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Abstract. The Law of Large Numbers (LLN) over classes of functions is a

classical topic of Empirical Processes Theory. The properties characterizing
classes of functions on which the LLN holds uniformly (i.e. Glivenko-Cantelli

classes) have been widely studied in the literature. An elegant sufficient con-

dition for such a property is finiteness of the Koltchinskii-Pollard entropy inte-
gral, and other conditions have been formulated in terms of suitable combina-

torial complexities (e.g. the Vapnik-Chervonenkis dimension). In this paper,

we endow the class of functions F with a probability measure and consider the
LLN relative to the associated Lr metric. This framework extends the case of

uniform convergence over F , which is recovered when r goes to infinity. The

main result is a Lr-LLN in terms of a suitable uniform entropy integral which
generalizes the Koltchinskii-Pollard entropy integral.

1. Introduction

Uniform Laws of Large Numbers (u-LLN) are widely studied results in Statistics.
In the usual setting, we are given a finite set of points x = (x1, . . . , xn) ∈ Xn

sampled i.i.d. from a fixed but unknown probability measure P on X, and a class
F of real-valued functions on X. The aim of u-LLN is to establish conditions
on the class F which ensure the uniform convergence of the empirical average
Pnf = 1

n

∑
i f(xi) to the mean Pf =

∫
X
f(x)dP (x), that is 1

∀P ∈ P(X), ∀ε > 0 lim
n→∞

Px

[
sup
f∈F
|Pf − Pnf | ≥ ε

]
= 0,(1)

where P(X) is the set of all probability measures on X. Function classes fulfilling
condition (1) are called (universal) Glivenko-Cantelli classes.

Laws of Large Numbers (LLN) over classes of functions are classical results in
Empirical Processes Theory. In particular, the characterization of Glivenko-Cantelli
classes has been extensively studied in this literature. A number of techniques have
been introduced to capture this concept, for example through the notions of VC-
dimension [15, 16, 17, 14], scale-sensitive VC-dimension [1], Koltchinskii-Pollard
entropy integral [8, 9, 5], etc.

In this paper, we endow the class of functions F with a probability measure
and consider the LLN relative to an Lr metric. This framework extends the case
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of uniform convergence over F , which is recovered when r goes to infinity. More
precisely, we introduce the pseudo-norm

‖P‖µ,r =
(∫
F
|Pf |r dµ(f)

) 1
r

,

where µ is a prescribed probability measure on F , and consider the convergence of
the stochastic process (Pn − P ) relative to this norm. To illustrate our notation,
let us consider a simple example where X = R and F is the space of characteristics
functions of half-lines, that is F = {ft : t ∈ R}, where ft(x) = 1 if x ≤ t and zero
otherwise. In this case, the function t 7→ Pft is the cumulative distribution function
associated to P and ‖P − Pn‖µ,r is the Lr distance between the true cumulative
distribution function and the empirical distribution function, respectively.

The main result of the paper is a Lr-LLN involving a finiteness condition for a
suitable generalization of the Koltchinskii-Pollard entropy integral.

We note that u-LLN play an important role in the foundations of Learning The-
ory. In particular, the notion of Glivenko-Cantelli class introduced in the former
context is equivalent to the learnability notion of a class of functions F , see, for ex-
ample [1] and references therein. Hence, our results can also be seen as a relaxation
of the learnability results in Learning Theory.

The paper is organized as follows. In Section 2, we introduce our framework
and in particular we give the definition of touchstone class and induced Lr metric.
In Section 3, we collect some known results about the convergence of empirical
measures Pn to the unknown measure P relative to the uniform semi-norm ‖·‖F .
In particular, we define the Koltchinskii-Pollard entropy integral I(F) of the class
F , which is used in Theorem 1 to bound the uniform deviation of the process
Pn − P . In Section 4, we study the Lr-LLN in terms of a suitable uniform entropy
integral which generalizes the Koltchinskii-Pollard entropy integral. This section
contains the main results of the paper. In Subsection 4.1, we define the uniform
entropy integral relative to the Lr metric, and show its relation to the Koltchinskii-
Pollard entropy integral (Theorem 2). In Subsection 4.2, we generalize the results
of Section 3 to the Lr setting (Theorem 3). Proofs of the results given in Section 4
are postponed to Appendices A and B.

2. Touchstone classes and Lr semi-norms

Let X be a locally compact separable metric space, for example any closed subset
of Rk. We denote by M(X) the space of (signed) bounded measures over X and
by P(X) the subset of probability measures. Given M ∈ M(X) and a bounded
measurable function f : X → R, we define pairing as

(2) Mf =
∫
X

f(x)dM+(x)−
∫
X

f(x)dM−(x),

where M = M+−M− is Hahn decomposition of M as sum of two positive bounded
measures. The above pairing suggests that any class of functions F defines a metrics
on P(X) by means of

d(P, P ′) = sup
f∈F
|Pf − P ′f | .(3)

For example, if F is the unit ball in the Banach space C0(X) of continuous functions
on X vanishing at infinity, then d is the distance induced by the total variation,
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see, for example, [2, Appendix C.18]. Another classical example is the Kolmogorov-
Smirnov distance, which is obtained whenX = R and F is the class of step functions
on R (see Example 1 below).

According to the definition (3) two probability measures are ε-close to each
other whenever for every f ∈ F they have ε-close pairings with f . In a sense,
approximating a probability measure P , relative to the metric d is equivalent to
simultaneously approximating as many linear functionals as the functions in F .
However, in various situations this notion of distance may often be excessively
strong. In fact, we would like two probability measures to be ε-close even if they do
not have ε-close evaluations over a tiny fraction of the functionals induced by F .
The formalization of this idea can be accomplished by suitably endowing F with a
probability measure µ, and considering, for some r ≥ 1, the pseudo-distance

dr(P, P ′) =
(∫
F
|Pf − P ′f |r dµ(f)

) 1
r

.(4)

The distance d given by (3) will be recovered as the limit of dr when r goes to
infinity.

Inspired by [12] we name touchstone class a class of functions F inducing a
metric over P(X) through equation (4). The definition below formalizes the notion
of touchstone class.

Definition 1. A touchstone class over X is a family F of functions from X to
[−1, 1] equipped with a structure of locally compact separable metric space. F is
endowed with a probability measure µ, satisfying the properties

(a) the map (f, x) 7→ f(x) is measurable from F ×X into [−1, 1];
(b) for every f ∈ F there exists a measurable subset Af ⊂ F with2

µ (Af ∩B(f, δ)) > 0 ∀δ > 0

and, for all x ∈ X and ε > 0, there is δ > 0 such that

|f ′(x)− f(x)| ≤ ε ∀f ′ ∈ Af ∩B(f, δ).

The measurability is always relative to the σ-algebra induced by metric of F .
In most applications (see for example Examples 1 and 2 below) the metric space
structure over F is naturally induced by a suitable space of parameters T through
a parametrization function t 7→ ft. Assumption (a) ensures that every function in
F is measurable and bounded on X, so that the following definition makes sense
(see Proposition 1 below).

Definition 2. Let (F , µ) be a touchstone class and M ∈ M(X). We define the
semi-norms

‖M‖µ,r =
(∫
F
|Mf |rdµ(f)

) 1
r

, r ∈ [1,∞)

‖M‖µ,∞ = ess sup
f∈F
|Mf |

‖M‖F = sup
f∈F
|Mf |

2Here B(f, δ) is the open ball in F , with center f and radius δ.
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The pseudo-metric introduced in equations (3) and (4) can be expressed in the
form

d(P, P ′) = ‖P − P ′‖F
d∞(P, P ′) = ‖P − P ′‖µ,∞
dr(P, P ′) = ‖P − P ′‖µ,r.

As shown by next proposition, Assumption (b) ensures that

lim
r→∞

dr(P, P ′) = d∞(P, P ′) = d(P, P ′).(5)

Clearly this assumption implies that the support of µ is F , but this condition is
not sufficient. Two examples of sufficient conditions are that the map f 7→ f(x)
is continuous for all x ∈ X, or that F is discrete (in the definition, let Af = {F}
or Af = {f}, respectively). However, Definition 1 embraces important examples
where both F is not discrete and the mappings f 7→ f(x) are not continuous (see
Examples 1 and 2 at the end of this section).

Proposition 1. With the above notation, we have, for every M ∈M(X), that
(1) the map r 7→ ‖M‖µ,r is continuous on [1,∞], increasing and bounded from

above by ‖M‖F ;
(2) ‖M‖µ,∞ = ‖M‖F .

Proof. For every f ∈ F , Mf is well defined since f is measurable and bounded.
Given r ≥ 1, Fubini theorem implies that the map f 7→ Mf is r-integrable with
respect to µ, so that ‖M‖µ,r is finite.

Part (1) follows from the finiteness of µ and well known properties of Lr norms
(see, for example, [11, Theorem 5.8.35]).

We prove part (2) by contradiction. Assume that there is M ∈M(X) and f ∈ F
such that |Mf | > ‖M‖µ,∞ and, without loss of generality, Mf > 0. Let Af ⊂ F
as in Assumption (b) in Definition 1, and ε = (Mf − ‖M‖µ,∞)/2, we claim that
there is δ > 0 such that

|Mf ′ −Mf | ≤ ε ∀f ′ ∈ Af ∩B(f, δ),(6)

and, hence,

Mf ′ ≥
Mf + ‖M‖µ,∞

2
> ‖M‖µ,∞ ∀f ∈ Af ∩B(f, δ).

By assumption µ(Af ∩B(f, δ)) > 0, so

ess sup {|Mf ′| : f ′ ∈ Af ∩B(f, δ)} > ‖M‖µ,∞,
which is a contradiction.
Finally let us prove claim (6) by contradiction, assuming that for every i ∈ N there
is f ′i ∈ Af ∩ B(f, 1

i ) such that |Mf ′i −Mf | > ε. However, by assumption, the
sequence (f ′i(x))i∈N converges to f(x) for all x ∈ X. Since f ′i and f are bounded
functions, the Lebesgue dominated convergent theorem implies that

lim
i→∞

Mf ′i = Mf,

which is a contradiction. �

We now present two simple examples of the described construction. In the
following sections they will be used to illustrate the forthcoming developments.
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Example 1. Characteristic functions of orthants. We let X = Rk and

F = {ft : t ∈ Rk},

where ft(x) = 1{xi ≤ ti, ∀i ∈ {1, . . . , n}}, with 1{a} the indicator function of the
predicate a, and xi the i-th component of the vector x ∈ Rk.

Here T = Rk plays the role of parameter space for F , therefore we endow F
with the metric induced by the Euclidean structure of Rk.

We let µ be an arbitrary probability measure on the metric space F , satisfying
the condition supp µ = F . In this example the evaluation functionals f 7→ f(x)
are not continuous at t = x, nevertheless Assumption (b) in Definition 1 may be
fulfilled thank to the upper semi-continuity property of the functions in F . In fact,
it easy to verify that a suitable choice for the sets Af is

Aft
= {ft′ : t′i ≥ ti, ∀i ∈ {1, . . . , k}} ∀t ∈ Rk.

Example 2. Binary digits. We use the binary expansion of real numbers in (0, 1).
For every x ∈ (0, 1) we define the sequence (bi(x))i∈N of numbers in {0, 1}, fulfilling
the equation3 x =

∑
i bi(x)2−i.

We let X = (0, 1) and,

F = {bt : t ∈ N}.

In this case, the parameter space is T = N, and F inherits its metric from it.
Since F is discrete, recalling the discussion following Definition 1, we conclude that
for arbitrary µ fulfilling µ({f}) > 0 for every f ∈ F , the choice Af = {f} verifies
the assumptions in Definition 1.

In the next sections, we fix a touchstone class F and a probability measure
P ∈ P(X). For any sample x = (x1, . . . , xn) drawn i.i.d from P , we denoted by
Pn = 1

n

∑
i δxi the corresponding empirical measure and we study the convergence

of Pn to P with respect to dr, 1 ≤ r ≤ ∞. As discussed above, if r = +∞, d∞ = d,
so that the results are well known, see for instance [5, 13, 6]. The convergence is
possible if and only if F is a Glivenko-Cantelli class and an explicit non-asymptotic
upper bound on d(P, Pn) can be given in terms of the Koltchinskii-Pollard entropy
integral I(F). We review these results in the following section, as a preliminary
step toward the generalization presented in Section 4.

3. Uniform entropy condition and Glivenko-Cantelli property

Let us begin by introducing the notion of Rademacher averages, which play a
central role in our subsequent analysis.

3For rational x, the expansion is not unique. In this case ties are broken by choosing the unique
finite expansion.
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Definition 3. The empirical Rademacher averages of a touchstone class F , relative
to the samples x = (x1, . . . , xn) are defined by 4

Rn(F) = Eσ sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
where σ = (σ1, . . . , σn) is a n-tuple of Rademacher variables5.

The following proposition states a fundamental bound for d(P, Pn), the Sym-
metrization Lemma, in terms of Rademacher averages.

Proposition 2. Let P ∈ P(X) and x = (x1, . . . , xn) be i.i.d. samples drawn from
P . For every δ ∈ (0, 1), with probability at least 1− δ, it holds

d(P, Pn) ≤ 2ExRn(F) +

√
2 log 1

δ

n
.

Proof. We appeal to [13, Lemma 2.3.1] to assert that Exd(P, Pn) ≤ 2ExRn(F).
The result follows by McDiarmid’s inequality (see, for example, [4, Theorem 9.2])
recalling that the functions in F take values in [−1, 1]. �

To proceed further in our analysis and define the Koltchinskii-Pollard entropy
of F , we need the notion of covering number.

Definition 4. For every P ∈ P(X) and ε > 0 we define C(ε,F , P ) as the set of all
covers of F by sets of the form

cf̄ = {f ∈ F :
∥∥f − f̄∥∥

L2(X,P )
< ε} f̄ ∈ F ,

and the covering number of F as 6

N(ε,F , L2(X,P )) = inf{|C| : C ∈ C(ε,F , P )}.

We refer to [13, Definition 2.2.3] for information on covering numbers.
The notion of uniform entropy defined below is central in Empirical Processes

Theory (see for example [13, Chapter 2.5]).

Definition 5. For every ε > 0 we define the uniform entropy of a touchstone class
F as

H(ε,F) = sup
n

sup
Pn

logN(ε,F , L2(X,Pn)),

where the supremum is over measures of the form Pn = 1
n

∑
i δxi

.

The following theorem gives an upper bound on d(P, Pn) in terms of the Koltchinskii-
Pollard entropy integral I(F).

4Often, in the literature the absolute value in the definition of the empirical Rademacher

averages is removed, that is, one consider the quantity

R̄n(F) = Eσ sup
f∈F

1

n

nX
i=1

σif(xi).

This definition is equivalent to Definition 3. Specifically, one can show that 1
2
Rn(F) ≤ R̄n(F) ≤

Rn(F).
5The Rademacher variables (σ1, . . . , σn) are {−1, 1}-valued and independent, with P [σi = 1] =

P [σi = −1] = 1
2

.
6We denote by |C| the cardinality of the set C.
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Theorem 1. Let P be in P(X) and x = (x1, . . . , xn) be i.i.d. samples drawn from
P . For every δ ∈ (0, 1

2 ), with probability at least 1− δ, it holds

(7) d(P, Pn) ≤ C√
n

(
I(F) +

√
log

1
δ

)
,

where C is a universal constant and I(F) is the Koltchinskii-Pollard entropy integral
of F defined as

I(F) =
∫ ∞

0

√
H(ε,F)dε.

Proof. We first note that the Koltchinskii-Pollard entropy integral is well defined
sinceH(ε,F) is monotone with respect to ε. The inequality follows from Proposition
2 and [13, Corollary 2.2.8]. �

From Theorem 1 it follows that finiteness of the Koltchinskii-Pollard entropy
integral (the uniform entropy condition) is a sufficient condition for the Glivenko-
Cantelli property of F . That is, we have the following corollary.

Corollary 1. If I(F) <∞ then F is a Glivenko-Cantelli class.

Notice that in general the converse result does not hold, that is, it is not true that
the Glivenko-Cantelli property implies finiteness of I(F). However the equivalence
holds for classes F of binary-valued functions (see [6]).

Finally let us consider our examples.

Example 1 (cont.) We estimate the covering number of the binary-valued class
of function F by the standard VC-bound (see [13, Theorem 2.6.4] and [13, Example
2.6.1])

N(ε,F , L2(X,P )) ≤
(
K

ε

)2k

,

which holds for some constant K and every ε ∈ (0, 1) and P ∈ P(X).
By direct integration and noting that the covering number is exactly equal to 1

for ε ≥ 1, we get I(F) ≤ C ′
√
k, for a suitable constant C ′. Hence, by Corollary 1

F is Glivenko-Cantelli.
The pseudo-metric d is named Kolmogorov-Smirnov distance, and has been

widely studied in statistics literature (e.g. [7, 4, 10]).

Example 2 (cont.) In this case, I(F) is infinite. This fact can be proved first
showing, by reasoning as in [14, Example 4.11.4], that the VC-dimension of F
is infinite. Hence since finiteness of VC-dimension is a necessary condition for the
Glivenko-Cantelli property (over binary-valued classes), by Corollary 1 we conclude
that I(F) =∞.

4. Lr convergence results

In this section we present the main result of the paper, Theorem 3, which gen-
eralizes to the Lr metric the uniform convergence result given in Theorem 1.

The central concept in this analysis is a suitable generalization Ir(F , µ) of the
Koltchinskii-Pollard uniform entropy integral I(F) defined in the previous section.
This quantity and its properties are described in Subsection 4.1, while the general-
ization of the results from Section 3 is given in Subsection 4.2. For sake of clarity
we postpone all the proofs to Appendices A and B.
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4.1. Uniform entropies. Let us begin with some preliminary definitions.

Definition 6. Let p : I → [0, 1] be a probability distribution over a denumerable
set 7 I. For every r ∈ [1,∞], we define the quantity

hr(p) = inf

{∥∥∥√− log q
∥∥∥2

Lr(I,p)
: q(i) ≥ 0,

∑
i

q(i) = 1

}
.(8)

Recall, for r ∈ [1,∞), adopting the convention
(
log 1

0

) r
2 0 = 0, that the Lr norm

appearing in the equation (8) is given by

∥∥∥√− log q
∥∥∥2

Lr(I,p)
=

(∑
i

(
log

1
q(i)

) r
2

p(i)

) 2
r

,

and for r =∞ we have∥∥∥√− log q
∥∥∥2

L∞(I,p)
= sup

{
log

1
q(i)

: p(i) 6= 0
}
.

The function hr has some nice properties collected in the following proposition.

Proposition 3. The function hr fulfills the following properties.

(a) For every r, r′ ∈ [1,∞], r ≤ r′ it holds hr(p) ≤ hr′(p);
(b) h∞(p) = log |{i : p(i) 6= 0}|;
(c) h2(p) = −

∑
i p(i) log p(i), the Shannon entropy of p;

(d) For every r ∈ [1,∞], denumerable index sets I and J , and probability dis-
tribution p over I × J

hr(p) ≤ 2(hr(p1) + hr(p2)),

where p1(i) =
∑
j p(i, j) and p2(j) =

∑
i p(i, j).

The second step of our construction is to define the quantity Hr(ε,F , µ) which
generalizes the uniform entropyHr(ε,F). To this end, we first define suitable classes
of partitions of F , which play a role analogous to that of the covers C(ε,F , P ).

Definition 7. Let (F , µ) be a touchstone class and P belong to P(X). For every ε >
0 we define A(ε,F , µ, P ) as the set of denumerable partitions of F into measurable
parts, having strictly positive measure and L2(X,P )-diameter at most ε.

Recall, by Assumption (a) in Definition 1, that every function in F is measurable
and bounded on X. Hence, F ⊂ L2(X,P ) and the quantity A(ε,F , µ, P ) is well-
defined.

Observe also that since a partition A ∈ A(ε,F , µ, P ) is a family of measurable
sets, the restriction of µ over A, µ|A is well-defined. Moreover, by Definition 7, µ|A
is a probability distribution8 on A.

We are now ready to define Hr(ε,F , µ) and Ir(F , µ).

7A set is denumerable if and only if it is finite or countably infinite.
8Recall that the probability measure µ is, by definition, a function over the σ-field Σ of F ,

fulfilling µ(F) = 1 and, for all a and b in Σ with a∩b = ø, the equality µ(a∪b) = µ(a)+µ(b) holds.
Therefore if the denumerable partition A in the text is {a1, a2, . . . }, we get

P
i µ|A(ai) = 1.
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Definition 8. For every ε > 0, r ∈ [1,∞], we define the uniform entropy of a
touchstone class (F , µ) as

Hr(ε,F , µ) = sup
n

sup
Pn

inf
A
hr(µ|A),

where the supremum is over measures of the form Pn = 1
n

∑
i δxi , and the infimum

is over A(ε,F , µ, Pn).
The corresponding uniform entropy integral is

(9) Ir(F , µ) =
∫ ∞

0

√
Hr(ε,F , µ)dε.

The following theorem collect the relevant properties of the quantities introduced
in previous definition.

Theorem 2. The following properties of the uniform entropy hold.

(a) Hr(ε,F , µ) is non-increasing with respect to ε;
(b) Hr(ε,F , µ) is non-decreasing with respect to r;
(c) H(2ε,F) ≤ H∞(2ε,F , µ) ≤ H(ε,F).

Moreover Ir(F , µ) is non-decreasing in r, and

I(F) ≤ I∞(F , µ) ≤ 2I(F).

Finally we illustrate the results of this subsection through our two examples.

Example 1 (cont.) From Theorem 2 and the already known result I(F) ≤ C ′
√
k,

we conclude that for every µ fulfilling the assumptions, and r ∈ [1,∞], it holds
Ir(F , µ) ≤ 2C ′

√
k.

Example 2 (cont.) From Definition 6 it follows (by the monotonicity property of
(− log q)

r
2 w.r.t. q) for arbitrary P and µ, that

Â = argmax
A∈A(ε,F,µ,P )

hr(µ|A) = {{bt} : t ∈ N}.

Therefore, by Definition 8, for ε ∈ (0, 1) we get

Hr(ε,F , µ) ≤ hr(µ|Â),

and for ε ≥ 1, Hr(ε,F , µ) = 0. From the estimate above we see that the uniform
entropy integral Ir(F , µ) is upper bounded by hr(µ|Â).

Computing the function hr for an arbitrary probability distribution over N is
not an easy task. However, assuming that µ({bt}) = O(t−η) for some η > 1, it is
straightforward to show that hr(µ|Â) is finite for every r ∈ [1,∞).

4.2. Upper bounds on dr(P, Pn). In this subsection, we extend the results of
Section 3, from the analysis of d(P, Pn) to that of dr(P, Pn) for arbitrary r ∈ [1,∞].

We already observed (see equation (5)) that the pseudo-metric d can be seen as
the limit of the pseudo-metric dr as r goes to infinity. The next definition intro-
duces the quantity Rr,n(F , µ) which, as dr does with d, generalizes the Rademacher
averages Rn(F) introduced in Definition 3.

Definition 9. For every r ∈ [1,∞], the empirical Rademacher averages Rr,n(F , µ)
of the touchstone class (F , µ), relative to the sample x = (x1, . . . , xn) are defined
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by

Rr,n(F , µ) = Eσ

∥∥∥∥∥ 1
n

∑
i

σiδxi

∥∥∥∥∥
µ,r

where σ = (σ1, . . . , σn) is an n-tuple of Rademacher variables, and δx is the Dirac
delta measure at x.

The relation between Rr,n(F , µ) and Rn(F) is clarified by observing that

Rn(F) = Eσ

∥∥∥∥∥ 1
n

∑
i

σiδxi

∥∥∥∥∥
F

.

Therefore, from Proposition 1 we conclude that Rr,n(F , µ) is increasing as a func-
tion of r, and

lim
r→∞

Rr,n(F , µ) = R∞,n(F , µ) = Rn(F).(10)

We also note that the Symmetrization Lemma stated in Proposition 2 may be
naturally extended to the Lr setting.

Proposition 4. Let P be in P(X) and x = (x1, . . . , xn) be i.i.d. samples drawn
from P . For every δ ∈ (0, 1) and r ∈ [1,∞], with probability at least 1− δ, it holds

dr(P, Pn) ≤ 2ExRr,n(F , µ) +

√
2 log 1

δ

n
.

More interestingly, the chaining technique used to derive Theorem 1 can still
be applied in the Lr setting. This is possible by exploiting the properties of the
uniform entropies Hr(ε,F , µ) which have been shown in the previous subsection.

Theorem 3. Let P be in P(X) and x = (x1, . . . , xn) be i.i.d. samples drawn from
P . For every δ ∈ (0, 1

2 ), with probability at least 1− δ, it holds, for r ∈ [1,∞], the
inequality

dr(P, Pn) ≤ C√
n

(
Ir(F , µ) +

√
log

1
δ

)
,(11)

where C is a universal constant and the uniform entropy integral Ir(F , µ) is defined
in equation (9).

Theorem 3 generalizes Theorem 1 since by equation (5) and Theorem 2, for
r =∞ equation (11) becomes equation (7).

The advantage of the new result is that for some touchstone classes, the uniform
entropy integral Ir(F , µ) may be finite for arbitrarily large r while I(F) is infinite.
Under these circumstances Theorem 3 gives quantitative probabilistic bounds for
the defects |Pf − Pnf | while the standard uniform analysis in Theorem 1 is inef-
fective. This is the case for Example 2 when a suitably fast decaying probability
measure µ is chosen.

We conclude this section with an important remark about the presented result.
We want to stress that the content of Theorem 3 resides in the non-asymptotic
character of equation (11) and in the explicit evaluation of Ir(F , µ). In fact, an as-
ymptotic result analogous to Corollary 1 for the Lr setting can be directly obtained
exploiting the uniform boundedness of F .
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Proposition 5. Let P be in P(X) and x = (x1, . . . , xn) be i.i.d. samples drawn
from P . For every δ ∈ (0, 1) and r ∈ [1,∞], with probability at least 1− δ, it holds

dr(P, Pn) ≤ C√
n

(
√
r +

√
log

1
δ

)
,(12)

for some universal constant C.

The important point here is that the estimate (12) does not accounts for any
specific structure of F . For instance, when r � n equation (12) gives no information
on dr(P, Pn), while equation (11) may give a tight bound, for specific classes of
functions with small uniform entropy integral Ir(F , µ).
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Appendix A. Proofs of results from Subsection 4.1

Proof of Proposition 3. Property (a) follows by noting that the argument of the
infimum in equation (8),

∥∥√− log q
∥∥2

Lr(I,p)
, is non-decreasing in r by Hölder’s in-

equality.
To prove (b) we let N = |{i : p(i) 6= 0}| and note that

h∞(p) = inf
q

sup {− log q(i) : i ∈ I, p(i) 6= 0}

= − log
{

sup
q

inf{q(i) : i ∈ I, p(i) 6= 0}
}
.

The quantity inside the logarithm cannot be greater than 1
N because this would

imply the existence of q̄ with q̄(i) > 1
N for every i such that p(i) 6= 0, which violates

the normalization constraint on q̄. To prove the claim we note that the infimum is
achieved for q(i) = 1

N for i such that p(i) 6= 0 and q(i) = 0 otherwise.
Property (c) follows from well-known properties of KL-divergence, see, for ex-

ample [3, Chapter 2].
Finally, property (d) follows by observing that for every ε > 0, there exist prob-

ability distributions q1 and q2 over I and J respectively, such that the following
chain of inequalities holds

hr(p) = inf
q

∥∥∥√− log q
∥∥∥2

Lr(I×J,p)
≤
∥∥∥√− log(q1q2)

∥∥∥2

Lr(I×J,p)

=
∥∥∥√− log q1 − log q2

∥∥∥2

Lr(I×J,p)
≤
∥∥∥√− log q1 +

√
− log q2

∥∥∥2

Lr(I×J,p)

≤
(∥∥∥√− log q1

∥∥∥
Lr(I×J,p)

+
∥∥∥√− log q2

∥∥∥
Lr(I×J,p)

)2

≤ 2
(∥∥∥√− log q1

∥∥∥2

Lr(I,p1)
+
∥∥∥√− log q2

∥∥∥2

Lr(J,p2)

)
≤ 2(hr(p1) + hr(p2) + ε),
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where the third inequality follows from Minkowski’s inequality for Lr(I × J, p)
norm. �

Proof of Theorem 2. Property (a) follows from Definition 7 which implies that
A(ε′,F , µ, Pn) ⊂ A(ε,F , µ, Pn) whenever ε′ ≤ ε.

Property (b) follows directly from property (a) in Proposition 3.
To prepare for the proof of property (c), we observe, by Definitions 4 and 5, that

H(ε,F) = log sup
n

sup
Pn

inf{|C| : C ∈ C(ε,F , Pn)}

and, by Definition 7, Definition 8 and property (b) in Proposition 3, that

H∞(ε,F , µ) = log sup
n

sup
Pn

inf{|A| : A ∈ A(ε,F , µ, Pn)}.

Now, the left inequality follows by noting that for any A ∈ A(2ε,F , µ, Pn) we
can build a C ∈ C(2ε,F , Pn) with |A| ≥ |C| associating every element a ∈ A with
a ball in C having radius 2ε and center in a.

The right inequality follows by constructing from every C ∈ C(ε,F , Pn), a A ∈
A(2ε,F , µ, Pn) with |A| ≤ |C|. The case |C| = ∞ is trivial, hence let us assume
that |C| is finite.

First we observe that by definition the elements of C have the form

ck = {f ∈ F :
1
n

∑
i

|f(xi)− fk(xi)|2 < ε2} fk ∈ F , k = 1, . . . , |C|

and without loss of generality we assume that ‖fk − fh‖L2(X,Pn) > 0 for k 6= h.
Let us consider the partition A = {a1, . . . , a|C|} defined by

ak = {f ∈ F : (∀h < k, ∆k,h(f) < 0) ∧ (∀h > k, ∆k,h(f) ≤ 0)},

where ∆k,h(f) = 1
n

∑
i |f(xi)− fk(xi)|2 − 1

n

∑
i |f(xi)− fh(xi)|2.

By Assumption (a) in Definition 1, the maps

f 7→ 1
n

∑
i

|f(xi)− fk(xi)|2

are measurable, and hence subsets ak of F are measurable. Moreover, by Assump-
tion (b) in Definition 1 applied to x1, . . . , xn, for every ak, there exists δk > 0 such
that B(fk, δk) ⊂ ak, so that µ(ak) > 0.

Finally observe that, for every f, f ′ ∈ ak it holds

‖f − f ′‖L2(X,Pn) ≤ ‖f − fk‖L2(X,Pn) + ‖f ′ − fk‖L2(X,Pn) ≤ 2ε,

which proves that A ⊂ A(2ε,F , µ, Pn).
The second part of the theorem follows straightforwardly from equation (9) and

the properties (b) and (c) already proved. �
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Appendix B. Proofs of results from Subsection 4.2

Proof of Proposition 4. The first step is to use a symmetrization technique intro-
ducing the ghost sample x′ independent of x, and the measure P ′n = 1

n

∑
i δx′i ,

Exdr(P, Pn) = Ex‖P − Pn‖µ,r = Ex‖Ex′P
′
n − Pn‖µ,r

[Minkowski’s + Jensen’s ineq.] ≤ Ex,x′

∥∥∥∥∥ 1
n

∑
i

(δx′i)− δxi
)

∥∥∥∥∥
µ,r[

symmetry of δx′i − δxi

]
= Ex,x′,σ

∥∥∥∥∥ 1
n

∑
i

σi(δx′i − δxi
)

∥∥∥∥∥
µ,r

[Minkowski’s ineq.] ≤ 2Ex,σ

∥∥∥∥∥ 1
n

∑
i

σiδxi

∥∥∥∥∥
µ,r

= 2ExRr,n(F , µ).

The proposition follows from the estimate above applying McDiarmid’s inequal-
ity (see, for example, [4, Theorem 9.2]) to the random variable dr(P, Pn) and ob-
serving that since, for every x ∈ X, f(x) ∈ [−1, 1], whenever x′ is obtained from x
replacing xi with x′i, it holds

|dr(P, Pn)− dr(P, P ′n)| =
∣∣∣ ‖P − Pn‖µ,r − ‖P − P ′n‖µ,r ∣∣∣

[Minkowski’s ineq.] ≤ ‖Pn − P ′n‖µ,r

=
1
n

(∫
F
|f(xi)− f(x′i)|rdµ(f)

) 1
r

≤ 2
n
.

�

The proof of Theorem 3 is based on the following two lemmas.

Lemma 1. Let (F , µ) be a denumerable touchstone class. If for a given x =
(x1, . . . , xn) the inequality supf∈F

1
n

∑
i f

2(xi) ≤ R2 is fulfilled, then for every r ∈
[1,∞] it holds

Rr,n(F , µ) ≤
√

2R2

n

(√
hr(µ|F ) + 2

)
.

Proof. Let us fix an arbitrary probability distribution q over F . For every f ∈ F and
δ ∈ (0, 1), by Hoeffding’s inequality applied to the independent random variables
{σif(xi)}i, we get that with probability not less than 1− δq(f) it holds∣∣∣∣∣ 1n∑

i

σif(xi)

∣∣∣∣∣
2

≤
∑
i(2f(xi))2

2n2
log

2
q(f)δ

(13)

≤ 2R2

n

(
log

1
q(f)

+ log
2
δ

)
.

Since
∑
f∈F q(f) = 1, with probability not less than 1− δ, the inequality above

holds uniformly over F .
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Taking the r
2 -th power of (13) and averaging over F w.r.t. µ, we get that with

probability not less than 1− δ it holds∥∥∥∥∥ 1
n

∑
i

σiδxi

∥∥∥∥∥
µ,r

2

≤ 2R2

n

∥∥∥∥√log
1
q

+ log
2
δ

∥∥∥∥2

Lr(F,µ)

≤ 2R2

n

∥∥∥∥∥
√

log
1
q

+

√
log

2
δ

∥∥∥∥∥
2

Lr(F,µ)

≤ 2R2

n

(∥∥∥∥√log
1
q

∥∥∥∥
Lr(F,µ)

+

√
log

2
δ

)2

The lemma follows from

Eσ

∥∥∥∥∥ 1
n

∑
i

σiδxi

∥∥∥∥∥
µ,r

=
∫ ∞

0

Pσ

∥∥∥∥∥ 1
n

∑
i

σiδxi

∥∥∥∥∥
µ,r

> t

 dt
≤

√
2R2

n

(∥∥∥∥√log
1
q

∥∥∥∥
Lr(F,µ)

+ 2
∫ ∞

0

e−
mt2

2R2 dt

)

≤
√

2R2

n

√√√√∥∥∥∥log
1
q

∥∥∥∥
L r

2
(F,µ)

+ 2

 ,

by taking the infimum of the last term, relative to q over the class of probability
distributions on F .

�

Lemma 2. Let (F , µ) be a touchstone class and x = (x1, . . . , xn) ∈ Xn be an
arbitrary sample. For every r ∈ [1,∞] it holds

Rr,n(F , µ) ≤ 48√
n

(
Ir(F , µ) +

1
2

)
Proof. For every j ∈ N, choose arbitrary partitions

Aj ∈ A(2−j ,F , µ, Pn),

and operators Cj : F → F fulfilling

∀a ∈ Aj ∀f, f ′ ∈ a Cj(f) = Cj(f ′) ∈ a.

Moreover for j > 0 define the operators ∆j : F → L2(X,Pn) by

∀f ∈ F ∆j(f) = Cj(f)− Cj−1(f).

Observe that ∆j is piecewise constant on the partition Aj ∩ Aj−1 composed of
intersections between elements of Aj and Aj−1.

We define the denumerable classes of functions

Fj = Im ∆j ,

endowed with the probability measures µj given by

∀f̂ ∈ Fj µj({f̂}) = µ(∆−1
j (f̂)).
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Observe that for all f̂ ∈ Fj , for some f ∈ F it holds

1
n

∑
i

f̂2(xi) = ‖∆j(f)‖L2(X,Pn)(14)

≤ ‖Cj(f)− f‖L2(X,Pn) + ‖f − Cj−1(f)‖L2(X,Pn)

≤ 2−j + 2−j+1 = 3 2−j .

Therefore, since f = f − CN (f) +
∑N
j=1 ∆j(f) for every N ∈ N, we get

Rr,n(F , µ) = Eσ

∥∥∥∥∥ 1
n

∑
i

σiδxi

∥∥∥∥∥
µ,r

≤ Eσ

∥∥∥∥∥ 1
n

∑
i

σi(δxi
− δxi

◦ CN )

∥∥∥∥∥
Lr(F,µ)

+
N∑
j=1

Eσ

∥∥∥∥∥ 1
n

∑
i

σi(δxi
◦ Cj − δxi

◦ Cj−1)

∥∥∥∥∥
Lr(F,µ)

(Cauchy-Schwartz ineq.) ≤ sup
f∈F
‖f − CN (f)‖L2(X,Pn) + 2

N∑
j=1

Rr,n

(
1
2
Fj , µj

)

(Lemma 1, eq. (14)) ≤ 2−N +

√
18
n

N∑
j=1

2−j+1
(√

hr(µ|Aj∩Aj−1) + 2
)

(Prop. 3, (d)) ≤ 2−N +

√
36
n

N∑
j=1

2−j+1
(√

hr(µ|Aj
) +

√
hr(µ|Aj−1) +

√
2
)

Minimizing w.r.t. the partitions Aj , the inequality above becomes

Rr,n(F , µ) = 2−N +

√
36
n

N∑
j=1

2−j+1

(
inf
Aj

√
hr(µ|Aj

) + inf
Aj−1

√
hr(µ|Aj−1) +

√
2
)

≤ 2−N +

√
36
n

N∑
j=1

2−j+2

(
inf
Aj

√
hr(µ|Aj

) + 1
)

≤ 2−N +
48√
n

N∑
j=1

(2−j − 2−j−1)
(√

Hr(2−j ,F , µ) + 1
)

(Th. 2, (a)) ≤ 2−N +
48√
n

(∫ ∞
0

√
Hr(ε,F , µ)dε+

1
2

)
.

The lemma follows taking the limit N →∞. �

Proof of Theorem 3. The proposition follows from Lemma 2 and Proposition 4 for
a suitable value of C since by assumption − log δ ≥ log 2.

�
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Proof of Proposition 5. The proposition follows recalling Assumption (a) in Defi-
nition 1 and that |f(x)| ≤ 1, by the following chain of inequalities.

Exdr(P, Pn) = Ex‖P − Pn‖µ,r
(Hölder’s ineq.) ≤ (ExEf |Pf − Pnf |r)

1
r

(Fubini’s Th.) = (EfEx|Pf − Pnf |r)
1
r

=

(
Ef
∫ ∞

0

Px

[∣∣∣∣∣ 1n∑
i

f(xi)− Ef

∣∣∣∣∣
r

≥ ε

]
dε

) 1
r

(Hoeffding’s ineq.) ≤

(
2
∫ ∞

0

exp

(
−nε

2
r

2

)
dε

) 1
r

=

√
2
n

(
2r
∫ ∞

0

tre−t
2
dt

) 1
r

=

√
2
n

(
r Γ

(
r − 1

2

)) 1
r

≤ C
√
r

n
,

where the last inequality is derived from Stirling’s series for the Gamma function.
Hence the proposition is proved by reasoning as in the second part of the proof

Proposition 4.
�
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