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1. Introduction

The aim of this paper is the characterization of the reproducing kernel Hilbert
spaces (RKH spaces) whose elements are vector valued p-integrable functions. We
show that, if H is such a space and Γ its reproducing kernel, the functions in H are
p-integrable if and only if the integral operator of kernel Γ is bounded from L

p
p−1

to Lp. Moreover, for p = 2, we prove a generalized version of Mercer theorem, that
is, the fact that the reproducing kernel can be expressed in terms of the spectral
measure of the integral operator. Our results hold for RKH spaces of functions
f : X → K where X is a measurable set and K is a Hilbert space, following the
general setting of vector valued RKH spaces outlined in [1,2,3].
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The characterization of the regularity properties of the RKH spaces in terms
of corresponding properties of the reproducing kernel is already discussed in the
literature. In [3] there is a complete characterization of RKH spaces whose elements
are continuous or smooth complex functions, see also [4], whereas in [1] there is a
discussion of RKH spaces of holomorphic vector valued functions. However, a similar
treatment for RKH spaces of p-integrable functions has not yet been exploited. The
problem of square-integrability is discussed in the framework of harmonic analysis
in connection with square-integrable representations (there is a large literature on
the topic, see for example [5,6] and references therein); in a general setting there
are some sufficient conditions in [4].

The motivation of the present work is twofold. In recent years there is a new in-
terest for the theory of RKH spaces in different frameworks, like quantum mechanics
[7], signal analysis [8,6], probability theory [9] and statistical learning theory [10,11].
In particular, for these applications there is often the need of RKH spaces whose
elements are square-integrable (possibly vector valued) functions. However, most of
references are mainly devoted to characterize operations between RKH spaces (like
sum, restriction, tensor product), whereas few papers discuss the correspondence
between regularity properties of RKH spaces and features of the associated kernels.

This paper is both a research article and a self-contained survey about RKH
spaces whose elements are functions that take value in a separable Hilbert space
K and are p-integrable according to a σ-finite measure. The article is organized as
follows. At the beginning of each section we briefly introduce the main notations
we need. In Section 2, following [3,4] we review the connection between

(1) RKH spaces of functions from a set X into a Hilbert space K;
(2) kernels of positive type on X × X and taking value in the space of bounded

operators on K;
(3) maps on X taking values in the space of bounded operators from K into an

arbitrary Hilbert space.

In Section 3 we study the problem of measurability under the assumption that
both K and the RKH space are separable. Our proof is an easy consequence of the
equivalence between weak and strong measurability for operator valued maps. In
Section 4 we assume that X is a measurable set endowed with a σ-finite measure
µ and we show that a RKH space H is a subspace of Lp(X,µ;K) if and only if
the integral operator whose kernel is the reproducing kernel of H is bounded from
L

p
p−1 (X,µ;K) into Lp(X,µ;K). This is the main result of the paper. In Section 4.4

we give additional conditions on the reproducing kernel Γ ensuring that the inclusion
ofH into Lp(X,µ;K) is compact. In Section 5 we assume thatX is a locally compact
space and we prove that the RKH space H is a subspace of C(X;K) if and only
if the reproducing kernel is locally bounded and separately continuous. As before
we also discuss the compactness of the inclusion. For the scalar case the results we
present are due to [3], however we give an elementary proof which holds also for
the vector case.
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Finally, in Section 6 we assume that X is a measurable space endowed with a σ-
finite measure µ and H is a separable RKH space such that H ⊂ L2(X,µ;K). We
characterize the space H and the reproducing kernel Γ in terms of the spectral
decomposition of the corresponding integral operator. When X is a compact subset
of Rn endowed with the Lebesgue measure, this kind of result is known as Mercer
theorem [12]. Extensions of Mercer theorem can be found in [10,13,14] and references
therein.

2. Reproducing kernel Hilbert spaces

In this section we give the definition of vector valued RKH spaces, we show the
correspondence between such spaces and vector valued kernels of positive type and
we analyse the relation between the vector and scalar case. The results we present
in this section are well known for the scalar case, see [4,15,9] for updated references.
For the vector case we refer to [3,2,1].

2.1. Notations

Given two sets X and Y , the vector space of functions from X into Y is denoted
by Y X endowed with the topology of point-wise convergence. If H is a Hilbert
spacea, the corresponding norm and scalar product are denoted by ‖·‖H and 〈·, ·〉H,
respectively. The scalar product is linear in the first argument. If H, K are Hilbert
spaces, B(H;K) is the Banach space of bounded operators from H to K (with
B(H) = B(H;H) ) and ‖·‖

H,K
denotes the uniform norm in B(H;K). If A ∈ B(H;K),

KerA denotes the kernel, ImA the image and A∗ ∈ B(K;H) the adjoint.
Finally we let B0(H;K) be the Banach space of compact operators with the uniform
norm and B1(H;K) the Banach space of trace class operators with the trace norm.

2.2. Definitions and main properties

We recall the definitions of RKH space and of kernel of positive type for vector
valued functions. Let X be a set and K a Hilbert space.

Definition 2.1. A K-valued reproducing kernel Hilbert space on X is a Hilbert
space H such that

(1) the elements of H are functions from X to K;
(2) for all x ∈ X there exists a positive constant Cx such that

‖f(x)‖K ≤ Cx ‖f‖H ∀f ∈ H. (2.1)

aWe only consider the case of complex Hilbert spaces, however almost all the results hold in the
real case.
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Definition 2.2. A K-kernel of positive type on X×X is a map Γ : X×X −→ B(K)
such that, for all N ∈ N, x1, . . . , xN ∈ X and c1, . . . , cN ∈ C,

N∑
i,j=1

cicj〈Γ(xj , xi)v, v〉K ≥ 0 ∀v ∈ K.

As in the scalar case any RKH space H canonically defines a K-kernel of positive
type. Indeed, given x ∈ X, (2.1) ensures that the evaluation map at x

evx : H −→ K evx(f) = f(x)

is a bounded operator and the reproducing kernel associated to H is defined as the
map

Γ : X ×X −→ B(K) Γ(x, y) = evxev∗y.

Since for all v ∈ K〈
N∑

i,j=1

cicjΓ(xj , xi)v, v

〉
K

=

〈
N∑

i=1

ciev∗xi
v,

N∑
j=1

cjev∗xj
v

〉
K

≥ 0,

the map Γ is K-kernel of positive type.
To study the regularity properties of the elements of H it is useful to introduce

the map

γ : X −→ B(K;H), γ(x) = ev∗x,

so that Γ(x, y) = γ(x)∗γ(y).
The following properties are simple consequences of the definition.

(1) The kernel Γ reproduces the value of a function f ∈ H at a point x ∈ X. Indeed,
for all x ∈ X and v ∈ K

ev∗xv = Γ(·, x)v

so that

〈f(x), v〉K = 〈f,Γ(·, x)v〉H. (2.2)

The inclusion of H into KX can be written as the linear operator ıΓ : H → KX

(ıΓf)(x) = γ(x)∗f f ∈ H, x ∈ X (2.3)

and (2.1) is equivalent to the fact that ıΓ is continuous from H into KX . This
point of view is developed in full generality in [3] where KX is replaced by any
locally convex topological vector space.

(2) The set {ev∗xv | x ∈ X, v ∈ K} is total in H, that is,

(∪x∈XIm ev∗x)⊥ = {0}. (2.4)

Indeed, if f ∈ (∪x∈XIm ev∗x)⊥, then f ∈ (Im ev∗x)⊥ = Ker evx for all x ∈ X, so
that f(x) = 0 for all x ∈ X, i.e. f = 0.
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(3) Since ‖evx‖H,K
= ‖ev∗x‖K,H

= ‖Γ(x, x)‖
1
2
K,K

‖f(x)‖K ≤ ‖Γ(x, x)‖
1
2
K,K

‖f‖H x ∈ Xf ∈ H.

Hence, if a sequence (fn)n∈N converges to f in H, it converges uniformly on any
subset C ⊂ X such that supx∈C ‖Γ(x, x)‖

K,K
is finite. In particular, (fn)n∈N

converges point-wise to f on X.

The next proposition proves that any K-kernel Γ of positive type on X defines a
unique K-valued RKH space whose reproducing kernel is Γ. For the scalar case, it
has been obtained by many authors, see [16,17,18,19,20,21] and, for a complete list
of references, [15,22,23,4]. For the vector case see [2,3].

Proposition 2.1. Given a K-kernel of positive type Γ : X × X → K, there is a
unique K-valued RKH space H on X with reproducing kernel Γ.

Proof. We report the proof of [3], see also [15]. For all x ∈ X and v ∈ K, define
the function Γx,v = Γ(·, x)v ∈ KX and

H0 = span {Γx,v | x ∈ X, v ∈ K} ⊂ KX .

If f =
∑n

i ciΓxi,vi and g =
∑n

j djΓyj ,wj are elements of H0, we have∑
j

dj〈f(yj), wj〉K =
∑
ij

cidj〈Γ(yj , xi)vi, wj〉K =
∑

i

ci〈vi, g(xi)〉K,

so the sesquilinear form on H0 ×H0

〈f, g〉 =
∑
ij

cidj〈Γ(yj , xi)vi, wj〉K

is well defined. The fact that Γ is a K-kernel of positive type implies that 〈f, f〉 ≥ 0
for all f ∈ H0. The positivity ensures that the sesquilinear form is hermitian. Let
now x ∈ X, the choice g = Γx,v in the above definition gives

〈f,Γx,v〉 = 〈f(x), v〉K ∀x ∈ X

for all f ∈ H0.
We claim that the above sesquilinear form is a scalar product. If f ∈ H0, for all
v ∈ K with ‖v‖K = 1 by the Cauchy-Schwarz inequality we have

|〈f(x), v〉K| = | 〈f,Γx,v〉 | ≤ 〈f, f〉1/2 〈Γx,v,Γx,v〉1/2

= 〈f, f〉1/2 〈Γ(x, x)v, v〉1/2
K ≤ 〈f, f〉1/2 ‖Γ(x, x)‖1/2

K,K
,

implying

‖f(x)‖K ≤ 〈f, f〉1/2 ‖Γ(x, x)‖1/2

K,K
.
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Hence, if 〈f, f〉 = 0, then f = 0 and, hence, 〈·, ·〉 is a scalar product on H0.
Let H be the completion of H0 and define Γx : K → H, Γxv = Γx,v, which is
bounded by construction, and A : H → KX , (Af)(x) = Γ∗xf . We claim that A is
injective. Indeed, if Af = 0, then f ∈ ker Γ∗x = Im Γx

⊥ for all x ∈ X and, since the
set ∪x∈XIm Γx generates H0, f = 0 . Due to the fact that A is injective, H can be
canonically identified with a subspace of KX , so that f(x) = evxf = Γ∗xf showing
that H is a RKH space with reproducing kernel

ΓH(x, y)v = (ev∗yv)(x) = Γ(x, y)v.

The uniqueness of H is evident from the uniqueness of the completion.

The above theorem holds also if K is a real vector space provided we add the
assumption that Γ is symmetric, Γ(x, y) = Γ(y, x). If K is a complex space, a kernel
of positive type is always hermitian, Γ(x, y)∗ = Γ(y, x).

The following proposition shows another way to define a RKH space H. This
point of view is developed in [4].

Proposition 2.2. Let Ĥ be an arbitrary Hilbert space and A : Ĥ → KX . The
following facts are equivalent.

(1) For any x ∈ X there is a positive constant Cx satisfying

‖(Au)(x)‖K ≤ Cx ‖u‖ bH u ∈ Ĥ.

(2) There is a map γ : X → B(K; Ĥ) such that

(Au)(x) = γ(x)∗u u ∈ Ĥ, x ∈ X. (2.5)

(3) The operator A is a partial isometry from Ĥ onto a RKH space H ⊂ KX .

If one of the above conditions is satisfied, then

kerA = (∪x∈XIm γ(x))⊥ , (2.6)

the reproducing kernel of H is

Γ(x, y) = γ(x)∗γ(y) x, y ∈ X

and the evaluation map at x ∈ X is

evx = (Aγ(x))∗ : H → K. (2.7)

Proof. Clearly 1. ⇐⇒ 2. and 3. ⇒ 1.. We show 2. ⇒ 3.. Indeed, (2.5) ensures
that the kernel of A is N = ∩x∈X ker γ(x)∗, which is closed. Moreover,

N = ∩x∈X ker γ(x)∗ = ∩x∈X (Im γ(x))⊥ = (∪x∈XIm γ(x))⊥ ,
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so (2.6) follows and the restriction of A to N⊥ is injective. Let H = ImA as a vector
space, and define on it the unique Hilbert space structure such that A becomes a
partial isometry from Ĥ onto H and we denote this partial isometry again by A. We
show that H is a RKH space. Since A∗A is the projection onto N⊥, given f ∈ H
where f = Au and u ∈ N⊥,

f(x) = (Au)(x) = γ(x)∗u = γ(x)∗A∗Au = (Aγ(x))∗f x ∈ X,

so that the evaluation map evx = (Aγ(x))∗ is continuous and the reproducing kernel
is given by

Γ(x, y) = evxev∗y = γ(x)∗A∗Aγ(y) = γ(x)∗γ(y) x, y ∈ X,

since A∗A is the identity on Im γ(y).

If the map γ is such that the set ∪x∈XIm γ(x) is total in Ĥ, then A is a unitary
operator from Ĥ to the RKH space H. It follows that, up to a unitary equivalence,
there is a correspondence between K-valued reproducing kernel Hilbert spaces H,
K-kernels of positive type and operator valued maps γ : X → B(K;H) such that
span {γ(x)v | x ∈ X, v ∈ K} = H. Hence the regularity properties of the elements
of a RKH space can be characterized in terms of the corresponding properties of
the inclusion ıΓ , the reproducing kernel Γ and the map γ. A first example is given
by the following proposition, which discusses the problem of compactness of the
inclusion.

Proposition 2.3. With the above notation, the following facts are equivalent:

(1) the inclusion ıΓ is compact from H into KX ;
(2) for all x ∈ X, Γ(x, x) ∈ B0(K);
(3) for all x, y ∈ X, Γ(x, y) ∈ B0(K);
(4) for all x ∈ X, γ(x) ∈ B0(K,H).

Proof. Since Γ(x, y) = γ(x)∗γ(y) and, by polar decomposition, γ(x) = UxΓ(x, x)
1
2

where Ux is a partial isometry, the equivalence between the last three conditions
follows by the fact that the space of compact operators is an ideal and Schauder
theorem [24].
We show that 1. ⇐⇒ 4.. The topology of KX is the product topology and Tikhonov
theorem implies that ıΓ is compact if and only f 7→ f(x) = γ(x)∗f is a compact
operator from H to K. The claim follows again by Schauder theorem.

We end the section recalling the correspondence between vector and scalar re-
producing kernel Hilbert spaces [2,3].

Scalar RKH spaces correspond to the choice K = C so that B (C; C) = C and
B (C;H) = H. Hence the reproducing kernel Γ takes value in C and is a function
of positive type in the usual sense. Moreover γ(x) is a vector γx ∈ H such that

γx = Γ(·, x) ∈ H
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f(x) = 〈f, γx〉H
Γ(x, y) = 〈γy, γx〉H.

for all x, y ∈ X and f ∈ H.
The importance of the scalar case is due to the fact that the algebraic properties

of any vector valued RKH space can be reduced to the corresponding properties of
a scalar RKH space. Let K be a Hilbert space and H a K-valued RKH space on X
with reproducing kernel Γ.
We define the linear map W : H −→ CX×K as

(Wf)(x, v) = 〈f(x), v〉K

Proposition 2.4. The map W is a unitary operator from H onto the scalar RKH
space H̃ on X ×K whose reproducing kernel is

Γ̃(x, v; y, w) = 〈Γ(x, y)w, v〉K (x, v), (y, w) ∈ X ×K.

Proof. By definition (Wf)(x, v) = 〈f, ev∗xv〉H and (2.4) implies thatW is injective,
so the thesis follows applying Prop. 2.2 with A = W .

The above construction is not as powerful as it can seem at first glance. If, for
example, we are interested in the case in which the base space has some regularity
property (e.g. local compactness) then it is not guaranteed that also X ×K shares
this property. Usually in this case one resorts to the linearity of the second entry
thus recovering the distinctive role played by K. Moreover, no simplification arises
in the proof of Prop. 2.1 and Prop. 2.2 considering the scalar case. Finally given a
scalar RKH space H̃ on X ×K, in general it does not exists a K-valued RKH space
H such that WH = H̃, for a discussion see [2].

3. Measurability

In this section we assume that X is a measurable space and we characterize the
conditions on the reproducing kernel ensuring that the elements of the correspond-
ing RKH space are measurable functions. An assumption of separability will be
essential.

3.1. Notations

Let K be a Hilbert space. A function f : X −→ K is measurable if it is measurable
as a function from X to K, K being endowed with its Borel σ-algebra; f is weakly
measurable if each function x 7→ 〈f(x), v〉K, v ∈ K, is measurable. If K is separable,
the two definitions are equivalent. Let H be another Hilbert space, a function γ :
X −→ B(K;H), is strongly (resp. weakly) measurable if the map x 7→ γ(x)u is
measurable (resp. weakly measurable) for all u ∈ K. The function γ is measurable
if it is measurable as a map taking values in the Banach space B(K;H) with its
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uniform norm. If both H and K are separable, weak and strong measurability of
γ are equivalent and ensure that x 7→ γ(x)∗ is strongly measurable, the function
x 7→ ‖γ(x)‖

K,H
is measurable and the map X 3 x 7→ γ(x)φ(x) ∈ H is measurable

for any measurable function φ : X −→ K [25].

3.2. Main results

Let X be a measurable space and K a separable Hilbert space. Let H be a K-valued
RKH space with reproducing kernel Γ.

The following result is an elementary consequence of the properties of measur-
able functions.

Proposition 3.1. Assume that the RKH space H is separable. The following con-
ditions are equivalent:

(1) the elements of H are [weakly] measurable functions f : X → K;
(2) the map Γ : X ×X −→ B(K) is strongly [weakly] measurable;
(3) for all x ∈ X, the map X 3 y 7→ Γ(y, x) ∈ B(K) is strongly [weakly] measurable;
(4) the map γ : X −→ B(K;H) is strongly [weakly] measurable.

Proof. Clearly, 2.⇒ 3. and we show the other implications.

1.⇒ 4. Given f ∈ H the map

x 7→ γ(x)∗f = f(x)

is measurable by assumption. This means that γ∗ and, hence, γ are strongly
measurable.

4.⇒ 2. By assumption the map x 7→ γ(x)v is measurable and x 7→ γ(x)∗ is strongly
measurable, so

(x, y) 7→ Γ(x, y)v = γ(x)∗γ(y)v

is measurable, that is, Γ is strongly measurable.
3.⇒ 1. By assumption, for all x ∈ X and v ∈ K the functions ev∗xv = Γ(·, x)v ∈ H

are measurable. Let now f ∈ H. By (2.4) there exists a sequence (fn)n∈N in
span {ev∗xv | x ∈ X, v ∈ K} converging to f in H. The functions fn are mea-
surable and by (2.1) the sequence converges point-wise to f , so f is measurable.

The following example (see [25]) shows that the separability of H is essential in
the above proposition.

Example 3.1. Let X = R with its Borel σ-algebra Σ(R). Fix a subset A ⊂ R such
that A /∈ Σ(R). Let

H =
{
f : R −→ C | f(x) = 0 ∀x /∈ A,

∑
x∈X

|f(x)|2 <∞
}
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where
∑

x∈X denotes the summability. The space H is a Hilbert space with respect
to the scalar product

〈f, g〉H =
∑
x∈X

f(x)g(x)

and H is not separable. It is a scalar RKH space on X with reproducing kernel

Γ(x, y) =
{

1 if x = y ∈ A
0 otherwise

Given f ∈ H, the condition
∑

x∈X |f(x)|2 < +∞ implies that f(x) = 0 for all
but denumerable number of x ∈ X, so f is measurable. However, since A is not
measurable, Γ is not measurable, so that in the statement of the above proposition 1.
does not imply 2. .

If Γ takes values in the space of compact operators, Prop. 3.1 can be improved,
as shown in the next result.

Proposition 3.2. Assume that H is separable. If Γ(x, x) ∈ B0(K) for all x ∈ X,
then the following facts are equivalent:

(1) the elements of H are measurable functions;
(2) the map γ : X −→ B(K;H) is measurable;
(3) the map Γ : X ×X −→ B(K) is measurable.

Proof. Prop. 2.3 ensures that γ(x) ∈ B0(K;H) and Γ(x, y) ∈ B0(K) for all x, y ∈
X. Moreover Prop. 3.1 implies that 1. is equivalent to the fact that Γ or γ are
strongly measurable. It follows that 3.⇒ 1. .

1) ⇒ 2) Since B0 (K;H)∗ = B1 (H;K) is separable, we only need to prove that the map
x 7→ trK (Tγ(x)) is measurable for every T ∈ B1 (H;K). In a basis (en)n∈N of
K we have

trK (Tγ(x)) =
∑

n

〈Tγ(x)en, en〉K =
∑

n

〈γ(x)en, T
∗en〉H.

Since γ is strongly measurable, each term in the sum is a measurable function
of x, hence x 7→ trK (Tγ(x)) is measurable, as claimed.

2) ⇒ 3) Since the map B(K;H) × B(K;H) 3 (A,B) 7→ A∗B ∈ B(K) is continuous in
the uniform norm topology, the map Γ is measurable by measurability of γ.

4. Integrability

In this section we assume that X is a measurable space endowed with a σ-finite
positive measure µ and we characterize the RKH spaces whose elements are p-
integrable functions with respect to the measure µ for any 1 ≤ p ≤ ∞. We always
assume that the Hilbert space K is separable.
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4.1. Notations

Given 1 ≤ p <∞, Lp(X,µ;K) denotes the Banach space of (equivalence classes of)
measurable functions f : X → K such ‖f‖p

K is µ-integrable, whereas L∞(X,µ;K)
is the Banach space of measurable functions f : X → K that are µ-essentially
bounded. The corresponding norm in Lp(X,µ;K) is denoted by ‖·‖p. If K = C, we
let Lp(X,µ) := Lp(X,µ; C).
We let q = p

p−1 with the convention p
p−1 = ∞ if p = 1, and p

p−1 = 1 if p = ∞.
We regard the spaces Lp(X,µ;K) and Lq(X,µ;K) in duality with respect to the
pairing

〈φ, ψ〉p =
∫
〈φ(x), ψ(x)〉K dµ(x) φ ∈ Lp(X,µ;K), ψ ∈ Lq(X,µ;K).

Notice that the pairing is linear in the first argument and antilinear in the second.
If H is a Hilbert space and A : H −→ Lp(X,µ;K) is a bounded linear operator, we
let A∗ : Lq(X,µ;K) −→ H be the adjoint of A with respect to the pairing above.
The operator A∗ always exists and is bounded.
Finally we denote by

∫
f(x)dµ(x) and by w−

∫
f(x)dµ(x) respectively the Bochner

integral and the Pettis (weak) integral of a vector valued function f with respect
to the measure µ.

4.2. Bounded kernels

We now extend to the vector valued case the definition of bounded kernel from the
theory of integral operators [26]. The following definition holds for arbitrary kernels
(not necessarily of positive type).

Definition 4.1. Let Γ : X×X −→ B(K) be a strongly measurable function. Given
1 ≤ p ≤ ∞, the kernel Γ is called p-bounded if

(1) for µ-almost all x ∈ X∫
‖Γ(x, y)∗v‖q

K dµ(y) < +∞ ∀v ∈ K;

(2) for all φ ∈ Lp(X,µ;K), the map

X 3 x 7−→ w−
∫

Γ(x, y)φ(y) dµ(y)

is in Lq(X,µ;K).

Condition 1. implies that, given φ ∈ Lp(X,µ;K) and v ∈ K, the function y 7→
〈Γ(x, y)φ(y), v〉K is integrable for µ-almost all x ∈ X, so Condition 2. makes sense.
Indeed, since Γ is strongly measurable, 〈Γ(x, ·)φ(·), v〉K is measurable. Moreover,∫

|〈Γ(x, y)φ(y), v〉K| dµ(y) ≤
∫
‖φ(y)‖K ‖Γ(x, y)∗v‖K dµ(y)

≤ ‖φ‖p ‖Γ(x, ·)∗v‖q . (4.1)
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Hence, the weak integral w−
∫

Γ(x, y)φ(y) dµ(y) exists and is an element of K for
µ-almost all x ∈ X.

In the above definition, boundedness refers to the fact that the operator LΓ is
bounded from Lp(X,µ;K) to Lq(X,µ;K), as shown in the next proposition. How-
ever one can show that the condition of p-bounded kernel is not strictly necessary
to have a bounded integral operator (for a discussion see [26], where for p = 2 our
definition coincides with the notion of Carleman bounded kernel).

Proposition 4.1. Let Γ : X × X −→ B(K) be a p-bounded kernel (1 ≤ p ≤ ∞).
The operator LΓ : Lp(X,µ;K) −→ Lq(X,µ;K)

(LΓφ)(x) = w−
∫

Γ(x, y)φ(y) dµ(y) for µ−a.a. x ∈ X (4.2)

is bounded.

Proof. The definition of p-bounded kernel ensures that LΓ is everywhere defined,
so by the closed graph theorem it suffices to show that LΓ is a closed operator. So,
suppose that φn → φ in Lp and LΓφn → ψ in Lq. Eq. (4.1) implies that∣∣∣∣〈[

w−
∫

Γ(x, y) (φn(y)− φ(y)) dµ(y)
]
, v

〉
K

∣∣∣∣ ≤ ‖φn − φ‖p ‖Γ(x, ·)∗v‖q ∀v ∈ K

for µ-almost all x ∈ X, so that the weak limit of (LΓφn)(x) is (LΓφ)(x) µ-almost
everywhere. By the uniqueness of the limit, ψ = LΓφ so that the graph of LΓ is
closed, as claimed.

The following corollary gives a sufficient condition to have a p-bounded kernel.

Corollary 4.1. Let Γ : X×X → B(K) be a strongly measurable function such that∫
‖Γ(x, y)‖q

K,K
d(µ⊗ µ)(x, y) < +∞, (4.3)

then Γ is a p-bounded kernel and

(LΓφ)(x) =
∫

Γ(x, y)φ(y) dµ(y).

Proof. Notice that, since K is separable, the map x 7→ ‖Γ(x, y)‖
K,K

is measur-
able, so (4.3) makes sense. Assume for example p > 1. Since ‖Γ(x, y)∗v‖K ≤
‖Γ(x, y)‖

K,K
‖v‖K, Fubini theorem ensures that, for µ-almost all x ∈ X, the func-

tion y 7→ ‖Γ(x, y)∗v‖K is in Lq for all v ∈ K, so that Condition 1 of Definition 4.1
follows. We now show that, if φ ∈ Lp(X,µ;K), the map

X 3 y 7→ Γ(x, y)φ(y) ∈ K
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is integrable and LΓφ ∈ Lq(X,µ;K). Indeed,∫ ∥∥∥∥∫
Γ(x, y)φ(y) dµ(y)

∥∥∥∥q

K
dµ(x)

≤
∫ (∫

‖Γ(x, y)‖
K,K

‖φ(y)‖K dµ(y)
)q

dµ(x)

≤
∫ (∫

‖Γ(x, y)‖q

K,K
dµ(y)

) (∫
‖φ(y)‖p

K dµ(y)
) 1

p−1

dµ(x)

= ‖φ‖q
p

∫
‖Γ(x, y)‖q

K,K
d(µ⊗ µ)(x, y) <∞.

The case p = 1 is treated in a similar manner.

4.3. Main results

Let X be a measurable space endowed with a σ-finite measure µ and K a separable
Hilbert space. Let H be a K-valued RKH space with reproducing kernel Γ.

Proposition 4.2. Assume that H is a separable RKH space of measurable func-
tions. Given 1 ≤ p ≤ ∞, the following conditions are equivalent.

(1) the elements of H belongs to Lp(X,µ;K);
(2) the reproducing kernel Γ of H is q-bounded with q = p

p−1 .

If one of the above conditions holds, then

(i) the inclusion ıΓ : H → Lp(X,µ;K) is a bounded linear map;
(ii) its adjoint ı∗

Γ
: Lq(X,µ;K) → H is given by

ı∗
Γ
φ = w−

∫
γ(x)φ(x) dµ(x). (4.4)

(iii) ıΓ ı
∗
Γ

= LΓ , where LΓ is the integral operator of kernel Γ given by (4.2).

Proof.

1.⇒ 2. We prove that the inclusion ıΓ : H → Lp(X,µ;K) is bounded. If fn → f in
H is such that ıΓfn → φ in Lp, then (ıΓfn)(x) → f(x) for all x ∈ X, and so
φ = ıΓf by the uniqueness of the limit. The closed graph theorem ensures that
ıΓ is continuous.

We show (4.4). Given φ ∈ Lq(X,µ;K), for all f ∈ H〈
ı∗
Γ
φ, f

〉
H = 〈φ, ıΓf〉p =

∫
〈φ(x), f(x)〉K dµ(x) =

∫
〈γ(x)φ(x), f〉H dµ(x).

It follows that the map x 7→ γ(x)φ(x) is weakly integrable and ı∗
Γ
φ =

w−
∫
γ(x)φ(x) dµ(x).
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We now show that Γ is a q-bounded kernel. For all x ∈ X and v ∈ K, the
function Γ(x, ·)∗v = ev∗xv belongs to H and, by assumption, is p-integrable, so
that condition 1 of Definition 4.1 is satisfied. Moreover, if φ ∈ Lq(X,µ;K)

w−
∫

Γ(x, y)φ(y) dµ(y) = w−
∫
γ(x)∗γ(y)φ(y) dµ(y) = evxı

∗
Γ
φ = (ıΓ ı

∗
Γ
φ)(x)

for µ-almost all x. Since ıΓ ı
∗
Γ
φ ∈ Lp(X,µ;K), condition 2 of Definition 4.1 holds

and, in particular, ıΓ ı
∗
Γ

= LΓ .
2.⇒ 1. Since µ is σ-finite, there is an increasing sequence (Xn)n∈N of measurable sub-

sets of X such that µ(Xn) < +∞ and ∪n∈NXn = X. Given n ∈ N, let

Cn = {x ∈ Xn | ‖γ(x)‖K,H
≤ n}.

The subsets Cn are measurable, Cn ⊂ Cn+1, ∪n∈NCn = X, and µ(Cn) <∞.
Let f ∈ H. Define

fn(x) = χCn
(x)f(x),

χCn being the characteristic function of the set Cn. Then

‖fn(x)‖K ≤ χCn(x) ‖γ(x)∗f‖K ≤ nχCn(x) ‖f‖H ,

so fn ∈ Lp(X,µ;K). If φ ∈ Lq(X,µ;K), we have

〈fn, φ〉p =
∫
〈χCn(x)f(x), φ(x)〉H dµ(x)

=
〈
f,

∫
χCn(x)γ(x)φ(x) dµ(x)

〉
H
.

The norm of the second term in the scalar product has the following upper
bound ∥∥∥∥∫

χCn(x)γ(x)φ(x) dµ(x)
∥∥∥∥2

H

=
∫ (∫

〈χCn(y)γ(y)φ(y), χCn(x)γ(x)φ(x)〉H dµ(y)
)

dµ(x)

=
∫ 〈

w−
∫
χCn(y)Γ(x, y)φ(y) dµ(y), χCn(x)φ(x)

〉
K

dµ(x)

= 〈LΓ(χCnφ), (χCnφ)〉p ≤ ‖LΓ‖q,p
‖φ‖2q ,

since by assumption and Prop. 4.1 LΓ is an everywhere defined bounded oper-
ator. We thus have

| 〈fn, φ〉p | ≤ ‖f‖H ‖LΓ‖
1/2

q,p
‖φ‖q . (4.5)

For 1 ≤ p <∞, we take the supremum over φ ∈ Lq = (Lp)∗ with ‖φ‖q ≤ 1 and
we get

‖fn‖p ≤ ‖LΓ‖
1/2

q,p
‖f‖H .
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By monotone convergence theorem, this implies ‖f‖K ∈ Lp(X,µ), so that f ∈
Lp(X,µ;K). For p = ∞, (4.5) implies that L1 3 φ 7→ 〈fn, φ〉p ∈ C is continuous
so fn ∈ L∞ and

‖fn‖∞ ≤ ‖LΓ‖
1/2

q,p
‖f‖H .

This implies f ∈ L∞.

The fact that the elements of Lp(X,µ;K) are equivalence classes implies that, in
general, the inclusion operator ıΓ : H −→ Lp(X,µ;K) is not injective. The following
result characterizes Ker ıΓ under the assumption that γ(x) is compact.

Proposition 4.3. Let H be a separable K-valued RKH space with a q-bounded
reproducing kernel Γ. Assume that Γ(x, x) ∈ B0(K) for all x ∈ X and define

S = {x ∈ X | µ(Bx,ε) > 0 ∀ε > 0},

where Bx,ε = {y ∈ X | ‖Γ(y, y) + Γ(x, x)− Γ(x, y)− Γ(y, x)‖
K,K

< ε2}. Let ıΓ :
H → Lp(X,µ;K) be the inclusion, then

Ker ıΓ = {f ∈ H | f(x) = 0 ∀x ∈ S}. (4.6)

Proof. First of all, notice that the definition of Γ gives that

Bx,ε = {y ∈ X | ‖γ(y)− γ(x)‖
K,H

< ε},

which is measurable since γ is measurable by Propositions 2.3 and 3.2. Since H and
K are separable, the space B0 (K;H) is separable. Observing that γ(x) ∈ B0 (K;H)
for all x ∈ X, it follows there is a denumerable family {Bxn,εn

| n ∈ I} such that,
if x ∈ X and ε > 0,

Bx,ε = ∪n∈JBxn,εn

where J ⊂ I. Hence X \ S = {x ∈ X | ∃ε > 0 µ(Bx,ε) = 0} has null measure being
the denumerable union of null sets.

Let now f ∈ H such that f(x) = 0 for all x ∈ S, then f = 0 in Lp(X,µ).
Conversely, suppose there exists x ∈ S such that f(x) 6= 0, that is, γ(x)∗f 6= 0.
For ε sufficiently small, we have that γ(y)∗f 6= 0 for all y ∈ Bx,ε. In particular,
f(y) = γ(y)∗f 6= 0 for all y ∈ Bx,ε, which has nonzero measure by definition of S.
It follows that f 6= 0 in Lp(X,µ).

For p = 2 we can compute ı∗
Γ
ıΓ , which is known as frame operator in the context

of frame theory (see, for example, [27]).

Corollary 4.2. Let H be a separable K-valued RKH space whose elements are
square integrable functions. Then

ı∗
Γ
ıΓ = w−

∫
γ(x)γ(x)∗ dµ(x). (4.7)

In particular, the following conditions are equivalent:
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(i) ıΓ is a Hilbert-Schmidt operator;
(ii) Γ(x, x) is a trace class operator for almost all x ∈ X and∫

trK Γ(x, x) dµ(x) < +∞;

(iii) LΓ is a trace class operator.

If one of the above conditions holds, the integral in (4.4) converges in norm and the
integral in (4.7) converges in trace norm.

Proof. Eq. (4.7) follows from (4.4) and (2.3). We now prove that (i) ⇐⇒ (ii).
The separability of K and the strong measurability of Γ ensure that X 3 x 7→
trK Γ(x, x) ∈ [0,+∞] is measurable. Let (fn)n∈N be a Hilbert basis of H. Since
ı∗
Γ
ıΓ is a positive operator and x 7→ |〈γ(x)γ(x)∗fn, fn〉H|

2 are positive functions the
monotone convergence theorem gives

trH ı∗Γ ıΓ =
∑

n

∫
〈γ(x)γ(x)∗fn, fn〉H dµ(x)

=
∫

trH γ(x)γ(x)∗ dµ(x)

=
∫

trK γ(x)∗γ(x) dµ(x)

=
∫

trK Γ(x, x) dµ(x).

The equivalence of (i) and (ii) follows. The equivalence between (i) and (iii) is
trivial since LΓ = ıΓ ı

∗
Γ
.

Now we prove the statements about (4.4) and (4.7). Since γ : X −→ B(K;H) is
strongly measurable by Proposition 3.1, for φ ∈ L2(X,µ;K) the map x 7→ γ(x)φ(x)
is measurable. Moreover,

‖γ(x)φ(x)‖2H = 〈Γ(x, x)φ(x), φ(x)〉K ≤ ‖Γ(x, x)‖
K,K

‖φ(x)‖2K
≤ trK Γ(x, x) ‖φ(x)‖2K .

Condition (ii) ensures that x 7→ γ(x)φ(x) is in L1(X,µ;K).
We come to (4.7). The strong measurability of γ ensures that x 7→ γ(x)γ(x)∗

is measurable as a map from X into B1(H). Indeed, since B1(H) is separable, it is
enough to show that for all B ∈ B(H) = B1(H)∗ the map x 7→ trH (Bγ(x)γ(x)∗) is
measurable. Indeed,

trH (Bγ(x)γ(x)∗) =
∑

n

〈Bγ(x)γ(x)∗fn, fn〉H

=
∑

n

〈γ(x)∗fn, γ(x)∗B∗fn〉K.

and the maps x 7→ γ(x)∗fn and γ(x)∗B∗fn are measurable. Since γ(x)γ(x)∗ is a
positive operator, its norm in B1(H) is trH (γ(x)γ(x)∗) = trK Γ(x, x). Convergence
of the integral (4.7) in B1(H) then follows immediately from condition (ii).
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4.4. Compactness

We now discuss the problem of the compactness of the inclusion of the RKH space
H into Lp(X,µ;K). If K = C, the next proposition is an easy consequence of a
well known fact in the framework of integral operators (see, for example, [26] for a
complete discussion about the compactness of integral operators in L2(X,µ)).

Proposition 4.4. Suppose that H is a separable RKH space such that Γ(x, x) ∈
B0(K) for all x ∈ X and x 7→ Γ(x, x) is measurable. Let 1 ≤ p <∞, if∫

X

‖Γ(x, x)‖p/2

K,K
dµ(x) < +∞,

then H ⊂ Lp(X,µ;K) and the inclusion ıΓ : H → Lp(X,µ;K) is compact.

Proof. Prop. 3.1 ensures that the elements of H are measurable functions. More-
over, the map x 7→ ‖γ(x)‖

K,H
= ‖Γ(x, x)‖1/2

K,K
is in Lp(X,µ). For f ∈ H, we have

‖f(x)‖K ≤ ‖γ(x)‖
K,H

‖f‖H, thus showing that f ∈ Lp(X,µ;K). If (fn)n∈N is a
sequence in H which converges weakly to 0, then fn(x) = γ(x)∗fn → 0 in K for
all x ∈ X, since γ(x) is compact by Prop. 2.3. Since ‖fn(x)‖K ≤ ‖γ(x)‖

K,H
‖fn‖H

and supn ‖fn‖H < ∞, it follows by dominated convergence theorem that fn → 0
in Lp(X,µ;K). This shows that ıΓ maps weakly convergent sequences into norm
convergent sequences, so ıΓ is compact.

Suppose µ is a finite measure. If H is a separable RKH space of scalar valued
measurable functions, and H ⊂ L1(X,µ), the inclusion ıΓ : H −→ L1(X,µ) is
compact as an easy consequence of a result due to [28]. In the general case, with
no restriction on µ and the dimension of K, we have the following fact.

Proposition 4.5. Suppose that H is a separable RKH space such that H ⊂
L1(X,µ;K). If Γ(x, x) ∈ B0(K) for all x ∈ X, then the inclusion ıΓ : H →
L1(X,µ;K) is compact.

Proof. We divide the proof in three steps.

(1) Suppose that there exists a disjoint sequence of measurable subsets (Ej)j∈N,
with µ(Ej) <∞, and operators γj ∈ B0(K;H) such that

γ(x) =
∑
j∈N

χEj (x)γj ∀x ∈ X. (4.8)

The condition that H ⊂ L1(X,µ;K) implies that for all f ∈ H∑
j

µ(Ej)
∥∥γ∗j f∥∥

K =
∫
‖γ(x)∗f‖K dµ(x) =

∫
‖f(x)‖K dµ(x) = ‖f‖1 ,

i.e. the sequence
(
µ(Ej)γ∗j f)

)
j∈N is in `1(K). The linear operator T : H → `1(K)

(Tf)j = µ(Ej)γ∗j f
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is bounded since

‖Tf‖`1(K) = ‖f‖1 ≤ ‖ıΓ‖H,1
‖f‖H (4.9)

Suppose (fn)n∈N is a sequence in H converging weakly to 0. For all j ∈ N, by
compactness of γj , (Tfn)(j) → 0 in K. Moreover, by continuity of T , Tfn → 0
weakly. Thus, by Lemma Appendix A.1 in the appendix, ‖Tfn‖`1(K) → 0. This
fact and (4.9) show that ıΓ maps weakly convergent sequences in H into norm
convergent sequences in L1, hence ıΓ is compact.

(2) Now, without making any assumption on the map γ, we claim that there exist
maps γ1, γ2 : X −→ B(K;H) such that: (i) γ1 is as in (4.8); (ii) γ2(x) ∈
B0(K;H) for all x, and the map x 7→ ‖γ2(x)‖K,H

is in L1; (iii) γ = γ1 + γ2.
To this aim, let (Xn)n∈N be an increasing sequence of measurable subsets

of X such that µ(Xn) <∞ and X =
⋃

nXn. For all n ∈ N define by induction

A0 = ∅, An =
{
x ∈ Xn | x 6∈ An−1 and ‖γ(x)‖

K,H
≤ n

}
.

Each An is measurable, µ(An) < ∞ for all n, An ∩ Am = ∅ if n 6= m, and⋃
nAn = X. By Prop. 2.3, γ(x) ∈ B0(K;H) for all x, and the map γ : X −→

B0(K;H) is measurable by Prop. 3.2. The function χAn
γ is thus integrable as a

map taking values in B0(K;H), so there is a step function ηn : X → B0(K;H)
supported in An such that∫

An

‖γ(x)− ηn(x)‖
K,H

dµ(x) ≤ 1
2n
.

The map

γ1 =
∑
n∈N

χAnηn

(which is well defined since the sets in the sequence (An)n∈N are disjoint) is as
in (4.8). Let γ2 = γ − γ1, then γ2(x) ∈ B0(K;H) for all x, and∫

‖γ2(x)‖K,H
dµ(x) =

∑
n

∫
An

‖γ(x)− ηn(x)‖
K,H

dµ(x) ≤
∑

n

1
2n

= 2,

so that the claim follows.
(3) Let γ = γ1 + γ2 be as in 2.. For i = 1, 2, define Γi(x, y) = γi(x)∗γi(y), and let

Hi be the RKH spaces with reproducing kernel Γi. By Prop. 2.2, we have two
partial isometries

Ai : H −→ Hi, (Aif) (x) = γi(x)∗f.

If f ∈ H, then∫
‖(A1f) (x)‖K dµ(x) =

∫ ∥∥(γ(x)− γ2(x))
∗
f
∥∥
K dµ(x)

≤
∫
‖f(x)‖K dµ(x) + ‖f‖H

∫
‖γ2(x)‖K,H

dµ(x) <∞,
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which shows that H1 ⊂ L1(X,µ;K). Using the expression (2.7) for the eval-
uation map in H1, we see that H1 is as in step 1), hence the inclusion
ıΓ1

: H1 −→ L1 is compact. On the other hand, by Prop. 4.4 H2 ⊂ L1(X,µ;K)
and the inclusion ıΓ2

: H2 −→ L1 is compact. In conclusion, ıΓ = ıΓ1
A1 + ıΓ2

A2

is compact.

It is easy to check that the requirement Γ(x, x) ∈ B0(K) for all x is essential in
the above proposition, as illustrated by the following simple example.

Example 4.1. Suppose K is infinite dimensional and choose X to be a single
point {x}. The space of functions KX , naturally identified with K, is a RKH space
of K valued functions with reproducing kernel Γ(x, x) = I. Letting µ be a non-null
measure on X, Lp(X,µ;K) is identified as a Banach space with KX endowed with
this structure of RKH space. But the identity map K ' KX → Lp(X,µ;K) ' K is
not compact.

5. Continuity

In this section we assume that X is a topological space and we characterize the
RKH spaces whose elements are continuous functions. For the scalar case see [3].

5.1. Notations

Let X be a locally compact topological space and K a Hilbert space (in this section
we do not assume that K is separable). We denote by C (X;K) the vector space of
continuous functions f : X → K. The space C (X;K) is endowed with the topology
of compact convergence, so that a sequence (fn)n∈N in C (X;K) converges to a
function f if

lim
n→+∞

sup
x∈C

‖fn(x)− f(x)‖K = 0

for every compact set C in X.
If H is another Hilbert space, a map γ : X → B(K;H) is strongly continuous if the
function x 7→ γ(x)v is continuous from X to H for all v ∈ K.

5.2. Main result

Let X be a locally compact topological space and K a Hilbert space. Let H be a
K-valued RKH space with reproducing kernel Γ.

Proposition 5.1. The following facts are equivalent:

(1) the elements of H are continuous functions;
(2) the kernel Γ is locally bounded and, for all x ∈ X, the map Γ(·, x) is strongly

continuous.
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If one of the above conditions holds, the inclusion operator ıΓ : H → C (X;K) is
continuous.

Proof.

1) ⇒ 2) Given x ∈ X and v ∈ K, by definition

Γ(·, x)v = ev∗xv ∈ H ⊂ C (X;K) .

so that Γ(·, x) is strongly continuous. We show that Γ is locally bounded. Given
x0 ∈ X, let C be a compact neighbourhood of x0 (C exists since X is locally
compact). For any f ∈ H, the continuity of f ensures that

sup
x∈C

‖evx(f)‖K = sup
x∈C

‖f(x)‖K ≤Mf .

The principle of uniform boundedness implies

sup
x∈C

‖evx‖H,K
≤M.

The claim follows observing that

sup
x,y∈C

‖Γ (x, y)‖
K,K

= sup
x,y∈C

(∥∥evxev∗y
∥∥
K,K

)
≤ sup

x,y∈C

(
‖evx‖H,K

‖evy‖H,K

)
≤M2.

2) ⇒ 1) Let

H0 = span {Γ (·, x) v | x ∈ X, v ∈ K} .

The elements of H0 are continuous by hypothesis and (2.4) ensures that H0 is
total.
Given f ∈ H and x0 ∈ X, we prove that f is continuous in x0. Let (fn)n∈N be
a sequence in H0 converging to f . Since Γ is locally bounded the convergence
is uniform on a neighbourhood of x0, so f is continuous at x0.
In particular the inclusion operator is continuous, since a sequence of functions
(fn)n∈N converging to f in H converges uniformly to f on each compact subset
of X.

The following corollary gives a simple condition ensuring that H is separable

Corollary 5.1. Let H is a K-valued RKH space of continuous functions. Assume
that X and K are separable, then H is separable.

Proof. The separability of X ensures that there is a denumerable dense subset
X0 ⊆ X and, since K is separable,

S =
⋃

x∈X0

Im γ(x) ⊂ H

is separable, too. We show that S is total, so thatH is separable. Indeed, let f ∈ S⊥,
then f ∈ ker γ(x)∗ for all x ∈ X0, that is, f(x) = evxf = 0. Since f is continuous
and X0 is dense, f = 0.
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We now come to the problem of characterizing the compactness of the inclusion
operator.

Proposition 5.2. Let H be a K-valued RKH space with reproducing kernel Γ. The
following facts are equivalent:

(1) the inclusion ıΓ : H → C (X;K) is compact;
(2) Γ is continuous with respect to the uniform norm topology and Γ(x, x) is a

compact operator for all x ∈ X.

Proof. We denote by B the unit ball in H. Condition 1 is equivalent to show
that ıΓ (B) is precompact in C (X;K). Due to the local compactness of X this is
equivalent (Ascoli-Arzelá theorem) to

a) {f(x) = γ∗(x)f | f ∈ B} is precompact in K for every x ∈ X;
b) ıΓ (B) is equicontinuous.

Condition a) is equivalent to the fact that γ(x)∗ is compact, so is Γ(x, x) for all
x ∈ X. Moreover, since

sup
f∈B

‖(ıΓf)(x)− (ıΓf)(y)‖K = ‖γ(x)∗ − γ∗(y)‖
H,K

=
(
‖Γ(x, x) + Γ(y, y)− Γ(x, y)− Γ(y, x)‖

K,K

) 1
2

condition b) is equivalent to the continuity of Γ with respect to operator norm
topology.

Notice that the correspondence given by Prop. 2.4 is not useful since X ×K is
not locally compact and Ascoli-Arzelá theorem is no longer true (as an equivalence).

5.3. Integrability and continuity

In many examples K is a separable Hilbert space and X is a locally compact second
countable Hausdorff space endowed with a positive Radon measure µ. Hence X is
separable and µ is a σ-finite measure.

If Γ is a K-kernel of positive type such that

(1) Γ is p
p−1 -bounded with respect to µ for some 1 ≤ p ≤ ∞,

(2) Γ is locally bounded and strongly continuous in the first entry,

the results of Section 4 and 5 ensure that the elements of the corresponding RKH
space H are continuous p-integrable functions f : X → K and these conditions are
also necessary.
By Corollary 5.1 H is a separable Hilbert space and the inclusion ıΓ can be regarded
as a bounded operator from H either to Lp(X,µ;K) or to C(X,K). In the second
case ıΓ is injective, whereas in the first one

Ker ıΓ = {f(x) = 0 | x ∈ suppµ}, (5.1)
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where suppµ is the support of the measure µ.
Finally, assume that X is a compact set, Γ is bounded, Γ(·, x) is strongly con-

tinuous and Γ(x, x) is a compact operator for all x ∈ X. Since µ is finite, the map
x 7→ Γ(x, x) is p-integrable, so Γ is q-bounded for all 1 ≤ p <∞ and the inclusion
ıΓ is always compact as a map in Lp(X,µ;K). However, in order ıΓ be compact as a
map in C(X;K) ⊂ Lp(X,µ;K), it is necessary (and sufficient) that Γ is continuous
from X ×X into B0(K) with the uniform norm topology .

6. Mercer theorem

In this section we characterize the RKH spaces of K-valued functions that are
subspaces of L2(X,µ;K) in terms of the spectral decomposition of the integral
operator LΓ .

6.1. Notations

If K is a Hilbert space and v1, v2 ∈ K, we let v1⊗ v2 be the rank one operator in K
defined by

(v1 ⊗ v2)(w) = 〈w, v2〉Kv1 w ∈ K.

If Σ is a σ-algebra and Σ 3 E 7→ P (E) ∈ B(K) is a projection valued measure, for
all v, w ∈ K we denote by 〈dP (λ)v, w〉K the bounded complex measure defined by
E 7→ 〈P (E)v, w〉K. If (vi)i∈I is a summable family in K, we denote by

∑
i∈I vi the

sum with respect to the notion of summability.

6.2. Main result

The following proposition extends Mercer theorem to a noncompact set, compare
with [13].
Let X be a measurable space endowed with a σ finite measure µ and K a separable
Hilbert space. Let H be a K-valued RKH space on X with reproducing kernel Γ.
We assume that H is separable, Γ is 2-bounded with respect to µ and the inclusion
ıΓ : H → L2(X,µ;K) is injective.

We let

LΓ =
∫

σΓ

λ dP (λ)

be the spectral decomposition of the integral operator LΓ = ıΓ ı
∗
Γ
, where σΓ is the

spectrum of LΓ and E 7→ P (E) is the spectral measure (since LΓ is a positive
bounded operator, σΓ is a compact subset of [0,+∞) ).

Proposition 6.1. With the above assumptions the following facts hold

ıΓ(H) = {φ ∈ L2(X,µ;K) |
∫

σΓ

1
λ
〈dP (λ)φ, φ〉2 < +∞} (6.1)

〈f, g〉H =
∫

σΓ

1
λ
〈dP (λ)ıΓf, ıΓg〉2 ∀f, g ∈ H. (6.2)
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Proof. The polar decomposition of the adjoint ı∗
Γ

gives

ı∗
Γ

= W (ıΓ ı
∗
Γ
)

1
2 = WL

1
2
Γ
,

where W is a partial isometry from L2(X,µ;K) to H with

W ∗W = P (σΓ \ {0}) and WW ∗ = IH (6.3)

where the last equality holds since ıΓ is injective. It follows

ıΓ = L
1
2
Γ
W ∗, (6.4)

so that ıΓ(H) is the range of L
1
2
Γ and the spectral theorem implies (6.1).

To show (6.2) let f, g ∈ H. Recalling (6.3),

〈f, g〉H = 〈W ∗f,W ∗g〉2 =
∫

σΓ

〈dP (λ)W ∗f,W ∗g〉2 =
∫

σΓ

1
λ
〈dP (λ)ıΓf, ıΓg〉2

where the last integral makes sense since, by (6.4),

〈dP (λ)ıΓf, ıΓg〉2 =
〈
dP (λ)L

1
2
Γ
W ∗f, L

1
2
Γ
W ∗g

〉
2

= λ 〈dP (λ)W ∗f,W ∗g〉2 .

If X is a locally compact second countable Hausdorff space endowed with a
positive Radon measure µ such that suppµ = X, to ensure both that H is separable
and that ıΓ is injective as a map into L2(X,µ;K), it is sufficient that Γ is 2-bounded,
locally bounded and strongly continuous in the first entry. In this setting, (6.1)
allows us to identify the elements of H with the only continuous functions on X

whose equivalence class belongs to the range of L
1
2
Γ . With this identification, (6.2)

implies that L
1
2
Γ is a unitary operator from KerL⊥

Γ
onto H, compare with [10].

If ıΓ is not injective, L
1
2
Γ is a unitary operator from KerL⊥

Γ
onto Ker ı⊥

Γ
(see (4.6)

and (5.1) for a characterization).
As a consequence of the above result we have the following version of Mercer

theorem. Let ν be a positive σ-finite measure defined on the Borel σ-algebra Σ(σΓ)
such that ν(E) = 0 if and only if P (E) = 0 (it exists and is unique, up to an
equivalence, by Hellinger-Hahn theorem).

Theorem 6.1. With the assumptions of Th. 6.1, for all x, y ∈ X and v, w ∈ K
there is a complex measurable function ρx,y;v,w defined on σΓ such that

〈Γ(x, y)v, w〉K =
∫

σΓ

λ ρx,y;v,w(λ)dν(λ). (6.5)

Given E ∈ Σ(σΓ) with 0 6∈ E, any basis of ImP (E) is of the form (ıΓφn)n∈I ,
the family (〈v, φn(y)〉K〈φn(x), w〉K)n∈I is summable, the function χEρx,y;v,w is ν-
integrable and∫

E

ρx,y;v,w(λ)dν(λ) =
∑
n∈I

〈v, φn(y)〉K〈φn(x), w〉K. (6.6)

If x = y and v = w, given a basis for ImLΓ of the form (ıΓφn)n∈I , the following
two conditions are equivalent
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(1) the function ρx,x;v,v is ν-integrable;
(2) ıΓ(γ(x)v) ∈ ImLΓ .

If one of the above conditions holds, the family
(
|〈φn(x), v〉K|2

)
n∈I

is summable and∫
σΓ

ρx,x;v,v(λ)dν(λ) =
∥∥L−1

Γ
ıΓγ(x)v

∥∥2

2
=

∑
n∈I

|〈φn(x), v〉K|
2. (6.7)

Proof. Let W be the partial isometry defined in the previous proof so that ıΓ =

L
1
2
ΓW

∗. Given x, y ∈ X and v, w ∈ K, the definition of ν implies that the bounded
complex measure 〈dP (λ)W ∗γ(y)v,W ∗γ(x)w〉2 has density πx,y;v,w ∈ L1(σΓ , ν) with
respect to ν. Let

ρx,y;v,w(λ) =
{

1
λπx,y;v,w(λ) λ 6= 0

0 λ = 0
,

then ρx,y;v,w is measurable and λ 7→ λρx,y;v,w(λ) is ν-integrable, so that∫
σΓ

λρx,y;v,w(λ)dν(λ) =
∫

σΓ\{0}
〈dP (λ)W ∗γ(y)v,W ∗γ(x)w〉2

= 〈P (σΓ \ {0})W ∗γ(y)v,W ∗γ(x)w〉2
= 〈γ(y)v, γ(x)w〉H = 〈Γ(x, y)v, w〉K

since (6.3).
Let now E ∈ Σ(σΓ) be such that 0 6∈ E. This last fact and the spectral theorem

imply that ImP (E) ⊂ ImL
1
2
Γ = ıΓ(H). Hence, any basis of ImP (E) is of the form

(ıΓφn)n∈I . Since 0 6∈ E, χE ρx,y;v,w is ν-integrable and∫
E

ρx,y;v,w(λ)dν(λ) =
∫

σΓ

χE(λ)
λ

〈dP (λ)W ∗γ(y)v,W ∗γ(x)w〉2

=
∫

σΓ

1
λ
〈dP (λ)P (E)W ∗γ(y)v, P (E)W ∗γ(x)w〉2

=
〈
L−

1
2

Γ
P (E)W ∗γ(y)v, L−

1
2

Γ
P (E)W ∗γ(x)w

〉
2
, (6.8)

where P (E)W ∗γ(x)w and P (E)W ∗γ(y)v are in ImL
1
2
Γ .

Let now J a finite subset of I. Since ıΓφn = L
1
2
ΓW

∗φn and WW ∗ = IH∑
n∈J

〈
L−

1
2

Γ
P (E)W ∗γ(y)v, ıΓφn

〉
2

〈
ıΓφn, L

− 1
2

Γ
P (E)W ∗γ(x)w

〉
2

=
∑
n∈J

〈
W ∗γ(y)v, L−

1
2

Γ
ıΓφn

〉
2

〈
L−

1
2

Γ
ıΓφn,W

∗γ(x)w
〉

2

=
∑
n∈J

〈W ∗γ(y)v,W ∗φn〉2 〈W
∗φn,W

∗γ(x)w〉2

=
∑
n∈J

〈γ(y)v, φn〉H〈φn, γ(x)w〉H =
∑
n∈J

〈v, φn(y)〉K〈φn(x), w〉K,
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where we used that γ(x)∗ = evx. Since the family (ıΓφn)n∈I is basis for ImP (E)∑
n∈I

〈
L−

1
2

Γ
P (E)W ∗γ(y)v, ıΓφn

〉
2

〈
ıΓφn, L

− 1
2

Γ
P (E)W ∗γ(x)w

〉
2

is summable with sum
〈
L
− 1

2
Γ P (E)W ∗γ(y)v, L−

1
2

Γ P (E)W ∗γ(x)w
〉

2
, and (6.6) fol-

lows by means of (6.8).
Finally, if x ∈ X and v ∈ K, the measure 〈dP (λ)W ∗γ(x)v,W ∗γ(x)v〉2 is posi-

tive, so ρx,x;v,v is positive ν-almost everywhere. The spectral theorem implies that

ρx,x;v,v is ν-integrable if and only if W ∗γ(x)v ∈ ImL
1
2
Γ . By means of (6.4), this

condition is equivalent to ıΓγ(x)v ∈ ImLΓ and, if it is satisfied,∫
σΓ

ρx,x;v,v(λ)dν(λ) =
∥∥∥L− 1

2
Γ
W ∗γ(x)v

∥∥∥2

2
. (6.9)

Let (φn)n∈I be a family in H such that (ıΓφn)n∈I is a basis of ImLΓ (such a basis
exists since the closure of H in L2(X,µ;K) is ImLΓ). Reasoning as above∑

n∈I

|〈φn(x), v〉K|
2 =

∑
n∈I

∣∣∣〈L− 1
2

Γ
ıΓφn,W

∗γ(x)v
〉

2

∣∣∣2 .
The sum in the right side is finite since W ∗γ(x)v ∈ ImL

1
2
Γ and its sum is∥∥∥L− 1

2
Γ W ∗γ(x)v

∥∥∥2

2
. Eq. (6.9) implies (6.7).

Eq. (6.5) can be seen as an application of the result of Section 10 of [16] applied
to the projection measure E 7→WP (E)W ∗.

Assume now that the integral operator LΓ has a pure point spectrum. Eq. (6.1)
implies that there is a family (φn)n∈I ∈ H such that (ıΓφn)n∈I is a basis of KerL⊥

Γ

and

LΓ =
∑
n∈I

λn ıΓφn ⊗2 ıΓφn,

where λn > 0 and the sum converges in the strong operator topology. In this setting
(6.2) becomes

ıΓ(H) = {φ ∈ L2(X,µ;K) |
∑

n

1
λn
| 〈φ, φn〉2 |

2 < +∞}.

Moreover, by (6.2) the family (
√
λnφn)n∈I is a basis of H, so

Γ(x, y) =
∑
n∈I

λnevx(φn ⊗H φn)ev∗y =
∑
n∈I

λnφn(x)⊗K φn(y) =
∑
n∈I

Γn(x, y), (6.10)

where Γn(x, y) = λnφn(x)⊗Kφn(y) is a K-kernel of positive type, the sum converges
in the strong operator topology and absolutely in the weak operator topology.
Finally, if f, g ∈ H, (6.2) gives

〈f, g〉H =
∑
n∈I

1
λn

〈ıΓf, ıΓφn〉2 〈ıΓφn, ıΓg〉2 =
∑
n∈I

1
λ2

n

∫
〈Γn(y, x)f(x), g(y)〉K dµ(x)dµ(y)
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since, by definition of Γn, 〈Γn(y, x)f(x), g(y)〉K = λn〈f(x), φn(x)〉K〈φn(y), g(y)〉K.
Hence Mercer theorem can be seen as the decomposition of the RKH H in the
direct sum of RKH spaces Hn with reproducing kernel Γn and this decomposition
is defined by the spectral structure of LΓ , see Prop. 19 of [3].
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Appendix A. Vector Valued Shur lemma

The following lemma is needed for the proof of Prop. 4.5 and it is well known
for K = C (Schur lemma). We denote by `1(K) the Banach space L1(N, ν;K), ν
being the counting measure of N. Similarly, we write `∞(K) for the Banach dual
L∞(N, ν;K) of `1(K).

Lemma Appendix A.1. Suppose (fn)n∈N is a sequence of elements in `1(K) such
that

(i) for all j ∈ N, fn(j) → 0 in K;
(ii) fn → 0 weakly in `1(K).

Then fn → 0 in `1(K).

Proof. We report a rearrangement of the proof given in [24, p. 135] for K = C.
Let ball `∞(K) be the unit ball of `∞(K) endowed with the weak-∗ topology.

Since `1(K) is separable, ball `∞(K) is metrizable. Fix a sequence (vh)h∈N which is
dense in the unit ball of K. If φ, ψ ∈ ball `∞(K), define

d(φ, ψ) =
∞∑

j=0

2−j
∞∑

h=0

2−h |〈vh, φ(j)− ψ(j)〉K| .

Then, d(φ, ψ) < ∞, and d is a metric in ball `∞(K). We claim that d defines
the weak-∗ topology of ball `∞(K). Indeed, given (φn)n∈N and ψ in ball `∞(K),
d(φn, ψ) → 0 if and only if

lim
n→∞

|〈vh, φn(j)− ψ(j)〉K| = 0 ∀j, h ∈ N

and this is in turn equivalent to

w− lim
n→∞

φn(j) = ψ(j) ∀j ∈ N.
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It is then easy to check that if φn → ψ in the weak-∗ topology, then d(φn, ψ) → 0.
Conversely, suppose d(φn, ψ) → 0, and let f ∈ `1(K), ε > 0. Fix jε > 0 such that∑

j≥jε
‖f(j)‖K < ε/4. Let nε be such that for all n ≥ nε

|〈f(j), φn(j)− ψ(j)〉K| < ε/2jε ∀j ≤ jε − 1.

For n ≥ nε

|〈f, φn − ψ〉`1 | ≤
∑

j

|〈f(j), φn(j)− ψ(j)〉K| < jε
ε

2jε
+ 2

ε

4
= ε.

The claim is thus proved.
Suppose now (fn)n∈N is as in the statement of the lemma, and let ε > 0. For all

m ∈ N, set

Fm = {φ ∈ ball `∞(K) | |〈fn, φ〉`1 | ≤ ε/3 ∀n ≥ m} .

Fm is a closed subset in ball `∞(K), and ∪m∈NFm = ball `∞(K). Since ball `∞(K)
is metrizable and compact, hence complete, by Baire category theorem there are
m0 ∈ N, δ > 0 and φ ∈ Fm0 such that {ψ ∈ ball `∞(K) | d(ψ, φ) < δ} ⊂ Fm0 . Fix
N ∈ N such that

∑
j≥N 2−j < δ/4. For all n ≥ m0, define ψn ∈ ball `∞(K) as

follows

ψn(j) =
{

φ(j) if j ≤ N − 1
fn(j)/ ‖fn(j)‖K if j ≥ N

(with 0/0 = 0). We have d(ψn, φ) < δ, and so ψn ∈ Fm0 . It follows that for n ≥ m0∣∣∣∣∣∣
N−1∑
j=0

〈fn(j), φ(j)〉K +
∞∑

j=N

‖fn(j)‖K

∣∣∣∣∣∣ = |〈fn, ψn〉`1 | < ε/3.

Since limn→∞ ‖fn(j)‖K = 0 for all j by hypothesis, there exists m1 ≥ m0 such that

N−1∑
j=0

‖fn(j)‖K < ε/3 ∀n ≥ m1.

If n ≥ m1, we thus have

‖f‖`1 ≤
N−1∑
j=0

‖fn(j)‖K +

∣∣∣∣∣∣
∞∑

j=N

‖fn(j)‖K +
N−1∑
j=0

〈fn(j), φ(j)〉K

∣∣∣∣∣∣
+

∣∣∣∣∣∣
N−1∑
j=0

〈fn(j), φ(j)〉K

∣∣∣∣∣∣ < ε,

and the lemma is proved.


