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Abstract

In this paper we investigate the impact of choosing different loss
functions from the viewpoint of statistical learning theory. We in-
troduce a convexity assumption - which is met by all loss functions
commonly used in the literature, and study how the bound on the
estimation error changes with the loss. We also derive a general result
on the minimizer of the expected risk for a convex loss function in the
case of classification. The main outcome of our analysis is that, for
classification, the hinge loss appears to be the loss of choice. Other
things being equal, the hinge loss leads to a convergence rate prac-
tically indistinguishable from the logistic loss rate and much better
than the square loss rate. Furthermore, if the hypothesis space is suf-
ficiently rich, the bounds obtained for the hinge loss are not loosened
by the thresholding stage.
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1 Introduction

A main problem of statistical learning theory is finding necessary and suffi-
cient conditions for the consistency of the Empirical Risk Minimization prin-
ciple. Traditionally, the role played by the loss is marginal and the choice
of which loss to use for which problem is usually regarded as a computa-
tional issue (Vapnik, 1995; Vapnik, 1998; Alon et al., 1993; Cristianini and
Shawe Taylor, 2000). The technical results are usually derived in a form
which makes it difficult to evaluate the role played, if any, by different loss
functions.

The aim of this paper is to study the impact of choosing a different loss
function from a purely theoretical viewpoint. By introducing a convexity as-
sumption – which is met by all loss functions commonly used in the literature,
we show that different loss functions lead to different theoretical behaviors.
Our contribution is twofold. First, we extend the framework introduced in
Cucker and Smale (2002b), based on the square loss for regression, to a va-
riety of loss functions for both regression and classification allowing for an
effective comparison between the convergence rates achievable using different
loss functions. Second, in the classification case, we show that for all convex
loss functions the sign of the minimum of the expected risk coincides with the
Bayes optimal solution. This can be interpreted as a consistency property
supporting the meaningfulness of the convexity assumption at the basis of
our study. This property is related to the problem of the Bayes consistency
(Lugosi and Vayatis, 2003; Zhang, 2003).

The main outcome of our analysis is that, for classification, the hinge loss
appears to be the loss of choice. Other things being equal, the hinge loss
leads to a convergence rate which is practically indistinguishable from the
logistic loss rate and much better than the square loss rate. Furthermore,
the hinge loss is the only one for which, if the hypothesis space is sufficiently
rich, the thresholding stage has little impact on the obtained bounds.

The plan of the paper is as follows. In Section 2 we fix the notation
and discuss the mathematical conditions we require on loss functions. In
Section 3, we generalize the result in Cucker and Smale (2002b) to convex
loss functions. In Section 4 we discuss the convergence rates in terms of
various loss functions and focus our attention on classification. In Section 5
we summarize the obtained results.
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2 Preliminaries

In this section we fix the notation and then make explicit the mathematical
properties required in the definition of loss functions which can be profitably
used in statistical learning.

2.1 Notation

We denote with p(x, y) the density describing the probability distribution of
the pair (x, y) with x ∈ X and y ∈ Y . The sets X and Y are compact subsets
of IRd and IR respectively. We let Z = X × Y and we recall that p(x, y) can
be factorized in the form p(x, y) = p(y|x) · p(x) where p(x) is the marginal
distribution defined over X and p(y|x) is the conditional distribution 1. We
write the expected risk for a function f as

I[f ] =

∫

Z

V (f(x), y)p(x, y)dxdy, (1)

for some nonnegative valued function V , named loss function, the properties
of which we discuss in the next subsection. The ideal estimator – or target
function, denoted with f0 : X → IR, is the minimizer of

min
f∈F

I[f ],

where F is the space of measurable functions for which I[f ] is well-defined.
In practice f0 cannot be found since the probability distribution p(x, y) is un-
known. What is known is a training set D of examples D = {(x1, y1), . . . , (x`, y`)},
obtained by drawing ` i.i.d. pairs in Z according to p(x, y). A natural esti-
mate of the expected risk is given by the empirical risk

Iemp[f ] =
1

`

∑̀
i=1

V (f(xi), yi). (2)

The minimizer fD of
min
f∈H

Iemp[f ], (3)

1The results obtained throughout the paper, however, hold for any prob-
ability measure on Z.
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can be seen as a coarse approximation of f0. In (3) the search is restricted
to a function space H, named hypothesis space, allowing for the effective
computation of the solution. A central problem of statistical learning theory
is to find conditions under which fD mimics the behavior of f0.

2.2 RKHS and Hypothesis Space

The approximation of f0 from a finite set of data is an ill-posed problem
(Girosi et al., 1995; Evgeniou et al., 2000). The treatment of the functional
and numerical pathologies due to ill-posedness can be addressed by using
regularization theory. The conceptual approach of regularization is to look
for approximate solutions by setting appropriate smoothness constraints on
the hypothesis space H. Within this framework, Reproducing Kernel Hilbert
Space (RKHS) (Aronszajn, 1950) provides a natural choice for H (Wahba,
1990; Girosi et al., 1995; Evgeniou et al., 2000). In what follows we briefly
summarize the properties of RKHSs needed in the next section. A RKHS
is a Hilbert space H characterized by a symmetric positive definite function
K(x, s), named Mercer kernel (Aronszajn, 1950)

K : X ×X → IR,

such that K(·,x), for all x ∈ X, and the following reproducing property
holds

f(x) = 〈f,K(·,x)〉H. (4)

For each given R > 0, we consider as hypothesis space HR, the ball of radius
R in the RKHS H, or

HR = {f ∈ H, ‖f‖H ≤ R}.

We assume that K is a continuous function on X ×X. It follows from Eq.
(4) that HR is a compact subset of C(X) in the sup norm topology

‖f‖∞ = sup |f(x)|.

In particular, this implies that given f ∈ HR we have

‖f‖∞ ≤ RCK with CK = sup
x∈X

√
K(x,x).

We conclude by observing that CK is finite since X is compact.
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2.3 Loss functions

In Eqs. (1) and (2) the loss function

V : IR× Y → [0, +∞)

represents the price we are willing to pay by predicting f(x) in place of y.
The choice of the loss function is typically regarded as an empirical problem,
the solution to which depends essentially upon computational issues.

We now introduce a mathematical requirement a function needs to satisfy
in order to be naturally thought of as a loss function.

We first notice that the loss function is always a true function of only one
variable t, with t = w − y for regression and t = wy for classification. The
basic assumption we make is that the mapping

t → V (t)

is convex for all t ∈ IR. This convexity hypothesis has two technical impli-
cations (Rockafellar, 1970).

1. A loss function is a Lipschitz function, i.e. for every M > 0 there exists
a constant LM > 0 such that

|V (w1, y)− V (w2, y)| ≤ LM |w1 − w2|

for all w1, w2 ∈ [−M, M ] and for all y ∈ Y .

2. There exists a constant C0 such that, ∀y ∈ Y ,

V (0, y) ≤ C0 .

The explicit values of LM and C0 depends on the specific form of the loss
function. In what follows we consider

• the square loss V (w, y) = (w − y)2,

• the absolute value loss V (w, y) = |w − y|, and

• the ε−insensitive loss V (w, y) = max{|w − y| − ε, 0} =: |w − y|ε
for regression, and
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Figure 1: Various loss functions used in classification. Here t = yf(x).

• the square loss V (w, y) = (w − y)2 = (1− wy)2,

• the hinge loss V (w, y) = max{1− wy, 0} =: |1− wy|+, and

• the logistic loss V (w, y) = (ln 2)−1 ln(1 + e−wy)

for classification (see Figure 1). The constant in the logistic loss ensures that
all losses for classification equal 1 for w = 0. The values of LM and C0 for
the various loss functions are summarized in Table 1. We observe that for
regression the value of δ in C0 depends on the interval [a, b] in IR and is
defined as δ = max{|a|, |b|}. For classification, instead, C0 = 1 for all loss
functions.

Notice that the 0− 1 loss, the natural loss function for binary classifica-
tion, does not satisfy the convexity assumption. In practice, this does not
constitute a limitation since the 0 − 1 loss leads to intractable optimization
problems.
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Table 1: Optimal values of LM and C0 for a number of loss functions for
regression (regr) and classification (class). In regression (Y = [a, b]) δ =
max{|a|, |b|}.

3 Estimation error bounds for convex loss func-

tions

It is well known that by introducing an hypothesis space HR, the generaliza-
tion error I[fD]− I[f0], can be written as

I[fD]− I[f0] = (I[fD]− I[fR]) + (I[fR]− I[f0]) (5)

with fR defined as the minimizer of minf∈HR
{I[f ]}.

The first term in the r.h.s of (5) is the sample or estimation error, whereas
the second term – which does not depend on the data – is the approximation
error. In this section we provide a bound on the estimation error for all
loss functions through a rather straightforward extension of Theorem C in
(Cucker and Smale, 2002b). We let N(ε) be the covering number of HR

(which is well defined because HR is a compact subset of C(X)) and start
by proving the following sufficient condition for uniform convergence from
which the derivation of the probabilistic bound on the estimation error will
be trivially obtained.

Lemma: Let M = CKR and B = LMM + C0. For all ε > 0,

Prob{D ∈ Z`| sup
f∈HR

|I[f ]− Iemp[f ]| ≤ ε} ≥ 1− 2N(
ε

4LM

)e−
`ε2

8B2 . (6)

Proof. Since HR is compact, both M and B are finite. We start by writing

LD[f ] = I[f ]− Iemp[f ].

Given f1, f2 ∈ HR, for the Lipschitz property we have that

|LD[f1]−LD[f2]| ≤ |I[f1]−I[f2]|+|Iemp[f1]−Iemp[f2]| ≤ 2LM‖f1−f2‖∞ . (7)
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The mean value µ of the random variable on Z defined as ξ(x, y) = V (f(x), y),
is

µ :=

∫

Z

V (f(x), y) dp(x, y) = I[f ],

and, since 0 ≤ µ, ξ ≤ B, we have that |ξ(x, y)−µ| ≤ B, for all x ∈ X, y ∈ Y .
Given f ∈ H, we denote with

Af = {D ∈ Z` | |LD[f ]| ≥ ε}

the collection of training sets for which convergence in probability of Iemp[f ]
to I[f ] with high confidence is not attained. By Hoeffding inequality (Cucker
and Smale, 2002b) we have that,

p`(Af ) ≤ 2e−
`ε2

2B2 .

If m = N( ε
2LM

), by definition of covering number, there exist m functions
f1, . . . , fm ∈ HR such that the m balls of radius ε

2LM
, B(fi,

ε
2LM

) cover HR,
or HR ⊂ ∪m

i=1B(fi,
ε

2LM
). Equivalently, for all f ∈ HR, there exists some

i ∈ {1, ..., m} such that f ∈ B(fi,
ε

2LM
), or

‖f − fi‖∞ ≤ ε

2LM

. (8)

If we now define A = ∪m
i=1Afi

, we then have

p`(A) ≤
m∑

i=1

p`(Afi
) ≤ m2e−

`ε2

2B2 .

Thus, for all D 6∈ A we have that |LD[fi]| ≤ ε and, by combining Eqs. (7)
and (8), we obtain

|LD[f ]− LD[fi]| ≤ ε.

Therefore, for all f ∈ HR and D 6∈ A we have that

|LD[f ]| ≤ 2ε.

The thesis follows replacing ε with ε
2
. QED.

The above Lemma can be compared to the classic result in the book
of Vapnik (1998) (see Chapter 3 and 5 therein) where a different notion
of covering number that depends on the given sample is considered. The
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relation between these two complexity measures of hypothesis space has been
investigated by some authors (Zhou, 2002; Pontil, 2003). In particular, from
the results in Pontil (2003) the generalization of our proof to the case of data
dependent covering number does not seem straightforward.

We are now in a position to generalize Theorem C in Cucker and Smale
(2002b) and obtain the probabilistic bound by observing that for a fixed η
the confidence term in Eq. (6) can be solved for ε.

Theorem Given 0 < η < 1, ` ∈ IN and R > 0, with probability at least
1− η,

I[fD] ≤ Iemp[fD] + ε(η, `, R) and

|I[fD]− I[fR]| ≤ 2ε(η, `, R)

with lim`→∞ ε(η, `, R) = 0.
Proof. The first inequality is evident from the above lemma and the def-

inition of ε. The second one follows observing that, with probability at least
1− η,

I[fD] ≤ Iemp[fD] + ε(η, `, R) ≤ Iemp[fR] + ε(η, `, R) ≤ I[fR] + 2ε(η, `, R),

and, by definition of fR, I[fR] ≤ I[fD]. That lim`→∞ ε(η, `, R) = 0 follows
elementarily by inverting η = η(ε) with respect to ε.

4 Statistical properties of loss functions

We now move on to study some statistical properties of various loss functions.

4.1 Comparing convergence rates

Using Eq. (6) we first compare the convergence rates of the various loss
functions. This is made possible since the constants appearing in the bounds
depend explicitly on the choice of the loss function. For the sake of simplicity
we assume CK = 1 throughout.

For regression we have that the absolute value and the ε-insensitive loss
functions have the same confidence, i.e.,

2N
( ε

4

)
exp

(
− `ε2

8(R + δ)2

)
(9)
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Figure 2: Semilogarithmic plots of the convergence rates of various loss func-
tions for regression (a) and classification (b). In both cases, R = 1.5, ε = 0.2
and the dimensionality of the input-space used to estimate the covering num-
ber is 10. For regression we set δ = 1.5.

from which we see that the radius, ε/4, does not decrease when R increases,
unlike the case of the square loss in which the confidence is

2N

(
ε

4(2R + δ)

)
exp

(
− `ε2

8(R(2R + δ) + δ2)2

)
. (10)

Notice that for the square loss the convergence rate is also much slower given
the different leading power of the R and δ factors in the denominator of
the exponential arguments of (9) and (10). In Figure (2a) we compare the
dependence of the estimated confidence η on the sample size ` for the square
and the ε-insensitive loss for some fixed values of the various parameters (see
the legend for details). The covering number has been estimated from the
upper bounds found in Zhou (2002) for the Gaussian kernel. Clearly, to a
steeper slope corresponds a better convergence rate.

Qualitatively, the behavior of the square loss does not change moving
from regression to classification. For the hinge loss, instead, the confidence
reads

2N
( ε

4

)
exp

(
− `ε2

8(R + 1)2

)
.

Here again, the covering number does not depend on R and the convergence
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rate is much better than for the square loss. The overall behavior of the
logistic loss

2N

(
ε

4(ln 2)−1eR/(1 + eR)

)
exp

(
− `ε2

8(R((ln 2)−1eR/(eR + 1)) + 1)2

)

is very similar to the hinge case. This agrees with the intuition that these
two losses have similar shape (see Figure 1). The behavior of the conver-
gence rates for these three loss functions is depicted in Figure (2b) (again
the covering number has been estimated using the upper bounds found in
Zhou (2002) for the case of Gaussian kernel and to a steeper slope corre-
sponds a better convergence rate). We conclude this section pointing out
that this analysis is made possible by the fact that, unlike previous work,
mathematical properties of the loss function have been incorporated directly
into the bounds.

4.2 Bounds for classification

We now focus our attention to the case of classification. We start by showing
that the convexity assumption ensures that the thresholded minimizer of the
expected risk equals the Bayes optimal solution independently of the loss
function. We then find that the hinge loss is the one for which the obtained
bounds are tighter.

The natural restriction to indicator functions for classifications corre-
sponds to considering the 0 − 1 loss. Due to the intractability of the opti-
mization problems posed by this loss, real valued loss functions must then be
used (effectively solving a regression problem) and classification is obtained
by thresholding the output.

We recall that in this case the best solution fb for a binary classification
problem is provided by the Bayes rule defined, for p(1|x) 6= p(−1|x), as

fb(x) =

{
1 if p(1|x) > p(−1|x)
−1 if p(1|x) < p(−1|x).

We now prove the following fact relating the Bayes optimal solution to the
real valued minimizer of the expected risk for a convex loss.

Fact: Assume that the loss function V (w, y) = V (wy) is convex and that
it is decreasing in a neighborhood of 0. If f0(x) 6= 0, then

fb(x) = sgn(f0(x)).
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Proof. We recall that, since V is convex, V admits left and right derivative
in 0 and, since it is decreasing, V ′

−(0) ≤ V ′
+(0) < 0. Observe that

I[f ] =

∫

X

(p(1|x)V (f(x) + (1− p(1|x))V (−f(x))) p(x)dx,

with p(1|x) = p(y = 1|x), we have f0(x) = argminw∈IR ψ(w), where

ψ(w) = p(1|x)V (w) + (1− p(1|x))V (−w)

(we assume existence and uniqueness to avoid pathological cases).
Assume, for example, that p(1|x) > 1

2
. Then,

ψ′−(0) = p(1|x)V ′
−(0)− (1− p(1|x))V ′

+(0)

≤ p(1|x)V ′
+(0)− (1− p(1|x))V ′

+(0)

= (2p(1|x)− 1)V ′
+(0) ≤ 0,

Since ψ is also a convex function in w, this implies that for all w ≤ 0

ψ(w) ≥ ψ(0) + ψ′−(0)w ≥ ψ(0),

so that the minimum point w∗ of ψ(w) is such that w∗ ≥ 0. Since f0(x) = w∗,
it follows that if f0(x) 6= 0

sgn f0(x) = sgn(2p(1|x)− 1) = fb(x).

This ends the proof.
Remark: The technical condition f0(x) 6= 0 is always met by all loss

functions considered in this paper and in practical applications and is equiv-
alent to require the differentiability of V in the origin2.

The above fact ensures that in the presence of infinite data all loss func-
tions used in practice, though only rough approximations of the 0 − 1 loss,
lead to consistent results. Therefore, our result can be interpreted as a con-
sistency property shared by all convex loss functions.

2Consider the case p(1|x) > 1
2
. Computing the right derivative of ψ in 0,

ψ′+(0), and observing that ψ′+(0) ≥ 0 for p(1|x) ∈ (1
2
,

V ′−(0)

V ′−(0)+V ′+(0)
), it follows

that this interval is empty if and only if V ′
−(0) = V ′

+(0). For more details see
Rosasco et al. (2003).

12



It can be shown that for the hinge loss (Lin et al., 2003)

I[f0] = I[fb]. (11)

By directly computing f0 for different loss functions (see Hastie et al. (2001),
pp. 381, for example) it is easy to prove that this result does not hold for
the other loss functions used in this paper.

We now use this result to show that the hinge loss has a further advantage
on the other loss functions. In the case of finite data, we are interested in
bounding

I[sgn(fD)]− I[fb], (12)

but we can only produce bounds of the type

I[fD]− I[fR] ≤ 2ε(η, `, R).

We observe that for all loss functions

I[sgn(fD)] ≤ I[fD] (13)

see Figure (1). Now, if the hypothesis space is rich enough to contain f0, i.e.
when the approximation error can be neglected, we have fR = f0.

For the hinge loss, using Eqs. (11) and (13) and the theorem, we obtain
that for 0 < η < 1 and R > 0 with probability at least 1− η

0 ≤ I[sgn(fD)]− I[fb] ≤ I[fD]− I[f0] ≤ 2ε(η, `, R).

We stress that the simple derivation of the above bound follows naturally
from the special property of the hinge loss expressed in Eq. (11). For other
loss functions similar results can be derived through a more complex analysis
(Lugosi and Vayatis, 2003; Zhang, 2003).

5 Conclusion

In this paper we consider a probabilistic bound on the estimation error based
on covering numbers and depending explicitly on the form of the loss func-
tion for both regression and classification problems. Our analysis makes
explicit an implicit convexity assumption met by all loss functions used in
the literature. Unlike previous results, constants related to the behavior of
different loss functions are directly incorporated in the bound. This allows
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us to analyze the role played by the choice of the loss function in statistical
learning: we conclude that the built-in statistical robustness of loss functions
like the hinge or the logistic loss for classification and the ε-insensitive loss
for regression leads to better convergence rates than the classic square loss.
It remains to be seen whether the same conclusions on the convergence rates
can be drawn using different bounds.

Furthermore, for classification, we derived in a simple way results relating
the classification problem to the regression problem that is actually solved
in the case of real valued loss functions. In particular we pointed out that
only for the hinge loss the solution of the regression problem with infinite
data returns the Bayes rule. Using this fact the bound on the generalization
error for the hinge can be written ignoring the thresholding stage.

Finally, we observe that our results are found considering the regulariza-
tion setting of the Ivanov type - that is, empirical risk minimization in balls
of radius R in the RKHS H. Many kernel methods consider a functional of
the form

Iemp[f ] + λ‖f‖2
H

that can be seen as the Tikhonov version of the above regularization problem.
The question arises of whether, or not, the results presented in this paper can
be generalized to the Tikhonov setting. For the square loss a positive answer
is given in Cucker and Smale (2002a), where the proofs heavily rely on the
special properties of the square loss. Current work focuses on extending this
result to the wider class of loss functions considered in this paper.
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by an INFM fellowship. A. Caponnetto is supported by a PRIN fellowship
within the project “Inverse problems in medical imaging”, n. 2002013422.
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