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Abstract. We develop a theoretical analysis of the generalization perfor-
mances of regularized least-squares algorithm on a reproducing kernel Hilbert
space in the supervised learning setting. The presented results hold in the
general framework of vector-valued functions, therefore they can be applied to
multi-task problems. In particular we observe that the concept of effective di-
mension plays a central role in the definition of a criterion for the choice of the
regularization parameter as a function of the number of samples. Moreover
a complete minimax analysis of the problem is described, showing that the
convergence rates obtained by regularized least-squares estimators are indeed
optimal over a suitable class of priors defined by the considered kernel. Finally
we give an improved lower rate result describing worst asymptotic behavior on
individual probability measures rather than over classes of priors.

1. Introduction

In this paper we investigate the estimation properties of the regularized least-
squares (RLS) algorithm on a reproducing kernel Hilbert space (RKHS) in the
regression setting. Following the general scheme of supervised statistical learning
theory, the available input-output samples are assumed to be drawn i.i.d. according
to an unknown probability distribution. The aim of a regression algorithm is esti-
mating a particular invariant of the unknown distribution: the regression function,
using only the available empirical samples. Hence the asymptotic performances
of the algorithm are usually evaluated by the rate of convergence of its estimates
to the regression function. The main result of this paper shows a choice for the
regularization parameter of RLS, such that the resulting algorithm is optimal in a
minimax sense for a suitable class of priors.

The RLS algorithm on RKHS of real-valued functions (i.e. when the output space
is equal to R) has been extensively studied in the literature, for an account see [33],
[30], [17] and references therein. For the case X = Rd and the RKHS a Sobolev
space, optimal rates were established assuming a suitable smoothness condition on
the regression function (see [18] and references therein). For an arbitrary RKHS
and compact input space, in [5] a covering number technique was used to obtain
non-asymptotic upper bounds expressed in terms of suitable complexity measures
of the regression function (see also [33] and [37]). In [8], [26], [9], [27] the covering
techniques were replaced by estimates of integral operators through concentration
inequalities of vector-valued random variables. Although expressed in terms of
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easily computable quantities the last bounds do not exploit much information about
the fine structure of kernel. Here we show that such information can be used to
obtain tighter bounds. The approach we consider is a refinement of the functional
analytical techniques presented in [9]. The central concept in this development is
the effective dimension of the problem. This idea was recently used in [36] and [19]
in the analysis of the performances of kernel methods for learning. Indeed in this
paper we show that the effective dimension plays a central role in the definition of
an optimal rule for the choice of the regularization parameter as a function of the
number of samples.

Although the previous investigations in [8],[26], [9], [27] showed that operator
and spectral methods are valuable tools for the performance analysis of kernel
based algorithms such as RLS, all these results failed to compare with similar re-
sults recently obtained using entropy methods (see [10],[29]). These results (e.g.
[29], Theorem 1.3) showed that the optimal rate of convergence is essentially deter-
mined by the entropy characteristic of the considered class of priors with respect
to a suitable topology induced by ρX , the marginal probability measure over the
input space. Clearly, entropy numbers, and therefore rates of convergence, depend
dramatically on ρX . However ρX seems not to be crucial in the rates found in [8],
[26], [9], [27]. This observation was our original motivation for taking into account
the effective dimension: a spectral theoretical parameter which quantifies some ca-
pacity properties of ρX by means of the kernel. In fact, the effective dimension
turned out to be the right parameter, in our operator analytical framework, to get
rates comparable to the ones defined in terms of entropy numbers.

Recently various papers, [34], [1],[20],[14], have addressed the multi-task learning
problem using kernel techniques. For instance [34] employs two kernels, one on the
input space and the other on the output space, in order to represent similarity mea-
sures on the respective domains. The underlying similarity measures are supposed
to capture some inherent regularity of the phenomenon under investigation and
should be chosen according to the available prior knowledge. On the contrary in [1]
the prior knowledge is encoded by a single kernel on the space of input-output cou-
ples, and a generalization of standard support vector machines is proposed. It was
in [20] and [14] that for the first time in the learning theory literature it was pointed
out that particular scalar kernels defined on input-output couples can be profitably
mapped onto operator-valued kernels defined on the input space. However, to our
knowledge, a thorough error analysis for regularized least-squares algorithm when
the output space is a general Hilbert space had never been given before. Our result
fills this gap and is based on the well known fact (see for example [25] and [3]) that
the machinery of scalar positive defined kernels can be elegantly extended to cope
with vector-valued functions using operator-valued positive kernels. An asset of
our treatment is the extreme generality of the mathematical setting, which in fact
subsumes most of the frameworks of its type available in the literature. Here, the
input space is an arbitrary Polish space and the output space any separable Hilbert
space. We only assume that the output y has finite variance and the random vari-
able (y − E[ y |x ]), conditionally to the input x, satisfies a momentum condition à
la Bennett (see Hypothesis 2 in Section 3).

The other characterizing feature of this paper is the minimax analysis. The first
lower rate result (Th. 2 in Section 4) shows that the error rate attained by RLS
algorithm with our choice for the regularization parameter is optimal on a suitable
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class of probability measures. The class of priors we consider depends on two pa-
rameters: the first is a measure of the complexity of the regression function, as in
[26], the other one is related to the effective dimension of the marginal probability
measure over the input space relative to the chosen kernel; roughly speaking, it
counts the number of degrees of freedom associated to the kernel and the marginal
measure, available at a given conditioning. This kind of minimax analysis is stan-
dard in the statistical literature but it has received less attention in the context of
learning theory (see for instance [17], [10], [29] and references therein). The main
issue with this kind of approach to minimax problems in statistical learning is that
the bad distribution in the prior could depend on the number of available samples.
In fact we are mainly interested in a worst case analysis for increasing number of
samples and fixed probability measure. This type of problem is well known in ap-
proximation theory. The idea of comparing minimax rates of approximation over
classes of functions with rates of approximation of individual functions, goes back
to Bernstein’s problem (see [28], Section 2, for an historical account and some ex-
amples). In the context of learning theory this problem was recently considered in
[17], Section 3, where the notion of individual lower rate was introduced.Theorem
3 in Section 4 gives a new lower rate of this type greatly generalizing analogous
previous results.

The paper is organized as follows. In Section 2 we briefly recall the main
concepts of the regression problem in the context of supervised learning theory,
[6],[15],[23]; however, the formalism could be easily rephrased using the language
of non-parametric regression as in [17]. In particular we define the notions of up-
per, lower and optimal uniform rates over priors of probability measures. These
concepts will be the main topic of Sections 4 and 5. In Section 3 we introduce the
formalism of operator-valued kernels and the corresponding RKHS. Moreover we
describe the mathematical assumptions required by the subsequent developments.
The assumptions specify conditions on both the RKHS (see Hypothesis 1) and the
probability measure on the samples (see Hypothesis 2). Finally, we introduce (see
Definition 1) the class of priors that will be considered throughout the minimax
analysis.

In Section 4 we state the three main results of the paper, establishing upper
and lower uniform rates for regularized least-squares algorithm. The focus of our
exposition on asymptotic rates, rather than on confidence analysis for finite sam-
ple size, was motivated by the decision to stress the aspects relevant to the main
topic of investigation of the paper: optimality. However all the results could be,
with a relatively small effort, reformulated in terms of a non-asymptotic confidence
analysis.

The proofs of the theorems stated in Section 4 are postponed to Section 5.

2. Learning from examples

We now introduce some basic concepts of statistical learning theory in the re-
gression setting for vector-valued outputs (for details see [32], [15], [24], [6], [20]
and references therein).
In the framework of learning from examples there are two sets of variables: the
input space X and the output space Y . The relation between the input x ∈ X and
the output y ∈ Y is described by a probability distribution ρ(x, y) = ρX(x)ρ(y|x)
on X×Y , where ρX is the marginal distribution on X and ρ(·|x) is the conditional
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distribution of y given x ∈ X. The distribution ρ is known only through a training
set z = (x,y) = ((x1, y1), . . . , (x`, y`)) of ` examples drawn independently and iden-
tically distributed (i.i.d.) according to ρ. Given the sample z, the aim of learning
theory is to find a function fz : X → Y such that fz(x) is a good estimate of the
output y when a new input x is given. The function fz is called the estimator and a
learning algorithm is the rule that, for any ` ∈ N, gives to every training set z ∈ Z`

the corresponding estimator fz. We also use the notation f`(z), or equivalently f `
z ,

for the estimator, every time we want to stress its dependence on the number of
examples. For the same reason, a learning algorithm will be often represented as a
sequence {f`}`∈N of mappings f` from Z` to the set of functions Y X .

If the output space Y is a Hilbert space, given a function f : X → Y , the ability
of f to describe the distribution ρ is measured by its expected risk

E [f ] =
∫

X×Y

‖f(x)− y‖2Y dρ(x, y).

The minimizer of the expected risk over the space of all the measurable Y -valued
functions on X is the regression function

fρ(x) =
∫

Y

y dρ(y|x).

The final aim of learning theory is to find an algorithm such that E [fz] is close
to E [fρ] with high probability. However, if the estimators fz are picked up from
a hypothesis space H which is not dense in L2(X, ρX), approaching E [fρ] is too
ambitious, and one can only hope to attain the expected error inff∈H E [f ].

A learning algorithm fz which, for every distribution ρ such that
∫

Y
‖y‖2Y dρY <

+∞, achieves this goal, that is

lim
`→+∞

Pz∼ρ`

[
E [fz]− inf

f∈H
E [f ] > ε

]
= 0 ∀ε > 0,

is said to be universally consistent1.
Universal consistency is an important and well known propriety of many learn-

ing algorithms, among which the regularized least-squares algorithm that will be
introduced later. However, if H is infinite dimensional, the rate of convergence in
the limit above, can not be uniform on the set of all the distributions, but only on
some restricted class P defined in terms of prior assumptions on ρ. In this paper
the priors2 are suitable classes P of distribution probabilities ρ encoding our knowl-
edge on the relation between x and y. In particular we consider a family of priors
P(b, c) (see Definition 1) depending on two parameters: the effective dimension ofH
(with respect to ρX) and a notion of complexity of the regression function fρ which
generalize to arbitrary reproducing kernel Hilbert spaces the degree of smoothness

1Various different definitions of consistency can be found in the literature (see [17] [11]): “in
probability”, “a.s.”, “weak”, “strong” . In more restrictive settings than ours, for example assum-
ing that ‖fz(x)− y‖Y is bounded, it is possible to prove equivalence results between some of this
definitions (e.g. between “weak” and “strong” consistency). However this is not true under our
assumptions. Moreover our definition of consistency is weaker than analogous ones in the litera-
ture because we replaced E[fρ] with inff∈H E[f ] in order to deal with hypothesis spaces which are

not dense in L2(X, ρX).
2The concept of “prior” considered here should not be confused with its homologous in Bayesian

statistics.
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of fρ, usually defined for regression in Sobolev spaces (see [11],[30],[17],[5],[9] and
references therein).

Assuming ρ in a suitably small prior P, it is possible to study the uniform con-
vergence properties of learning algorithms. A natural way to do that is considering
the confidence function (see [10], [29])

inf
f`

sup
ρ∈P

Pz∼ρ`

[
E [f `

z ]− inf
f∈H

E [f ] > ε

]
` ∈ N, ε > 0,

where the infimum is over all the mappings f` : Z` → H. The learning algorithms
{f`}`∈N attaining the minimization are optimal over P in the minimax sense. The
main purpose of this paper (accomplished by Theorems 1 and 2) is showing that,
for any P in the considered family of priors, the regularized least-squared algorithm
(with a suitable choice of the regularization parameter) shares the asymptotic con-
vergence properties of the optimal algorithms.

Let us now introduce the regularized least-squares algorithm [33], [22], [6], [37].
In this framework the hypothesis space H is a given Hilbert space of functions
f : X → Y and, for any λ > 0 and z ∈ Z`, the RLS estimator fλ

z is defined as the
solution of the minimizing problem

min
f∈H

{1
`

∑̀

i=1

‖f(xi)− yi‖2Y + λ ‖f‖2H}.

In the following the regularization parameter λ = λ` is some function of the number
of examples `.

The first result of the paper is a bound on the upper rate of convergence for the
RLS algorithm with a suitable choice of λ`, under the assumption ρ ∈ P. That is,
we prove the existence of a sequence (a`)`≥1 such that

(1) lim
τ→∞

lim sup
`→∞

sup
ρ∈P

Pz∼ρ`

[
E [fλ`

z ]− inf
f∈H

E [f ] > τa`

]
= 0.

More precisely, Theorem 1 shows that there is a choice λ = λ` such that the rate
of convergence is a` = `−

bc
bc+1 , where 1 < c ≤ 2 is a parameter related to the

complexity of fρ and b > 1 is a parameter related to the effective dimension of H.
The second result shows that this rate is optimal if Y is finite dimensional.

Following the analysis presented in [17], we formulate this problem in the framework
of minimax lower rates. More precisely, a minimax lower rate of convergence for
the class P is a sequence (a`)`≥1 of positive numbers such that

(2) lim
τ→0

lim inf
`→+∞

inf
f`

sup
ρ∈P

Pz∼ρ`

[
E [f `

z ]− inf
f∈H

E [f ] > τa`

]
> 0,

where the infimum is over all the mappings f` : Z` → H. The definition of lower
and upper rates are given with respect to the convergence in probability as in [30]
and coherently with the optimization problem inherent to the definition of confi-
dence function. On the contrary, in [17] convergence in expectation was considered.
Clearly, an upper rate in expectation induces an upper rate in probability and a
lower rate in probability induces a lower rate in expectation.
The choice of the parameter λ = λ` is optimal over the prior P if it is possible to
find a minimax lower rate (a`)`≥1 which is also an upper rate for the algorithm fλ`

z .
Theorem 2 shows the optimality for the choice of λ` given by Theorem 1.
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The minimax lower rates are not completely satisfactory in the statistical learn-
ing setting. In fact from the definitions above it is clear that the bad distribution
(the one maximizing Pz∼ρ`

[E [f `
z ]− inff∈H E [f ] > τa`

]
) could change for different

values of the number of samples `. Instead, usually one would like to know how
the excess error, E [f `

z ] − inff∈H, decreases as the number of samples grows for a
fixed probability measure in P. This type of issue is well known, and has been
extensively analyzed in the context of approximation theory (see [28], Section 2).
To overcome the problem, one needs to consider a different type of lower rates: the
individual lower rates. Precisely, an individual lower rate of convergence for the
prior P is a sequence (a`)`≥1 of positive numbers such that

(3) inf
{f`}`∈N

sup
ρ∈P

lim sup
`→+∞

Ez∼ρ`(E [f `
z ]− inff∈H E [f ])

a`
> 0,

where the infimum is over the set of learning algorithms {f`}`∈N.
Theorem 3 proves an individual lower bound in expectation. However, in order

to show the optimality of the regularized least-squares algorithm in the sense of
individual rates, it remains to prove either an upper rate in expectation or an
individual lower rate in probability.

3. Notations and assumptions

The aim of this section is to set the notations, to state and discuss the main
assumptions we need to prove our results and to describe precisely the class of
priors on which the bounds hold uniformly.

We assume that the input space X is a Polish space3 and the output space Y is
a real separable Hilbert space. We let Z be the product space X × Y , which is a
Polish space too.
We let ρ be the probability measure describing the relation between x ∈ X and y ∈
Y . By ρX we denote the marginal distribution on X and by ρ(·|x) the conditional
distribution on Y given x ∈ X, both existing since Z is a Polish space, see Th.
10.2.2 of [12].

We state the main assumptions on H and ρ.

Hypothesis 1. The space H is a separable Hilbert space of functions f : X → Y
such that
– for all x ∈ X there is a Hilbert-Schmidt4 operator Kx : Y → H satisfying

(4) f(x) = K∗
xf f ∈ H,

where K∗
x : H → Y is the adjoint of Kx;

– the real function from X ×X to R

(5) (x, t) 7→ 〈Ktv, Kxw〉H is measurable ∀v, w ∈ Y ;

– there is κ > 0 such that

(6) Tr(K∗
xKx) ≤ κ ∀x ∈ X.

3A Polish space is a separable metrizable topological space such that it is complete with respect
to a metric compatible with the topology. Any locally compact second countable space is Polish.

4An operator A : Y → H is a Hilbert-Schmidt operator if for some (any) basis (vj)j of Y , it

holds Tr(A∗A) =
P

j 〈Avj , Avj〉H < +∞.
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Hypothesis 2. The probability measure ρ on Z satisfies the following properties

(7)
∫

Z

‖y‖2Y dρ(x, y) < +∞,

– there exists fH ∈ H such that

(8) E [fH] = inf
f∈H

E [f ],

where E [f ] =
∫

Z
‖f(x)− y‖2Y dρ(x, y);

– there are two positive constants Σ, M such that

(9)
∫

Y

(
e
‖y−fH(x)‖Y

M − ‖y − fH(x)‖Y

M
− 1

)
dρ(y|x) ≤ Σ2

2M2

for ρX -almost all x ∈ X.

We now briefly discuss the consequences of the above assumptions.
If Y = R, the operator Kx can be identified with the vector Kx1 ∈ H and (4)
reduces to

f(x) = 〈f, Kx〉 f ∈ H, x ∈ X,

so that H is a reproducing kernel Hilbert space [2] with kernel

(10) K(x, t) = 〈Kt,Kx〉H .

In fact, the theory of reproducing kernel Hilbert spaces can naturally be extended
to vector valued functions [25]. In particular, the assumption that Kx is a Hilbert-
Schmidt operator is useful in keeping the generalized theory similar to the scalar
one. Indeed, let L(Y ) be the space of bounded linear operators on Y with the
uniform norm ‖·‖L(H). In analogy with (10), let K : X ×X → L(Y ) be the (vector
valued) reproducing kernel

K(x, t) = K∗
xKt x, t ∈ X.

Since Kx is an Hilbert-Schmidt operator, there is a basis (vj(x))j of Y and an
orthogonal sequence (kj(x))j of vector in H such that

Kxv =
∑

j

〈v, vj(x)〉Y kj(x) v ∈ Y

with the condition
∑

j ‖kj(x)‖2H < +∞. The reproducing kernel becomes

K(x, t)v =
∑

j,m

〈kj(t), km(x)〉 〈v, vj(t)〉 vm(x) v ∈ Y,

and (6) is equivalent to
∑

j

‖kj(x)‖2H ≤ κ x ∈ X.

Remark 1. If Y is finite dimensional, any linear operator is Hilbert-Schmidt and (4)
is equivalent to the fact that the evaluation functional on H

f 7→ f(x) ∈ Y

is continuous for all x ∈ X. Moreover, the reproducing kernel K takes values in
the space of d × d-matrices (where d = dimY ). In this finite dimensional setting
the vector valued RKHS formalism can be rephrased in terms of ordinary scalar
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valued functions. Indeed, let (vj)d
j=1 be a basis of Y , X̂ = X × {1, . . . , d} and

K̂ : X̂ × X̂ → R be the kernel

K̂(x, j; t, i) = 〈Ktvi,Kxvj〉H .

Since K̂ is symmetric and positive definite, let Ĥ be the corresponding reproducing
kernel Hilbert space, whose elements are real functions on X̂ [2]. Any element
f ∈ H can be identified with the function in Ĥ given by

f(x, j) = 〈f(x), vj〉Y x ∈ X, j = 1, . . . , d.

Moreover the expected risk becomes

E [f ] =
∫

Z

∑

j

〈f(x)− y, vj〉2Y dρ(x, y)

=
∑

j

∫

X×R
(f(x, j)− yj)2 dρj(x, yj)

= d

∫
bX×R(f(x, j)− ξ)2 dρ̂(x, j, ξ) = d Ê [f ]

where ρj are the marginal distributions with respect to the projections

(x, y) 7→ (x, 〈y, vj〉Y ) (x, y) ∈ X × Y

and ρ̂ is the probability distribution on X̂ × R given by ρ̂ = 1
d

∑
j ρj . In a similar

way, the regularized empirical risk becomes

1
`

∑̀

i=1

d∑

j=1

(f(xi, j)− yi,j)2 + λ ‖f‖2bH , yi,j = 〈yi, vj〉Y ,

where the example (xi, yi) is replaced by d-examples (xi, yi,1), . . ., (xi, yi,d).
However, in this scalar setting the examples are not i.i.d, so we decide to state the
results in the framework of vector valued functions. Moreover this does not result
in more complex proofs, the theorems are stated in a basis independent form and
hold also for infinite dimensional Y .

Coming back to the discussion on the assumptions. The requirement that H is
separable avoids problems with measurability and allows to employ vector valued
concentration inequalities. If (5) is replaced by the stronger condition

(x, t) 7→ 〈Ktv, Kxw〉H is continuous ∀v, w ∈ Y,

the fact that X and Y are separable implies that H is separable, too [4]. Con-
ditions (5) and the fact that H is separable ensure that the functions f ∈ H are
measurable from X to Y , whereas (6) implies that f are bounded functions. In-
deed, (6) implies that

(11) ‖K∗
x‖L(H,Y ) = ‖Kx‖L(Y,H) ≤

√
Tr(K∗

xKx) ≤ √
κ,

and (4) gives
‖f(x)‖Y = ‖K∗

xf‖Y ≤ √
κ ‖f‖H ∀x ∈ X.

Regarding the distribution ρ, it is clear that if (7) is not satisfied, then E [f ] = +∞
for all f ∈ H and the learning problem does not make sense. If it holds, (5) and (6)
are the minimal requirements to ensure that any f ∈ H has a finite expected risk
(see item i) of Prop. 1).
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In general fH is not unique as an element of H, but we recover uniqueness by
choosing the one with minimal norm in H.
If the regression function

fρ =
∫

Y

y dρ(y|x)

belongs to H, clearly fH = fρ. However, in general the existence of fH is a weaker
condition than fρ ∈ H, for example, if H is finite dimensional, fH always exists.
Condition (8) is essential to define the class of priors for which both the upper
bound and the lower bound hold uniformly. Finally, (9) is a model of the noise of
the output y and it is satisfied, for example, if the noise is bounded, Gaussian or
subgaussian [31].

We now introduce some more notations we need to state our bounds.
Let L2(H) be the separable Hilbert space of Hilbert-Schmidt operators on H with
scalar product

〈A,B〉L2(H) = Tr(B∗A)

and norm
‖A‖L2(Y ) =

√
Tr(A∗A) ≥ ‖A‖L(H) .

Given x ∈ X, let

(12) Tx = KxK∗
x ∈ L(H),

which is a positive operator. A simple computation shows that

Tr Tx = TrK∗
xKx ≤ κ

so that Tx is a trace class operator and, a fortiori, a Hilbert-Schmidt operator.
Hence

(13) ‖Tx‖L(H) ≤ ‖Tx‖L2(H) ≤ Tr(Tx) ≤ κ.

We let T : H → H be

(14) T =
∫

X

Tx dρX(x),

where the integral converges in L2(H) to a positive trace class operator with

(15) ‖T‖L(H) ≤ Tr T =
∫

X

TrTx dρX(x) ≤ κ

(see item ii) of Prop. 1). Moreover, the spectral theorem gives

(16) T =
N∑

n=1

tn 〈·, en〉H en,

where (en)N
n=1 is a basis of Ker T⊥ (possibly N = +∞), 0 < tn+1 ≤ tn with∑N

n=1 tn = TrT ≤ κ.
We now discuss the class of priors.

Definition 1. Let us fix the positive constants M , Σ, R, α and β.
Then, given 1 < b ≤ +∞ and 1 ≤ c ≤ 2, we define P = P(b, c) the set of probability
distributions ρ on Z such that

i) Hypotheses 2 holds with the given choice for M and Σ in (9);
ii) there is g ∈ H such that fH = T

c−1
2 g with ‖g‖2H ≤ R;
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iii) if b < +∞, then N = +∞ and the eigenvalues of T given by (16) satisfy

(17) α ≤ nbtn ≤ β ∀n ≥ 1,

whereas if b = +∞, then N ≤ β < +∞.

The first condition ensures that the constants appearing in the bounds do not
depend on ρ, but only on P. The second condition is a measure of the complex-
ity of fH depending both on the conditional distribution ρ(y|x) and the marginal
distribution ρX . If H is a Sobolev space, this is related to the smoothness of fH.
About the last condition, observe that T depends only on ρX and (17) is related to
the effective dimension of the space H with respect to ρX . If b = +∞, H is finite
dimensional, fH always exists and condition ii) holds for any 1 < c ≤ 2.

Remark 2. The above conditions can be expressed in a different way. Let L2(X)
be the Hilbert space of functions from X to Y square-integrable with respect to
ρX , and denote by ‖·‖ρX

and 〈·, ·〉ρX
the corresponding norm and scalar product.

Define LK : L2(X) → L2(X) be the integral operator of kernel K

(LKφ)(t) =
∫

X

K(t, x)φ(x) dρX(x),

which is bounded by (6). Based on the polar decomposition of the inclusion map
from H into L2(X), in [7] it is shown that

LK =
N∑

n=1

tn 〈·, φn〉ρX
φn en = L

1
2
Kφn,

where (φn)N
n=1 is a basis of (kerLK)⊥ and L

1
2
K is the square root of LK (so that

L
1
2
Kφn = t

1
2
nφn = en). Moreover fH = T

c−1
2 g with ‖g‖2H ≤ R if and only if

fH = L
c
2
Kφ with ‖φ‖2ρX

≤ R.

4. Upper and lower rates

In this section we report the main results of the paper. We first prove an upper
bound on the expected risk for the regularized least-squares estimators. More
precisely, we give a choice for the regularization parameter λ, as a function of `,
providing us with a rate of decay of the expected risk which is uniform on the
prior P(b, c). Moreover, we obtain a minimax lower rate for P(b, c) showing that
the above choice of the parameter is optimal. Both the upper and the lower rates
hold in probability. Finally, we prove an individual lower rate in expectation. The
proofs are given in the next section.

We recall that, given λ > 0, for any ` ∈ N and any training set z = (x,y) =
((x1, y1), . . . , (x`, y`)) ∈ Z`, the estimator fλ

z is defined as the solution of the mini-
mization problem

(18) min
f∈H

(
1
`

∑̀

i=1

‖f(xi)− yi‖2Y + λ ‖f‖2H
)

,

whose existence and uniqueness is well known (see item v) of Prop. 1).
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Theorem 1. Given 1 < b ≤ +∞ and 1 ≤ c ≤ 2, let

(19) λ` =





( 1
` )

b
bc+1 b < +∞ c > 1

( log `
` )

b
b+1 b < +∞ c = 1

( 1
` )

1
2 b = +∞

and

(20) a` =





(1
` )

bc
bc+1 b < +∞ c > 1

( log `
` )

b
b+1 b < +∞ c = 1

1
` b = +∞

then

(21) lim
τ→∞

lim sup
`→∞

sup
ρ∈P(b,c)

Pz∼ρ`

[E [fλ`
z ]− E [fH] > τa`

]
= 0

The above result gives a family of upper rates of convergence for the RLS al-
gorithm as defined in (1). The following theorem proves that the corresponding
minimax lower rates (see eq. (2)) hold.

Theorem 2. Assume that dim Y = d < +∞, 1 < b < +∞ and 1 ≤ c ≤ 2, then

lim
τ→0

lim inf
`→+∞

inf
f`

sup
ρ∈P(b,c)

Pz∼ρ`

[
E [f `

z ]− E [fH] > τ`−
bc

bc+1

]
= 1.

The above result shows that the rate of convergence given by the RLS algorithm
is optimal when Y is finite dimensional for any 1 < b < +∞ (i.e. N = +∞) and
1 < c ≤ 2 and that it is optimal up to a logarithmic factor for c = 1.

Finally, we give a result about the individual lower rates in expectation (see
eq. (3)).

Theorem 3. Assume that dim Y = d < +∞, 1 < b < +∞ and 1 ≤ c ≤ 2. Then,
for every B > b the following individual lower rate holds

inf
{f`}`∈N

sup
ρ∈P(b,c)

lim sup
`→+∞

Ez∼ρ`(E [f `
z ]− E [fH])

`−
cB

cB+1
> 0,

where the infimum is over the set of all learning algorithms {f`}`∈N.

The advantage of individual lower rates over minimax lower rates have already
been discussed in Sections 1 and 2. Here we add that the proof of the theorem above
can be straightforwardly modified in order to extend the range of the infimum
to general randomized learning algorithms, that is algorithms whose outputs are
random variables depending on the training set. Such a generalization seems not
an easy task to accomplish in the standard minimax setting. It should also be
remarked that the condition 1 ≤ c ≤ 2 in Th. 3 has been introduced to keep
homogeneous the notations throughout the sections of the paper, but it could be
relaxed to 0 ≤ c ≤ 2.

5. Proofs

In this section we give the proofs of the three theorems stated above.
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5.1. Preliminary results. We recall some known facts without reporting their
proofs.

The first proposition summarizes some mathematical properties of the regular-
ized least-squares algorithm. It is well known in the framework of linear inverse
problems (see [13]) and a proof in the context of learning theory can be found in
[7] and, for the scalar case, in [6].

Proposition 1. Assume Hypothesis 1 and 2. The following facts hold.
i) For all f ∈ H, f is measurable and

E [f ] =
∫

Z

‖f(x)− y‖2Y dρ(x, y) < +∞.

ii) The minimizers fH are the solution of the following equation

(22) TfH = g,

where T is the positive trace class operator defined by

T =
∫

X

KxK∗
x =

∫

X

TxdρX(x)

with the integral converging in L2(H) and

(23) g =
∫

X

Kxfρ(x) dρX(x) ∈ H,

with the integral converging in H.
iii) For all f ∈ H

(24) E [f ]− E [fH] =
∥∥∥
√

T (f − fH)
∥∥∥

2

H
f ∈ H.

iv) For any λ > 0, a unique minimizer fλ of the regularized expected risk

E [f ] + λ ‖f‖2H
exists and is given by

(25) fλ = (T + λ)−1g = (T + λ)−1TfH.

v) Given a training set z = (x,y) = ((x1, y1), . . . , (x`, y`)) ∈ Z`, for any λ > 0
a unique minimizer fλ

z of the regularized empirical risk

1
`

∑̀

i=1

‖f(xi)− yi‖2Y + λ ‖f‖2H

exists and is given by

(26) fλ
z = (Tx + λ)−1gz.

where Tx : H → H is the positive finite rank operator

(27) Tx =
1
`

∑̀

i=1

Txi

and gz ∈ H is given by

(28) gz =
1
`

∑̀

i=1

Kxiyi.
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By means of (4), T and g are explicitly given by

(29) (Tf)(x) = K∗
xTf =

∫

X

K∗
x(KtK

∗
t )f dρX(t) =

∫

X

K(x, t)f(t) dρX(t),

so T acts as the integral operator of kernel K, and

(30) g(x) = K∗
t g =

∫

X

K(x, t)fρ(t) dρX(t).

We also need the following probabilistic inequality based on a result of [21], see
also Th. 3.3.4 of [35].

Proposition 2. Let (Ω,F , P ) be a probability space and ξ be a random variable
on Ω taking value in a real separable Hilbert space K. Assume that there are two
positive constants L and σ such that

(31) E[‖ξ − E[ξ]‖m
K ] ≤ 1

2
m!σ2Lm−2 ∀m ≥ 2,

then, for all ` ∈ N and 0 < η < 1, then

(32) P(ω1,...,ω`)∼P `

[∥∥∥∥∥
1
`

∑̀

i=1

ξ(ωi)− E[ξ]

∥∥∥∥∥
K
≤ 2

(
L

`
+

σ√
`

)
log

2
η

]
≥ 1− η.

In particular, (31) holds if

(33)
‖ξ(ω)‖K ≤ L

2 a.s

E[‖ξ‖2K] ≤ σ2.

5.2. Upper rates. The main steps in the proof of the upper rate of convergence
given in Th. 1 are the following.
First, given a probability distribution ρ satisfying Hypothesis 2, Th. 4 gives an
upper bound for E [fλ

z ]−E [fH] that holds in probability for any small enough λ and
any large enough ` (see (35)). The bound is controlled by the following quantities
parametrized by λ > 0,

(1) the residual

A(λ) = E [fλ]− E [fH] =
∥∥∥
√

T (fλ − fH)
∥∥∥

2

H
,

where fλ ∈ H is the minimizer of the regularized expected risk (see item
v) of Prop. 1) and the second equality is a consequence of (24).

(2) the reconstruction error

B(λ) =
∥∥fλ − fH

∥∥2

H ,

(3) the effective dimension

N (λ) = Tr[(T + λ)−1T ],

which is finite due to the fact that T is trace class (see item ii) of Prop. 1).

Roughly speaking, the effective dimension N (λ) controls the complexity of the
hypothesis space H according to the marginal measure ρX , whereas A(λ) and B(λ),
which depend on ρ, control the complexity of fH.
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Remark 3. In the framework of learning theory A(λ) =
∥∥fλ − fH

∥∥2

ρ
is called ap-

proximation error, whereas in inverse problems theory the approximation error is
usually

√
B(λ) =

∥∥fλ − fH
∥∥
H. In order to avoid confusion we adopt the nomen-

clature of inverse problems [13].

Next, Prop. 3 studies the asymptotic behavior of the above quantities when λ
goes to zero under the assumption that ρ ∈ P(b, c). Finally, from this result it is
easy to derive a best choice for the parameter λ = λ` giving rise to the claimed rate
of convergence.

The following theorem gives a non-asymptotic upper bound which is of interest
by itself.

Theorem 4. Let ρ satisfy Hypothesis 2, ` ∈ N, λ > 0 and 0 < η < 1. Then with
probability greater than 1− η

(34) E [fλ
z ]− E [fH] ≤ Cη

(
A(λ) +

κ2B(λ)
`2λ

+
κA(λ)

`λ
+

κM2

`2λ
+

Σ2N (λ)
`

)

provided that

(35) ` ≥ 2CηκN (λ)
λ

and λ ≤ ‖T‖L(H) ,

where Cη = 32 log2(6/η).

Proof. We split the proof in several steps. Let λ, η and ` as in the statement of the
theorem.
Step 1: Given a training set z = (x,y) ∈ Z`, (24) gives

E [fλ
z ]− E [fH] =

∥∥∥
√

T (fλ
z − fH)

∥∥∥
2

H
.

Recalling the definition of fλ, see item iv) of Prop. 1, we split

fλ
z − fH = (fλ

z − fλ) + (fλ − fH).

Now (25) and (26) give

fλ
z − fλ =

(
(Tx + λ)−1gz

)− (
(T + λ)−1g

)

= (Tx + λ)−1
{
(gz − g) + (T − Tx)(T + λ)−1g

}

( Eq. (22) ) = (Tx + λ)−1
{
(gz − TxfH + TxfH − TfH) + (T − Tx)fλ

}

= (Tx + λ)−1 (gz − TxfH) + (Tx + λ)−1(T − Tx)(fλ − fH)

where Tx ∈ L(H), gz ∈ H and g ∈ H are given by (27), (28) and (23), respectively.
The inequality ‖f1 + f2 + f3‖2H ≤ 3(‖f1‖2H + ‖f2‖2H + ‖f3‖2H) implies

(36) E [fλ
z ]− E [fH] ≤ 3 (A(λ) + S1(λ, z) + S2(λ, z))

where A(λ) is the residual and

S1(λ, z) =
∥∥∥
√

T (Tx + λ)−1 (gz − TxfH)
∥∥∥

2

H

S2(λ, z) =
∥∥∥
√

T (Tx + λ)−1(T − Tx)(fλ − fH)
∥∥∥

2

H
.

Step 2: probabilistic bound on S2(λ, z). Clearly

(37) S2(λ, z) ≤
∥∥∥
√

T (Tx + λ)−1
∥∥∥

2

L(H)

∥∥(T − Tx)(fλ − fH)
∥∥2

H .
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Step 2.1: probabilistic bound on
∥∥∥
√

T (Tx + λ)−1
∥∥∥
L(H)

. Assume that

(38) Θ(λ, z) =
∥∥(T + λ)−1(T − Tx)

∥∥
L(H)

=
∥∥(T − Tx)(T + λ)−1

∥∥
L(H)

≤ 1
2
,

(the second inequality holds since if A,B are selfadjoint operators in L(H), then
‖AB‖L(H) = ‖(AB)∗‖L(H) = ‖BA‖L(H)). Then the Neumann series gives

√
T (Tx + λ)−1 =

√
T (T + λ)−1(I − (T − Tx)(T + λ)−1)−1

=
√

T (T + λ)−1
+∞∑
n=0

(
(T − Tx)(T + λ)−1

)n

so that
∥∥∥
√

T (Tx + λ)−1
∥∥∥
L(H)

≤
∥∥∥
√

T (T + λ)−1
∥∥∥
L(H)

+∞∑
n=0

∥∥(T − Tx)(T + λ)−1
∥∥n

L(H)

≤
∥∥∥
√

T (T + λ)−1
∥∥∥
L(H)

1
1−Θ(λ, z)

≤ 2
∥∥∥
√

T (T + λ)−1
∥∥∥
L(H)

.

The spectral theorem ensures that
∥∥∥
√

T (T + λ)−1
∥∥∥
L(H)

≤ 1
2
√

λ
so that

(39)
∥∥∥
√

T (Tx + λ)−1
∥∥∥
L(H)

≤ 1√
λ

.

We claim that (35) implies (38) with probability greater than 1 − η. To this aim
we apply Prop. 2 to the random variable ξ1 : X → L2(H)

ξ1(x) = (T + λ)−1Tx

so that

E[ξ1] = (T + λ)−1T and
1
`

∑̀

i=1

ξ1(xi) = (T + λ)−1Tx.

Moreover (13) and
∥∥(T + λ)−1

∥∥
L(H)

≤ 1
λ imply

‖ξ‖L2(H) ≤
∥∥(T + λ)−1

∥∥
L(H)

‖Tx‖L2(H) ≤
κ

λ
=

L1

2
.

Condition (13) ensures that Tx is of trace class and the inequality

(40) Tr(AB) ≤ ‖A‖L(H) Tr B

(A positive bounded operator, B positive trace class operator) implies

E[‖ξ1‖2L2(H)] =
∫

X

Tr
(
Tx

(
T

1
2

x (T + λ)−2T
1
2

x

))
dρX(x)

≤
∫

X

‖Tx‖L(H) Tr
(
(T + λ)−2Tx

)
dρX(x)

( (13) ) ≤ κTr
(
(T + λ)−2T

)

= κTr
(
(T + λ)−1

(
(T + λ)−

1
2 T (T + λ)−

1
2

))

( (40) ) ≤ κ
∥∥(T + λ)−1

∥∥
L(H)

Tr
(
(T + λ)−1T

)

≤ κ

λ
N (λ) = σ2

1 .
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by definition of effective dimension N (λ). Hence (33) of Prop. 2 holds and (32)
gives

∥∥(T + λ)−1(Tx − T )
∥∥
L2(H)

≤ 2 log(6/η)

(
2κ

λ`
+

√
κN (λ)

λ`

)

with probability greater than 1− η/3. Since log(6/η) ≥ 1 and the spectral decom-
position of T gives

N (λ) ≥
‖T‖L(H)

‖T‖L(H) + λ
≥ 1

2
if λ ≤ ‖T‖L(H) ,

if (35) holds, then

log(6/η)

(
2κ

λ`
+

√
κN (λ)

λ`

)
≤ 4

log2(6/η)κN (λ)
λ`

+

√
log2(6/η)κN (λ)

λ`

≤ 1
16

+
1
8
≤ 1

4
so that

(41) Θ(λ, z) ≤ ∥∥(T + λ)−1(Tx − T )
∥∥
L2(H)

≤ 1
2

with probability greater than 1− η/3.
Step 2.2: probabilistic bound on

∥∥(T − Tx)(fλ − fH)
∥∥
L(H)

. Now we apply Prop. 2
to the random variable ξ2 : X → H

ξ2(x) = Tx(fλ − fH)

so that

E[ξ2] = T (fλ − fH)
1
`

∑̀

i=1

ξ2(xi) = Tx(fλ − fH).

Bound (13) and the definition of B(λ) give

‖ξ2(x)‖H ≤ ‖Tx‖L(H)

∥∥fλ − fH
∥∥
H ≤ κ

√
B(λ) =

L2

2
.

Since Tx is a positive operator

(42) 〈Txf, f〉H ≤ ‖Tx‖L(H) 〈f, f〉H f ∈ H,

so that

E[‖ξ2‖2H] =
∫

X

〈
TxT

1
2

x (fλ − fH), T
1
2

x (fλ − fH)
〉
H

dρX(x)

≤
∫

X

‖Tx‖L(H)

〈
Tx(fλ − fH), fλ − fH

〉
H dρX(x)

( (13) ) ≤ κ
〈
T (fλ − fH), fλ − fH

〉
H

= κ
∥∥∥
√

T (fλ − fH)
∥∥∥

2

H
= κA(λ) = σ2

2 ,

by definition of A(λ). So (33) holds and (32) gives

(43)
∥∥(T − Tx)(fλ − fH)

∥∥
H ≤ 2 log(6/η)

(
2κ

√
B(λ)
`

+

√
κA(λ)

`

)
.
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with probability greater than 1− η/3. Replacing (39), (43) in (37), if (35) holds, it
follows

(44) S2(λ, z) ≤ 8 log2(6/η)
(

4κ2B(λ)
`2λ

+
κA(λ)

`λ

)

with probability greater than 1− 2η/3.
Step 3: probabilistic bound on S1(λ, z). Clearly

(45) S1(λ, z) ≤
∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥
2

L(H)

∥∥∥(T + λ)−
1
2 (gz − TxfH)

∥∥∥
2

H
.

Step 3.1: bound on
∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥
L(H)

. Since

√
T (Tx + λ)−1(T + λ)

1
2 =

√
T (T + λ)−

1
2

{
I − (T + λ)−

1
2 (T − Tx)(T + λ)−

1
2

}−1

,

reasoning as in Step 2.1, it follows∥∥∥∥
{

I − (T + λ)−
1
2 (T − Tx)(T + λ)−

1
2

}−1
∥∥∥∥
L(H)

≤ 2

provided that

(46)
∥∥∥(T + λ)−

1
2 (T − Tx)(T + λ)−

1
2

∥∥∥
L(H)

≤ 1
2
.

Moreover, the spectral theorem ensures that
∥∥∥
√

T (T + λ)−
1
2

∥∥∥
L(H)

≤ 1 so

(47)
∥∥∥
√

T (Tx + λ)−1(T + λ)
1
2

∥∥∥
L(H)

≤ 2.

We will show that (46) holds for the training sets z satisfying (41). Indeed, if
B = (T + λ)−

1
2 (T − Tx)(T + λ)−

1
2 , then

‖B‖2L2(H) = Tr
(
(T + λ)−

1
2 (T − Tx)(T + λ)−1(T − Tx)(T + λ)−

1
2

)

= Tr
(
(T + λ)−1(T − Tx)(T + λ)−1(T − Tx)

)

=
〈
(T + λ)−1(T − Tx),

(
(T + λ)−1(T − Tx)

)∗〉
L2(H)

≤
∥∥(T + λ)−1(T − Tx)

∥∥
L2(H)

∥∥∥
(
(T + λ)−1(T − Tx)

)∗∥∥∥
L2(H)

=
∥∥(T + λ)−1(T − Tx)

∥∥2

L2(H)
.

If (35) holds, then (41) ensures that (46) holds with probability 1− 2η/3.
Step 3.2: bound on

∥∥∥(T + λ)−
1
2 (gz − TxfH)

∥∥∥
H

. Let ξ3 : Z → H be the random
variable

ξ3(x, y) = (T + λ)−
1
2 Kx (y − fH(x)) .

First of all, (22) gives

E[ξ3] = (T + λ)−
1
2 (g − TfH) = 0

and (9) implies
∫

Y

‖y − fH(x)‖m
Y dρ(y|x) ≤ 1

2
m!Σ2Mm−2 ∀m ≥ 2
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(see for example [31]). It follows that

E[‖ξ3‖m
H] =

∫

Z

(〈
K∗

x(T + λ)−1Kx(y − fH(x)), y − fH(x)
〉

Y

)m/2
dρ(x, y)

(Eq. (42) ) ≤
∫

X

∥∥K∗
x(T + λ)−1Kx

∥∥m/2

L(H)

(∫

Y

‖y − fH(x)‖m
Y dρ(y|x)

)
dρX(x)

( ∥∥K∗
x(T + λ)−1Kx

∥∥
L(H)

≤ Tr(K∗
x(T + λ)−1Kx)

)

≤ m!Σ2Mm−2

2
sup
x∈X

∥∥K∗
x(T + λ)−1Kx

∥∥(m−2)/2

L(H)

∫

X

Tr(T + λ)−1Tx dρX(x)
(

(13) and
∥∥(T + λ)−1

∥∥
L(H)

≤ λ−1
)

≤ 1
2
m!Σ2Mm−2(

√
κ

λ
)m−2 Tr[(T + λ)−1T ]

=
1
2
m!(Σ

√
N (λ))2(M

√
κ

λ
)m−2.

Hence (31) holds with L3 = M
√

κ
λ and σ3 = Σ

√
N (λ) and (32) gives that

(48)
∥∥∥(T + λ)−

1
2 (gz − TxfH)

∥∥∥
H
≤ 2 log(6/η)

(
1
`

√
M2

κ

λ
+

√
Σ2N (λ)

`

)

with probability greater than 1− η/3. Replacing (47), (48) in (45)

(49) S1(λ, z) ≤ 32 log2(6/η)
(

κM2

`2λ
+

Σ2N (λ)
`

)

with probability greater than 1− η.
Replacing bounds (44), (49) in (36),

E [fλ
z ]− E [fH] ≤ 3A(λ) + 8 log2(6/η)

(
4κ2B(λ)

`2λ
+

κA(λ)
`λ

+
4κM2

`2λ
+

4Σ2N (λ)
`

)

and (34) follows by bounding the numerical constants with 32. ¤

The second step in the proof of the upper bound is the study of the asymptotic
behavior of N (λ), A(λ) and B(λ) when λ goes to zero. It is known that

lim
λ→0

A(λ) = 0

lim
λ→0

B(λ) = 0

lim
λ→0

N (λ) = N

see, for example, [16] and [13]. However, to state uniform rates of convergence we
need some prior assumptions on the distribution ρ.

Proposition 3. Let ρ ∈ P(b, c) with 1 ≤ c ≤ 2 and 1 < b ≤ +∞, then

A(λ) ≤ λc
∥∥∥T

1−c
2 fH

∥∥∥
2

H
and

B(λ) ≤ λc−1
∥∥∥T

1−c
2 fH

∥∥∥
2

H
.
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Moreover if b < +∞ (N = +∞)

N (λ) ≤ βb

b− 1
λ−

1
b .

Instead if b = +∞ (N < +∞)
N (λ) ≤ N.

Proof. The results about A(λ) and B(λ) are standard in the theory of inverse
problems, see, for example, [16],[13] and, in the context of learning, [8].
We study N (λ) under the assumption that N = +∞ and tn ≤ β

nb . Since the
function t

t+λ is increasing in t,

N (λ) =
∫ ∞

0

tn
tn + λ

≤
N∑

n=1

β

β + nbλ
.

The function β
β+xbλ

is positive and decreasing, so

N (λ) ≤
∫ ∞

0

β

β + xbλ
dx

(τ b = xbλ) = λ−
1
b

∫ +∞

0

β

β + τ b
dτ

≤ β
b

b− 1
λ−

1
b

since
∫ +∞
0

β + τ b ≤ b
b−1 . If N is finite, since t

t+λ is a decreasing function of λ the
thesis follows. ¤

We are now ready to prove the theorem.

Proof of Th. 1. Let 1 < b ≤ +∞ and 1 ≤ c ≤ 2 as in the statement of the theorem.
For any ρ ∈ P(b, c), Prop. 3 and Th. 4 imply that, given 0 < η < 1, with probability
greater than 1− η it holds

(50) E [fλ
z ]− E [fH] ≤ Cη

(
Rλc +

κ2Rλc−2

`2
+

κRλc−1

`
+

κM2

`2λ
+

Σ2βb

(b− 1)`λ
1
b

)

for all ` ∈ N and 0 < λ ≤ ‖T‖L(H) satisfying

(51) ` ≥ 2Cηκβb

(b− 1)λ
b+1

b

.

In the case b = +∞ the above formulas hold adopting the formal identities λ
1
b ≡

b
b−1 ≡ 1 and λ

b+1
b ≡ λ.

Assume now that b < +∞ and c > 1. Given η ∈ (0, 1), let

`η ≥
(

2Cηκβb

(b− 1)

) bc+1
b(c−1)

(recall that c > 1). Then

`
b(c−1)
bc+1 ≥ 2Cηκβb

(b− 1)
∀` ≥ `η
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so that, since λ` = `−
b

bc+1 ,

` ≥ 2Cηκβb

(b− 1)λ`

b+1
b

∀` ≥ `η.

So for any ρ ∈ P, bound (50) holds with λ = λ`. Since b
bc+1 < 1, λ`` goes to +∞,

so that

E [fλ
z ]− E [fH] ≤ CηD(λ`

c + `−1λ`
− 1

b ) = 2CηD`−
bc

bc+1 ∀` ≥ `η

with probability greater than 1− η, where D is a constant depending only on R,κ,
M , Σ β, b and c.
Let now τ = 2CηD and solve this equation for τ , so that

η = ητ = 6e−
√

τ
64D .

Hence
Pz∼ρ`

[
E [fλ`

z ]− E [fH] > τ`−
bc

bc+1

]
≤ ητ ∀` ≥ `ητ .

So that
lim sup

`→∞
sup

ρ∈P(b,c)

Pz∼ρ`

[
E [fλ`

z ]− E [fH] > τ`−
bc

bc+1

]
≤ ητ .

Since limτ→+∞ ητ = limτ→+∞ 6e−
√

τ
64D = 0, the thesis follows.

Assume now b < +∞ and c = 1. Then
2Cηκβb

(b− 1)λ`

b+1
b

=
2Cηκβb`

(b− 1) log `
,

so there is `η such that

` ≥ 2Cηκβb

(b− 1)λ`

b+1
b

∀` ≥ `η.

Reasoning as above and taking into account that 1
`λ`

goes to zero faster than λ`,
for any ρ ∈ P the bound (50) gives

E [fλ
z ]− E [fH] ≤ CηD′λ`

c = CηD′`−
b

b+1 ∀` ≥ `η

with probability greater than 1− η, where D′ is a constant depending only on R,κ,
M , Σ β, and b. The thesis now follows reasoning as above.
The proofs for b = +∞ (N < +∞) are similar. Moreover in this finite dimensional
case the semi-norms

∥∥∥T
1−c
2 f

∥∥∥
H

for different values of the parameter c are equiva-
lent. Hence the final rates are not dependent on c.

¤

5.3. Minimax lower rate. We assume now that Y is finite dimensional with
d = dim Y and N = +∞, we fix 1 < b < +∞, 1 ≤ c ≤ 2 and M, Σ, R, α, β as in the
definition of P(b, c).
To prove the lower bound we follow the ideas of [10]. The main steps are the follow-
ing. First, we define a family of probability distributions ρf ∈ P(b, c) parametrized
by suitable vectors f ∈ H. Then, for all 0 < ε ≤ ε0, we construct a finite sequence
of vectors f1, . . . , fNε such that Nε ≥ eγε−

1
bc and the Kullback-Leibler information

K(ρfi , ρfj ) ≤ Cε i 6= j,
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where γ and C depend only on P. Finally, we apply a theorem of [10] to obtain
the claimed lower bound.
We recall that the Kullback-Leibler information of two measures ρ1 and ρ2 is defined
by

K(ρ1, ρ2) =
∫

log ϕ(z) dρ1(z)

where ϕ is the density of ρ1 with respect to ρ2, that is, ρ1(E) =
∫

E
ϕ(z) dρ2(z) for

all measurable sets E.
In the following, we choose ρ0 ∈ P(b, c) and we let ν be its marginal measure.

Since ρ0 satisfies Hypothesis 2, the operator T has the spectral decomposition

(52) T =
∫

X

Tx dν(x) =
+∞∑
n=1

tn 〈·, en〉 en,

where (en)+∞n=1 is an orthonormal sequence in H and, since ρ0 ∈ P(b, c),

tn ≥ α

nb
n ≥ 1.

The proposition below associates to any vector f belonging a suitable subclass of
H, a corresponding probability measure ρf that belongs to P(b, c). In particular,
ρf will have the same marginal distribution ν, so that the corresponding operator
Tρf

defined by (14) with ρX = (ρf )X , is in fact given by (52).

Proposition 4. Let (vj)d
j=1 be a basis of Y . Given f ∈ H such that f = T

c−1
2 g

for some g ∈ H, ‖g‖2 ≤ R, let ρf (x, y) = ν(x)ρf (y|x) where

ρf (y|x) =
1

2dL




d∑

j=1

(L− 〈f,Kxvj〉H)δy+dLvj + (L + 〈f, Kxvj〉H)δy−dLvj




with L = 4
√

κcR and δy±dLvj is the Dirac measure on Y at point ∓dLvj. Then
ρf is a probability measure with marginal distribution (ρf )X = ν and regression
function fρf

= f ∈ H. Moreover, ρf ∈ P(b, c) provided that

(53) min(M, Σ) ≥ 2(4d + 1)
√

κcR.

Moreover, if f ′ ∈ H such that f ′ = T
c−1
2 g′ for some g′ ∈ H, ‖g‖2 ≤ R, then the

Kullback-Leibler information K(ρf , ρf ′) fulfills the inequality

(54) K(ρf , ρf ′) ≤ 16
15dL2

∥∥∥
√

T (f − f ′)
∥∥∥

2

H
.

Proof. The definition of f , (11) and (13) imply

(55) | 〈f,Kxvj〉H | ≤
∥∥∥T

c−1
2 g

∥∥∥
H
‖Kx‖L(Y,H) ≤ κ

c
2
√

R =
L

4
.

It follows that ρf (y|x) is a probability measure on Y and
∫

Y

y dρf (y|x) =
∑

j

〈f, Kxvj〉H vj = K∗
xf = f(x).

So that ρf is a probability measure on Z, the marginal distribution is ν and the
regression function fρf

= f ∈ H. In particular condition (8) holds with fH = f
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and items ii) and iii) of Def. 1 are satisfied.
Clearly, (7) is satisfied since ρf (y|x) has finite support. Moreover, (53) ensures

‖y − f(x)‖Y ≤ ‖y‖Y + ‖K∗
xf‖Y ≤ dL +

√
κcR = (4d + 1)

√
κcR ≤ M

and

E[‖y − f(x)‖2Y ] =
1

2dL

∑

j

(L− 〈f,Kxvj〉H)(dL + 〈f,Kxvj〉H)2

+(L + 〈f, Kxvj〉H)(dL− 〈f, Kxvj〉H)2 + (1− 1
d
) ‖f(x)‖2Y

( (55) ) ≤ 5
4
L2 + (1− 1

d
)κcR ≤ 4(4d + 1)κcR ≤ Σ2,

so that (9) is satisfied.
The proof of (54) is the same as Lemma 3.2 of [10]. We only sketch the main

steps. If ϕ = dρf

dρf′
, clearly

log ϕ(x,±dLvj) = log
(

L± 〈f,Kxvj〉H
L± 〈f ′,Kxvj〉H

)

= log
(

1± 〈f − f ′,Kxvj〉H
L± 〈f ′,Kxvj〉H

)

≤ ±〈f − f ′,Kxvj〉H
L± 〈f ′,Kxvj〉H

so that

K(ρf ′ , ρf ) ≤ 1
2dL

d∑

j=1

∫

X

( 〈f − f ′,Kxvj〉H
L + 〈f ′, Kxvj〉H

(
L + 〈f, Kxvj〉H

)
+

+
〈−f + f ′,Kxvj〉H
L− 〈f ′,Kxvj〉H

(
L− 〈f, Kxvj〉H

))
dν(x)

=
1
d

d∑

j=1

∫

X

(〈f − f ′,Kxvj〉H)2

L2 − (〈f ′,Kxvj〉H)2
dν(x)

( (55) ) ≤ 1
2d

d∑

j=1

∫

X

〈f − f ′,Kxvj〉2H
16

15L2
dν(x)

=
16

15dL2

∫

X

‖K∗
x(f − f ′)‖2Y dν(x)

=
16

15dL2

∫

X

〈Tx(f − f ′), f − f ′〉H dν(x)

=
16

15dL2
〈T (f − f ′), f − f ′〉H

¤

Proposition 5. There is an ε0 > 0 such that for all 0 < ε ≤ ε0, there exist Nε ∈ N
and f1, . . . , fNε ∈ H (depending on ε) satisfying

i) for all i = 1, . . . , Nε, fi = T
c−1
2 gi for some gi ∈ H with ‖gi‖2H ≤ R;
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ii) for all i, j = 1, . . . , Nε

(56) ε ≤
∥∥∥
√

T (fi − fj)
∥∥∥

2

H
≤ 4ε;

iii) there is a constant γ depending only on R and α such that

(57) Nε ≥ e γε−
1
bc .

Proof. Let m ∈ N such that m > 16 and σ1, . . . , σN ∈ {1,−1}m given by Prop. 6
so that

m∑
n=1

(σn
i − σn

j )2 ≥ m(58)

N ≥ e
m
24 .(59)

In the following we will choose m as a function of ε is such a way that the statement
of the proposition will be true.

Given ε > 0, for all i = 1, . . . , Nε let

gi =
m∑

n=1

√
ε

mtcn
σn

i en,

(see (52)). Since tnnb ≥ α, then

‖gi‖2H =
m∑

n=1

ε

mtcn
≤ ε

m

m∑
n=1

(
nb

α

)c

≤ Cεmbc,

where here and in the following C is a constant depending only on R, α b and c.
Hence ‖gi‖2 ≤ R provided that

εmbc ≤ R

C
and we let m = mε ∈ N be

(60) m = bC ′ε− 1
bc c

for a suitable constant C ′ > 0 (where bxc is the greatest integer less or equal than
x.) Clearly, since mε goes to +∞ if ε goes to 0, there is ε0 such that mε > 16 for
all ε ≤ ε0.

Let now fi = T
c−1
2 gi, as in the statement of the theorem, then

∥∥∥
√

T (fi − fj)
∥∥∥

2

H
=

∥∥T
c
2 (gi − gj)

∥∥2

H =
m∑

n=1

ε

m
(σn

i − σn
j )2.

The conditions (58) and (σn
i − σn

j )2 ≤ 4 imply

ε ≤
∥∥∥
√

T (fi − fj)
∥∥∥

2

H
≤ 4ε

and (59) and (60) ensure

Nε ≥ e
m
24 ≥ e γε−

1
bc

for a suitable constant γ > 0. ¤

The proof of the above proposition relies on the following result regarding packing
numbers over sets of binary strings.
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Proposition 6. For every m > 16 there exist N ∈ N and σ1, . . . , σN ∈ {−1, +1}m

such that
m∑

n=1

(σn
i − σn

j )2 ≥ m i 6=, j = 1, . . . N

N ≥ e
m
24

where σi = (σ1
i , . . . , σm

i ) and σj = (σ1
j , . . . , σm

j ).

Proof. We regard the vectors σ ∈ {−1, +1}m as a set of m i.i.d. binary random
variables distributed according to the uniform distribution 1/2(δ−1 + δ+1)
Let σ and σ′ be two independent random vectors in {−1,+1}m, then the real
random variable

d(σ, σ′) =
m∑

n=1

(σn
i − σn

j )2 =
m∑

n=1

θn

where θn are independent random variables distributed according to the measure
1/2(δ0 +δ4). The expectation value d(σ, σ′) is 2m and Hoeffding inequality ensures
that for every δ > 0

P [|d(σ, σ′)− 2m| > δ] ≤ 2 exp(− δ2

8m
).

Setting δ = m in the inequality above, we obtain

(61) P [d(σ, σ′) < m] ≤ 2 exp(−m

8
).

Now draw N := de m
24 e (where dxe is the lowest integer greater than x) independent

random points σi (i = 1, · · · , N).
From inequality (61), by union bound it holds

P [∃ 1 ≤ i, j ≤ N, i 6= j, with d(σi, σj) < m]

≤ (N2 −N) exp(−m

8
) ≤ N2 −N

(N − 1)3
=

N

(N − 1)2
< 1,

since the definition of N and the assumption m > 16 imply that (N − 1)2 > N and
(N −1)3 < exp m

8 . It follows that there exists at least a sequence (σ1, . . . , σN ) such
that d(σi, σj) ≥ m for all i 6= j and N > exp m

8 . ¤

The following theorem is a restatement of Th. 3.1 of [10] in our setting.

Theorem 5. Assume (53) and consider an arbitrary learning algorithm
z 7→ f `

z ∈ H, for ` ∈ N and z ∈ Z`. Then for all ε ≤ ε0 and for all ` ∈ N there is a
ρ∗ ∈ P(b, c) such that fρ∗ ∈ H and it holds

Pz∼ρ`∗

[
Eρ∗ [f

`
z ]− Eρ∗ [fρ∗ ] >

ε

4

]
≥ min{ N∗

ε

N∗
ε + 1

, η̄
√

N∗
ε e−

4`ε
15dκcR }

where N∗
ε = eγε−

1
bc and η̄ = e−3/e.

Proof. The proof is the same as in [10]. Given ε ≤ ε0, let Nε and f1, . . . , fNε as
in Prop. 5. According to Prop. 4, let ρi = ρfi . Assumption (53) ensures that
ρi ∈ P(b, c).
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Observe that, since all the measures ρi have the same marginal distribution ν and
fH = fρi

= fi

Eρi
[f ]− Eρi

[fρi
] =

∥∥∥
√

T (f − fi)
∥∥∥

2

H
=

∫

X

‖fi(x)− f(x)‖2Y dν(x).

Given ` ∈ N, let

Ai = {z ∈ Z` |
∥∥∥
√

T (f `
z − fi)

∥∥∥
2

H
<

ε

4
}

for all i = 1, . . . , Nε. The lower bound of (56) ensures that Ai ∩Aj = ∅ if i 6= j, so
that Lemma 3.3 of [10] ensures that there is ρ∗ = ρi∗ such that either

p∗ = Pρ`∗ [Ai∗ ] >
Nε

Nε + 1
≥ N∗

ε

N∗
ε + 1

(since x
x+1 is an increasing function and (57) holds) or, replacing the upper bound

of (56), in Eq. 3.12 of [10]

4`ε

15dκcR
≥ − log p∗ + log(

√
N)− 3

e
≥ − log p∗ + log(

√
N∗

ε )− 3
e

since (57). Solving for p∗, the thesis follows. ¤

The proof of Th. 2 is now an easy consequence of the above theorem.

Proof of Th. 2. . Since whenever a minimax lower rate holds over a prior it holds
a fortiori over a superset of it, without loss of generality we can assume

R ≤ min(M, Σ)
2(4d + 1)

√
κc

,

hence enforcing condition (53).
Given τ > 0, for all ` ∈ N, let ε` = τ`−

bc
bc+1 . Since ε` goes to 0 when ` goes to

+∞, for ` large enough ε` ≤ ε0, so Th. 5 applies ensuring

inf
f`

sup
ρ∈P(b,c)

Pz∼ρ`∗

[
E [f `

z ]− E [fH] >
τ√
2
`−

bc
bc+1

]
≥ min{ N∗

ε`

N∗
ε`

+ 1
, η̄e(C1τ−

1
bc−C2τ)`

1
bc+1 }

where C1, C2 are positive constants independent of τ and `. If ` goes to ∞,
N∗

ε`

N∗
ε`

+1

goes to 1, whereas, if τ is small enough, the quantity C1τ
− 1

bc − C2τ is positive, so
that

lim
τ→0

lim inf
`→+∞

inf
f`

sup
ρ∈P(b,c)

Pz∼ρ`

[
E [f `

z ]− E [fH] >
τ√
2
`−

bc
bc+1

]
= 1.

¤

5.4. Individual lower rate. The proof of Th. 3 is based on the similar result in
[17], see Th. 3.3. Here that result is adapted to the general RKHS setting.

First of all we recall the following proposition, whose proof can be found in [17]
(lemma 3.2 pg.38).

Proposition 7. Let g ∈ R` and s a {+1,−1}-valued random variable with P [s = +1] =
P [s = −1] = 1/2. Moreover let n = (ni)`

i=1 be ` independent random variables dis-
tributed according to the Gaussian with zero mean and variance σ2, independent of
s. Set

y = sg + n,
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then the error probability of the Bayes decision for s based on y is

min
D:R`→{+1,−1}

P [D(y) 6= s] = Φ(−‖g‖
σ

),

where Φ is the standard normal distribution function.

Proof of Th. 3. Let us reason for a fixed B > b, and let ε := (B − b)c > 0.
We first define the subset P ′ of P(b, c), then prove the lower rate on this subset. As
in the proof of the minimax lower rate, we fix an arbitrary ρ0 ∈ P(b, c) and let ν
be its marginal measure. For every sequence s = (sn)n∈N ∈ {+1,−1}∞, we define
a corresponding function in H

m(s) :=
+∞∑
n=1

sn

√
t−1
n γnen =

+∞∑
n=1

sngn.

where

γn := n−(bc+ε+1) ε

ε + 1
αcR, gn :=

√
t−1
n γnen,

where we recall that (tn)n∈N and (en)n∈N are the eigenvalues and eigenvectors of
the operator T defined by (52).

We define P ′ be the set of probability measures ρ which fulfill the following two
conditions

• the marginal distribution ρX is equal to ν,
• there is s ∈ {+1,−1}∞ such that, for all x ∈ X, the conditional distribution

of y given x

ρ(y|x) = N (m(s)(x), σ2Id),

that is, the multivariate normal distribution on Y with mean m(s)(x) and
diagonal covariance σ2Id with

σ2 = min

(
M2

2
,

π
d
2 Σ2

4Sd
∫ +∞
0

e−z2+zzd+1dz

)
,

and Sd is the volume of the surface of the d-dimensional unit radius sphere.

It is simple to check that P ′ ⊂ P(b, c). Indeed, clearly fρ = fH = m(s) and

∥∥∥T−
c−1
2 m(s)

∥∥∥
2

H
=

+∞∑
n=1

t−(c−1)
n t−1

n γn =
+∞∑
n=1

(
α

nbtn

)c

n−(1+ε) ε

ε + 1
R

≤
+∞∑
n=1

n−(1+ε) ε

ε + 1
R ≤

(∫ +∞

1

t−(1+ε)dt + 1
)

ε

ε + 1
R = R,
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where we used the lower bound (17). Moreover, N (0, σ2 Id) fulfills the moment
condition (9) in Hypothesis 2. Indeed,

∫

Y

(
e
‖y−fH(x)‖Y

M − ‖y − fH(x)‖Y

M
− 1

)
ρ(y|x)

= (2πσ2)−
d
2 Sd

∫ +∞

0

(
e

z
M − z

M
− 1

)
e−

z2

2σ2 zd−1dz

= π−
d
2 Sd

∫ +∞

0

e−z2
zd−1

+∞∑

k=2

1
k

(√
2zσ

M

)k

dz

≤ 2σ2

M2
π−

d
2 Sd

∫ +∞

0

ez
√

2σ
M e−z2

zd+1dz ≤ σ2

2M2
.

We now are left with proving the lower bound on the reduced set P ′ by showing
the inequality

inf
{f`}`∈N

sup
ρ∈P′

lim sup
`→+∞

Ez∼ρ`(E [f `
z ]− E [m(s)])

`−
Bc

Bc+1
> 0.(62)

Since (en)n∈N is an orthonormal sequence in H, then for any s it holds

E [f `
z ]− E [m(s)] =

∥∥∥
√

T (f `
z −m(s))

∥∥∥
2

H
=

+∞∑
n=1

(cz,n − sn)2γn,(63)

with

cz,n =
√

tn
γn

〈
f `
z , en

〉
H .

Now let c̃z,n be 1 if cz,n ≥ 0 and -1 otherwise. Because of the straightforward
inequality

2|cz,n − sn| ≥ |c̃z,n − sn|,(64)

from (63) we get

E [f `
z ]− E [m(s)] ≥

+∞∑
n=1

1
4
(c̃z,n − sn)2γn

=
+∞∑
n=1

I{c̃z,n 6=sn}γn ≥
∑

n∈D`

I{c̃z,n 6=sn}γn,

where the set D` is defined by

D` := {n ∈ N| `γn ≤ 1}.
Note that due to (64) and defining the quantity

R`(s) :=
∑

n∈D`

Pz∼ρ` [c̃z,n 6= sn] γn ≤
∑

n∈D`

γn,(65)

from (62) we are led to prove the inequality

inf
{f`}`∈N

sup
s∈{+1,−1}∞

lim sup
`→+∞

R`(s)

`−
Bc

Bc+1
> 0.(66)

This result is achieved considering a suitable probability measure over the set
{+1,−1}∞ (and hence over P ′ itself), and proving that the inequality above holds
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true not just for the worst s, but also on average. Then let us introduce the sequence
S = (Si)i∈N of independent {+1,−1}-valued random variables with

P [Si = +1] = P [Si = −1] =
1
2
∀ i ∈ N.

The plan is first showing that (66) is a consequence of the inequality

ER`(S) ≥ C
∑

n∈D`

γn, C > 0,(67)

and subsequently proving that indeed (67) is true for some C > 0.
Defining the constants u := ε

ε+1αcR and v := 1
2Bcu−

Bc
Bc+1 , the definition of γn

gives
∑

n∈D`

γn =
∑

n≥(u`)
1

bc+1+ε

un−(bc+1+ε)(68)

≥
∫ +∞

(u`)
1

bc+1+ε

t−(bc+1+ε)dt− `−1

=
1

Bc
(u`)−

Bc
Bc+1 − `−1 ≥ 1

2Bc
(u`)−

Bc
Bc+1 = v`−

Bc
Bc+1 ,

where the last inequality holds for all ` ≥ 2Bc(2Bcu)Bc.
Then using inequalities (67) and (68) we get

inf
f`

sup
s∈{+1,−1}∞

lim sup
`→+∞

R`(s)

`−
Bc

Bc+1

≥ Cv inf
f`

sup
s∈{+1,−1}∞

lim sup
`→+∞

R`(s)
ER`(S)

≥ Cv inf
f`

E lim sup
`→+∞

R`(S)
ER`(S)

≥ Cv inf
f`

lim sup
`→+∞

E
(

R`(S)
ER`(S)

)

= Cv > 0,

where in the last estimate we applied Fatou lemma, recalling that by inequali-
ties (65) and (67) the sequence

R`(s)
ER`(s)

is uniformly bounded for every s ∈ {+1,−1}∞.
As planned we finally proceed proving inequality (67). Recall that by definition

ER`(S) =
∑

n∈D`

P [c̃z,n 6= Sn] γn,

where c̃z,n can be interpreted as a decision rule for the value of Sn given z. The
least error probability for such a problem is attained by the Bayes decision c̄z,n

which outputs 1 if P [Sn = 1| z] ≥ 1/2 and -1 otherwise, therefore

P [c̃z,n 6= Sn] ≥ P [c̄z,n 6= Sn] .
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Since by construction Sn is independent of the X component of the data z, we can
reason conditionally on (xi)`

i=1. The dependence of the Y component of z on Sn

has the form

yi = m(s)(xi) + ni = Sngn(xi) + ni +
∑

k 6=n

Skgk(xi), i = 1, . . . , `

with ni independent Y -valued random variables distributed according to the Gauss-
ian N (0, σ2 Id). Hence it is clear that also the component of yi perpendicular to
gn(xi) is independent of Sn. Consequently the only dependence of z on Sn is
determined by the longitudinal components

y′i :=
〈yi, gn(xi)〉Y
‖gn(xi)‖Y

= Sn ‖gn(xi)‖Y + n′i + hi,(69)

where n′i are real valued random variables distributed according to the Gaussian
N (0, σ2) and

hi =
∑

k 6=n

Sk
〈gk(xi), gn(xi)〉Y

‖gn(xi)‖Y

.

From equation (69) we see that the structure of the data available to the Bayes
rule c̄z,n for Sn, is similar to that assumed in Prop. 7, except for the presence of
the term h = (hi)`

i=1. However this term is independent of Sn, and it is clear that
Bayes error cannot decrease when such a term is added to the available data, in
fact

min
D:R`→{+1,−1}

P [D(g + h) 6= Sn] = min
D:R`→{+1,−1}

EhP [D(g + h) 6= Sn| h]

≥ Eh min
D:R`→{+1,−1}

P [D(g + h) 6= Sn| h]

= Eh min
D:R2`→{+1,−1}

P [D(g,h) 6= Sn] = min
D:R`→{+1,−1}

P [D(g) 6= Sn] ,

where the last equality derives from the independence of h on Sn and we let g =
(‖gn(xi)‖Y )`

i=1.
Hence by Prop. 7

P [c̄z,n 6= Sn| (xi)i] = min
D:R`→{+1,−1}

P [D(g + h) 6= Sn| (xi)i]

≥ min
D:R`→{+1,−1}

P [D(g) 6= Sn| (xi)i] = Φ


−

√∑
i ‖gn(xi)‖2Y

σ2


 .

Moreover since Φ(−√x) is convex, by Jensen’s inequality

P [c̄z,n 6= Sn] ≥ EΦ


−

√∑
i ‖gn(xi)‖2Y

σ2




≥ Φ


− 1

σ

√
E

∑

i

‖gn(xi)‖2Y


 = Φ

(
− 1

σ

√
`γn

)
,

where we used

E‖g(x)‖2Y =
∫

X

〈K∗
xgn,K∗

xgn〉Y dν(x) = 〈Tgn, gn〉H = γn.
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Thus

ER`(S) ≥
∑

n∈D`

Φ
(
− 1

σ

√
`γn

)
γn

≥ Φ(− 1
σ

)
∑

n∈D`

γn

which finally proves inequality (67) with C = Φ(− 1
σ ), and concludes the proof

¤

6. Conclusion

We presented an error analysis of the RLS algorithm on RKHS for general
operator-valued kernels. The framework we considered is extremely flexible and
generalizes many settings previously proposed for this type of problems. In par-
ticular the output space need not to be bounded as long as a suitable moment
condition for the output variable is fulfilled, and input spaces which are unbounded
domains are dealt with. An asset of working with operator-valued kernels is the
extension of our analysis to the multi-task learning problem; this kind of result is,
to our knowledge, new.

We also gave a complete asymptotic worst case analysis for the RLS algorithm in
this setting, showing optimality in the minimax sense on a suitable class of priors.
Moreover we extended previous individual lower rate results to our general setting.

Finally we stress the central role played by the effective dimension in our analysis.
It enters in the definition of the priors and in the expression of the non-asymptotic
upper bound given by Theorem 4 in subsection 5.1. However, since the effective
dimension depends on both the kernel and the marginal probability distribution
over the input space, our choice for the regularization parameter depends strongly
on the marginal distribution. This consideration naturally raises the question of
whether the effective dimension could be estimated by unlabelled data, allowing in
this way the regularization parameter to adapt to the actual marginal distribution
in a semi-supervised setting.

Acknowledgements

The authors wish to thank T. Poggio, L. Rosasco and S. Smale for useful dis-
cussions, and the two anonymous referees for helpful comments and suggestions.

This paper describes research done at the Center for Biological & Computa-
tional Learning, which is in the McGovern Institute for Brain Research at MIT,
as well as in the Dept. of Brain & Cognitive Sciences, and which is affiliated with
the Computer Sciences & Artificial Intelligence Laboratory (CSAIL), as well as at
the Dipartimento di Informatica e Scienze dell’Informazione (DISI), University of
Genoa, Italy, as well as at the Dipartimento di Matematica, University of Modena,
Italy.

This research was sponsored by grants from: Office of Naval Research (DARPA)
Contract No. MDA972-04-1-0037, Office of Naval Research (DARPA) Contract
No. N00014-02-1-0915, National Science Foundation (ITR/SYS) Contract No. IIS-
0112991, National Science Foundation (ITR) Contract No. IIS-0209289, National
Science Foundation-NIH (CRCNS) Contract No. EIA-0218693, National Science



OPTIMAL RATES FOR RLS 31

Foundation-NIH (CRCNS) Contract No. EIA-0218506, and National Institutes of
Health (Conte) Contract No. 1 P20 MH66239-01A1.

Additional support was provided by: Central Research Institute of Electric
Power Industry (CRIEPI), Daimler-Chrysler AG, Compaq/Digital Equipment Cor-
poration, Eastman Kodak Company, Honda R&D Co., Ltd., Industrial Technology
Research Institute (ITRI), Komatsu Ltd., Eugene McDermott Foundation, Merrill-
Lynch, NEC Fund, Oxygen, Siemens Corporate Research, Inc., Sony, Sumitomo
Metal Industries, and Toyota Motor Corporation.

This research has also been funded by the FIRB Project ASTAA and the IST
Programme of the European Community, under the PASCAL Network of Excel-
lence, IST-2002-506778.

References

[1] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines. In
20th International Conference on Machine Learning ICML-2004, Washington DC, 2003.

[2] N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.
[3] J. Burbea and P. Masani. Banach and Hilbert spaces of vector-valued functions. Pitman

Research Notes in Mathematics Series, 90, 1984.
[4] C. Carmeli and A. De Vito, E.and Toigo. Reproducing kernel hilbert spaces and mercer

theorem. Technical report, arvXiv:math.FA/0504071, 2005.
[5] F. Cucker and S. Smale. Best choices for regularization parameters in learning theory: on the

bias-variance problem. Foundations of Computationals Mathematics, 2:413–428, 2002.
[6] F. Cucker and S. Smale. On the mathematical foundations of learning. Bull. Amer. Math.

Soc. (N.S.), 39(1):1–49 (electronic), 2002.
[7] E. De Vito and A. Caponnetto. Risk bounds for regulaized least-squares algorithm with

operator-valued kernels. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, May 2005. CBCL Paper #249/AI Memo #2005-015.

[8] E. De Vito, A. Caponnetto, and L. Rosasco. Model selection for regularized least-squares al-
gorithm in learning theory. Foundation of Computational Mathematics, 5(1):59–85, February
2005.

[9] E. De Vito, L Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone. Learning from
examples as an inverse problem. Journal of Machine Learning Research, 6:883–904, 2005.

[10] R. DeVore, G. Kerkyacharian, D. Picard, and V. Temlyakov. Mathematical methods for
supervised learning. IMI Preprints, 22:1–51, 2004.

[11] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Num-
ber 31 in Applications of mathematics. Springer, New York, 1996.

[12] R. M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989
original.

[13] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of
Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.

[14] T. Evgeniou, C.A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. J.
Machine Learning Research, 6:615–637, April 2005.

[15] T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector machines.
Adv. Comp. Math., 13:1–50, 2000.

[16] C. W. Groetsch. The theory of Tikhonov regularization for Fredholm equations of the first
kind, volume 105 of Research Notes in Mathematics. Pitman (Advanced Publishing Program),
Boston, MA, 1984.

[17] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution-free Theory of Non-
parametric Regression. Springer Series in Statistics, 2002.

[18] M. Kohler and A. Krzyżak. Nonparametric regression estimation using penalized least
squares. IEEE Trans. Inform. Theory, 47(7):3054–3058, 2001.

[19] S. Mendelson. On the performance of kernel classes. Journal of Machine Learning Research,
4:759–771, 2003.



32 A. CAPONNETTO AND E. DE VITO

[20] C.A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Computation,
17:177–204, 2005.

[21] I. F. Pinelis and A. I. Sakhanenko. Remarks on inequalities for probabilities of large devia-
tions. Theory Probab. Appl., 30(1):143–148, 1985.

[22] T. Poggio and F. Girosi. A theory of networks for approximation and learning. In C. Lau,
editor, Foundation of Neural Networks, pages 91–106. IEEE Press, Piscataway, N.J., 1992.

[23] T. Poggio and S. Smale. The mathematics of learning: dealing with data. Notices Amer.
Math. Soc., 50(5):537–544, 2003.

[24] B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
[25] L. Schwartz. Sous-espaces hilbertiens d’espaces vectoriels topologiques et noyaux associés

(noyaux reproduisants). J. Analyse Math., 13:115–256, 1964.
[26] S. Smale and D. Zhou. Shannon sampling II : Connections to learning theory. preprint, 2004.
[27] S. Smale and D. Zhou. Learning theory estimates via integral operators and their approxi-

mations. preprint, 2005.
[28] V. N. Temlyakov. Nonlinear methods of approximation. Found. comput. Math., 3:33–107,

2003.
[29] V. N. Temlyakov. Approximation in learning theory. IMI Preprints, 5:1–42, 2005.
[30] S. A. van de Geer. Applications of empirical process theory. Cambridge Series in Statistical

and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2000.
[31] A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes. Springer

Series in Statistics. Springer-Verlag, New York, 1996. With applications to statistics.
[32] V. N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for Signal Process-

ing, Communications, and Control. John Wiley & Sons Inc., New York, 1998. A Wiley-
Interscience Publication.

[33] G. Wahba. Spline models for observational data, volume 59 of CBMS-NSF Regional Confer-
ence Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1990.

[34] J. Weston, O. Chapelle, A. Elisseeff, B. Schoelkopf, and V. Vapnik. Kernel dependency
estimation. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 873–880. MIT Press, Cambridge, MA, 2003.

[35] V. Yurinsky. Sums and Gaussian vectors, volume 1617 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 1995.

[36] T. Zhang. Effective dimension and generalization of kernel learning. NIPS 2002, pages 454–
461.

[37] T. Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 13:1397–1437,
2003.

Andrea Caponnetto, C.B.C.L.,McGovern Institute, Massachusetts Institute of Tech-
nology, Bldg.E25-206, 45 Carleton St., Cambridge, MA 02142 and D.I.S.I., Università di
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