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Abstract

Many works related learning from examples to regularization techniques for inverse prob-

lems, emphasizing the strong algorithmic and conceptual analogy of certain learning algo-

rithms with regularization algorithms. In particular it is well known that regularization

schemes such as Tikhonov regularization can be effectively used in the context of learning

and are closely related to algorithms such as support vector machines. Nevertheless the

connection with inverse problem was considered only for the discrete (finite sample) prob-

lem which is solved in practice and the probabilistic aspects of learning from examples were

not taken into account. In this paper we provide a natural extension of such analysis to the

continuous (population) case and analyse the interplay between the discrete and continuous

problems. From a theoretical point of view, this allows to draw a clear connection between

the consistency approach imposed in learning theory, and the stability convergence prop-

erty used in ill-posed inverse problems. The main mathematical result of the paper is a

new probabilistic bound for the regularized least-squares algorithm. By means of standard

results on the approximation term, the consistency of the algorithm easily follows.
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1. Introduction

The main goal of learning from examples is to infer an estimator from a finite set of examples.

The crucial aspect in the problem is that the examples are drawn according to a fixed

but unknown probabilistic input-output relation and the desired property of the selected

function is to be descriptive also of new data, i.e. it should generalize. The fundamental

work of Vapnik and further developments (see Vapnik (1998), Alon et al. (1997) and Bartlett

and Mendelson (2002) for recent results) show that the key to obtain a meaningful solution is

to control the complexity of the hypothesis space. Interestingly, as pointed out in a number

of papers (see Poggio and Girosi (1992), Evgeniou et al. (2000) and references therein), this

is in essence the idea underlying regularization techniques for ill-posed problems (Tikhonov

and Arsenin, 1977, Engl et al., 1996). Not surprisingly the form of the algorithms proposed

in both theories is strikingly similar (Mukherjee et al., 2002) and the point of view of

regularization is indeed not new to learning (Poggio and Girosi, 1992, Evgeniou et al., 2000,

Vapnik, 1998, Arbib, 1995, Fine, 1999, Kecman, 2001, Schölkopf and Smola, 2002). In

particular it allowed to cast a large class of algorithms in a common framework, namely

regularization networks or regularized kernel methods (Evgeniou et al., 2000, Schölkopf and

Smola, 2002).

Anyway a careful analysis shows that a rigorous mathematical connection between learn-

ing theory and the thoery of ill-posed inverse problems is not straightforward since the

settings underlying the two theories are very much different. In fact learning theory is

intrinsecally probabilistic whereas the theory of inverse problem is mostly deterministic 1

Recently such a task was considerd in the restricted setting in which the elements of the

input space are fixed and not probabilistically drawn (Mukherjee et al., 2004, Kurkova,

2004). This corresponds to what is usually called nonparametric regression with fixed de-

sign (Györfi et al., 1996) and when the noise level is fixed and known, the problem is well

studied in the context of inverse problems (Bertero et al., 1988). In the case of fixed design

on a finite grid the problem is mostly that we are dealing with an ill-conditioned problem,

that is unstable w.r.t. the data. Though such setting is indeed close to the algorithmic

setting from a theoretical perspective it is not general enough to allow a consistency anal-

ysis of a given algorithm since it does not take care of the random sampling providing the

data. In this paper we extend the analysis to the setting of nonparametric regression with

random design (Györfi et al., 1996).

Our analysis and contribution develope in two steps. First, we study the mathematical

connections between learning theory and inverse problem theory. We consider the specific

1. Statistical methods were recently applied in the context of inverse problems (Kaipio and Somersalo,

2005). Anyway a bayesian point of view is considered which differs from the usual Statistical Learning

Theory approach.
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case of quadratic loss and analyse the population case (i.e. when the probability distribution

is known) to show that the discrete inverse problem which is solved in practice can be

seen as the stochastic discretization of an infinite dimensional inverse problem. This ideal

problem is, in general,ill-posed (Tikhonov and Arsenin, 1977) and its solution corresponds

to the target function which is the final goal in learning theory. This clarifies in particular

the following important fact. Regularized solutions in learning problems should not only

provide stable approximate solutions to the discrete problem but especially give continuous

estimates of the solution to the ill-posed infinite dimensional problem. Second, we exploit

the established connection to study the regularized least-squares algorithm. This passes

through the defintion of a natural notion of discretization noise providing a straightforward

relation between the number of available data and the noise affecting the problem. Classical

regularization theory results can be easily adapted to the needs of learning. In particular our

definition of noise together with well-known results concerning Tikhonov regularization for

inverse problem with modelling error can be applied to derive a new probabilistic bound for

the estimation error of regularized least squares improving recently proposed results (Cucker

and Smale, 2002a, De Vito et al., 2004). The approximation term can be studied through

classical spectral theory arguments. The consistency of the algorithm easily follows. As the

major aim of the paper was to investigate the relation between learning from examples and

inverse problem we just prove convergence without dealing with rates. Anyway the approach

proposed in Cucker and Smale (2002a), De Vito et al. (2004) to study the approxmation term

can be straightforwardly applied to derive explicit rates under suitable a priori conditions.

Several theoretical results are available on regularized kernel methods for large class of

loss functions. The stability approach proposed in Bousquet and Elisseeff (2002) allows

to find data-dependent generalization bounds. In Steinwart (2004) it is proved that such

results as well as other probabilistic bounds can be used to derive consistency results without

convergence rates. For the specific case of regularized least-squares algorithm a functional

analytical approach to derive consistency results for regularized least squares was proposed

in Cucker and Smale (2002a) and eventually refined in De Vito et al. (2004) and Smale

and Zhou (2004b). In the latter the connection between learning and sampling theory is

investigated. Some weaker results in the same spirit of those presented in this paper can

be found in Rudin (2004). Anyway none of the mentioned papers exploit the connection

with inverse problem. The arguments used to derive our results are close to those used in

the study of stochastic inverse problems discussed in Vapnik (1998). From the algorithmic

point of view Ong and Canu (2004) apply other techniques than Tikhonov regularization

in the context of learning. In particular several iterative algorithms are considered and

convergence with respect to the regularization parameter (semiconvergence) is proved.
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The paper is organized as follows. After recalling the main concepts and notation of

statistical learning (Section 2) and of inverse problems (Section 3), in Section 4 we develop

a formal connection between the two theories. In Section 5 the main results are stated,

discussed and proved. In the Appendix we collect some technical results we need in our

proofs. Finally in Section 6 we conclude with some remarks and open problems.

2. Learning from examples

We briefly recall some basic concepts of statistical learning theory (for details see Vapnik

(1998), Evgeniou et al. (2000), Schölkopf and Smola (2002), Cucker and Smale (2002b) and

references therein).

In the framework of learning from examples, there are two sets of variables: the input space

X, which we assume to be a compact subset of R
n, and the output space Y , which is a subset

of R contained in [−M,M ] for some M ≥ 0. The relation between the input x ∈ X and the

output y ∈ Y is described by a probability distribution ρ(x, y) = ν(x)ρ(y|x) on X×Y . The

distribution ρ is known only through a sample z = (x,y) = ((x1, y1), . . . , (x`, y`)), called

training set, drawn independently and identically distributed (i.i.d.) according to ρ. Given

the sample z, the aim of learning theory is to find a function fz : X → R such that fz(x)

is a good estimate of the output y when a new input x is given. The function fz is called

estimator and the map providing fz, for any training set z, is called learning algorithm.

Given a measurable function f : X → R, the ability of f to describe the distribution ρ

is measured by its expected risk defined as

I[f ] =

∫

X×Y

V (f(x), y) dρ(x, y),

where V (f(x), y) is the loss function, which measures the cost paid by replacing the true

label y with the estimate f(x). In this paper we consider the square loss

V (f(x), y) = (f(x) − y)2.

With this choice, it is well known that the regression function

g(x) =

∫

Y

y dρ(y|x),

is well defined (since Y is bounded) and is the minimizer of the expected risk over the space

of all the measurable real functions on X. In this sense g can be seen as the ideal estimator

of the distribution probability ρ. However, the regression function cannot be reconstructed

exactly since only a finite, possibly small, set of examples z is given.

To overcome this problem, in the framework of the regularized least squares algorithm

(Wahba, 1990, Poggio and Girosi, 1992, Cucker and Smale, 2002b, Zhang, 2003), an hy-

pothesis space H of functions is fixed and the estimator fz
λ is defined as the solution of the
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regularized least squares problem,

min
f∈H

{1

`

∑̀

i=1

(f(xi) − yi)
2 + λΩ(f)}, (1)

where Ω is a penalty term and λ is a positive parameter to be chosen in order to ensure

that the discrepancy.

I[fz
λ] − inf

f∈H
I[f ]

is small with hight probability. Since ρ is unknown, the above difference is studied by means

of a probabilistic bound B(λ, `, η), which is a function depending on the regularization

parameter λ, the number ` of examples and the confidence level 1 − η, such that

P

[

I[fz
λ] − inf

f∈H
I[f ] ≤ B(λ, `, η)

]

≥ 1 − η.

We notice that, in general, inff∈H I[f ] is larger than I[g] and represents a sort of irreducible

error (Hastie et al., 2001) associated with the choice of the space H. We do not require the

infimum inff∈H I[f ] to be achieved. If the minimum on H exists, we denote the minimizer

by fH.

In particular, the learning algorithm is consistent if it is possible to choose the regular-

ization parameter, as a function of the available data λ = λ(`, z), in such a way that

lim
`→+∞

P

[

I[fz
λ(`,z)] − inf

f∈H
I[f ] ≥ ε

]

= 0, (2)

for every ε > 0. The above convergence in probability is usually called (weak) consis-

tency of the algorithm (see Devroye et al. (1996) for a discussion on the different kind of

consistencies).

In this paper we assume that the hypothesis space H is a reproducing kernel Hilbert

space (RKHS) on X with a continuous kernel K. We recall the following facts (Aronszajn,

1950, Schwartz, 1964). The kernel K : X × X → R is a continuous symmetric positive

definite function, where positive definite means that

∑

i,j

aiajK(xi, xj) ≥ 0.

for any x1, . . . xn ∈ X and a1, . . . an ∈ R.

The space H is a real separable Hilbert space whose elements are real continuous functions

defined on X. In particular, the functions Kx = K(·, x) belong to H for all x ∈ X, and

H = span{Kx |x ∈ X}
〈Kx,Kt〉H = K(x, t) ∀x, t ∈ X,
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where 〈·, ·〉H is the scalar product in H. Moreover, since the kernel is continuous and X is

compact

κ = sup
x∈X

√

K(x, x) = sup
x∈X

‖Kx‖H < +∞, (3)

where ‖·‖H is the norm in H. Finally, given x ∈ X, the following reproducing property

holds

f(x) = 〈f,Kx〉H ∀f ∈ H. (4)

In particular, in the learning algorithm (1) we choose the penalty term

Ω(f) = ‖f‖H
2,

so that , by a standard convex analysis argument, the minimizer fz
λ exists, is unique and

can be computed by solving a linear finite dimensional problem, (Wahba, 1990).

With the above choices, we will show that the consistency of the regularized least squares

algorithm can be deduced using the theory of linear inverse problems we review in the next

section.

3. Ill-Posed Inverse Problems and Regularization

In this section we give a very brief account of the main concepts of linear inverse problems

and regularization theory (see Tikhonov and Arsenin (1977), Groetsch (1984), Bertero et al.

(1985, 1988), Engl et al. (1996), Tikhonov et al. (1995) and references therein).

Let H and K be two Hilbert spaces and A : H → K a linear bounded operator. Consider

the equation

Af = g (5)

where g ∈ K is the exact datum. Finding the function f satisfying the above equation, given

A and g, is the linear inverse problem associated to (5). In general the above problem is ill-

posed, that is, the solution either not exists, is not unique or does not depend continuously

on the datum g. Existence and uniqueness can be restored introducing the Moore-Penrose

generalized solution f † defined as the minimal norm solution of the least squares problem

min
f∈H

‖Af − g‖2
K . (6)

It can be shown (Tikhonov et al., 1995) that the generalized solution f † exists if and only

if Pg ∈ Range(A), where P is the projection on the closure of the range of A. However,

the generalized solution f † does not depend continuously on the datum g, so that finding

f † is again an ill-posed problem. This is a problem since the exact datum g is not known,

but only a noisy datum gδ ∈ K is given, where ‖g − gδ‖K ≤ δ. According to Tikhonov
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regularization (Tikhonov and Arsenin, 1977) a possible way to find a solution depending

continuously on the data is to replace Problem (6) with the following convex problem

min
f∈H

{‖Af − gδ‖2
K + λ ‖f‖2

H}, (7)

where λ > 0 and the unique minimizer is given by

fλ
δ = (A∗A+ λI)−1A∗gδ. (8)

A crucial issue is the choice of the regularization parameter λ as a function of the noise. A

basic requirement is that the reconstruction error

∥

∥

∥
fλ

δ − f †
∥

∥

∥

H

is small. In particular, λ must be selected, as a function of the noise level δ and the data

gδ, in such a way that the regularized solution f
λ(δ,gδ)
δ converges to the generalized solution,

that is,

lim
δ→0

∥

∥

∥
f

λ(δ,gδ)
δ − f †

∥

∥

∥

H
= 0, (9)

for any g such that f † exists.

Remark 1 Finite dimensional problems are often well-posed. In particular it can be shown

that if a solution exists unique then continuity of A−1 is always ensured (Bertero et al.,

1988). Nonetheless regularization is needed since the problems are usually ill conditioned

and lead to unstable solutions. In fact, if δg and δf are small variations on the data and

the solution respectively then we can write

‖δf‖H ≤
∥

∥A−1
∥

∥ ‖δg‖K

since A−1 is bounded. Moreover since A is bounded we have

‖f‖H ≥ ‖g‖K
‖A‖

where we always consider the uniform norm for the operators. It follows that the following

inequality characterizes the relative variation of the solution w.r.t. the relative variations

of the data
‖δf‖H
‖f‖H

≤ C(A)
‖δg‖K
‖g‖K

,

where C(A) = ‖A‖
∥

∥A−1
∥

∥, namely the conditional number, is always equal or greater then

1. From the above inequality we see that if C(A) � 1 than we might have unstable solutions

even when A−1 is continuous.

7
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Sometimes, another measure of the error, namely the residual, is considered according to

the following definition
∥

∥

∥
Afλ

δ − Pg
∥

∥

∥

K
=

∥

∥

∥
Afλ

δ −Af †
∥

∥

∥

K
, (10)

which will be important in our analysis of learning. Comparing (9) and (10), it is clear

that while studying the convergence of the residual we do not have to assume that the

generalized solution exists.

We conclude this section noting that the above formalism can be easily extended to the

case of a noisy operator Aδ : H → K where

‖A−Aδ‖ ≤ δ,

and ‖·‖ is the operator norm (Tikhonov et al., 1995).

4. Learning as an Inverse Problem

The similarity between regularized least squares and Tikhonov regularization is apparent

comparing Problems (1) and (7). However while trying to formalize this analogy several

difficulties emerge.

• To treat the problem of learning in the setting of ill-posed inverse problems we have

to define a direct problem by means of a suitable operator A between two Hilbert

spaces H and K.

• The nature of the noise δ in the context of statistical learning is not clear .

• We have to clarify the relation between consistency, expressed by (2), and the conver-

gence considered in (9).

In the following we present a possible way to tackle these problems and show the problem of

learning can be indeed rephrased in a framework close to the one presented in the previous

section.

We let L2(X, ν) be the Hilbert space of square integrable functions on X with respect

to the marginal measure ν and we define the operator A : H → L2(X, ν) as

(Af)(x) = 〈f,Kx〉H,

where K is the reproducing kernel of H. The fact that K is bounded, see (3), ensures that

A is a bounded linear operator. Two comments are in order. First, from (4) we see that

the action of A on an element f is simply

(Af)(x) = f(x) ∀x ∈ x, f ∈ H,

8
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that is, A is the canonical inclusion of H into L2(X, ν). However it is important to note

that A changes the norm since ‖f‖H is different to ‖f‖L2(X,ν). Second, to avoid pathologies

connected with subsets of zero measure, we assume that ν is not degenerate2. This condition

and the fact that K is continuous ensure that A is injective (see the Appendix for the proof).

It is known that, considering the quadratic loss function, the expected risk can be written

as

I[f ] =

∫

X

(f(x) − g(x))2 dν(x) +

∫

X×Y

(y − g(x))2 dρ(x, y)

= ‖f − g‖2
L2(X,ν) + I[g],

where g is the regression function (Cucker and Smale, 2002b) and f is any function in

L2(X, ν). If f belongs to the hypothesis space H, the definition of the operator A allows to

write

I[f ] = ‖Af − g‖2
L2(X,ν) + I[g]. (11)

Moreover, if P is the projection on the closure of the range of A, that is, the closure of

H into L2(X, ν), then the definition of projection gives

inf
f∈H

‖Af − g‖2
L2(X,ν) = ‖g − Pg‖2

L2(X,ν) . (12)

Given f ∈ H, clearly PAf = Af , so that

I[f ] − inf
f∈H

I[f ] = ‖Af − g‖2
L2(X,ν) − ‖g − Pg‖2

L2(X,ν) = ‖Af − Pg‖2
L2(X,ν) , (13)

which is the square of the residual of f .

Now, comparing (11) and (6), it is clear that the expected risk admits a minimizer fH
on the hypothesis space H if and only if fH is precisely the generalized solution f † of the

linear inverse problem

Af = g. (14)

The fact that fH is the minimal norm solution of the least squares problem is ensured by

the fact that A is injective.

Let now z = (x,y) = ((x1, y1), . . . , (x`, y`)) be the training set. The above arguments

can be repeated replacing the setX with the finite set {x1, . . . , x`}. We now get a discretized

version of A by defining the sampling operator (Smale and Zhou, 2004a)

Ax : H → E` (Axf)i = 〈f,Kxi
〉H = f(xi),

where E` = R
` is the finite dimensional euclidean space endowed with the scalar product

〈

w,w′〉
E` =

1

`

∑̀

i=1

wiw
′
i.

2. This means that all the open non-void subsets of X have strictly positive measure.

9
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It is straightforward to check that

1

`

∑̀

i=1

(f(xi) − yi)
2 = ‖Axf − y‖2

E` ,

so that the estimator fz
λ given by the regularized least squares algorithm, see Problem (1),

is the Tikhonov regularized solution of the discrete problem

Axf = y. (15)

At this point it is useful to remark the following three facts. First, in learning from examples

rather than finding an approximation to the solution of the noisy (discrete) Problem (15), we

want to find a stable approximation to the solution of the exact (continuous) Problem (14)

(compare with Kurkova (2004)). Second, in statistical learning theory, the key quantity

is the residual of the solution, which is a weaker measure than the reconstruction error,

usually studied in the inverse problem setting. In particular, consistency requires a weaker

kind of convergence than the one usually studied in the context of inverse problems . Third,

we observe that in the context of learning the existence of the minimizer fH, that is, of the

generalized solution, is no longer needed to define good asymptotic behavior. In fact when

the projection of the regression function is not in the range of A the ideal solution fH does

not exist but this is not a problem since Eq. (12) still holds.

After this preliminary considerations in the next section we further develop our analysis

stating the main mathematical results of this paper.

5. Regularization, Stochastic Noise and Consistency

Table 1 compares the classical framework of inverse problems (see Section 3) with the

formulation of learning proposed above. We note some differences. First, the noisy data

space E` is different from the exact data space L2(X, ν) so that A and Ax belong to different

spaces, as well as g and y. A measure of the difference between Ax and A, and between g

and y is then required. Second, both Ax and y are random variables and we need to relate

the noise δ to the number ` of examples in the training set z. Given the above premise our

derivation of consistency results is developed in two steps: we first study the residual of the

solution by means of a measure of the noise due to discretization, then we show a possible

way to give a probabilistic evaluation of the noise previously introduced.

5.1 Bounding the Residual of Tikhonov Solution

In this section we study the dependence of the minimizer of Tikhonov functional on the

operator A and the data g. We indicate with L(H) and L(H,K) the Banach space of

10
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Inverse problem Learning theory

input space H hypothesis space RKHS H
data space K target space L2(X, ν)

norm in K ‖f‖K norm in L2(X, ν) ‖f‖L2(X,ν)

exact operator A inclusion of H into L2(X, ν)

exact datum g regression function g(x) =
∫

Y
y dρ(y|x)

generalized solution f † ideal solution fH
reconstruction error

∥

∥f − f †
∥

∥

H residual ‖Af −AfH‖2
L2(X,ν) = I[f ] − I[fH]

noisy data space K E`

noisy data gδ ∈ K y ∈ E`

noisy operator Aδ : H → K sampling operator Ax : H → E`

Tikhonov regularization Regularized least squares algorithm

Table 1: The above table summarizes the relation between the theory of inverse problem

and the theory of learning from examples. When the projection of the regression

function is not in the range of the operator A the ideal solution fH does not exist.

Nonetheless, in learning theory, if the ideal solution does not exist the asymptotic

behavior can still be studied since we are looking for the residual.

11
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bounded linear operators from H into H and from H into K respectively. We denote with

‖·‖L(H) the uniform norm in L(H) and, if A ∈ L(H,K), we recall that A∗ is the adjoint

operator. The Tikhonov solutions of Problems (14) and (15) can be written as

fλ = (A∗A+ λI)−1A∗g,

fλ
z = (A∗

xAx + λI)−1A∗
xy,

see for example (Engl et al., 1996). The above equations show that fλ
z and fλ depend only

on A∗
xAx and A∗A, which are operators from H into H, and on A∗

xy and A∗g, which are

elements of H. This observation suggests that noise levels could be evaluated controlling

‖A∗
xAx −A∗A‖L(H) and ‖A∗

xy −A∗g‖H.

To this purpose, for every δ = (δ1, δ2) ∈ R
2
+, we define the collection of training sets

Uδ := {z ∈ (X × Y )`| ‖A∗
xy −A∗g‖H ≤ δ1, ‖A∗

xAx −A∗A‖L(H) ≤ δ2}.

Recalling that P is the projection on the closure of the range of A and Y ⊂ [−M,M ], we

are ready to state the following theorem.

Theorem 2 Given λ > 0, the following inequality holds

∣

∣

∣

∣

∥

∥

∥
Afλ

z − Pg
∥

∥

∥

L2(X,ν)
−

∥

∥

∥
Afλ − Pg

∥

∥

∥

L2(X,ν)

∣

∣

∣

∣

≤ δ1

2
√
λ

+
Mδ2
4λ

for any training set z ∈ Uδ.

We postpone the proof to Section 5.4 and briefly comment on the above result. The first

term in the l.h.s. of the inequality is exactly the residual of the regularized solution whereas

the second term represents the approximation error, which does not depend on the sample.

Our bound quantifies the difference between the residual of the regularized solutions of the

exact and noisy problems in terms of the noise level δ = (δ1, δ2). As mentioned before this

is exactly the kind of result needed to derive consistency. Our result bounds the residual

both from above and below and is obtained introducing the collection Uδ of training sets

compatible with a certain noise level δ. It is left to quantify the noise level corresponding

to a training set of cardinality `. This will be achieved in a probabilistic setting in the next

section, where we also discuss a standard result on the approximation error.

5.2 Stochastic Evaluation of the Noise and Approximation Term

In this section we give a probabilistic evaluation of the noise levels δ1 and δ2 and we analyze

the behavior of the term
∥

∥Afλ − Pg
∥

∥

L2(X,ν)
. In the context of inverse problems a noise

estimate is a part of the available data whereas in learning problems we need a probabilistic

analysis.

12
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Theorem 3 Let 0 < η < 1. Then

P
[

‖A∗g −Ax
∗y‖H ≤ δ1(`, η), ‖A∗A−Ax

∗Ax‖L(H) ≤ δ2(`, η)
]

≥ 1 − η

where κ = supx∈X

√

K(x, x),

δ1(`, η) =
Mκ

2
ψ

(

8

`
log

4

η

)

δ2(`, η) =
κ2

2
ψ

(

8

`
log

4

η

)

with ψ(t) = 1
2(t+

√
t2 + 4t) =

√
t+ o(

√
t).

We refer again to Section 5.4 for the complete proof and add a few comments. The one

proposed is just one of the possible probabilistic tools that can be used to study the above

random variables. For example union bounds and Hoeffding’s inequality can be used intro-

ducing a suitable notion of covering numbers on X × Y .

An interesting aspect in our approach is that the collection of training sets compatible

with a certain noise level δ does not depend on the regularization parameter λ. This last

fact allows us to consider indifferently data independent parameter choices λ = λ(`) as well

as data dependent choices λ = λ(`, z). Since through data dependent parameter choices the

regularization parameter becomes a function of the given sample λ(`, z), in general some

further analysis is needed to ensure that the bounds hold uniformly w.r.t. λ.

We now consider the term
∥

∥Afλ − Pg
∥

∥

L2(X,ν)
which does not depend on the training set

z and plays the role of an approximation error (Smale and Zhou, 2003, Niyogi and Girosi,

1999). The following is a classical result in the context of inverse problems (see for example

Engl et al. (1996)).

Proposition 4 Let fλ the Tikhonov regularized solution of the problem Af = g, then the

following convergence holds

lim
λ→0+

∥

∥

∥
Afλ − Pg

∥

∥

∥

L2(X,ν)
= 0.

We report the proof in the Appendix for completeness. The above proposition ensures that,

independently of the probability measure ρ, the approximation term goes to zero as λ→ 0.

Unfortunately it is well known, both in learning theory (see for example Devroye et al.

(1996), Vapnik (1998), Smale and Zhou (2003), Steinwart (2004)) and inverse problems

theory (Groetsch, 1984), that such a convergence can be arbitrarily slow and convergence

rates can be obtained only under some assumptions either on the regression function g or on

the probability measure ρ (Smale and Zhou, 2003). In the context of RKHS the issue was

considered in Cucker and Smale (2002a), De Vito et al. (2004) and we can strightforwardly

apply those results to obtain explicit convergence rates.

We are now in the position to derive the consistency result that we present in the

following section.
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5.3 Consistency and Regularization Parameter Choice

Combining Theorems 2 and 3 with Proposition 4, we easily derive the following result (see

Section 5.4 for the proof).

Theorem 5 Given 0 < η < 1, λ > 0 and ` ∈ N, the following inequaltity holds with

probability greater that 1 − η

I[fz
λ] − inf

f∈H
I[f ] ≤

[(

Mκ

2
√
λ

+
Mκ2

4λ

)

ψ

(

8

`
log

4

η

)

+
∥

∥

∥
Afλ − Pg

∥

∥

∥

L2(X,ν)

]2

(16)

=



Mκ2

√

log 4
η

2λ2`
+

∥

∥

∥
Afλ − Pg

∥

∥

∥

L2(X,ν)
+ o

(
√

1

λ2`
log

4

η

)





2

where ψ(·) is defined as in Theorem 3. Moreover, if λ = O(l−b) with 0 < b < 1
2 , then

lim
`→+∞

P

[

I[fz
λ(`,z)] − inf

f∈H
I[f ] ≥ ε

]

= 0.

for every ε > 0.

As mentioned before, the second term in the r.h.s. of the above inequality is an approxima-

tion error and vanishes as λ goes to zero. The first term in the r.h.s. of Inequality (16) plays

the role of sample error. It is interesting to note that since δ = δ(`) we have an equivalence

between the limit ` → ∞, usually studied in learning theory, and the limit δ → 0, usually

considered for inverse problems. Our result presents the formal connection between the

consistency approach considered in learning theory, and the regularization-stability conver-

gence property used in ill-posed inverse problems. Although it is known that connections

already exist, as far as we know, this is the first full connection between the two areas, for

the specific case of square loss.

We now briefly compare our result with previous work on the consistency of the regular-

ized least squares algorithm. Recently, several works studied the consistency property and

the related convergence rate of learning algorithms inspired by Tikhonov regularization. For

the classification setting, a general discussion considering a large class of loss functions can

be found in Steinwart (2004), whereas some refined results for specific loss functions can be

found in Chen et al. (2004) and Scovel and Steinwart (2003). For regression problems in

Bousquet and Elisseeff (2002) a large class of loss functions is considered and a bound of

the form

I[fz
λ] − Iz[fz

λ] ≤ O

(

1√
`λ

)

is proved, where Iz[fz
λ] is the empirical error 3. Such a bound allows to prove consistency

using the error decomposition in Steinwart (2004). The square loss was considered in Zhang

3. We recall that the empirical error is defined as Iz[f ] = 1

`

P

`

i=1
V (f(xi), yi).
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(2003) where, using leave-one out techniques, the following bound in expectation was proved

Ez(I[fz
λ]) ≤ O

(

1

`λ

)

.

Techniques similar to those used in this paper are used in De Vito et al. (2004) to derive a

bound of the form

I[fz
λ] − inf

f∈H
I[f ] ≤

(

S(λ, `) +
∥

∥

∥
Afλ − Pg

∥

∥

∥

L2(X,ν)

)2

where S(λ, `) is a data-independent bound on
∥

∥fz
λ − fλ

∥

∥

L2(X,ν)
. In that case S(λ, `) ≤

O

(

1√
`λ

3
2

)

and we see that Theorem 4 gives S(λ, `) ≤ O
(

1√
`λ

)

. Finally our results were

recently improved in Smale and Zhou (2004b), where, using again techniques similar to

those presented here, a bound of the form S(λ, `) ≤ O
(

1√
`λ

)

+ O
(

1

`λ
3
2

)

is obtained. It is

worth noting that in general working on the square root of the error leads to better overall

results.

5.4 Proofs

In this section we collect the proofs of the theorems that we stated in the previous sections.

e first now prove the bound on the residual for the Tikhonov regularization.

Proof [of Theorem 2] The idea of the proof is to note that, by triangular inequality, we can

write
∣

∣

∣

∣

∥

∥

∥
Afλ

z − Pg
∥

∥

∥

L2(X,ν)
−

∥

∥

∥
Afλ − Pg

∥

∥

∥

L2(X,ν)

∣

∣

∣

∣

≤
∥

∥

∥
Afλ

z −Afλ
∥

∥

∥

L2(X,ν)
(17)

so that we can focus on the difference between the discrete and continuous solutions. By a

simple algebraic computation we have that

fλ
z − fλ = (A∗

xAx + λI)−1A∗
xy − (A∗A+ λI)−1A∗g =

= [(A∗
xAx + λI)−1 − (A∗A+ λI)−1]A∗

xy + (A∗A+ λI)−1(A∗
xy −A∗g) = (18)

= (A∗A+ λI)−1(A∗A−A∗
xAx)(A∗

xAx + λI)−1A∗
xy + (A∗A+ λI)−1(A∗

xy −A∗g).

and we see that the relevant quantities for the definition of the noise appear.

We claim that
∥

∥A(A∗A+ λI)−1
∥

∥

L(H)
=

1

2
√
λ

(19)

∥

∥(A∗
xAx + λI)−1A∗

x

∥

∥

L(H)
=

1

2
√
λ
. (20)

Indeed, let A = U |A| be the polar decomposition of A. The spectral theorem implies that

‖A(A∗A+ λI)−1‖L(H) = ‖U |A|(|A|2 + λI)−1‖L(H) = ‖|A|(|A|2 + λI)−1‖L(H)

= sup
t∈[0,‖|A|‖

t

t2 + λ
.
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A direct computation of the derivative shows that the maximum of t
t2+λ

is 1
2
√

λ
and (19) is

proved. Formula (20) follows replacing A with Ax.

Last step is to plug Equation (18) into (17) and use Cauchy-Schwartz inequality. Since

‖y‖
E` ≤M , (19) and (20) give

∣

∣

∣
‖Afλ

z − Pg‖L2 − ‖Afλ − Pg‖L2

∣

∣

∣
≤ M

4λ
‖A∗A−A∗

xAx‖L(H) +
1

2
√
λ
‖A∗

xy −A∗g‖H .

so that the theorem is proved.

The proof of Theorem 2 is a straightforward application of Lemma (8) (see Appendix) .

Proof [Theorem 2] The proof is a simple consequence of estimate (26) applied to the random

variables

ξ1(x, y) = yKx

ξ2(x, y) = 〈·,Kx〉HKx = Kx ⊗Kx

where

1. ξ1 takes value in H, L1 = κM and v∗1 = A∗g, see (21), (23);

2. ξ2 takes vales in the Hilbert space of Hilbert-Schmidt operators, which can be identified

with H⊗H, L2 = κ2 and v∗2 = T , see (22), (24).

Replacing η with η/2, (26) gives

‖A∗g −Ax
∗y‖H ≤ δ1(`, η) =

Mκ

2
ψ

(

8

`
log

4

η

)

‖A∗A−Ax
∗Ax‖L(H) ≤ δ2(`, η) =

κ2

2
ψ

(

8

`
log

4

η

)

,

respectively, so that the thesis follows.

Finally we combine the above results to prove the consistency of the regularized least

squares algorithm.

Proof [Theorem 4] Theorem 1 gives

‖Afλ
z − Pg‖L2(X,ν) ≤

(

1

2
√
λ
δ1 +

M

4λ
δ2

)

+ ‖Afλ − Pg‖L2(X,ν).

Equation (13) and the estimates for the noise levels δ1 and δ2 given by Theorem 2 ensure

that
√

I[fz
λ] − inf

f∈H
I[f ] ≤

(

Mκ

2
√
λ

+
Mκ2

4λ

)

ψ

(

8

`
log

4

η

)

+
∥

∥

∥
Afλ − Pg

∥

∥

∥

L2(X,ν)
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and (16) simply follows taking the square of the above inequality. Let now λ = 0(`−b) with

0 < b < 1
2 , the consistency of the regularised least squares algorithm is proven by inverting

the relation between ε and η and using the result of Proposition (4) (see Appendix).

6. Conclusions

In this paper we analyse the connection between the theory of statistical learning and the

theory of ill-posed problems. More precisely we show that, considering the quadratic loss

function, the problem of finding the best solution fH for a given hypothesis space H is

a linear inverse problem and that the regularized least squares algorithm is the Tikhonov

regularization of the discretized version of the above inverse problem. As a consequence, the

consistency of the algorithm is traced back to the well known convergence property of the

Tikhonov regularization. A probabilistic estimate of the noise is given based on a elegant

concentration inequality in Hilbert spaces.

An open problem is extending the above results to arbitrary loss functions. For other

choices of loss functions the problem of finding the best solution gives rise to a non linear

ill-posed problem and the theory for this kind of problems is much less developed than the

corresponding theory for linear problems. Moreover, since, in general, the expected risk

I[f ] for arbitrary loss function does not define a metric, the relation between the expected

risk and the residual is not clear. Further problems are the choice of the regularization

parameter, for example by means of the generalized Morozov principle (Engl et al., 1996)

and the extension of our analysis to a wider class of regularization algorithms.
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Appendix A. Technical Results

First, we collect some useful properties of the operators A and Ax.

Proposition 6 The operator A is a Hilbert-Schmidt operator from H into L2(X, ν) and

A∗φ =

∫

X

φ(x)Kx dν(x), (21)

A∗A =

∫

X

〈·,Kx〉HKx dν(x), (22)
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where φ ∈ L2(X, ν), the first integral converges in norm and the second one in trace norm.

Proof The proof is standard and we report it for completeness.

Since the elements f ∈ H are continuous functions defined on a compact set and ν is a

probability measure, then f ∈ L2(X, ν), so that A is a linear operator from H to L2(X, ν).

Moreover the Cauchy-Schwartz inequality gives

|(Af)(x)| = |〈f,Kx〉H| ≤ κ ‖f‖H,

so that ‖Af‖L2(X,ν) ≤ κ‖f‖H and A is bounded.

We now show that A is injective. Let f ∈ H and W = {x ∈ X | f(x) 6= 0}. Assume

Af = 0, then W is a open set, since f is continuous, and W has null measure, since

(Af)(x) = f(x) = 0 for ν-almost all x ∈ X. The assumption that ν is not degenerate

ensures W be the empty set and, hence, f(x) = 0 for all x ∈ X, that is, f = 0.

We now prove (21). We first recall the map

X 3 x 7→ Kx ∈ H

is continuous since ‖Kt −Kx‖H
2 = K(t, t) +K(x, x)− 2K(x, t) for all x, t ∈ X, and K is a

continuous function. Hence, given φ ∈ L2(X, ν), the map x 7→ φKx is measurable from X

to H. Moreover, for all x ∈ X,

‖φ(x)Kx‖H = |φ(x)|
√

K(x, x) ≤ |φ(x)|κ.

Since ν is finite, φ is in L1(X, ν) and, hence, φKx is integrable, as a vector valued map.

Finally, for all f ∈ H,
∫

X

φ(x) 〈Kx, f〉H dν(x) = 〈φ,Af〉L2(X,ν) = 〈A∗φ, f〉H ,

so, by uniqueness of the integral, Equation (21) holds.

Equations (22) is a consequence of Equation (21) and the fact that the integral commutes

with the scalar product.

We now prove that A is a Hilbert-Schmidt operator. Let (en)n∈N be a Hilbert basis of

H. Since A∗A is a positive operator and |〈Kx, en〉H|2 is a positive function, by monotone

convergence theorem, we have that

Tr (A∗A) =
∑

n

∫

X

|〈en,Kx〉H|2 dν(x)

=

∫

X

∑

n

|〈en,Kx〉H|2 dν(x)

=

∫

X

〈Kx,Kx〉H dν(x)

=

∫

X

K(x, x) dν(x) < κ2

18



Learning from Examples as an Inverse Problem

and the thesis follows.

Corollary 7 The sampling operator Ax : H → E` is a Hilbert-Schmidt operator and

Ax
∗y =

1

`

∑̀

i=1

yiKxi
(23)

Ax
∗Ax =

1

`

∑̀

i=1

〈·,Kxi
〉HKxi

. (24)

Proof The content of the proposition is a restatement of Proposition 6 and the fact that

the integrals reduce to sums.

For sake of completeness we report a standard proof on the convergence of the approx-

imation error.

Proof [of Proposition 4] Consider the polar decomposition A = U |A| of A (see, for example,

Lang (1993)), where |A|2 = A∗A is a positive operator on H and U is a partial isometry

such that the projector P on the range of A is P = UU∗. Let dE(t) be the spectral measure

of |A|. Recalling that

fλ = (A∗A+ λ)−1A∗g = (|A|2 + λ)−1|A|U∗g

the spectral theorem gives
∥

∥

∥
Afλ − Pg

∥

∥

∥

2

K
=

∥

∥U |A|(|A|2 + λ)−1|A|U∗g − UU∗g
∥

∥

2

K =

=
∥

∥

∥

(

|A|2
(

|A|2 + λ
)−1 − 1

)

U∗g
∥

∥

∥

2

H
=

=

∫ ‖|A|‖

0

(

t2

t2 + λ
− 1

)2

d〈E(t)U∗g, U∗g〉H.

Let rλ(t) = t2

t2+λ
− 1 = − λ

t2+λ
, then

|rλ(t)| ≤ 1 and lim
λ→0+

rλ(t) = 0 ∀t > 0,

so that the dominated convergence theorem gives that

lim
λ→0+

∥

∥

∥
Afλ − Pg

∥

∥

∥

2

K
= 0.

Finally, to prove our estimate of the noise we need the following probabilistic inequality

(see (Yurinsky, 1995)).
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Lemma 8 Let Z be a probability space and ξ be a random variable on X taking value in a

real separable Hilbert space H. Assume that the expectation value v∗ = E[ξ] exists and there

are two positive constants H and σ such that

‖ξ(z) − v∗‖H ≤ H a.s

E[‖ξ − v∗‖2
H] ≤ σ2.

If zi are drawn i.i.d. from Z, then, with probability greater than 1 − η,
∥

∥

∥

∥

∥

1

`

∑̀

i=1

ξ(zi) − v∗
∥

∥

∥

∥

∥

≤ σ2

H
g

(

2H2

`σ2
log

2

η

)

= δ(`, η) (25)

where g(t) = 1
2(t+

√
t2 + 4t). In particular

δ(`, η) = σ

√

2

`
log

2

η
+ o

(
√

1

`
log

2

η

)

Proof It is just a testament to Th. 3.3.4 of Yurinsky (1995), see also Steinwart (2003).

Consider the set of independent random variables with zero mean ξi = ξ(zi) − v∗ defined

on the probability space Z`. Since, ξi are identically distributed, for all m ≥ 2 it holds

∑̀

i=1

E[‖ξi‖m
H] ≤ 1

2
m!B2Hm−2,

with the choice B2 = `σ2. So Th. 3.3.4 of Yurinsky (1995) can be applied and it ensures

P

[

1

`

∥

∥

∥

∥

∥

∑̀

i=1

(ξ(zi) − v∗)

∥

∥

∥

∥

∥

≥ xB

`

]

≤ 2 exp

(

− x2

2(1 + xHB−1)

)

.

for all x ≥ 0. Letting δ = xB
`

, we get the equation

1

2
(
`δ

B
)2

1

1 + `δHB−2
=

`δ2σ−2

2(1 + δHσ−2)
= log

2

η
,

since B2 = `σ2. Defining t = δHσ−2

`σ2

2H2

t2

1 + t
= log

2

η
.

The thesis follows, observing that g is the inverse of t2

1+t
and that g(t) =

√
t+ o(

√
t).

We notice that, if ξ is bounded by L almost surely, then v∗ exists and we can choose H = 2L

and σ = L so that

δ(`, η) =
L

2
g

(

8

`
log

2

η

)

. (26)

In Smale and Y. (2004) a better estimate is given, replacing the function t2

1+t
with t log(1+t),

anyway the asymptotic rate is the same.

B. Schölkopf and A.J. Smola.
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