the previous section. This quantity and its properties are described in Subsection 4.1, while the generalization of the results from Section 3 is given in Subsection 4.2. For sake of clarity we postpone all the proofs to Appendices A and B.

4.1. Uniform entropies. Let us begin with some preliminary definitions.

Definition 6. Let $p: I \to [0,1]$ be a probability distribution over a denumerable set ⁷ I. For every $r \in [1,\infty]$, we define the quantity

(8)
$$h_r(p) = \inf \left\{ \left\| \sqrt{-\log q} \right\|_{L_r(I,p)}^2 : q(i) \ge 0, \sum_i q(i) = 1 \right\}.$$

Recall, for $r \in [1, \infty)$, adopting the convention $\left(\log \frac{1}{0}\right)^{\frac{r}{2}} 0 = 0$, that the L_r norm appearing in the equation (8) is given by

$$\left\|\sqrt{-\log q}\right\|_{L_r(I,p)}^2 = \left(\sum_i \left(\log \frac{1}{q(i)}\right)^{\frac{r}{2}} p(i)\right)^{\frac{d}{r}},$$

and for $r = \infty$ we have

$$\left\|\sqrt{-\log q}\right\|_{L_{\infty}(I,p)}^{2} = \sup\left\{\log\frac{1}{q(i)}: p(i) \neq 0\right\}.$$

The function h_r has some nice properties collected in the following proposition.

Proposition 3. The function h_r fulfills the following properties.

- (a) For every $r, r' \in [1, \infty]$, $r \leq r'$ it holds $h_r(p) \leq h_{r'}(p)$;
- (b) $h_{\infty}(p) = \log |\{i : p(i) \neq 0\}|;$
- (c) $h_2(p) = -\sum_i p(i) \log p(i)$, the Shannon entropy of p;
- (d) For every $r \in [1, \infty]$, denumerable index sets I and J, and probability distribution p over $I \times J$

 $h_r(p) \le 2(h_r(p_1) + h_r(p_2)),$

where $p_1(i) = \sum_{j} p(i, j)$ and $p_2(j) = \sum_{i} p(i, j)$.

The second step of our construction is to define the quantity $H_r(\epsilon, \mathcal{F}, \mu)$ which generalizes the uniform entropy $H_r(\epsilon, \mathcal{F})$. To this end, we first define suitable classes of partitions of \mathcal{F} , which play a role analogous to that of the covers $\mathcal{C}(\epsilon, \mathcal{F}, P)$.

Definition 7. Let (\mathcal{F}, μ) be a touchstone class and P belong to $\mathcal{P}(X)$. For every $\epsilon > 0$ we define $\mathcal{A}(\epsilon, \mathcal{F}, \mu, P)$ as the set of denumerable partitions of \mathcal{F} into measurable parts, having strictly positive measure and $L_2(X, P)$ -diameter at most ϵ .

Recall, by Assumption (a) in Definition 1, that every function in \mathcal{F} is measurable and bounded on X. Hence, $\mathcal{F} \subset L_2(X, P)$ and the quantity $\mathcal{A}(\epsilon, \mathcal{F}, \mu, P)$ is welldefined.

Observe also that since a partition $A \in \mathcal{A}(\epsilon, \mathcal{F}, \mu, P)$ is a family of measurable sets, the restriction of μ over A, $\mu_{|A}$ is well-defined. Moreover, by Definition 7, $\mu_{|A}$ is a probability distribution⁸ on A.

We are now ready to define $H_r(\epsilon, \mathcal{F}, \mu)$ and $I_r(\mathcal{F}, \mu)$.

 $^{^7\}mathrm{A}$ set is denumerable if and only if it is finite or countably infinite.

⁸Recall that the probability measure μ is, by definition, a function over the σ -field Σ of \mathcal{F} , fulfilling $\mu(\mathcal{F}) = 1$ and, for all a and b in Σ with $a \cap b = \emptyset$, the equality $\mu(a \cup b) = \mu(a) + \mu(b)$ holds. Therefore if the denumerable partition A in the text is $\{a_1, a_2, \ldots\}$, we get $\sum_i \mu_{|A}(a_i) = 1$.

9

Definition 8. For every $\epsilon > 0$, $r \in [1, \infty]$, we define the uniform entropy of a touchstone class (\mathcal{F}, μ) as

$$H_r(\epsilon, \mathcal{F}, \mu) = \sup_n \sup_{P_n} \inf_A h_r(\mu_{|A}),$$

where the supremum is over measures of the form $P_n = \frac{1}{n} \sum_i \delta_{x_i}$, and the infimum is over $\mathcal{A}(\epsilon, \mathcal{F}, \mu, P_n)$.

The corresponding uniform entropy integral is

(9)
$$I_r(\mathcal{F},\mu) = \int_0^\infty \sqrt{H_r(\epsilon,\mathcal{F},\mu)} d\epsilon.$$

The following theorem collect the relevant properties of the quantities introduced in previous definition.

Theorem 2. The following properties of the uniform entropy hold.

- (a) $H_r(\epsilon, \mathcal{F}, \mu)$ is non-increasing with respect to ϵ ;
- (b) $H_r(\epsilon, \mathcal{F}, \mu)$ is non-decreasing with respect to r;
- (c) $H(2\epsilon, \mathcal{F}) \leq H_{\infty}(2\epsilon, \mathcal{F}, \mu) \leq H(\epsilon, \mathcal{F}).$

Moreover $I_r(\mathcal{F}, \mu)$ is non-decreasing in r, and

$$I(\mathcal{F}) \leq I_{\infty}(\mathcal{F},\mu) \leq 2I(\mathcal{F}).$$

Finally we illustrate the results of this subsection through our two examples.

Example 1 (cont.) From Theorem 2 and the already known result $I(\mathcal{F}) \leq C'\sqrt{k}$, we conclude that for every μ fulfilling the assumptions, and $r \in [1, \infty]$, it holds $I_r(\mathcal{F}, \mu) \leq 2C'\sqrt{k}$.

Example 2 (cont.) From Definition 6 it follows (by the monotonicity property of $(-\log q)^{\frac{r}{2}}$ w.r.t. q) for arbitrary P and μ , that

$$\hat{A} = \operatorname*{argmax}_{A \in \mathcal{A}(\epsilon, \mathcal{F}, \mu, P)} h_r(\mu_{|A}) = \{\{b_t\} : t \in \mathbb{N}\}.$$

Therefore, by Definition 8, for $\epsilon \in (0, 1)$ we get

$$H_r(\epsilon, \mathcal{F}, \mu) \le h_r(\mu_{|\hat{A}}),$$

and for $\epsilon \geq 1$, $H_r(\epsilon, \mathcal{F}, \mu) = 0$. From the estimate above we see that the uniform entropy integral $I_r(\mathcal{F}, \mu)$ is upper bounded by $h_r(\mu_{|\hat{A}})$.

Computing the function h_r for an arbitrary probability distribution over \mathbb{N} is not an easy task. However, assuming that $\mu(\{b_t\}) = O(t^{-\eta})$ for some $\eta > 1$, it is straightforward to show that $h_r(\mu_{|\hat{A}})$ is finite for every $r \in [1, \infty)$.

4.2. Upper bounds on $d_r(P, P_n)$. In this subsection, we extend the results of Section 3, from the analysis of $d(P, P_n)$ to that of $d_r(P, P_n)$ for arbitrary $r \in [1, \infty]$.

We already observed (see equation (5)) that the pseudo-metric d can be seen as the limit of the pseudo-metric d_r as r goes to infinity. The next definition introduces the quantity $R_{r,n}(\mathcal{F},\mu)$ which, as d_r does with d, generalizes the Rademacher averages $R_n(\mathcal{F})$ introduced in Definition 3.

Definition 9. For every $r \in [1, \infty]$, the empirical Rademacher averages $R_{r,n}(\mathcal{F}, \mu)$ of the touchstone class (\mathcal{F}, μ) , relative to the sample $\mathbf{x} = (x_1, \ldots, x_n)$ are defined by

$$R_{r,n}(\mathcal{F},\mu) = \mathbb{E}_{\sigma} \left\| \frac{1}{n} \sum_{i} \sigma_{i} \delta_{x_{i}} \right\|_{\mu,}$$

where $\sigma = (\sigma_1, \ldots, \sigma_n)$ is an n-tuple of Rademacher variables, and δ_x is the Dirac delta measure at x.

The relation between $R_{r,n}(\mathcal{F},\mu)$ and $R_n(\mathcal{F})$ is clarified by observing that

$$R_n(\mathcal{F}) = \mathbb{E}_{\sigma} \left\| \frac{1}{n} \sum_i \sigma_i \delta_{x_i} \right\|_{\mathcal{F}}.$$

Therefore, from Proposition 1 we conclude that $R_{r,n}(\mathcal{F},\mu)$ is increasing as a function of r, and

(10)
$$\lim_{r \to \infty} R_{r,n}(\mathcal{F},\mu) = R_{\infty,n}(\mathcal{F},\mu) = R_n(\mathcal{F}).$$

We also note that the Symmetrization Lemma stated in Proposition 2 may be naturally extended to the L_r setting.

Proposition 4. Let P be in $\mathcal{P}(X)$ and $\mathbf{x} = (x_1, \ldots, x_n)$ be i.i.d. samples drawn from P. For every $\delta \in (0, 1)$ and $r \in [1, \infty]$, with probability at least $1 - \delta$, it holds

$$d_r(P, P_n) \le 2\mathbb{E}_{\mathbf{x}} R_{r,n}(\mathcal{F}, \mu) + \sqrt{\frac{2\log \frac{1}{\delta}}{n}}.$$

More interestingly, the chaining technique used to derive Theorem 1 can still be applied in the L_r setting. This is possible by exploiting the properties of the uniform entropies $H_r(\epsilon, \mathcal{F}, \mu)$ which have been shown in the previous subsection.

Theorem 3. Let P be in $\mathcal{P}(X)$ and $\mathbf{x} = (x_1, \ldots, x_n)$ be i.i.d. samples drawn from P. For every $\delta \in (0, \frac{1}{2})$, with probability at least $1 - \delta$, it holds, for $r \in [1, \infty]$, the inequality

(11)
$$d_r(P, P_n) \le \frac{C}{\sqrt{n}} \left(I_r(\mathcal{F}, \mu) + \sqrt{\log \frac{1}{\delta}} \right),$$

where C is a universal constant and the uniform entropy integral $I_r(\mathcal{F},\mu)$ is defined in equation (9).

Theorem 3 generalizes Theorem 1 since by equation (5) and Theorem 2, for $r = \infty$ equation (11) becomes equation (7).

The advantage of the new result is that for some touchstone classes, the uniform entropy integral $I_r(\mathcal{F}, \mu)$ may be finite for arbitrarily large r while $I(\mathcal{F})$ is infinite. Under these circumstances Theorem 3 gives quantitative probabilistic bounds for the defects $|Pf - P_n f|$ while the standard uniform analysis in Theorem 1 is ineffective. This is the case for Example 2 when a suitably fast decaying probability measure μ is chosen.

We conclude this section with an important remark about the presented result. We want to stress that the content of Theorem 3 resides in the non-asymptotic character of equation (11) and in the explicit evaluation of $I_r(\mathcal{F}, \mu)$. In fact, an asymptotic result analogous to Corollary 1 for the L_r setting can be directly obtained exploiting the uniform boundedness of \mathcal{F} .

Proposition 5. Let P be in $\mathcal{P}(X)$ and $\mathbf{x} = (x_1, \ldots, x_n)$ be i.i.d. samples drawn from P. For every $\delta \in (0, 1)$ and $r \in [1, \infty]$, with probability at least $1 - \delta$, it holds

(12)
$$d_r(P, P_n) \le \frac{C}{\sqrt{n}} \left(\sqrt{r} + \sqrt{\log \frac{1}{\delta}} \right),$$

for some universal constant C.

The important point here is that the estimate (12) does not accounts for any specific structure of \mathcal{F} . For instance, when $r \gg n$ equation (12) gives no information on $d_r(P, P_n)$, while equation (11) may give a tight bound, for specific classes of functions with small uniform entropy integral $I_r(\mathcal{F}, \mu)$.

Acknowledgments. This paper was supported by the FIRB project RBIN04PARL and the EU Integrated Project Health-e-Child IST-2004-027749. The first author was also partially supported by the NSF grant 0325113 and the by City University of Hong Kong grant No.7200111(MA), the third author by EPSRC Grant GR/T18707/01 and by the IST Programme of the European Community, under the PASCAL Network of Excellence IST-2002-506778.

Appendix A. Proofs of results from Subsection 4.1

Proof of Proposition 3. Property (a) follows by noting that the argument of the infimum in equation (8), $\left\|\sqrt{-\log q}\right\|_{L_r(I,p)}^2$, is non-decreasing in r by Hölder's inequality.

To prove (b) we let $N = |\{i : p(i) \neq 0\}|$ and note that

$$h_{\infty}(p) = \inf_{q} \sup \left\{ -\log q(i) : i \in I, p(i) \neq 0 \right\}$$
$$= -\log \left\{ \sup_{q} \inf \{q(i) : i \in I, p(i) \neq 0 \} \right\}.$$

The quantity inside the logarithm cannot be greater than $\frac{1}{N}$ because this would imply the existence of \bar{q} with $\bar{q}(i) > \frac{1}{N}$ for every *i* such that $p(i) \neq 0$, which violates the normalization constraint on \bar{q} . To prove the claim we note that the infimum is achieved for $q(i) = \frac{1}{N}$ for *i* such that $p(i) \neq 0$ and q(i) = 0 otherwise.

Property (c) follows from well-known properties of KL-divergence, see, for example [3, Chapter 2].

Finally, property (d) follows by observing that for every $\epsilon > 0$, there exist probability distributions q_1 and q_2 over I and J respectively, such that the following chain of inequalities holds

$$\begin{split} h_{r}(p) &= \inf_{q} \left\| \sqrt{-\log q} \right\|_{L_{r}(I \times J, p)}^{2} \leq \left\| \sqrt{-\log(q_{1}q_{2})} \right\|_{L_{r}(I \times J, p)}^{2} \\ &= \left\| \sqrt{-\log q_{1} - \log q_{2}} \right\|_{L_{r}(I \times J, p)}^{2} \leq \left\| \sqrt{-\log q_{1}} + \sqrt{-\log q_{2}} \right\|_{L_{r}(I \times J, p)}^{2} \\ &\leq \left(\left\| \sqrt{-\log q_{1}} \right\|_{L_{r}(I \times J, p)} + \left\| \sqrt{-\log q_{2}} \right\|_{L_{r}(I \times J, p)} \right)^{2} \\ &\leq 2 \left(\left\| \sqrt{-\log q_{1}} \right\|_{L_{r}(I, p_{1})}^{2} + \left\| \sqrt{-\log q_{2}} \right\|_{L_{r}(J, p_{2})}^{2} \right) \\ &\leq 2(h_{r}(p_{1}) + h_{r}(p_{2}) + \epsilon), \end{split}$$

where the third inequality follows from Minkowski's inequality for $L_r(I \times J, p)$ norm.

Proof of Theorem 2. Property (a) follows from Definition 7 which implies that $\mathcal{A}(\epsilon', \mathcal{F}, \mu, P_n) \subset \mathcal{A}(\epsilon, \mathcal{F}, \mu, P_n)$ whenever $\epsilon' \leq \epsilon$.

Property (b) follows directly from property (a) in Proposition 3.

To prepare for the proof of property (c), we observe, by Definitions 4 and 5, that

$$H(\epsilon, \mathcal{F}) = \log \sup_{n} \sup_{P_n} \inf\{|C| : C \in \mathcal{C}(\epsilon, \mathcal{F}, P_n)\}$$

and, by Definition 7, Definition 8 and property (b) in Proposition 3, that

$$H_{\infty}(\epsilon, \mathcal{F}, \mu) = \log \sup_{n} \sup_{P_{n}} \inf\{|A| : A \in \mathcal{A}(\epsilon, \mathcal{F}, \mu, P_{n})\}.$$

Now, the left inequality follows by noting that for any $A \in \mathcal{A}(2\epsilon, \mathcal{F}, \mu, P_n)$ we can build a $C \in \mathcal{C}(2\epsilon, \mathcal{F}, P_n)$ with $|A| \geq |C|$ associating every element $a \in A$ with a ball in C having radius 2ϵ and center in a.

The right inequality follows by constructing from every $C \in C(\epsilon, \mathcal{F}, P_n)$, a $A \in A(2\epsilon, \mathcal{F}, \mu, P_n)$ with $|A| \leq |C|$. The case $|C| = \infty$ is trivial, hence let us assume that |C| is finite.

First we observe that by definition the elements of C have the form

$$c_k = \{ f \in \mathcal{F} : \frac{1}{n} \sum_i |f(x_i) - f_k(x_i)|^2 < \epsilon^2 \}$$
 $f_k \in \mathcal{F}, \quad k = 1, \dots, |C|$

and without loss of generality we assume that $||f_k - f_h||_{L_2(X,P_n)} > 0$ for $k \neq h$. Let us consider the partition $A = \{a_1, \ldots, a_{|C|}\}$ defined by

$$a_k = \{ f \in \mathcal{F} : (\forall h < k, \ \Delta_{k,h}(f) < 0) \land \ (\forall h > k, \ \Delta_{k,h}(f) \le 0) \},\$$

where $\Delta_{k,h}(f) = \frac{1}{n} \sum_i |f(x_i) - f_k(x_i)|^2 - \frac{1}{n} \sum_i |f(x_i) - f_h(x_i)|^2$. By Assumption (a) in Definition 1, the maps

$$f \mapsto \frac{1}{n} \sum_{i} |f(x_i) - f_k(x_i)|^2$$

are measurable, and hence subsets a_k of \mathcal{F} are measurable. Moreover, by Assumption (b) in Definition 1 applied to x_1, \ldots, x_n , for every a_k , there exists $\delta_k > 0$ such that $B(f_k, \delta_k) \subset a_k$, so that $\mu(a_k) > 0$.

Finally observe that, for every $f, f' \in a_k$ it holds

$$\|f - f'\|_{L_2(X,P_n)} \le \|f - f_k\|_{L_2(X,P_n)} + \|f' - f_k\|_{L_2(X,P_n)} \le 2\epsilon,$$

which proves that $A \subset A(2\epsilon, \mathcal{F}, \mu, P_n)$.

The second part of the theorem follows straightforwardly from equation (9) and the properties (b) and (c) already proved. $\hfill \Box$

Appendix B. Proofs of results from Subsection 4.2

Proof of Proposition 4. The first step is to use a symmetrization technique introducing the ghost sample \mathbf{x}' independent of \mathbf{x} , and the measure $P'_n = \frac{1}{n} \sum_i \delta_{x'_i}$,

$$\begin{split} \mathbb{E}_{\mathbf{x}} d_r(P, P_n) &= \mathbb{E}_{\mathbf{x}} \| P - P_n \|_{\mu, r} = \mathbb{E}_{\mathbf{x}} \| \mathbb{E}_{\mathbf{x}'} P'_n - P_n \|_{\mu, r} \\ [\text{Minkowski's + Jensen's ineq.}] &\leq \mathbb{E}_{\mathbf{x}, \mathbf{x}'} \left\| \frac{1}{n} \sum_i (\delta_{x'_i}) - \delta_{x_i} \right) \right\|_{\mu, r} \\ [\text{symmetry of } \delta_{x'_i} - \delta_{x_i}] &= \mathbb{E}_{\mathbf{x}, \mathbf{x}', \sigma} \left\| \frac{1}{n} \sum_i \sigma_i (\delta_{x'_i} - \delta_{x_i}) \right\|_{\mu, r} \\ [\text{Minkowski's ineq.}] &\leq 2\mathbb{E}_{\mathbf{x}, \sigma} \left\| \frac{1}{n} \sum_i \sigma_i \delta_{x_i} \right\|_{\mu, r} = 2\mathbb{E}_{\mathbf{x}} R_{r, n}(\mathcal{F}, \mu). \end{split}$$

The proposition follows from the estimate above applying McDiarmid's inequality (see, for example, [4, Theorem 9.2]) to the random variable $d_r(P, P_n)$ and observing that since, for every $x \in X$, $f(x) \in [-1, 1]$, whenever \mathbf{x}' is obtained from \mathbf{x} replacing x_i with x'_i , it holds

$$\begin{aligned} |d_r(P, P_n) - d_r(P, P'_n)| &= \left| \|P - P_n\|_{\mu, r} - \|P - P'_n\|_{\mu, r} \right| \\ \text{[Minkowski's ineq.]} &\leq \|P_n - P'_n\|_{\mu, r} \\ &= \frac{1}{n} \left(\int_{\mathcal{F}} |f(x_i) - f(x'_i)|^r d\mu(f) \right)^{\frac{1}{r}} \leq \frac{2}{n}. \end{aligned}$$

The proof of Theorem 3 is based on the following two lemmas.

Lemma 1. Let (\mathcal{F}, μ) be a denumerable touchstone class. If for a given $\mathbf{x} = (x_1, \ldots, x_n)$ the inequality $\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_i f^2(x_i) \leq R^2$ is fulfilled, then for every $r \in [1, \infty]$ it holds

$$R_{r,n}(\mathcal{F},\mu) \leq \sqrt{\frac{2R^2}{n}} \left(\sqrt{h_r(\mu|\mathcal{F})} + 2\right).$$

Proof. Let us fix an arbitrary probability distribution q over \mathcal{F} . For every $f \in \mathcal{F}$ and $\delta \in (0, 1)$, by Hoeffding's inequality applied to the independent random variables $\{\sigma_i f(x_i)\}_i$, we get that with probability not less than $1 - \delta q(f)$ it holds

(13)
$$\left|\frac{1}{n}\sum_{i}\sigma_{i}f(x_{i})\right|^{2} \leq \frac{\sum_{i}(2f(x_{i}))^{2}}{2n^{2}}\log\frac{2}{q(f)\delta} \leq \frac{2R^{2}}{n}\left(\log\frac{1}{q(f)} + \log\frac{2}{\delta}\right)$$

Since $\sum_{f \in \mathcal{F}} q(f) = 1$, with probability not less than $1 - \delta$, the inequality above holds uniformly over \mathcal{F} .

Taking the $\frac{r}{2}$ -th power of (13) and averaging over \mathcal{F} w.r.t. μ , we get that with probability not less than $1 - \delta$ it holds

$$\begin{aligned} \left\| \frac{1}{n} \sum_{i} \sigma_{i} \delta_{x_{i}} \right\|_{\mu, r}^{2} &\leq \frac{2R^{2}}{n} \left\| \sqrt{\log \frac{1}{q} + \log \frac{2}{\delta}} \right\|_{L_{r}(\mathcal{F}, \mu)}^{2} \\ &\leq \frac{2R^{2}}{n} \left\| \sqrt{\log \frac{1}{q}} + \sqrt{\log \frac{2}{\delta}} \right\|_{L_{r}(\mathcal{F}, \mu)}^{2} \\ &\leq \frac{2R^{2}}{n} \left(\left\| \sqrt{\log \frac{1}{q}} \right\|_{L_{r}(\mathcal{F}, \mu)} + \sqrt{\log \frac{2}{\delta}} \right)^{2} \end{aligned}$$

The lemma follows from

$$\begin{split} \mathbb{E}_{\sigma} \left\| \frac{1}{n} \sum_{i} \sigma_{i} \delta_{x_{i}} \right\|_{\mu, r} &= \int_{0}^{\infty} \mathbb{P}_{\sigma} \left[\left\| \frac{1}{n} \sum_{i} \sigma_{i} \delta_{x_{i}} \right\|_{\mu, r} > t \right] dt \\ &\leq \sqrt{\frac{2R^{2}}{n}} \left(\left\| \sqrt{\log \frac{1}{q}} \right\|_{L_{r}(\mathcal{F}, \mu)} + 2 \int_{0}^{\infty} e^{-\frac{mt^{2}}{2R^{2}}} dt \right) \\ &\leq \sqrt{\frac{2R^{2}}{n}} \left(\sqrt{\left\| \log \frac{1}{q} \right\|_{L_{\frac{r}{2}}(\mathcal{F}, \mu)}} + 2 \right), \end{split}$$

by taking the infimum of the last term, relative to q over the class of probability distributions on \mathcal{F} .

Lemma 2. Let (\mathcal{F}, μ) be a touchstone class and $\mathbf{x} = (x_1, \ldots, x_n) \in X^n$ be an arbitrary sample. For every $r \in [1, \infty]$ it holds

$$R_{r,n}(\mathcal{F},\mu) \le \frac{48}{\sqrt{n}} \left(I_r(\mathcal{F},\mu) + \frac{1}{2} \right)$$

Proof. For every $j \in \mathbb{N}$, choose arbitrary partitions

$$A_j \in \mathcal{A}(2^{-j}, \mathcal{F}, \mu, P_n)$$

and operators $C_j : \mathcal{F} \to \mathcal{F}$ fulfilling

$$\forall a \in A_j \quad \forall f, f' \in a \qquad C_j(f) = C_j(f') \in a$$

Moreover for j > 0 define the operators $\Delta_j : \mathcal{F} \to L_2(X, P_n)$ by

$$\forall f \in \mathcal{F} \qquad \Delta_j(f) = C_j(f) - C_{j-1}(f).$$

Observe that Δ_j is piecewise constant on the partition $A_j \cap A_{j-1}$ composed of intersections between elements of A_j and A_{j-1} .

We define the denumerable classes of functions

$$\mathcal{F}_j = \operatorname{Im} \Delta_j,$$

endowed with the probability measures μ_j given by

$$\forall \hat{f} \in \mathcal{F}_j \qquad \mu_j(\{\hat{f}\}) = \mu(\Delta_j^{-1}(\hat{f})).$$

Observe that for all $\hat{f} \in \mathcal{F}_j$, for some $f \in \mathcal{F}$ it holds

(14)
$$\frac{1}{n} \sum_{i} \hat{f}^{2}(x_{i}) = \|\Delta_{j}(f)\|_{L_{2}(X,P_{n})}$$
$$\leq \|C_{j}(f) - f\|_{L_{2}(X,P_{n})} + \|f - C_{j-1}(f)\|_{L_{2}(X,P_{n})}$$
$$\leq 2^{-j} + 2^{-j+1} = 3 \ 2^{-j}.$$

Therefore, since $f = f - C_N(f) + \sum_{j=1}^N \Delta_j(f)$ for every $N \in \mathbb{N}$, we get

$$R_{r,n}(\mathcal{F},\mu) = \mathbb{E}_{\sigma} \left\| \frac{1}{n} \sum_{i} \sigma_{i} \delta_{x_{i}} \right\|_{\mu,r}$$

$$\leq \mathbb{E}_{\sigma} \left\| \frac{1}{n} \sum_{i} \sigma_{i} (\delta_{x_{i}} - \delta_{x_{i}} \circ C_{N}) \right\|_{L_{r}(\mathcal{F},\mu)}$$

$$+ \sum_{j=1}^{N} \mathbb{E}_{\sigma} \left\| \frac{1}{n} \sum_{i} \sigma_{i} (\delta_{x_{i}} \circ C_{j} - \delta_{x_{i}} \circ C_{j-1}) \right\|_{L_{r}(\mathcal{F},\mu)}$$
wartz ineq.)
$$\leq \sup \| f - C_{N}(f) \|_{L_{2}(X,P_{n})} + 2 \sum_{i}^{N} R_{r,n} \left(\frac{1}{2} \mathcal{F}_{j}, \mu_{j} \right)$$

Minimizing w.r.t. the partitions A_j , the inequality above becomes

$$\begin{aligned} R_{r,n}(\mathcal{F},\mu) &= 2^{-N} + \sqrt{\frac{36}{n}} \sum_{j=1}^{N} 2^{-j+1} \left(\inf_{A_j} \sqrt{h_r(\mu_{|A_j})} + \inf_{A_{j-1}} \sqrt{h_r(\mu_{|A_{j-1}})} + \sqrt{2} \right) \\ &\leq 2^{-N} + \sqrt{\frac{36}{n}} \sum_{j=1}^{N} 2^{-j+2} \left(\inf_{A_j} \sqrt{h_r(\mu_{|A_j})} + 1 \right) \\ &\leq 2^{-N} + \frac{48}{\sqrt{n}} \sum_{j=1}^{N} (2^{-j} - 2^{-j-1}) \left(\sqrt{H_r(2^{-j}, \mathcal{F}, \mu)} + 1 \right) \\ (\text{Th. 2}, (a)) &\leq 2^{-N} + \frac{48}{\sqrt{n}} \left(\int_0^\infty \sqrt{H_r(\epsilon, \mathcal{F}, \mu)} d\epsilon + \frac{1}{2} \right). \end{aligned}$$

The lemma follows taking the limit $N \to \infty$.

Proof of Theorem 3. The proposition follows from Lemma 2 and Proposition 4 for a suitable value of C since by assumption $-\log \delta \geq \log 2$.

Proof of Proposition 5. The proposition follows recalling Assumption (a) in Definition 1 and that $|f(x)| \leq 1$, by the following chain of inequalities.

$$\begin{split} \mathbb{E}_{\mathbf{x}} d_r(P, P_n) &= \mathbb{E}_{\mathbf{x}} \|P - P_n\|_{\mu, r} \\ \text{(Hölder's ineq.)} &\leq (\mathbb{E}_{\mathbf{x}} \mathbb{E}_f |Pf - P_n f|^r)^{\frac{1}{r}} \\ \text{(Fubini's Th.)} &= (\mathbb{E}_f \mathbb{E}_{\mathbf{x}} |Pf - P_n f|^r)^{\frac{1}{r}} \\ &= \left(\mathbb{E}_f \int_0^\infty \mathbb{P}_{\mathbf{x}} \left[\left| \frac{1}{n} \sum_i f(x_i) - \mathbb{E}_f \right|^r \geq \epsilon \right] d\epsilon \right)^{\frac{1}{r}} \\ \text{(Hoeffding's ineq.)} &\leq \left(2 \int_0^\infty \exp\left(-\frac{n\epsilon^{\frac{2}{r}}}{2} \right) d\epsilon \right)^{\frac{1}{r}} \\ &= \sqrt{\frac{2}{n}} \left(2r \int_0^\infty t^r e^{-t^2} dt \right)^{\frac{1}{r}} = \sqrt{\frac{2}{n}} \left(r \Gamma\left(\frac{r-1}{2}\right) \right)^{\frac{1}{r}} \leq C \sqrt{\frac{r}{n}}, \end{split}$$

where the last inequality is derived from Stirling's series for the Gamma function. Hence the proposition is proved by reasoning as in the second part of the proof Proposition 4.

References

- N. Alon and S. Ben-David and N. Cesa-Bianchi and D. Haussler. Scale-sensitive dimensions, uniform convergence, and learnability. J. ACM, 44(4):616–631, 1997.
- 2] J. B. Conway. A Course in Functional Analysis. 2nd edition, Springer-Verlag, 1994.
- [3] T.M. Cover and J.A.Thomas. *Elements of Information Theory*. Wiley, 1991.
- [4] L. Devroye and L. Györfi and G. Lugosi A Probabilistic Theory of Pattern Recognition Springer, New York, 1996.
- [5] R. M. Dudley. A course on empirical processes. Lecture notes in mathematics, 1097:2-142,1984.
- [6] R. M. Dudley. Uniform central limit theorems Cambridge University Press, Cambridge, MA, 1999.
- [7] A. Kolmogorov. Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari, A. IV, n 1, pages 4-11, 1933.
- [8] V. I. Koltchinskii. On the central limit theorem for the empirical measures. Theory of Probability and Mathematical Statistics, 24, pages 71-82, 1981.
- [9] D. Pollard. A central limit theorem for the empirical processes. Journal of the Australian Mathematical Society, A 33, pages 235-248, 1982.
- [10] S. Mukherjee and V. Vapnik. Multivariate Density Estimation: An SVM Approach. CBCL Paper #170/AI Memo #1653, MIT, Cambridge, MA, April 1999.
- [11] L. Schwartz. Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants). J. Analyse Math., 13:115-256, 1964.
- [12] J. Shawe-Taylor and A. Dolia. A new framework for probability density estimation. Preprint, 2006.
- [13] A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes. Springer Series in Statistics, 1996.
- [14] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
- [15] V. N. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, pages 264-280, 1971.
- [16] V. N. Vapnik and A. Chervonenkis. Theory of pattern recognition [in Russian]. Nauka, Moscow, 1974. (German translation: W. Wapnik & A. Tscherwonenkis, Theorie der zeichenerkennung, Akademie-Verlag, Berlin, 1979).

[17] V. N. Vapnik and A. Chervonenkis. Necessary and sufficient conditions for the uniform convergence of empirical means to their expectations. Theory Probab. Appl. 3, pages 532-553, 1981.

ANDREA CAPONNETTO, DEPARTMENT OF MATHEMATICS, CITY UNIVERSITY OF HONG KONG, 83 TAT CHEE AVENUE, KOWLOON TONG, HONG KONG *E-mail address:* caponnet@cityu.edu.hk

Ernesto De Vito, DSA, Università di Genova, Via Dodecaneso 35, 16146 Genova, Ital
y $E\text{-}mail\ address:\ \texttt{devito@unimo.it}$

Massimiliano Pontil, Department of Computer Science, University College London, Malet Place, London WC1E 6BT, UK

E-mail address: m.pontil@cs.ucl.ac.uk