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bDIMA, Università di Genova, Italy

cIstituto Italiano di Tecnologia, Italy & DIMA, Università di Genova, Italy

Abstract

We extend the classical Mercer theorem to reproducing kernel Hilbert spaces
whose elements are functions from a measurable space X into Cn. Given
a finite measure µ on X, we represent the reproducing kernel K as a con-
vergent series in terms of the eigenfunctions of a suitable compact operator
depending on K and µ. Our result holds under the mild assumption that K
is measurable and the associated Hilbert space is separable. Furthermore, we
show that X has a natural second countable topology with respect to which
the eigenfunctions are continuous and such that the series representing K
uniformly converges to K on compact subsets of X ×X, provided that the
support of µ is X.
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1. Introduction

Reproducing kernel Hilbert spaces (RKHSs) are spaces of functions de-
fined on an arbitrary set X and taking values into a normed vector space Y
with the property that the evaluation operator at each point is continuous.
Usually the output space Y is simply Y = R or C, but recently the vector-
valued setting is becoming popular, especially in machine learning because
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of its generality and its good experimental performance in a variety of dif-
ferent domains [1, 2, 3]. The mathematical theory for vector-valued RKHS
has been completely worked out in the seminal paper [4], which studies the
Hilbert spaces that are continuously embedded into a locally convex topo-
logical vector space, see also [5]. If Y is itself a Hilbert space, the theory
can be simplified as shown in [6, 7, 8, 9]. In particular, it remains true that
the vector valued RKHSs are completely characterized by the corresponding
reproducing kernel, which now takes value in the space of bounded operators
on Y .

The focus of this paper is on Mercer theorem [10]. In the scalar setting,
it provides a series representation, called Mercer representation, for the re-
producing kernel K under some suitable hypotheses. In the classical setting,
X is assumed to be a compact metric space and the reproducing kernel K
to be continuous. Hence, for a finite measure µ on X whose support is X,
the integral operator Lµ with kernel K is a compact positive operator on
L2(X,µ) and it admits an orthonormal basis {fi}i∈I of eigenfunctions with
non-negative eigenvalues {σi}i∈I such that each fi with σi > 0 is a continuous
function. Mercer theorem states that

K(x, t) =
∑
i∈I

σifi(t)fi(x) ∀x, t ∈ X, (1)

where the series is absolutely and uniformly convergent (see also [11]). In
the following we refer to (1) as a Mercer representation of K.

The kind of representation for the reproducing kernel plays a special role
in the applications. For example, since the family {√σifi : σi > 0} is an
orthonormal basis of the corresponding RKHS HK , it provides a canonical
feature map which relates the spectral properties of Lµ and the structure of
HK . This characterization has several consequences in the study of learning
algorithms, since it allows to prove smoothing properties of kernels and to
obtain error estimates, see for example [12, 13] and references therein. In
addition, the Mercer representation is an important tool in the theory of
stochastic processes [14, 15] and for dimensionality reduction methods, such
as kernel PCA [16, 17].

However, in many applications, the “classical hypotheses” of Mercer the-
orem are not satisfied. For this reason, in the recent years there has been
an increasing interest in Mercer representations under relaxed assumptions
on the input space X, on the kernel K and on Y . A first group of results
concerns scalar kernels. For example, [18] dealt with the case of a σ-compact
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metric space X and a continuous kernel satisfying some natural integrability
conditions. When X is an arbitrary measurable space endowed with a prob-
ability measure, and K is an L2-integrable kernel, it is possible to obtain a
Mercer representation of the kernel resorting to the spectral properties of the
operator Lµ [19]. The shortcoming of these results is that the corresponding
series converges only almost everywhere. More stringent assumptions on the
kernel, such as boundedness, allow to get convergence in L∞, which is still
too weak to get a pointwise representation [20]. The preprint [21] contains
a more general developments on the subject. In particular, a Mercer rep-
resentation enjoying pointwise absolute convergence is obtained under less
restrictive assumptions on the kernel. More precisely, given a finite Borel
measure µ on X, if the RKHS is separable and compactly embedded into
L2(X,µ), a Mercer representation almost everywhere pointwise convergent is
recovered. Moreover, the series is pointwise absolutely convergent if and only
if the embedding of HK into L2(X,µ) is injective. For vector valued RKHSs,
[8] provides an (integral) Mercer representation under the conditions that K
is square-integrable and Y is a (separable) Hilbert space.

In our paper we extend Mercer theorem under three aspects by assuming
that

i) the input space X is a measurable space;

ii) the output space Y is a finite dimensional vector space;

iii) the kernel K is a measurable function and the corresponding RKHS HK

is separable.

The results in [8] strongly depend on the fact that the kernel is square-
integrable, whereas we only assume that K is a measurable function. In the
cited reference the Mercer decomposition is given with respect to the integral
operator of kernel K, whose spectrum could have a continuous part. To take
care of this problem, the proof in [8] is very technical. In our setting, with
a suitable choice of the measure, the integral operator is always compact,
so that the spectrum has only eigenvalues (up to zero, which does not play
any role). Due to this compactness property, our proof is simpler and more
straightforward.

Generalizing the ideas in [22, 23], we show that X has a natural second
countable topology making K a continuous kernel. Moreover, given a finite
measure µ whose support is X, we construct a second measure ν such that
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the integral operator Lν of kernel K is compact on L2(X, ν;Cn). Hence, by
using the singular value decomposition, we prove that the Mercer representa-
tion (1) holds true, where {fi}i∈I is any orthonormal basis of eigenfunctions
of Lν , {σi}i∈I the corresponding family of eigenvalues and the series converges
uniformly on compact subsets of X×X. If the support of µ is a proper subset
of X, representation (1) still holds true provided that x, t ∈ suppµ. Note
that the assumption on Y can be relaxed allowing Y to be a separable Hilbert
space provided that K(x, x) is a compact operator for all x ∈ X. However,
for the sake of clarity we state our results only for finite dimensional output
spaces and, by choosing a basis, we can further assume that Y = Cn.

To extend our results to an infinite dimensional (separable) Hilbert space
Y , one first identifies Y with `2(N) by choosing a basis in Y and replaces Cn

with `2(N) in our formulas. The assumption that for all x ∈ X the operator
K(x, x) is compact implies that the integral operator (10) always has a basis
of eigenfunctions, see Proposition 4.8 of [8], so that the content and the proof
of Theorem 3.4 are the same with the only difference that the indexes j, l
in (12) range in N.

The paper is organized as follows. In Section 2 we introduce the nota-
tion and we recall some basic facts about vector-valued reproducing kernel
Hilbert spaces. Section 3 contains the main results of the paper: given a mea-
surable matrix-valued reproducing kernel K, Theorem 3.4 gives the Mercer
representation of K and Proposition 3.5 studies the relation between K and
the scalar reproducing kernels associated with the “diagonal blocks” of K,
see (13). The proofs are given in Sections 4 and 5. In the former we prove
the Mercer theorem for continuous matrix-valued kernels defined on metric
spaces and satisfying a suitable integrability condition. Section 5 is devoted
to the proof of Theorem 3.2 and Proposition 3.5. The appendix collects
some properties of the associated integral operator.

2. Preliminaries and notation

For any integer n ≥ 1, the Euclidean norm and the inner product on
Cn are denoted by ‖·‖ and 〈·, ·〉. The family {ej}nj=1 is the canonical basis
of Cn and Mn(C) is the space of complex n × n matrices. For any matrix
T ∈ Mn(C) we let ‖T‖ = sup{‖Ty‖ : y ∈ Cn, ‖y‖ ≤ 1} be the operator
norm, T ∗ is the adjoint and TrT =

∑n
j=1 Tjj the trace.

Given a set X, F(X,Cn) denotes the vector space of functions from X into
Cn. When X is endowed with a σ-algebra A and a positive finite measure

4



ν : A → [0,+∞), then L2(X, ν;Cn) is the Hilbert space of (equivalence
classes of) ν-square-integrable functions from X into Cn, with inner product
〈·, ·〉2 and norm ‖·‖2. If X has a topology, C(X,Cn) is the vector space of
continuous functions from X into Cn and B(X) is the Borel σ-algebra.

In this paper we focus on reproducing kernel Hilbert spaces whose ele-
ments are functions from a set X taking values in Cn. These Hilbert spaces
are completely characterized by their reproducing kernel, which is a function
from X×X to Mn(C), so that we consider the kernel as our primary object.
We recall the following definition.

Definition 2.1. A map K : X×X →Mn(C) is called a Mn(C)-reproducing
kernel if

a) for all x, t ∈ X, K(x, t)∗ = K(t, x);

b) for any m ≥ 1, x1, . . . , xm ∈ X, y1, . . . , ym ∈ Cn

m∑
i,j=1

〈K(xi, xj)yj, yi〉 ≥ 0.

From now on we fix a Mn(C)-reproducing kernel K and, for any x ∈ X and
j = 1, . . . , n, we denote by Kj

x the function in F(X,Cn) given by

Kj
x(t) := K(t, x)ej, t ∈ X.

We recall that K defines a unique RKHS HK , whose inner product and
norm are denoted by 〈·, ·〉K and ‖·‖K , respectively, such that HK is a vector
subspace of F(X,Cn) and

Kj
x ∈ HK , ∀x ∈ X, j = 1, . . . , n

f(x) =
(
〈f,K1

x〉K , . . . , 〈f,Kn
x 〉K

)
, ∀x ∈ X, f ∈ HK , (2)

see Proposition 2.1 of [8]. Furthermore, the following properties hold true

K(x, t)lj = 〈Kj
t , K

l
x〉K , x, t ∈ X j, l = 1, . . . , n (3)

HK = span{Kxy : x ∈ X, y ∈ Cn} (4)

f(x) = K∗xf x ∈ X

where Kx : Cn → HK is the (bounded) operator defined by Kxy =
∑
yjK

j
x

for all y = (y1, . . . , yn) ∈ Cn.
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Finally, we recall that HK can be realized also as a closed subspace of a
suitable Hilbert space by means of a particular feature map, as shown by the
next result.

Proposition 2.2 (Proposition 2.4 [8]). Let H be a Hilbert space and a map
γ : X → Hn, γ(x) = (γ1x, . . . , γ

n
x ) be given. Then the operator W : H →

F(X;Cn) defined by

(Wu)(x) = (〈u, γ1x〉, . . . , 〈u, γnx 〉), u ∈ H, x ∈ X, (5)

is a partial isometry from H onto the reproducing kernel Hilbert space HK

with reproducing kernel

K(x, t)lj = 〈γjt , γlx〉, x, t ∈ X, l, j = 1, . . . , n. (6)

Moreover, W ∗W is the orthogonal projection onto

kerW⊥ = span{γix | x ∈ X, i = 1, . . . , n}.

3. Mercer theorem for measurable kernels

In this section we present the main result of the paper, namely a Mercer
representation of a Mn(C)-reproducing kernel K under the assumptions that
X is endowed with a finite measure µ and K is measurable. The distinctive
feature of our result with respect to already existing generalizations of Mercer
theorem relies in the construction of an ad hoc topological structure on the
space X, intrinsically defined by the kernel. Thanks to this topology and
introducing a suitable measure related to µ, we do not need to assume the
space HK to be embedded in L2(X,µ;Cn), and we are nevertheless able to
get a Mercer representation for the kernel and a strong convergence result
on the series defining it. In particular, we recover uniform convergence on
compact subsets with respect to the topology we introduce.

As in [22, 23], we note that the reproducing kernel K defines a pseudo-
metric d on X

d(x, t) = sup
y∈Cn
‖y‖≤1

‖Kxy −Kty‖K x, t ∈ X, (7)

which induces a (non-Hausdorff) topology τK on X. A basis of τK is provided
by the family of open balls {B(x, r) : x ∈ X, r > 0} where

B(x, r) = {t ∈ X : d(x, t) < r}. (8)
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Remark 3.1. The pseudo-metric d can be also computed as follows.

d(x, t)2 = sup
y∈Cn
‖y‖≤1

〈
(
K(x, x)−K(x, t)−K(t, x) +K(t, t)

)
y, y〉

= ‖K(x, x)−K(x, t)−K(t, x) +K(t, t)‖, (9)

where ‖A‖ = sup‖y‖≤1 ‖Ay‖ is the operator norm of the matrix A and the
second equality holds since K(x, x)−K(x, t)−K(t, x)+K(t, t) is a positive-
defined matrix. It is easy to check that d is equivalent to the pseudo-metric

d′(x, t) =
√∑n

j=1 ‖K
j
x −Kj

t ‖2K , which gives rise to the same topology.

The following result states some properties of τK .

Theorem 3.2. Assume that HK is separable.

i) The space X endowed with the topology τK is second countable and K is
continuous;

ii) If A is a σ-algebra on X with respect to which K is measurable, the
Borel σ-algebra B(X) generated by τK is contained in A;

iii) If µ : A → [0,+∞) is a finite measure, then there exists a unique closed
set C ⊆ X, namely the support of µ, such that µ(C) = µ(X) and that,
if C ′ is another closed subset with µ(C ′) = µ(X), then C ′ ⊃ C.

The support of µ is denoted by suppµ and it is, by its very definition, the
smallest closed subset of X having full measure. The assumption that HK

is separable is essential to prove its existence.

Remark 3.3. If X is endowed with its own topology τ and the reproducing
kernel is continuous with respect to τ , then τK ⊆ τ . Indeed, the fact that
K is τ -continuous from X × X into Mn(C), endowed with the operator
norm, implies that the map (x, t) 7→ ‖K(x, x)−K(x, t)−K(t, x) +K(t, t)‖
is τ -continuous. By Eq. (9), for any x ∈ X the map t 7→ d(x, t) is also
τ -continuous. Since B(x, r) = {t ∈ X | d(x, t) < r} for all r > 0, then
B(x, r) ∈ τ , so that τK ⊆ τ . Though in general τK 6= τ , any function in HK

is continuous with respect to both topologies.

From now on, we fix a σ-algebra A on X and a finite measure µ defined
on A. We assume that HK is separable and that K is measurable, and
we regard X as a second countable topological space with respect to the

7



topology τK . Though K is continuous, this condition does not ensure that
the integral operator with kernelK is bounded on L2(X,µ;Cn). We overcome
this problem by considering a second measure ν, which is equivalent to µ,
such that the integral operator with kernel K is bounded on L2(X,µ;Cn).
Indeed, define ν : A → [0,+∞) as

ν(A) :=

∫
A

1

1 + ‖K(x, x)‖
dµ(x), A ∈ A. (10)

Clearly ν is a positive finite measure, which satisfies supp ν = suppµ. Fur-
thermore, since TrK(x, x) ≤ n‖K(x, x)‖, the integral

∫
X

TrK(x, x)dν(x) is
finite and Theorem 6.1 in the appendix states that the integral operator
with kernel K

Lν : L2(X, ν;Cn)→ L2(X, ν;Cn)

(Lνf)(x) =

∫
X

K(x, t)f(t)dν(t), (11)

is well-defined, positive and compact1. The Hilbert-Schmidt theorem gives
the existence of a basis of L2(X, ν;Cn) of eigenfunctions of Lν and this basis
provides a Mercer decomposition of K, as shown by the following result.

Theorem 3.4. Let (X,A) be a measurable space endowed with a finite mea-
sure µ. Assume that the reproducing kernel K : X × X → Mn(C) is mea-
surable and HK is separable. Define ν as in (10) and Lν as in (11). Then
there exists a countable family {fi}i∈I in F(X,Cn) such that:

a) for all i ∈ I the function fi is continuous with respect to τK,

b) the family {fi}i∈I is an orthonormal basis of kerL⊥ν ⊆ L2(X, ν;Cn) and,
for all i ∈ I, Lνfi = σifi for some σi ∈ (0,+∞).

Given any family {fi}i∈I satisfying a) and b), then

i) for all x, t ∈ suppµ and j, l = 1, . . . , n

K(x, t)lj =
∑
i∈I

σif
j
i (t)f li (x), (12)

where the convergence is uniform on compact subsets of suppµ×suppµ;

1If Y is infinite dimensional and K(x, x) is compact for all x ∈ X, it is possible to
prove that Lν is compact by Proposition 4.8 of [8].
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ii) the family {√σifi}i∈I is orthonormal in HK;

iii) if suppµ = X, {√σifi}i∈I is an orthonormal basis of HK.

iv) for j = 1, . . . , n, the family {√σif ji }i∈I is a Parseval frame in the scalar
reproducing kernel Hilbert space HKj with reproducing kernel Kj given
by

Kj(x, t) = K(x, t)jj x, t ∈ X. (13)

We recall that {√σif ji }i∈I is a Parseval frame in HKj if

‖f‖2Kj =
∑
i∈I

σi|〈f, f ji 〉Kj |2 ∀ f ∈ HKj . (14)

Item iv) of Theorem 3.4 provides a tool to construct Mn(C)-reproducing
kernels as shown by the following result.

Proposition 3.5. Let (X,A) be a measurable space endowed with a finite
measure µ such that suppµ = X. Given a family K1, . . . , Kn of n scalar
measurable reproducing kernels on X, for each j = 1, . . . , n take a Parseval
frame {f ji }i∈I in the corresponding reproducing kernel Hilbert space HKj with
I countable, and define the function K : X ×X →Mn(C) as

K(x, t)lj =
∑
i∈I

f ji (t)f li (x) ∀x, t ∈ X. (15)

The map K is a measurable Mn(C)-reproducing kernel on X satisfying (13)
and HK is separable.

The following two simple examples illustrate the machinery involved in
the above results. First, we focus on the Mercer decomposition (12). The
main difficult task is the computation of the spectral decomposition of Lν .
To overcome this problem, we consider a continuous periodic kernel on R.

Example 3.6. Fix n = 2 and choose a continuous 2π-periodic M2(C)-valued
kernel on the real line, i.e.

K(x, t) =

[
a(t− x) b(t− x)

b(x− t) c(t− x)

]
(16)

where a(t− x) = 〈K1
t , K

1
x〉, c(t− x) = 〈K2

t , K
2
x〉 and b(t− x) = 〈K2

t , K
1
x〉 are

continuous 2π-periodic functions, with K(x, t)21 = b(x− t) by condition a)
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of Definition 2.1. Due to the periodicity, we set X = (−π, π], µ = (2π)−1dx
the normalized Lebesgue measure, and τ the natural topology of X. Since K
is τ -continuous, τK ⊆ τby Remark 3.3 and, as a consequence, the support of
µ (with respect to τK) contains the support of µ (with respect to τ), which
is X. Hence suppµ = X.

Since K satisfies condition b) of Definition 2.1, a and b are functions of
positive type and b is a linear combination of four functions of positive type.
Hence, a standard result on Fourier series implies that for all x ∈ X

a(x) =
∑
m∈Z

âme
imx b(x) =

∑
m∈Z

b̂me
imx c(x) =

∑
m∈Z

ĉme
imx, (17)

where
(
âm
)
m∈Z,

(
b̂m
)
m∈Z and

(
ĉm
)
m∈Z are in `1(Z). Furthermore condition b)

of Definition 2.1 gives that for all m ∈ Z the matrix

K̂m :=

[
âm b̂m

b̂m ĉm

]

is positive defined, that is,

âm ≥ 0 ĉm ≥ 0 âmĉm ≥ |b̂m|2. (18)

Conversely, any family of sequences
(
âm
)
m∈Z,

(
b̂m
)
m∈Z,

(
ĉm
)
m∈Z in `1(Z)

satisfying (18) defines a continuous 2π-periodic M2(C)-valued reproducing
kernel on R by means of Eqs. (16) and (17) (hence providing us with a set
of explicit examples). For instance, the choice

K(t, x) =

[
(π−|t−x|)2

2
π
8
(t− x)(π − |t− x|)

π
8
(x− t)(π − |x− t|) (π−|t−x|)2

2

]
−π < t−x ≤ π

gives a M2(C)-reproducing kernel since it is well known that

K̂0 =

[
π2

6
0

0 π2

6

]
K̂m =

[
1
m2

1−(−1)m
4im3

(−1)m−1
4im3

1
m2

]
m 6= 0,

so that condition (18) holds true. Note that this kernel can not be written
as the product of a scalar kernel with a constant 2× 2-matrix.

Since K is bounded, the integral operator Lµ of kernel K acting on
L2(X,µ,C2) is always compact, so we do not need to introduce the measure
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ν. Moreover, the eigenfunctions of Lµ can be easily computed by observ-
ing that Lµ acts by convolution and, in the Fourier domain, as pointwise
multiplication, i.e.

L̂µ

([
f̂ 1
m

f̂ 2
m

])
m∈Z

=

(
K̂m

[
f̂ 1
m

f̂ 2
m

])
m∈Z

,

([
f̂ 1
m

f̂ 2
m

])
m∈Z
∈ `2(Z)2.

Since K̂m is positive defined, K̂m has two eigenvalues σ1,m, σ2,m ∈ [0,+∞)
with corresponding (normalized) eigenvectors v1,m, v2,m ∈ C2. Then, for all
m ∈ Z and ` = 1, 2, the function f`,m, f`,m(x) = v`,me

imx, is an eigenfunction
of Lµ with eigenvalue σ`,m and {f`,m}σ`,m>0 is an orthonormal basis of kerLµ

⊥.
By item v) of Theorem 6.1 (with Lν replaced by Lµ), if σ`,m > 0 there
exists a function g`,m ∈ HK such that for µ-almost all x ∈ X we have
g`,m(x) = f`,m(x). By Remark 3.3 g`,m is continuous with respect to τ ,
hence for all x ∈ X g`,m(x) = f`,m(x), i.e. f`,m is τK-continuous. Item i) of
Theorem 3.4 provides the following decomposition

K(x, t)ij =
∑
`=1,2

∑
m∈Z

σ`,mf
j
`,m(t)f i`,m(x)

=
∑
`=1,2

∑
m∈Z

σ`,mv
j
`,mv

i
`,me

im(t−x),

where the series converges absolutely for all x, t ∈ X and uniformly on X ×
X (the series

∑
σ`,m is finite since it is equal to

∑
(âm + ĉm), which is

convergent). This example extends to any Hilbert space valued RKHS on an
abelian locally compact group, see Proposition 5.3. in [9].

Example 3.7. Using Proposition 3.5, we illustrate how to build a matrix-
valued kernel starting from two scalar Gaussian kernels Kj : R × R → R
(j = 1, 2) defined as usual as

K1(x, t) = e
− (x−t)2

2σ21 , K2(x, t) = e
− (x−t)2

2σ22 ,

with σj > 0, for j = 1, 2. Set

f ji (x) =
xi√
i!(σj)i

e
− x2

2σ2
j , j = 1, 2, i ∈ N, x ∈ R,
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then ∑
i∈N

f ji (x)f ji (t) =
∑
i∈N

xi√
i!(σj)i

e
− x2

2σ2
j

ti√
i!(σj)i

e
− t2

2σ2
j

= e

(
− x2

2σ2
j

− t2

2σ2
j

) ∑
i∈N

xiti

i!(σj)2i

= e

(
− x2

2σ2
j

− t2

2σ2
j

)
e
xt

σ2
j = Kj(x, t).

Condition (15) is satisfied. It is known, see for example [13], that {f ji }i∈N
is an orthonormal basis of HKj , hence a Parseval frame (a direct proof can

be obtained by considering the maps γi : X → `2, γ(x) = {f ji (x)}i∈N and
by applying Proposition 2.2). Therefore a matrix-valued kernel is defined by
setting

K(x, t)lj =
∑
i∈N

f ji (x)f li (t).

Note that the off-diagonal blocks

K(x, t)12 = K(x, t)21 = e
−
(

x√
2σ1
− t√

2σ2

)2

are not a Gaussian kernel, if σ1 6= σ2.

4. Continuous Mercer theorem on a metric space

The first step in order to show Theorem 3.4 is to prove Mercer theo-
rem under the assumption that X is a metric space, K is continuous and∫
X

TrK(x, x)dν(x) is finite. For scalar kernels the result is well known, see
[13]. However, our proof is elementary and it holds for matrix-valued ker-
nels. As in [24, 25], it is based on the singular value decomposition of the
embedding iν : HK → L2(X, ν;Cn), which is a compact operator. We will
make use of some known properties of iν collected in the appendix.

Theorem 4.1. Let X be a separable metric space and ν a finite measure de-
fined on B(X). Assume K : X×X →Mn(C) to be a continuous reproducing
kernel such that ∫

X

TrK(x, x) dν(x) < +∞. (19)
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Define the trace class operator Lν as in (11) and take an orthonormal basis
{fi}i∈I of kerLν

⊥ of continuous eigenvectors of Lν and let {σi}i∈I ⊆ (0,+∞)
be the corresponding family of eigenvalues. Then the family {√σifi}i∈I is
orthonormal in HK and

K(x, t)lj =
∑
i∈I

σif
j
i (t)f li (x) ∀x, t ∈ supp ν, (20)

where the series converges uniformly on compact subsets of supp ν × supp ν.
If supp ν = X, {√σifi}i∈I is an orthonormal basis of HK.

Remark 4.2. Item 4) of Theorem 6.1 in the appendix guarantees the existence
of a basis {fi}i∈I of kerLν

⊥ of continuous eigenvectors of Lν .

Proof. As in Theorem 6.1, we denote by iν : HK ↪→ L2(X, ν;Cn) the canon-
ical embedding. Its adjoint i∗ν is given by (29), so that Lν = iνi

∗
ν , and we

define the operator Tν : HK → HK as Tν := i∗νiν . Take a family {fi}i∈I as
in the statement of the theorem and, for all i ∈ I, define gi = i∗νfi/

√
σi. The

singular value decomposition of i∗ν gives that {gi}i∈I is an orthonormal basis
of kerTν

⊥ made of eigenvectors of Tν . We claim that, for all x ∈ supp ν and
j = 1, . . . , n, Kj

x ∈ kerTν
⊥. Indeed, for any f ∈ kerTν

0 = 〈Tνf, f〉K = 〈iνf, iνf〉 =
n∑
j=1

∫
X

|f j(x)|2 dν(x).

Hence, for any j = 1, . . . , n, the map x 7→ f j(x) = 〈f,Kj
x〉K is zero ν-almost

everywhere. SinceHK ⊆ C(X,Cn), see item 1) of Theorem 6.1, the definition
of support implies that 〈f,Kj

x〉K = 0 for all x ∈ supp ν. Hence

Kj
t ∈ kerT⊥ν ∀t ∈ supp ν, j = 1, . . . , n. (21)

Furthermore, since {gi}i∈I is a basis of kerT⊥ν , for all x ∈ supp ν and j =
1, . . . , n

Kj
x =

∑
i∈I

〈Kj
x, gi〉K gi.

Hence, the reproducing property gives that

K(x, t)lj = 〈K l
x, K

j
t 〉K =

∑
i∈I

〈K l
x, gi〉K〈gi, K

j
t 〉K =

∑
i∈I

σif
j
i (t)f li (x)

13



for all x, t ∈ supp ν.
Concerning the uniform convergence, suppose I = N, fix two compact

subsets C,C ′ ⊆ suppν, and consider the remainder

sup
(x,t)∈C×C′

∣∣∣∣∣
+∞∑
i=q

σif
j
i (t)f li (x)

∣∣∣∣∣ ≤
√√√√sup

x∈C

+∞∑
i=q

σi|f li (x)|2

√√√√sup
t∈C′

+∞∑
i=q

σi|f ji (t)|2. (22)

The series of continuous functions
∑+∞

i=0 σi|f li (x)|2 converges pointwise to the
continuous function K(x, x)ll on the compact set C, and therefore uniform
convergence follows from Dini’s theorem. Thus, relying on the bound in (22),
we have

lim
q→+∞

sup
(x,t)∈C×C′

∣∣∣∣∣
+∞∑
i=q

σif
j
i (t)f li (x)

∣∣∣∣∣ = 0.

Assume that supp ν = X. Since, by (4), {Kj
t : t ∈ X, j = 1, . . . n} is total

in HK , (21) implies that kerTν = {0}. Hence the family {√σifi}i∈I is an
orthonormal basis of HK .

5. Proofs

To prove the Mercer representation in the general setting of Theorem 3.4,
we would like to define a metric d on X such that K becomes continuous.
A natural choice would be the map d defined by (7). However, d is not a
metric unless the map x 7→ Kx is injective. To overcome this problem, we
first introduce a suitable metric space X̃ and a continuous kernel K̃ such
that the corresponding reproducing kernel HK̃ is isomorphic to HK and, as a
consequence, we prove Theorem 3.2. Afterwards, the Mercer representation
of K is deduced by the corresponding representation (20) of K̃ given by
Theorem 4.1. From now on (X,A) is a measurable space endowed with a
finite measure µ and K is a Cn-measurable reproducing kernel such that HK

is separable.
Clearly d in (7) is a pseudo-metric. The symmetry property and the

triangular inequality directly follow from the definition, while from d(x, t) = 0
we get Kx = Kt, which as noted before in general does not imply x = t.
However, the reproducing property (2) gives f(x) = f(t) for all f ∈ HK ,
which means that the functions in HK are not able to distinguish the points
x and t. This suggests to define an equivalence relation ∼ on X by setting

x ∼ t ⇐⇒ Kx = Kt. (23)
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Denote by X̃ = X/∼ the corresponding quotient space and, given [x], [t] ∈ X̃,

define the function d̃([x], [t]) := d(x, t). Then d̃ is a distance on X̃ so that

(X̃, d̃) is a metric space.
We consider the pull-back topology τK induced on X by the canonical

projection π : X → X/∼, i.e.

τK = {π−1(A) : A open in (X̃, d̃)}.

It is clear that the family of open balls {B(x, r) : x ∈ X, r > 0} is a basis
for τK , see (8). Now, the proof of Theorem 3.2 is a consequence of the next
proposition where L(Cn,HK) denotes the space of (bounded) linear operator
from Cn to HK endowed with the operator norm ‖·‖

n,K
so that, for example,

d(x, t) = ‖Kx −Kt‖n,K = sup
y∈Cn
‖y‖≤1

‖Kxy −Kty‖K .

Proposition 5.1. The following facts hold:

i) the map Φ : X̃ → L(Cn,HK) given by Φ([x]) = Kx is an isometry from

(X̃, d̃) into (L(Cn,HK), ‖·‖
n,K

);

ii) the spaces (X̃, d̃) and (X, τK) are second countable;

iii) the σ-algebra A contains B(X), the Borel sets generated by τK;

iv) given a positive finite measure ν on X, there exists supp ν.

Proof. Statement i) follows directly from the definition of the equivalence
relation ∼ and of the pseudo-distance d.
ii) Since HK is separable, the space L(Cn,HK) can be identified with Hn

K ,

and then it is separable. Therefore, the set Φ(X̃) ⊆ L(Cn,HK) is separable

as well, and so is X̃, since Φ is an isometry. Since X̃ is a separable metric
space, there exists a countable basis {Ai}i∈N of open subsets of X̃. Clearly,
{π−1(Ai)}i∈N is a countable basis for τK , that is, τK is second countable.

To show that iii) holds true, it is enough to prove that each element
B(x, r) of the basis of τK belongs to A. Towards this end, if for a given x ∈ X
we prove that the map Gx : (X,A) → [0,+∞), Gx(y) = ‖Ky −Kx‖n,K
is measurable we are done. Since Gx is the composition of the function
X 3 y 7→ Ky −Kx ∈ L(Cn,HK), with L(Cn,HK) 3 A 7→ ‖A‖

n,K
∈ R, and
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the latter is continuous, it is enough to prove that the first one is measurable.
This follows from separability of HK and Proposition 3.1 in [8].

Finally, to prove iv), define supp ν as the intersection of all τK-closed
subsets C ⊆ X with ν(C) = ν(X). Clearly supp ν is closed, and we prove
that ν(supp ν) = ν(X). Indeed, since τK is second countable, there exists
a sequence of closed sets {Cj}j∈N such that, for an arbitrary closed set C,
C = ∩kCjk for a suitable subsequence {Cjk}k∈N . Hence,

ν(supp ν) = ν

( ⋂
C closed,

ν(C) = ν(X)

C

)
= ν

( ⋂
j∈N

ν(Cj) = ν(X)

Cj

)

= lim
j∈N

ν(Cj) = ν(X)

ν(Cj) = ν(X).

Note that, since X̃ is a second countable metric space, it is separable.
We now define a continuous kernel K̃ on the separable metric space (X̃, d̃)
in order to apply Theorem 4.1, once that a suitable measure ν̃ has been also
introduced. Set

K̃ : X̃ × X̃ →Mn(C), K̃([x], [t]) := K(x, t),

and denote by HK̃ the RKHS associated to K̃. First of all, note that (3)

and the definition of the equivalence classes in X̃ guarantee that K̃ is well-
defined. The next proposition aims at clarifying some basic properties of this
space and most of all the connections between HK and HK̃ . In particular,
as it will be made precise later, the two spaces roughly speaking coincide.

Proposition 5.2. The following facts hold:

i) K̃ is a continuous kernel and every f ∈ HK̃ is a continuous function;

ii) HK̃ is separable;

iii) HK̃ and HK are unitarily equivalent by means of the unitary operator

W : HK̃ → HK (Wf̃)(x) := f̃([x]); (24)

16



iv) given a sequence of functions (f̃n)n∈N in HK̃ such that f̃n → f̃ ∈ HK̃

uniformly on the compact sets of X̃, then Wf̃n → Wf̃ uniformly on
the compact sets of X.

Proof. i) Given x0, t0 ∈ X we prove that K̃ is continuous in ([x0], [t0]). For
all x, t ∈ X we have

‖K̃([x], [t])− K̃([x0], [t0])‖ ≤ ‖K∗xKt −K∗xKt0‖+ ‖K∗xKt0 −K∗x0Kt0‖
≤ ‖K∗x‖K,n‖Kt −Kt0‖n,K +‖K∗x −K∗x0‖K,n‖Kt0‖n,K .

Since ‖K∗x‖K,n ≤ ‖K∗x −K∗x0‖K,n + ‖K∗x0‖K,n = ‖Kx −Kx0‖n,K + ‖Kx0‖n,K ,
the continuity of Φ gives the thesis.
The second part of statement i) follows by the reproducing formula f(x) =

K̃∗xf for all f ∈ HK̃ .

ii) Since X̃ and Cn are separable (see Proposition 5.1.ii), the space HK̃ =

span{K̃[x]y : x ∈ X, y ∈ Cn} is separable too.

iii) We apply Proposition 2.2 taking H = HK̃ and γx = K̃[x], so that

(Wf̃)(x) = f̃([x]) = f(x)

for all x ∈ X and f̃ ∈ HK̃ . Since

γ∗xγt = K̃([x], [t]) = K(x, t),

Proposition 2.2 implies that the range of W is HK and that W is a partial
isometry from HK̃ into HK . Moreover, f = 0 clearly implies f̃ = 0, and so
W is injective.

iv) Let C be a compact subset of (X, τK). Since by construction π : X →
X̃ is continuous with respect to τK , π(C) is compact in X̃ and therefore

sup[x]∈π(C) |f̃n([x]) − f̃([x])| → 0. Since Wf̃n(x) = f̃n([x]) by definition, the
thesis follows.

In order to apply Theorem 4.1 to the kernel K̃, the last ingredient we
need is a finite measure ν̃ on X̃. If ν is defined as in (10), using the canonical
projection we can set

ν̃(A) := ν(π−1(A)) for all Borel set A in (X̃, d̃).
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ν̃ is well defined since π−1(A) ∈ B(X) by continuity of π, and B(X) ⊆ A
thanks to Proposition 5.1.iii). Moreover, we clearly have

suppµ = supp ν = π−1(supp ν̃). (25)

We are now ready to prove our main result.

Proof of Theorem 3.4. From the results collected so far, we know that K̃
is a continuous kernel by Proposition 5.2, and (X̃, d̃) is a separable metric
space (see Proposition 5.1), which is endowed with a finite measure ν̃. In
order to apply Theorem 4.1, we need to show that the integrability condition
(19) is met by K̃. From the definition of X̃, K̃ and ν̃, taking into account

that K̃([x], [x]) = K(x, x) for all x ∈ X, and using the change of variables
formula, we have ∫

X̃

K̃([x], [x]) dν̃([x]) =

∫
X

K(x, x)dν(x).

Therefore X̃, K̃ and ν̃ satisfy the assumptions of Theorem 4.1. Hence, K̃
can be written component-wise as

K̃([x], [t])jl =
∑
i∈I

σif̃
l
i ([t])f̃

j
i ([x]) (26)

where (
√
σif̃i)i∈I is basis of kerLν̃

⊥ of eigenvectors of the integral operator

Lν̃ whose kernel is K̃. Furthermore (
√
σif̃i)i∈I is an orthonormal family of

HK̃ with f̃i continuous on X̃. Then fi := Wf̃i is a continuous function on
X thanks to the definition of τK and W (see (24)), and (

√
σifi)i∈I is an

orthonormal part of HK by Proposition 5.2.iii). Moreover, for all f, g ∈ HK ,∫
X̃

f̃([x])g̃([x])dν̃([x]) =

∫
X

f(x)g(x)dν(x)

holds by definition of ν̃ and the change of variables formula, and thus {fi}i∈I
is an orthonormal family in L2(X, ν;Cn) as well. Note that {fi} is also a
basis of eigenvectors of Lν since (Lνfi)(x) = (Lν̃ f̃i)([x]) for all i ∈ I. The
definition of W and equation (25) entail

K(x, t)jl =
∑
i∈I

σif
l
i (t)f

j
i (x)
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for all x, t ∈ supp ν = suppµ.
Since the series in (26) is uniformly convergent on the compact subsets of
supp ν̃×supp ν̃, by Proposition 5.2.iv the latter series is uniformly convergent
on the compact subsets of suppµ× suppµ.

The unitary equivalence between HK and HK̃ (through W ) implies that

(
√
σifi)i∈I is an orthonormal basis of HK if and only if (

√
σif̃i)i∈I is an

orthonormal basis of HK̃ . Hence item iii) is a consequence of Theorem 4.1
and (25).

Finally, we prove item iv). First of all note that it is straightforward to
see that every Kj given by (13) is a scalar kernel on X. Moreover, it satisfies

Kj(x, t) =
∑
i∈I

σif
j
i (t)f ji (x) ∀x, t ∈ X

thanks to equation (12).
Fix j = 1, . . . , n and set γx = (

√
σif

j
i (x))i∈I ∈ `2(I) for all x ∈ X. Since

〈γt, γx〉 =
∑
i∈I

σif
j
i (t)f ji (x) = Kj(x, t),

the function defined by

(W jc)(x) := 〈c, γx〉 =
∑
i∈I

√
σicif

j
i (x), c ∈ `2(I),

is a partial isometry onto HKj by Proposition 2.2. Therefore we have

‖f‖2j = ‖W ∗f‖22 =
∑
i∈I

σi|〈f, f ji 〉Kj |2 ∀ f ∈ HKj ,

i.e. {√σif ji }i∈I is a Parseval frame in HKj .

Proof of Proposition 3.5. Fix j = 1, . . . , n and let {f ji }i∈I be a Parseval frame
in HKj . The function K given by (15) is a Mn(C)-reproducing kernel on X
since

m∑
l,r=1

〈K(xl, xr)yr, yl〉 =
m∑

l,r=1

n∑
p,q=1

K(xl, xr)pqy
q
ry

p
l

=
m∑

l,r=1

n∑
p,q=1

∑
i∈I

yqry
p
l f

q
i (xr)f

p
i (xl)

=
∑
i∈I

∣∣∣∣∣
m∑
r=1

n∑
q=1

yqrf
q
i (xr)

∣∣∣∣∣
2

≥ 0

19



for all x1, . . . , xm ∈ X, y1, . . . , ym ∈ Cn, m ≥ 1. Finally, we have

Kj(x, x) = ‖(Kj)x‖2Kj =
∑
i∈I

|f ji (x)|2 = K(x, x)jj

for all x ∈ X, so that Kj(x, t) = K(x, t)jj for all x, t ∈ X by polarization
identity.

Since all Kj are measurable, so is K. The fact that I is countable implies
that each HKj is separable, as well as HK .

6. Appendix

We recall some basic facts about the embedding of a reproducing kernel
Hilbert space into L2(X, ν;Cn).

Theorem 6.1. Let X be a separable metric space and ν a finite measure on
B(X). Assume K : X ×X →Mn(C) to be a continuous Mn(C)-reproducing
kernel such that ∫

X

TrK(x, x) dν(x) < +∞. (27)

The following facts hold true:

i) every function in HK is continuous and HK is separable;

ii) the canonical embedding

iν : HK ↪→ L2(X, ν;Cn) (28)

is a well defined compact operator. Its adjoint i∗ν : L2(X, ν;Cn) → HK

is given by

i∗νf =
n∑
j=1

∫
X

Kj
xf

j(x) dν(x), (29)

where the integrals converge in HK;

iii) the composition iνi
∗
ν : L2(X, ν;Cn) → L2(X, ν;Cn) is a positive trace

class operator given by

(iνi
∗
νf)(x) =

∫
X

K(x, t)f(t)dν(t) = (Lνf)(x);
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iv) there exist a family {fi}i∈I in L2(X, ν;Cn) and a sequence {σi}i∈I in
(0,+∞) such that {fi}i∈I is an orthonormal basis of kerLν

⊥ = RanLν
and

Lνfi = σifi ∀ i ∈ I.

v) every eigenfunction of Lν with strictly positive eigenvalue admits a rep-
resentative in HK.

Proof. Set M :=
∫
X

TrK(x, x) dν(x) ∈ R+.
i) Given f ∈ HK , by the reproducing property we have

f(x) = (〈f,K1
x〉K , . . . , 〈f,Kn

x 〉K).

Since the j-th component of f coincides with the composition of the inner
product in HK with the map x 7→ Kj

x, which is clearly continuous, it follows
thatHK ⊆ C(X,Cn). Moreover, since X is separable, there exists a countable
set X0 dense in X. Hence HK is separable since S = {Kj

x : x ∈ X0, j =
1, . . . , n} is total in HK . Indeed, take f ∈ S⊥, then the reproducing property
gives that f(x)j = 〈f,Kj

x〉 = 0 for all x ∈ X0 and j = 1, . . . , n. Since f is
continuous and X0 dense, it follows that f = 0, so that the claim is proved.
ii). If f ∈ HK , then the following chain of inequalities holds:∫
X

‖f(x)‖2 dν(x) ≤
∫
X

〈KxK
∗
xf, f〉2K dν(x) ≤

∫
X

‖f‖2K TrK(x, x) dν(x) ≤M‖f‖2K ,

(30)
and the last quantity is finite by hypothesis. Thus iν is well-defined and
bounded. Moreover, if f ∈ L2(X, ν;Cn), we get

〈i∗νf, g〉K = 〈f, g〉2 =

∫
X

〈f(x), K∗xg〉dν(x) = 〈
∫
X

Kxf(x)dν(x), g〉K ,

where the integral
∫
X
Kxf(x)dν(x) converges inHK by the Hölder inequality,

since ∫
X

‖Kxf(x)‖dν(x) ≤
∫
X

(
TrK(x, x)

)1/2‖f(x)‖ dν(x),

the map x 7→
(

TrK(x, x)
)1/2

is in L2(X, ν;Cn) and f ∈ L2(X, ν;Cn). The
component-wise representation in equation (29) follows by (2). The fact that
iν is compact follows from the property that i∗νiν is a trace class operator,
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whose proof is given in the following item (the reasoning relies only on the
fact that iν is a bounded operator and on assumption (27)).

iii) The formula for Lν follows immediately using the expression for i∗ν ob-
tained in item 1 and the fact that iν is the canonical embedding. In order
to prove that Lν is a Hilbert-Schmidt operator, we prove that in fact it is a
trace class operator. Fix {ϕ`}`∈N an orthonormal basis of HK and note that

TrLν = Tr(i∗νiν) =
∑
`∈N

‖iνϕ`‖22 =
∑
`∈N

∫
X

‖ϕ`(x)‖2 dν(x)

=
∑
`∈N

∫
X

n∑
j=1

〈ϕ`, Kj
x〉2K dν(x)

=

∫
X

n∑
j=1

∑
`∈N

〈ϕ`, Kj
x〉2K dν(x)

=

∫
X

n∑
j=1

‖Kj
x‖2K dν(x)

=

∫
X

n∑
j=1

K(x, x)jj dν(x)

= M.

iv) Lν is compact by iii). and positive by construction, so there exist a
basis of eigenvectors {fi}i∈N ⊆ L2(X, ν;Cn) with the associated sequence
of positive eigenvalues {σi}i∈N. If we denote by I the set of indices corre-
sponding to strictly positive eigenvalues, we have that {fi}i∈I is a basis of
kerLν

⊥ = RanLν .
v) Given an eigenfunction f of Lν with corresponding eigenvalue σ > 0,
define g = i∗νf/σ ∈ HK , then

(iνg)(x) =
(Lνf)(x)

σ
= f(x) (31)

for ν-almost all x ∈ X, i.e. g is a representative of f with g ∈ HK .
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