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Abstract

A large number of learning algorithms, for example, spectral clustering, kernel Principal
Components Analysis and many manifold methods are based on estimating eigenvalues
and eigenfunctions of operators defined by a similarity function or a kernel, given empirical
data. Thus for the analysis of algorithms, it is an important problem to be able to assess
the quality of such approximations. The contribution of our paper is two-fold:
1. We use a technique based on a concentration inequality for Hilbert spaces to provide
new much simplified proofs for a number of results in spectral approximation.
2. Using these methods we provide several new results for estimating spectral properties
of the graph Laplacian operator extending and strengthening results from (von Luxburg
et al., 2008).
Keywords: spectral convergence, empirical operators, learning integral operators, per-
turbation methods

1. Introduction

A broad variety of methods for machine learning and data analysis from Principal Com-
ponents Analysis (PCA) to Kernel PCA, Laplacian-based spectral clustering and manifold
methods, rely on estimating eigenvalues and eigenvectors of certain data-dependent matri-
ces. In many cases these matrices can be interpreted as empirical versions of underlying
integral operators or closely related objects, such as continuous Laplace operators. Thus
establishing connections between empirical operators and their continuous counterparts is
essential to understanding these algorithms. In this paper, we propose a method for an-
alyzing empirical operators based on concentration inequalities in Hilbert spaces. This
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technique together with perturbation theory results allows us to derive a number of results
on spectral convergence in an exceptionally simple way. We note that the approach using
concentration inequalities in a Hilbert space has already been proved useful for analyzing
supervised kernel algorithms, see (De Vito et al., 2005, Yao et al., 2007, Bauer et al., 2007,
Smale and Zhou, 2005). Here we develop on this approach to provide a detailed and com-
prehensive study of perturbation results for empirical estimates of integral operators as well
as empirical graph Laplacians.

In recent years several works started considering these connections. The first study
of this problem appeared in (Koltchinskii and Gine’, 2000, Koltchinskii, 1998), where the
authors consider integral operators defined by a kernel. In (Koltchinskii and Gine’, 2000)
the authors study the relation between the spectrum of an integral operator with respect to
a probability distribution and its (modified) empirical counterpart in the framework of U -
statistics. In particular they prove that the `2 distance between the two (ordered) spectra
goes to zero under the assumption that the kernel is symmetric and square integrable.
Moreover, under some stronger conditions, rates of convergence and distributional limit
theorems are obtained. The results are based on inequalities due to Lidskii and to Wielandt
for finite dimensional matrices and the Marcinkiewicz law of large numbers. In (Koltchinskii,
1998) similar results were obtained for convergence of eigenfunctions and, using the triangle
inequality, for spectral projections. These investigations were continued in (Mendelson and
Pajor, 2005, 2006), where it was shown that, under the assumption that the kernel is of
positive type, the problem of eigenvalue convergence reduces to the study of how the random
operator 1

n

∑
iXi ⊗ Xi deviates from its average E[X ⊗ X], with respect to the operator

norm, where X,X1, . . . , Xn are i.i.d `2 random vectors. The result is based on a on a
symmetrization technique and on the control of a suitable Radamacher complexity.
The above studies are related to the problem of consistency of kernel PCA considered
in (Shawe-Taylor et al., 2002, 2004) and refined in (Blanchard et al., 2006, Zwald and
Blanchard, 2006). In particular, (Shawe-Taylor et al., 2002, 2004) study the deviation of
the sum of the all but the largest k eigenvalues of the empirical matrix to its mean using
McDiarmid inequality. The above result is improved in (Blanchard et al., 2006) where fast
rates are provided by means of a localized Rademacher complexities approach. The results
in (Zwald and Blanchard, 2006) are a development of the results in (Koltchinskii, 1998).
Using a new perturbation results the authors study directly the convergence of the whole
subspace spanned by the first k eigenvectors and are able to show that only the gap between
the k and k + 1 eigenvalue affects the estimate. All the above results hold for symmetric,
positive definite kernels.

A second related series of works considered convergence of the graph Laplacian in various
settings , see for example (Belkin, 2003, Lafon, 2004, ?, Hein et al., 2005, Hein, 2006,
Singer, 2006, Gine’ and Koltchinskii., 2006). These papers discuss convergence of the graph
Laplacian directly to the Laplace-Beltrami operator. Convergence of the normalized graph
Laplacian applied to a fixed smooth function on the manifold is discussed in (Hein et al.,
2005, Singer, 2006, Lafon, 2004). Results showing uniform convergence over some function
class are presented in (Hein, 2006, Gine’ and Koltchinskii., 2006). Finally, convergence of
eigenvalues and eigenfunctions for the case of the uniform distribution was shown in (Belkin
and Niyogi, 2007).
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Unlike these works, where the kernel function is chosen adaptively depending on the
number of points, we will be primarily interested in convergence of the graph Laplacian
to its continuous (population) counterpart for a fixed weight function. The work (Luxburg
et al., 2004) studies the convergence of the second eigenvalue which is relevant in spectral
clustering problems. These results are extended in (von Luxburg et al., 2008), where op-
erators are defined on the space of continuous functions. The analysis is performed in the
context of perturbation theory in Banach spaces and bounds on individual eigenfunctions
are derived. The problem of out-of-sample extension is considered via a Nyström approx-
imation argument. Working in Banach spaces the authors have only mild requirements
for the weight function defining the graph Laplacian, at the price of having to do fairly
complicated analysis.

Our contribution is twofold. In the first part of the paper, we assume that the kernel
K is symmetric and positive definite. We start considering the problem of out-of-sample
extension of the kernel matrix and discuss a singular value decomposition perspective on
Nyström-like extensions. More precisely, we show that a finite rank (extension) operator
acting on the reproducing kernel Hilbert space H defined by K can be naturally associated
to the empirical kernel matrix: the two operators have same eigenvalues and related eigen-
vectors/eigenfunctions. The kernel matrix and its extension can be seen as compositions
of suitable restriction and extension operators that are explicitly defined by the kernel.
A similar result holds true for the asymptotic integral operator, whose restriction to H
is a Hilbert-Schmidt operator. We can use concentration inequalities for operator valued
random variables and perturbation results to derive concentration results for eigenvalues
(taking into account the multiplicity), as well as for the sums of eigenvalues. Moreover,
using a perturbation result for spectral projections, we derive finite sample bounds for the
deviation between the spectral projection associated with the k largest eigenvalues. We
recover several known results with simplified proofs, and derive new results.

In the second part of the paper, we study the convergence of the asymmetric normalized
graph Laplacian to its continuous counterpart. To this aim we consider a fixed positive
symmetric weight function satisfying some smoothness conditions. These assumptions al-
lows us to introduce a suitable intermediate reproducing kernel Hilbert space H, which is, in
fact, a Sobolev Space. We describe explicitly restriction and extension operators and intro-
duce a finite rank operator with spectral properties related to those of the graph Laplacian.
Again we consider the law of large numbers for operator-valued random variables to derive
concentration results for empirical operators. We study behavior of eigenvalues as well as
the deviation of the corresponding spectral projections with respect to the Hilbert-Schmidt
norm. To obtain explicit estimates for spectral projections we generalize the perturbation
result in (Zwald and Blanchard, 2006) to deal with non-self-adjoint operators. From a tech-
nical point the main difficulty in studying the asymmetric graph Laplacian is that we no
longer assume the weight function to be positive definite so that there is no longer a natural
RKH space associated to it. In this case we have to deal with non-self-adjoint operators and
the functional analysis becomes more involved. Comparing to (von Luxburg et al., 2008),
we note that the RKH space H replaces the Banach space of continuous functions. Assum-
ing some regularity assumption on the weight functions we can exploit the Hilbert space
structure to obtain more explicit results. Among other things, we derive explicit conver-
gence rates for a large class of weight functions. Finally we note that for the case of positive
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definite weight function results similar to those presented here have been independently
derived in the preprint (Smale and Zhou, 2008).

The plan of the paper follows. We start by introducing the necessary mathematical
objects in Section 2. We introduce basic operator and spectral theory and discuss concen-
tration inequalities in Hilbert spaces. This technical summary section aims at making this
paper self-contained and provide the reader with a (hopefully useful) overview of the needed
tools and results. In Section 3, we study the spectral properties of kernel matrices gener-
ated from random data. We study concentration of operators obtained by an out-of-sample
extension using the kernel function and obtain considerably simplified derivations of several
existing results on eigenvalues and eigenfunctions. We expect that these techniques will be
useful in analyzing algorithms requiring spectral convergence. In fact, in Section 4, we ap-
ply these methods to prove convergence of eigenvalues and eigenvectors of the asymmetric
graph Laplacian defined by a fixed weight function. We refine the results in (von Luxburg
et al., 2008), which, to the best of our knowledge, is the only other paper to consider the
problem so far.

2. Notation and preliminaries.

In this section we will discuss various preliminary results necessary for the further develop-
ment.
Operator theory. We first recall some basic notions in operator theory (see, e.g. (Lang,
1993)). In the following we let A : H → H be a (linear) bounded operator, where H is
a (in general complex) Hilbert space with scalar product (norm) 〈·, ·〉 (‖·‖) and (ej)j≥1 a
Hilbert basis in H. We often use the notation j ≥ 1 to denote a sequence or a sum from 1
to p where p can be infinite. The set of bounded operators on H is a Banach space with
respect to the operator norm ‖A‖ = sup‖f‖=1‖Af‖. If A is a bounded operator, we let A∗

be its adjoint, which is a bounded operator with ‖A∗‖ = ‖A‖.
A bounded operator A is Hilbert-Schmidt if

∑
j≥1‖Aej‖2 <∞ for some (any) Hilbert ba-

sis (ej)j≥1. The space of Hilbert-Schmidt operators is also a Hilbert space (a fact which will
be a key in our development) endowed with the scalar product 〈A,B〉HS =

∑
j 〈Aej , Bej〉

and we denote by ‖·‖HS the corresponding norm. In particular, Hilbert-Schmidt operators
are compact.

A closely related notion is that of a trace class operator. We say that a bounded operator
A is trace class, if

∑
j≥1

〈√
A∗Aej , ej

〉
< ∞ for some (any) Hilbert basis (ej)j≥1 (where

√
A∗A is the square root of the positive operator A∗A defined by spectral theorem (Lang,

1993)). In particular, Tr(A) =
∑

j≥1 〈Aej , ej〉 <∞ and Tr(A) is called the trace of A. The
space of trace class operators is a Banach space endowed with the norm ‖A‖TC = Tr(

√
A∗A).

Trace class operators are also Hilbert Schmidt (hence compact).
The following inequalities relate the different operator norms:

‖A‖ ≤ ‖A‖HS ≤ ‖A‖TC .
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It can also be shown that for any Hilbert-Schmidt operator A and bounded operator B we
have

‖AB‖HS ≤ ‖A‖HS‖B‖, (1)
‖BA‖HS ≤ ‖B‖‖A‖HS .

Spectral Theory for Compact Operators. Recall that the spectrum of a matrix K
can be defined as the set of (in general, complex) eigenvalues λ, s.t. det(K − λI) = 0,
or, equivalently, such that λI − K does not have a (bounded) inverse. This definition
can be generalized to operators. Let A : H → H be a bounded operator, we say that
λ belongs to the spectrum σ(A), if (A − λI) does not have a bounded inverse. For any
λ 6∈ σ(A), R(λ) = (A − λI)−1 is the resolvent operator, which is by definition a bounded
operator. It can be shown (e.g., (Kato, 1966)) that if A is a compact operator, then
σ(A) \ {0} consists of a countable family of isolated points with finite multiplicity |λ1| ≥
|λ2| ≥ · · · and either σ(A) is finite or limn→∞ λn = 0. If the operator A is self-adjoint
(A = A∗, analogous to a symmetric matrix in the finite-dimensional case), the eigenvalues
are real. Each eigenvalue λ has an associated eigenspace which is the span of the associated
eigenvectors. The corresponding projection operator Pλ is defined as the projection onto the
span of eigenvectors associated to λ. It can be shown that a self-adjoint compact operator
A can be decomposed as follows:

A =
∞∑
i=1

λiPλi
,

the key result known as the Spectral Theorem. Moreover, it can be shown that the projection
Pλ can be written explicitly in terms of the resolvent operator. Specifically, we have the
following remarkable equality:

Pλ =
1

2πi

∫
Γ⊂C

(γI −A)−1dγ,

where the integral can be taken over any closed simple rectifiable curve Γ ⊂ C (with
positive direction) containing λ and no other eigenvalue. We note that while an integral of
an operator-valued function may seem unfamiliar, it is defined along the same lines as an
integral of an ordinary real-valued function. Despite the initial technicality, the equation
above allows for far simpler analysis of eigenprojections than other seemingly more direct
methods.

This analysis can be extended to operators, which are not self-adjoint, to obtain a
decomposition parallel to the Jordan canonical form for matrices. In the case of non-self-
adjoint operators the projections are to generalized eigenspaces associated to an eigenvalue.
To avoid overloading this section, we relegate the precise technical statements for that case
to the Appendix A.

Reproducing Kernel Hilbert Space. Let X be a subset of Rd. An Hilbert space H
of functions f : X → C such that all the evaluation functionals are bounded, that is

f(x) ≤ Cx‖f‖ for some constant Cx,

is called a Reproducing Kernel Hilbert space. It can be shown that there is a unique symmet-
ric, positive definite kernel function K : X ×X → C, called reproducing kernel, associated
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to H and the following reproducing property holds

f(x) = 〈f,Kx〉 , (2)

where Kx := K(·, x). It is also well known (Aronszajn, 1950) that each given reproducing
kernel K uniquely defines a reproducing kernel Hilbert space H = HK . We denote the
scalar product and norm in H with 〈·, ·〉 and ‖·‖, respectively. We will assume that the
kernel is continuous and bounded1.

Concentration Inequalities in Hilbert spaces. We recall that if ξ1, . . . , ξn are
independent (real-valued) random variables with zero mean and such that |ξi| ≤ C, i =
1, . . . , n, then Hoeffding inequality ensures that ∀ε > 0,

P

[ ∣∣∣∣∣ 1n∑
i

ξi

∣∣∣∣∣ ≥ ε
]
≤ 2e−

nε2

2C2 .

If we set τ = nε2

2C2 then we can express the above inequality saying that with probability at
least (with confidence) 1− 2e−τ , ∣∣∣∣∣ 1n∑

i

ξi

∣∣∣∣∣ ≤ C
√

2τ√
n

. (3)

Similarly if ξ1, . . . , ξn are zero mean independent random variables with values in a separable
Hilbert space and such that ‖ξi‖ ≤ C, i = 1, . . . , n, then the same inequality holds with
the absolute value replaced by the norm in the Hilbert space, that is, the following bound∥∥∥∥∥ 1

n

∑
i

ξi

∥∥∥∥∥ ≤ C
√

2τ√
n

(4)

holds true with probability at least 1− 2e−τ (Pinelis, 1992).

3. Integral Operators defined by a Reproducing Kernel

Let the set X ⊂ Rd and the reproducing kernel K as above. We endow X with a probability
measure ρ, we let L2(X, ρ) be the space of square integrable functions with norm ‖f‖2ρ =
〈f, f〉ρ =

∫
X |f(x)|2dρ(x). If

sup
x∈X

K(x, x) ≤ κ2, (5)

we define LK : L2(X, ρ)→ L2(X, ρ) to be the corresponding integral operator given by

LKf(x) =
∫
X
K(x, s)f(s)dρ(s). (6)

Suppose we are now given a set of points x = (x1, . . . , xn) sampled i.i.d. according to ρ.
Many problems in statistical data analysis and machine learning deal with the empirical
kernel n× n-matrix K given by Kij = 1

nK(xi, xj).

1. This implies that the elements of H are bounded continuous functions, the space H is separable and
is compactly embedded in C(X), with the compact-open topology, (Aronszajn, 1950). The assumption
about continuity is not strictly necessary, but it will simplify some technical part.
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The question we want to discuss is to which extent we can use the kernel matrix K
(and the corresponding eigenvalues, eigenvectors) to estimate LK (and the corresponding
eigenvalues, eigenfunctions). Answering this question is important as it guarantees that the
computable empirical proxy is sufficiently close to the ideal infinite sample limit.

The first difficulty in relating LK and K is that they operate on different spaces. By
default, LK is an operator on L2(X, ρ), while K is a finite dimensional matrix.

To overcome this difficulty we let H be the RKH space associated to K and define the
operators LK,H, LK,n : H → H given by,

LK,H =
∫
X
〈·,Kx〉Kxdρ(x), (7)

LK,n =
1
n

n∑
i=1

〈·,Kxi〉Kxi . (8)

Note that LK,H is the integral operator with kernel K with range and domain H rather
than in L2(X, ρ). The reason for writing it in this seemingly complicated form is to make
the parallel with (8) clear. To justify the “extension operator” in 8, consider the natural
“restriction operator”, Rn : H → Rn, Rn(f) = (f(x1), . . . , f(xn)). It is not hard to check
that the adjoint operator R∗n : Rn → H can be written as R∗n(y1, . . . , yn)(·) = 1

n

∑
yiK(·, xi).

Indeed, we see that

〈f,R∗n(y1, . . . , yn)〉H = 〈Rn(f), (y1, . . . , yn)〉Rn

=
1
n

∑
yif(xi) =

1
n

∑
yi〈f,K(·, xi)〉H,

where Rn is endowed with 1/n times the euclidean scalar product. Thus, we observe that
LK,n = R∗n ◦Rn is the composition of the restriction operator and its adjoint. On the other
hand for the operator K on Rn we have that K = Rn ◦ R∗n. Similarly, if RH denotes the
inclusion H ↪→ L2(X, ρ), LK,H = R∗H ◦RH.

In the next subsection, we discuss a parallel with the Singular Value Decomposition for
matrices and demonstrate that LK,H and LK have the same eigenvalues (possibly, up to some
zero eigenvalues) and the corresponding eigenfunctions are closely related. A similar relation
holds for LK,n and K. Thus to establish a connections between the spectral properties of
K/n and LK , it is sufficient to bound the difference LK,H − LK,n, which is done in the
following theorem (De Vito et al., 2005).

Theorem 1 The operators LK,H and LK,n are Hilbert-Schmidt. Under the above assump-
tion with confidence 1− 2e−τ

‖LK,H − LK,n‖HS ≤
2
√

2κ2√τ√
n

.

Proof We introduce a sequence (ξi)ni=1 of random variables in the space of Hilbert-Schmidt
operators HS(H) by

ξi = 〈Kxi , ·〉Kxi − LK,H.
From (8) follows that E(ξi) = 0. By a direct computation we have that ‖〈·,Kx〉Kx‖2HS =
‖Kx‖4 ≤ κ4. Hence, using (7), ‖LK,H‖HS ≤ κ2 and

‖ξi‖HS ≤ 2κ2, i = 1, . . . , n.
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From inequality (4) we have with probability 1− 2e−τ

‖ 1
n

∑
i

ξi‖HS = ‖LK,H − LK,n‖HS ≤
2
√

2κ2√τ√
n

,

which establishes the result.

As an immediate corollary of Theorem 1 we obtain several concentration results for
eigenvalues and eigenfunctions discussed in subsection 3.2. However before doing that
we provide a discussion of the Nyström extension needed to properly compare the above
operators.

3.1 Extension operators

We will now briefly revisit the Nystorm extension and clarify some connections to the
Singular Value Decomposition (SVD) for operators. Recall that applying SVD to a m× p
matrix A produces a singular system consisting of singular (strictly positive) values (σj)kj=1,
and vectors (uj)mj=1 ∈ Rm and (vj)

p
j=1 ∈ Rp (where k is the rank of A) such that they form

orthonormal basis of Rm and Rp respectively and such that{
A∗Auj = σjuj j = 1, . . . k
A∗Auj = 0 j = k + 1, . . . ,m

and

{
AA∗vj = σjvj j = 1, . . . k
A∗Auj = 0 j = k + 1, . . . , p

It is not hard to see that the matrix A can be written as A = UΣV , where U and V are
matrices obtained by ”stacking” u’s and v’s, and Σ is a m × p matrix having the singular
values σi on the first k-entries on the diagonal (and zero outside), so that Aui = √σjvj
and A∗vj = √σjuj , which is the formulation we will use in this paper. The same formalism
applies more generally to operators and allows us to connect the spectral properties of LK
and LK,H as well as the matrix K and the operator LK,n. The basic idea is that each of
these pairs (as shown in the previous subsection) corresponds to a singular system and thus
share eigenvalues (up to some zero eigenvalues) and have eigenvectors related by a simple
equation. Indeed the following result can obtained considering the SVD decomposition
associated to RH (and proposition 3 considering the SVD decomposition associated to Rn).
The proof of the following proposition can be deduced from the results in (De Vito et al.,
2005, 2006) .

Proposition 2 The following facts hold true.

1. The operators LK and LK,H are positive, self-adjoint and trace class. In particular
both σ(LK) and σ(LK,H) are contained in [0, κ2].

2. The spectra of LK and LK,H are the same, possibly up to the zero, moreover if σ is
a nonzero eigenvalue and u, v associated eigenfunctions of LK and LK,H (normalized
to norm 1 in L2(X, ρ) and H) respectively, then

u(x) =
1
√
σj
v(x) for ρ-almost all x ∈ X

v(·) =
1
√
σj

∫
X
K(·, x)u(x)dρ(x)
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3. Also for all g ∈ L2(X, ρ) and f ∈ H the following decompositions hold:

LKg =
∑
j≥1

σj 〈g, uj〉ρ uj

LK,Hf =
∑
j≥1

σj 〈f, vj〉 vj

the eigenfunctions (uj)j≥1 of LK form an orthonormal basis of kerLK⊥ and the eigen-
functions (vj)j≥1 of LK,H for an orthonormal basis on ker(LK,H)⊥.

Note that the RKHS H does not depend on the measure ρ. If the support of the measure
ρ is only a subset of X (e.g., a finite set of points or a submanifold), then functions in
L2(X, ρ) are only defined on the support of ρ whereas function in H are defined on the
whole space X. The eigenfunctions of LK and LK,H coincide (up-to a scaling factor) on the
support of the measure, and v is an extension of u outside of the support of ρ. Moreover,
the extension/restriction operations preserve both the normalization and orthogonality of
the eigenfunctions. An analogous result relates the matrix K and the operator LK,n .

Proposition 3 The following facts hold:

1. The finite rank operator LK,n is Hilbert-Schmidt and the matrix K are positive, self-
adjoint. In particular the spectrum σ(LK,n) has only finitely many nonzero elements
and is contained in [0, κ2].

2. The spectra of K and LK,n are the same up to the zero, that is, σ(K)\{0} = σ(LK,n)\
{0}. Moreover, if σ̂ is a non zero eigenvalue and û, v̂ are the corresponding eigenvector
and eigenfunction of K/n and LK,n (normalized to norm 1 in Rn and H) respectively,
then

ûi =
1√
σ̂j
v̂(xi)

v̂(·) =
1√
σ̂

(
1√
n

n∑
i=1

K(·, xi)ûi
)

3. Also for all w ∈ Rn and f ∈ H the following decompositions hold:

Kw =
∑
j≥1

σ̂j 〈w, ûj〉 ûj ,

LK,nf =
∑
j≥1

σ̂j 〈f, v̂j〉H v̂j ;

where the sum runs over the nonzero eigenvalues, the family (ûj)j≥1 is an orthonormal
basis in ker{K}⊥ ⊂ Rn and the family (v̂j)j≥1 of LK,n form an orthonormal basis for
the space ker(LK,n)⊥ ⊂ H, where

ker(LK,n) = {f ∈ H | f(xi) = 0 ∀i = 1, . . . , n}
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3.2 Bounds on eigenvalues and spectral projections.

To estimate the variation of the eigenvalues, we need to recall the notion of extended enu-
meration of discrete eigenvalues. We adapt the definition of (Kato, 1987), which is given
for an arbitrary selfadjoint operator, to the compact operators If A is such an operator,
an extended enumeration is a sequence of real numbers where every nonzero eigenvalue of
A appears exactly according to its multiplicity and the other values (if any) are zero. An
enumeration is an extended numeration where any element of the sequence is an isolated
eigenvalue with finite multiplicity. If the sequence is infinite, this last condition is equivalent
to the fact that any element is non zero.

The following result due to Kato (Kato, 1987) is an extension to infinite dimensional
operators of an inequality due to Lidskii for finite rank operator.

Theorem 4 (Kato 1987) Let H be a separable Hilbert space with A, B self-adjoint com-
pact operators. Let (γj)j≥1, be an enumeration of discrete eigenvalues of C, then there exist
extended enumerations (βj)j≥1 and (αj)j≥1 of discrete eigenvalues of B and A respectively
such that, ∑

j≥1

φ(|βj − αj |) ≤ φ(
∑
j≥1

γj).

where φ is any nonnegative convex function with φ(0) = 0.

If A and B are positive operators and φ is an increasing function, it is possible to choose
either (βj)j≥1 or (αj)j≥1 as the decreasing enumeration, and the other sequence as the
decreasing extended enumeration. In particular we have

(
∑
j≥1

|βi − αj |p)1/p ≤ (
∑
j≥1

|γj |p)1/p, p ≥ 1,

so that
(
∑
j≥1

|βj − αj |2)1/2 ≤ ‖B −A‖HS

and
sup
j≥1
|βi − αj | ≤ ‖B −A‖.

The above results together with Theorem 1 immediately yields the following result.

Proposition 5 Let (σj)j≥1 be the decreasing enumeration of discrete eigenvalues for LK,H
and (σ̂j)j≥1 the extended decreasing enumeration of discrete eigenvalues for LK,n. With
confidence 1− 2e−τ ,

sup
j≥1
|σj − σ̂j | ≤ ‖LK,H − LK,n‖ ≤

2
√

2κ2√τ√
n

,

and ∑
j≥1

(σj − σ̂j)2

1/2

≤ ‖LK,H − LK,n‖HS ≤
2
√

2κ2√τ√
n

.
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The following result can be deduced by Theorem 4 with p = 1 and Theorem 1, however a
simpler direct proof is given below.

Proposition 6 Under the assumption of Proposition 5 with confidence 1− 2e−τ

|
∑
j

σj −
∑
j

σ̂j | = |Tr(LK,H)− Tr(LK,n)| ≤ 2
√

2κ2√τ√
n

.

Proof Note that

Tr(LK,n) =
1
n

n∑
i=1

K(xi, xi), and Tr(LK,H) =
∫
X
K(x, x)dρ(x).

Then we can define a sequence (ξi)i=1
n of real-valued random variables by ξi = K(xi, xi)−

Tr(LK,H). Clearly E[ξi] = 0 and |ξi| ≤ 2κ2, i = 1, . . . , n so that Höeffding inequality (3)
yields with confidence 1− 2e−τ∣∣∣∣∣ 1n∑

i

ξi

∣∣∣∣∣ = |Tr(LK,H)− Tr(LK,n)| ≤ 2
√

2κ2√τ√
n

.

To control the spectral projections associated to one or more eigenvalues we need the follow-
ing perturbation result, proof is given in (Zwald and Blanchard, 2006) (see also Theorem 15
in Section 4.3). If A is a positive compact operator such that σ(A) is infinite, for an
N ∈ N, let PAN be the orthogonal projection on the eigenvectors corresponding to the top
N eigenvalues.

Proposition 7 Let A be a compact positive operator. Given an integer N , let δ = αN−αN+1

2 .
If B is another compact positive operator such that ‖A−B‖ ≤ δ

2 , then

‖PBD − PAN‖ ≤
‖A−B‖

δ

where the integer D is such that the dimension of the range of PBD is equal to the dimension
of the range of PAN . If A and B are Hilbert-Schmidt, in the above bound the operator norm
can be replaced by the Hilbert-Schmidt norm.

We note that control of projections associated to simple eigenvalues implies that the corre-
sponding eigenvectors are close since, if u and v are taken to be normalized and such that
〈u, v〉 > 0, then the following inequality holds

‖Pu − Pv‖2HS ≥ 2(1− 〈u, v〉) = ‖u− v‖2H.

As a consequence of the above proposition and Theorem 1, we can derive a probabilistic
bound on eigen-projections. Assume for the sake of simplicity, that the cardinality of σ(LK)
is infinite.

11
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Theorem 8 Let (σj)j≥1 be the decreasing enumeration of discrete eigenvalues for LK,H
and N be an integer and gN = σN − σN+1. Given τ > 0, if the number n of examples
satisfies

gN
2
>

2
√

2κ2√τ√
n

,

then with probability greater than 1− 2e−τ

‖PN − P̂D‖HS ≤
2
√

2κ2√τ
gN
√
n

,

where PN = PLK
N , P̂D = PK

D and the integer D is such that the dimension of the range of
PD is equal to the dimension of the range of PN .

4. Asymmetric Graph Laplacian

In this section we will consider the case of the so-called asymmetric normalized graph
Laplacian, which is the identity matrix minus the transition matrix for the natural random
walk on a graph. In such a random walk, the probability of leaving a vertex along a given
edge is proportional to the weight of that edge. As before, we will be interested in a specific
class of graphs (matrices) associated to data.

Let W : X ×X → R+ be a symmetric continuous (weight) function. Note that we will
not require W to be a positive definite kernel, but only a positive function. A set of data
points x = (x1, . . . , xn) ∈ X defines a weighted undirected graph with the weight matrix W
given by Wij = 1

nW (xi, xj). The (asymmetric) normalized graph Laplacian Lr : Rn → Rn

is an n× n matrix given by
Lr = I−D−1W,

where the degree matrix D is diagonal with Dii = 1
n

∑n
j=1W (xi, xj).

As before X is a subset of Rd endowed with a probability measure ρ and L2(X, ρ) the
space of square integrable functions with respect to ρ.

Let Lr : L2(X, ρ)→ L2(X, ρ) be defined by

Lrf(x) = f(x)−
∫
X

W (x, s)f(s)
m(x)

dρ(s)

where m(x) =
∫
XW (x, s)dρ(s), is called the degree function. We see that when a set

x = (x1, . . . , xn) ∈ X is sampled i.i.d. according to ρ, the matrix Lr is an empirical version
of the operator Lr.

We will view Lr as a perturbation of Lr due to finite sampling and will extend the
approach developed in this paper to relate their spectral properties. Note that the methods
in from the previous section are not directly applicable in this setting since W does not
have to be a positive definite kernel so there is no RKHS associated to it. Moreover, even if
W is positive definite, Lr involves division by a function, and may not be a map from the
RKHS to itself.

To overcome this difficulty in our theoretical analysis, we will rely on an auxiliary RKHS
(which eventually will be taken to be an appropriate Sobolev space). Interestingly enough,

12
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this space will play no role from the algorithmic point of view, but only enters the theoretical
analysis.

More precisely

Assumption 1 (A1) Assume that H is a RKHS with bounded continuous kernel K(x, t)
and, for all x ∈ X, W (x, ·)/m(·) ∈ H, W (x, ·)/mn(·) ∈ H and also that for all x, s ∈ X,
0 < c ≤W (x, s) < C.

Then, we can consider the following extension operators: Lr,H, Lr,H,n, AH, An : H → H

Lr,Hf = f −AHf = f − 1
m(·)

∫
X
〈f,K(x, ·)〉W (x, ·)dρ(x), (9)

Lr,H,nf = f −Anf = f − 1
mn(·)

1
n

n∑
i=1

〈f,K(xi, ·)〉W (xi, ·), (10)

It is possible to show (see the next subsection, where a detailed analysis is given) that
Lr, Lr,H and AH have related eigenvalues and eigenfunctions and that eigenvalues and
eigenfunctions (eigenvectors) of An and Lr are also closely related. In particular we will see
in the following that to relate the spectral properties of Lr and Lr it suffices to control the
deviation AH − An. However, before doing this, we make the above statements precise in
the following subsection.

4.1 Extension Operators

In analogy to Section 3.1 we consider the relation between the operators we want to study
and their extensions. In this case the SVD argument does not apply in a straightforward way
but we can still define a restriction operator Rn : H → Rn, Rn(f)i = f(xi) = 〈K(xi, ·), f〉
for all i = 1, . . . , n, and an extension operator En : Rn → H that is now written as
En(y1, . . . , yn)(·) = 1

n

∑
yiW (·, xi)/mn(·). Clearly the extension operator is no longer the

adjoint of Rn but the connection among the operators Lr to Lr,H,n and An can still be
clarified by means of Rn, En. Indeed it is easy to check that An = RnEn and D−1W =
EnRn. Similarly the infinite sample restrictions and extension operators can be defined to
relate the operators Lr, AH and Lr,H. The next proposition considers such a connection.

Proposition 9 The following facts hold true.

1. The operator AH is Hilbert-Schmidt, the operators Lr and Lr,H are bounded and have
positive eigenvalues.

2. The eigenfunctions of AH and Lr,H are the same and σ(AH) = 1− σ(Lr,H).

3. The spectra of Lr and Lr,H are the same, moreover if σ 6= 1 is an eigenvalue and u, v
associated eigenfunctions of Lr and Lr,H respectively, then

u(x) = v(x) for almost all x ∈ X

v(x) =
1

1− σ

∫
X

W (x, t)
m(x)

u(t) dρ(t)

13
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4. Finally the following decompositions hold

Lr =
∑
j≥1

σjPj + P0, (11)

Lr,H = I −
∑
j≥1

(1− σj)Qj +D, (12)

where {σi | i ≥ i} = σ(Lr) \ {1}, the projections Qj , Pj are the spectral projections
of Lr and Lr,H associated to the eigenvalue σj, P0 is the spectral projection of Lr
associated with the eigenvalue 1, and D is a quasi-nilpotent operator such that kerD =
ker (I − Lr,H) and QjD = DQj = 0 for all j ≥ 1.

The proof of the above result is long and quite technical and can be found in Appendix
A. Note that, with respect to Proposition 3, neither the normalization nor the orthogo-
nality is preserved by the extension/restriction operations. However, one can easily shows
that, if u1, . . . , um is a linearly independent family of eigenfunctions of Lr with eigenvalues
σ1, . . . , σm 6= 1, then the extension v1, . . . , vm is a linearly independent family of eigenfunc-
tions of Lr,H with eigenvalues σ1, . . . , σm 6= 1. Finally, we stress that in item 4 both series
converge in the strong operator topology, however, tough

∑
j≥1 Pi = I − P0, it is not true

that
∑

j≥1Qi converges to I − Q0, where Q0 is the spectral projection of Lr,H associated
to the eigenvalue 1. This is the reason why we need to write the decomposition of Lr,H as
in (12) instead of (11). An analogous result allows us to relate Lr to Lr,H,n and An.

Proposition 10 The following facts hold:

1. The operator An is Hilbert-Schmidt, the matrix Lr and the operator Lr,H,n have non-
negative eigenvalues.

2. The eigenfunctions of An and Lr,H,n are the same and σ(An) = 1− σ(Lr,H,n).

3. The spectra of Lr and Lr,H,n are the same up to the eigenvalue 1, moreover if σ̂ 6= 1
is an eigenvalue and the û, v̂ eigenvector and eigenfunction of Lr and Lr,H,n, then

ûi = v̂(xi)

v̂(x) =
1

1− σ̂

n∑
i=1

W (x, xi)
mn(x)

ûi

where ûi is the i−th component of the eigenvector û.

4. Finally the following decompositions hold

Lr =
m∑
j=1

σ̂jP̂j + P̂0,

Lr,H,n =
m∑
j=1

σ̂jQ̂j + Q̂0 + D̂,

14
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where {σ̂1, . . . σ̂m} = σ(Lr) \ {1}, the projections Qj , Pj are the spectral projections of
Lr and Lr,H,n associated to the eigenvalue σj, P̂0 and Q̂0 are the spectral projections
of Lr and Lr,H,n associated with the eigenvalue 1, and D is a quasi-nilpotent operator
such that ker D̂ = ker (I − Lr,H,n) and Q̂jD̂ = D̂Q̂j = 0 for all j = 1, . . . ,m.

The last decomposition is parallel to the Jordan canonical form for (non-symmetric) matri-
ces. Notice that, since the sum is finite,

∑m
j=1 Q̂j + Q̂0 = I.

4.2 Graph Laplacian Convergence for Smooth Weight Functions

The assumption W (x, ·)/m(·) ∈ H is crucial and is not satisfied in general. For example,
it is not necessarily verified even if W (x, y) is a reproducing kernel. however it holds true
when the RKH space H is a Sobolev space with sufficiently high smoothness degree and
the weight function is also sufficiently smooth. To estimate the deviation of Lr,H to Lr,H,n
we consider this latter situation. We briefly recall some basic definitions as well some
connection between Sobolev spaces and RKHS.

For the sake of simplicity, X can be assumed to be a bounded open subset of Rd or a
compact smooth manifold and ρ a probability measure with density (with respect to the
uniform measure) bounded away from zero. Recall that for α = (α1, . . . , αd) ∈ Nd and
|α| = α1 + · · ·+ αd, we denote with Dαf the (weak) derivative of f on X. For any s ∈ N,
the Sobolev space Hs is defined as the space of square integrable functions having weak
derivatives on X for all |α| = s and such that

‖f‖s = ‖f‖ρ +
∑
|α|=s

‖(Dαf)(x)‖ρ <∞,

the above definition of Hs can be generalized to allow s ∈]0,+∞[.
The Sobolev Embedding theorem ensures2 that, for s > d/2 the inclusion Hs ↪→ C(X)

is well defined and bounded or in other words we have

‖f‖∞ ≤ C1‖f‖s. (13)

Then Hs is a RKHS with reproducing kernel Ks(x, y), so that f(x) = 〈f,Ks
x〉s where

Ks
x := Ks(x, ·). Moreover we also have

sup
x∈X
‖Ks

x‖s = C1 <∞.

In the following we will need the following result from (Burenkov, 1998).

Lemma 11 Let g ∈ Cs(X), where all derivatives are bounded up to order s. The multi-
plication operator Mg : Hs → Hs defined by Mgf(x) = g(x)f(x) is a well defined bounded
operator with norm

‖Mg‖ ≤ a‖g‖s′ <∞, (14)

for some positive constant a.

2. Under mild conditions on the boundary of X for the case of domain in Rd.
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In view of the relation between Lr, Lr,H and AH (and their empirical counterparts) to
relate the spectral properties of Lr and L it suffices to control the deviation AH − An. To
this aim we make the following assumption.

Assumption 2 (A2) Let Hs′ ,Hs be a Sobolev spaces such that s′ > s+ d/2. We assume
that supx∈X‖Wx‖s′ ≤ C2, ‖m−1‖s′ ≤ C3, ‖m−1

n ‖s′ ≤ C4.

The following theorem establishes the desired result.

Theorem 12 If assumption A2 holds, then for some positive constant C with confidence
1− 2e−τ we have

‖AH −An‖HS ≤ C
√
τ√
n

To prove Theorem 12 we need the following preliminary estimates.

Proposition 13 The operators LW,H, LW,n : Hs → Hs defined by

LW,H =
∫
X
〈·,Ks(x, ·)〉sW (x, ·)dρ(x),

LW,n =
1
n

n∑
i=1

〈·,Ks(xi, ·)〉sW (xi, ·),

are Hilbert Schmidt and with confidence 1− 2e−τ

‖LW,H − LW,n‖HS ≤
2
√

2C1C2

√
2τ√

n
.

Proof Note that ‖
〈
·,Ks

xi

〉
s
Wxi‖HS = ‖Ks

xi
‖‖Wxi‖s ≤ C1C2 so that LW,n, LW,H are Hilbert

Schmidt. The random variables (ξi)ni=1 defined by ξi =
〈
·,Ks

xi

〉
s
Wxi −LW,H are zero mean

and bounded by 2C1C2. Applying (4) we have with confidence 1− 2e−τ

‖LW,H − LW,n‖HS ≤
2
√

2C1C2
√
τ√

n
. (15)

Next the multiplication operators defined by the degree functions are considered.

Proposition 14 Let M,Mn : Hs → Hs be defined by Mf(x) = m(x)f(x) and Mnf(x) =
mn(x)f(x). Then M,Mn are linear operators bounded by C2 and with confidence 1− 2e−τ

‖M −Mn‖ ≤
2C2a

√
2τ√

n
.

where is a positive constant.
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Proof It follows from (16), (14) that under assumption A2M,Mn are well defined operators
whose norm is bounded by 2aC2 (we assume a is the same for sake of simplicity).
The random variables (ξi)ni=1, defined by ξi = Wxi−m are zero mean and bounded by 2C2a.
Applying (4) we have with high probability

‖m−mn‖s′ ≤
2aC2

√
2τ√

n
.

It follows from (14) that

‖M −Mn‖ ≤
2aC2

√
2τ√

n
. (16)

Finally, we can combine the above two propositions to get the proof of Theorem 12.
Proof [Proof of Theorem 12] It follows from (16), (14) and by assumption A3 that the
operators M−1,M−1

n : Hs → Hs defined by M−1f(x) = m(x)−1f(x) and M−1
n f(x) =

m−1
n (x)f(x) are linear operators bounded by C3, C4 respectively. Then AH = M−1

n LW,H
and An = M−1LW,n so that we can consider the following decomposition

Lr,H − Lr,H,n = M−1
n LW,n −M−1LW,H

= (M−1
n −M−1)LW,H +M−1

n (LW,n − LW,H)
= M−1

n (M −Mn)M−1LW,H +M−1
n (LK,n − LW,H). (17)

Recalling (1), we consider the Hilbert-Schmidt norm of the above expression. Using the
inequalities (14), (15), (14) and the assumption A3 we see that there is a constant C, such
that

‖M−1
n LK,n −M−1LK,H‖HS ≤ C

√
τ√
n
.

In the next section we discuss the implications of the above results in terms of concen-
tration of eigenvalues and spectral projections.

4.3 Bounds on eigenvalues and spectral projections

Since the operators are no longer self-adjoint the perturbation results in section 3.2 cannot
be used. See the appendix for a short review about spectral theory for compact (not
necessarily self-adjoint) operators. The following theorem is an adaptation of results in
(Anselone, 1971).

Theorem 15 Let A be a compact operator. Given a finite set Λ of non-zero eigenvalues of
A, let Γ be any simple rectifiable closed curve (having positive direction) with Λ inside and
σ(A) \ Λ outside. Let P be the spectral projection associated to Λ, that is,

P =
1

2πi

∫
Γ
(λ−A)−1 dλ,
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and define
δ−1 = sup

λ∈Γ
‖(λ−A)−1‖.

Let B be another compact operator such that

‖B −A‖ ≤ δ2

δ + `(Γ)/2π
< δ,

then the following facts hold true.

1. The curve Γ is a subset of the resolvent of B enclosing a finite set Λ̂ of non-zero
eigenvalues of B;

2. Denoting by P̂ the spectral projection of B associated to Λ̂, then

‖P̂ − P‖ ≤ `(Γ)
2πδ

‖B −A‖
δ − ‖B −A‖

;

3. The dimension of the range of P is equal to the dimension of the range of P̂ .

Moreover, if B −A is a Hilbert-Schmidt operator, then

‖P̂ − P‖HS ≤
`(Γ)
2πδ

‖B −A‖HS
δ − ‖B −A‖

.

We postpone the proof of the above result to Appendix A.
Here we note that, if A is self-adjoint, then spectral theorem ensures that

δ = min
λ∈Γ,σ∈Λ

|λ− σ|.

The above theorem together with the results obtained in the previous section allows to
derive several results.

Proposition 16 Let σ be an eigenvalue of Lr, σ 6= 1, with multiplicity m. For any ε > 0
and τ > 0, there exists an integer n0 and a positive constant R such that, if the number of
examples is greater than n0, with probability greater than 1− 2e−τ ,

1. there are σ̂1, . . . , σ̂m (possibly repeated) eigenvalues of the matrix Lr satisfying

|σ̂i − σ| ≤ ε for all i = 1, . . . ,m.

2. for any normalized eigenvector û ∈ Rn of Lr with eigenvalue σ̂i for some i = 1, . . . ,m,
there exists an eigenfunction u ∈ Hs ⊂ L2(X, ρ) of Lr with eigenvalue σ, satisfying

‖En(û)− u‖s ≤ R
√
τ√
n
,

where En(û)(x) = 1
1−σ̂i

1
mn(x)

1
n

∑n
j=1W (x, xj)ûj.
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Proof We apply Theorem 15 with A = AH, B = An and Γ = {λ ∈ C | |λ− (1− σ)| = ε}.
Since AH is compact and assuming ε small enough, we have that Λ = {1− σ}. Let n0 ∈ N
such that

C
√
τ√
n0

≤ δ2

δ + `(Γ)/2π
where δ−1 = sup

λ∈Γ
‖(λ−AH)−1‖.

By Theorem 12, with probability greater than 1− 2e−τ , for all n ≥ n0

‖An −AH‖ ≤ ‖An −AH‖HS ≤
C
√
τ√
n
≤ δ2

δ + `(Γ)/2π
.

Item 1 of Theorem 15 with Proposition 10 ensures that Λ̂ = {1− σ̂1, . . . , 1− σ̂m}, so that
|σ̂i − σ| < ε for all i = 1, . . . ,m.
Let now û ∈ Rn be a normalized vector such that Lrû = σ̂iû for some i = 1, . . . ,m.
Then from Proposition 10, v̂ = En(û) is an eigenfunction of An with eigenvalue 1 − σ̂,
so that Q̂v̂ = v̂ where Q̂ is the spectral projection of An associated to Λ̂. Let Q be the
spectral projection of AH associated to 1 − σ and define u = Qv̂ ∈ Hs. By definition of
Q, Au = (1 − σ)u. Since Hs ⊂ L2(X, ρ), Proposition 9 ensures that Lru = σu. Item 2 of
Theorem 15 gives that

‖v̂ − u‖s = ‖Q̂v̂ −Qv̂‖s ≤ ‖Q̂−Q‖‖En(û)‖ ≤ ‖En‖
`(Γ)
2πδ

‖An −AH‖
δ − ‖An −AH‖

≤ C2C4
δ + `(Γ)/2π

δ2
‖An −AH‖ ≤ R

τ√
n
,

where R = C2C4
δ+`(Γ)/2π

δ2
C, C is the constant given in Theorem 12, the constants C2, C4

are given in Assumption 2, and we use that ‖An −AH‖ ≤ δ2

δ+`(Γ)/2π .

We add the following remark.

Remark 17 By inspecting the above proof, if AH is selfadjoint, then n0 ≥ C2τ
ε2

provided
that ε < minσ′∈σ(Lr),σ′ 6=σ |σ′ − σ|.

Next we consider convergence of the spectral projections of AH and An associated with
the firstN -eigenvalues. For sake of simplicity, we assume that the cardinality of σ(AH) is
infinite.

Proposition 18 Consider the first N eigenvalues of AH. There exist an integer n0 and a
constant R̂ > 0, depending on N and σ(AH), such that, with confidence 1 − 2e−τ and for
any n ≥ n0,

‖PN − P̂D‖HS ≤
R̂
√
τ√
n
,

where PN , P̂D are the eigenprojections corresponding to the first N eigenvalues of AH and D
eigenvalues of An, and D is such that the sum of the multiplicity of the first D eigenvalues
of An is equal to the sum of the multiplicity of the first N eigenvalues of AH.
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Proof The proof is close to the one of previous proposition. We apply Theorem 15 with
A = AH, B = An and the curve Γ equal to the boundary of the rectangle

{λ ∈ C | αN + αN+1

2
≤ <e(λ) ≤ ‖A‖+ 2, |=m(λ)| ≤ 1},

where αN is the N -largest eigenvalue of AH and αN+1 the N + 1-largest eigenvalue of AH.
Clearly Γ encloses the first N largest eigenvalues of AH, but no other points of σ(A). Define
δ−1 = supλ∈Γ‖(λ−AH)−1‖ and n0 ∈ N such that

C
√
τ√
n0

≤ δ2

δ + `(Γ)/2π
and

C
√
τ√
n0

< 1.

As in the above corollary, with probability greater than 1− 2e−τ , for all n ≥ n0

‖An −AH‖ ≤
δ2

δ + `(Γ)/2π
and ‖An −AH‖ < 1.

The last inequality ensures that the largest eigenvalues of An is smaller than 1 + ‖AH‖, so
that by Theorem 15, the curve Γ encloses the first D-eigenvalues of An, where D is equal
to the sum of the multiplicity of the first N eigenvalues of AH. The proof is finished letting
R̂ = δ+`(Γ)/2π

δ2
C.
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Appendix A. Some Proofs

We start giving the proof of Proposition 9.
Proof [ of Proposition 9]

We first need some preliminary observations. By Assumption 1 the measure ρW = mρ,
has density m w.r.t. ρ, and is equivalent3 to ρ and the spaces L2(X, ρ) and L2(X, ρW )
are the same vector space but they are endowed with different norm/scalar products (so
that functions that are orthogonal in one space might not be orthogonal in the other). In
particular the eigenvalues of Lr are the same if we regarded it as an operator from and to
L2(X, ρW ) or as an operator from and to L2(X, ρ) . Moreover the operator UW : L2(X, ρ)→
L2(X, ρW ) defined by UW f(x) = m(x)−1/2f(x) is unitary.

Note that the operator IK : H → L2(X, ρW ) defined by IKf(x) = 〈f,Kx〉 is linear and
Hilbert-Schmidt since

‖IK‖2HS =
∑
j≥1

‖IKej‖2ρW
=
∫
X

∑
j≥1

〈Kx, ej〉2 dρW (x)

=
∫
X
K(x, x)m(x) dρ(x) ≤ κ2‖m‖∞,

3. Two measures are equivalent if they have the same null sets.

20



On Learning with Integral Operators

where κ2 = supx∈X K(x, x). The operator I∗W : L2(X, ρW )→ H defined by

I∗W f =
∫
X

W (x, ·)
m(·)

f(x)dρ(x)

is linear and bounded since, by Assumption 1, supx,t∈X
W (x,t)
m(x) < +∞. A direct computation

shows that
I∗W IK = AH = I − Lr,H,

and
IKI

∗
W = I − Lr,

where Lr : L2(X, ρW )→ L2(X, ρW ). Both I∗W IK and IKI
∗
W are Hilbert-Schmidt operators

since they are composition of a bounded operator and Hilbert-Schmidt operator. Again by
a direct computation we have that

σ(IKI∗W ) = σ(I∗W IK) = 1− σ(Lr) = 1− σ(Lr,H).

Moreover, let σ 6= 1 and v ∈ H with v 6= 0 such that Lr,Hv = σv. Letting u = IKv, then

Lru = (I − IKI∗W )IKv = IKLrv = σu and I∗Wu = I∗W IKv = (1− σ)v 6= 0,

so that u 6= 0 and u is an eigenfunction of Lr with eigenvalue σ. Similarly we can prove
that if σ 6= 1 and u ∈ L2(X, ρ), u 6= 0 is such that Lru = σu, then v = 1

1−σ I
∗
Wu is different

from zero and is an eigenfunction of Lr,H with eigenvalue σ,
We now show that Lr and Lr,H have positive eigenvalues. Towards this end, we note

that
Lr = UWLsU

−1
W ,

where Ls : L2(X, ρ)→ L2(X, ρ) is defined by

Lsf(s) = f(s)−
∫
X

W (x, s)√
m(x)

√
m(s)

f(x)dρ(x).

The operator Lr is positive since ∀f ∈ L2(X, ρ),

〈Lsf, f〉ρ =
∫
X
|f(x)|2dρ(x)−

∫
X

∫
X

W (x, s)√
m(x)

√
m(s)

f(x)f(s)dρ(x)dρ(s)

=
1
2

∫
X

∫
X

[
|f(x)|2

m(x)
− 2

|f(x)||f(s)|√
m(x)

√
m(s)

− |f(s)|2

m(s)

]
W (x, s)dρ(x)dρ(s)

=
1
2

∫
X

∫
X
W (x, s)

[
|f(x)|√
m(x)

− |f(s)|√
m(s)

]2

> 0,

where we used∫
X
|f(x)|2dρ(x) =

∫
X
|f(x)|2dρ(x)

∫
XW (x, s)dρ(s)∫
XW (x, s)dρ(s)

=
∫
X

∫
X

|f(x)|2

m(x)2
W (x, s)dρ(x)dρ(s).
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Finally we prove that both Lr and Lr,H admits a decomposition in terms of spectral
projections.
Note that since IKI∗W is a self adjoint operator on L2(X, ρW ), it can be decomposed as

IKI
∗
W =

∑
j≥1

(1− σj)Pj

where for all j, Pj : L2(X, ρW )→ L2(X, ρW ) is the spectral projection of IKI∗W associated
to the eigenvalue 1 − σj 6= 0. Moreover note that Pj is also the spectral projection of Lr
associated to the eigenvalue σj 6= 1. By definition Pj satisfies:

P 2
j = Pj ,

P ∗j = Pj ,

PjPi = 0, i 6= j,

PjPker(IKI∗W ) = 0∑
j≥1

Pj = I − Pker(IKI∗W ) = I − P0

where Pker(IKI∗W ) is the projection on the kernel of IKI∗W , that is, the projection P0. More-
over the sum in the last equation converges in the strong operator topology. In particular
we have

IKI
∗
WPj = PjIKI

∗
W = (1− σj)Pj ,

so that
 Lr = I − IKI∗W =

∑
j≥1

σjPj + P0.

Let Qj : H → H be defined by

Qj =
1
σj
I∗WPjIK .

Then from the properties of the projections Pj we have,

Q2
j =

1
(1− σj)2

I∗WPjIKI
∗
WPjIK =

1
1− σj

I∗WPjPjIK = Qj ,

QjQi =
1

(1− σj)(1− σi)
I∗WPjIKI

∗
WPiIK =

1
1− σi

I∗WPjPiIK = 0.

Moreover,∑
j≥1

(1− σj)Qj =
∑
j≥1

(1− σj)
1

1− σj
I∗WPjIK = I∗W (

∑
j≥1

Pj)IK = I∗W IK − I∗WPker(IKI∗W )IK

so that
IKI

∗
W =

∑
j≥1

(1− σj)Qj + I∗WPker(IKI∗W )IK ,
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where again all the sums are to be intended as converging in the strong operator topology.
If we let D = I∗WPker(IKI∗W )IK then

QjD =
1

1− σj
I∗WPjIKI

∗
WPker(IKI∗W ) = I∗WPjPker(IKI∗W ) = 0,

and, similarly DQj = 0. By construction σ(D) = 0, that is, D is a quasi-nilpotent operator.
Equation (12) is now clear as well as the fact that kerD = ker (I − Lr,H).

Proof [Proof of Proposition 10] The proof is the same as the above proposition by replacing
ρ with the empirical measure 1

n

∑n
i=1 δxi.

Next we prove Theorem 15.
Proof [Proof of Theorem 15] We recall the following basic result. Let S and T two bounded
operators acting on H and defined C = I − ST . If ‖C‖ < 1, then T has a bounded inverse
and

T−1 − S = (I − C)−1CS

where we note that ‖I − C‖−1 ≤ 1
1−‖C‖ since ‖C‖ < 1.

Let A and B two compact operators. Let Γ be a compact subset of the resolvent of A
and define

δ−1 = sup
λ∈Γ
‖(λ−A)−1‖,

which is finite since Γ is compact. Assume that

‖B −A‖ < δ,

then for any λ ∈ Γ

‖(λ−A)−1(B −A)‖ ≤ ‖(λ−A)−1‖‖B −A‖ ≤ δ−1‖B −A‖ < 1.

Hence we can apply the above result with S = (λ−A)−1, T = (λ−B), since

C = I − (λ−A)−1(λ−B)−1 = (λ−A)−1(B −A).

It follows that (λ−B) has a bounded inverse and

(λ−B)−1 − (λ−A)−1 = (I − (λ−A)−1(B −A))−1(λ−A)−1(B −A)(λ−A)−1.

In particular, Λ is a subset of the resolvent of B and, if B−A is a Hilbert-Schmidt operator,
so is (λ−B)−1 − (λ−A)−1.

We choose as Λ be a finite set of non-zero eigenvalues. Let Γ be any simple closed curve
with Λ inside and σ(A) \ Λ outside. Let P be the spectral projection associated with Λ,
then

P =
1

2πi

∫
Γ
(λ−A)−1 dλ.
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Applying the above result, it follows that Γ is a subset of the resolvent of B and we let Λ̂
be the subset of σ(B) inside Γ and P̂ the corresponding spectral projection, then

P̂ − P =
1

2πi

∫
Γ
(λ−B)−1 − (λ−A)−1 dλ

=
1

2πi

∫
Γ
(I − (λ−A)−1(B −A))−1(λ−A)−1(B −A)(λ−A)−1 dλ.

It follows that

‖P̂ − P‖ ≤ `(Γ)
2π

δ−2‖B −A‖
1− δ−1‖B −A‖

=
`(Γ)
2πδ

‖B −A‖
δ − ‖B −A‖

.

In particular if ‖B −A‖ ≤ δ2

δ+`(Γ)/2π < δ, ‖P̂ − P‖ ≤ 1 so that the dimension of the range

of P is equal to the dimension of the range of P̂ . It follows that Λ̂ is not empty.
If B−A is a Hilbert-Schmidt operator, we can replace the operator norm with the Hilbert-
Schmidt norm, and the corresponding inequality is a consequence of the fact that the
Hilbert-Schmidt operator are an ideal.

Appendix B. Spectral theorem for non-self-adjoint compact operators

Let A : H → H be a compact operator. The spectrum σ(A) of A is defined as the set of
complex number such that the operator(A−λI) does not admit a bounded inverse, whereas
the complement of σ(A) is called the resolvent and denoted by ρ(A). For any λ ∈ ρ(A),
R(λ) = (A − λI)−1 is the resolvent operator, which is by definition a bounded operator.
We recall the main results about the spectrum of a compact operator, (Kato, 1966)

Proposition 19 The spectrum of a compact operator A is a countable compact subset of
C with no accumulation point different from zero, that is,

σ(A) \ {0} = {λi | i ≥ 1, λi 6= λj if i 6= j}

with limi→∞ λi = 0 if the cardinality of σ(A) is infinite. For any i ≥ 1, λi is an eigenvalue
of A, that is, there exists a nonzero vector u ∈ H such that Au = λiu. Let Γi be a rectifiable
closed simple curve (with positive direction) enclosing λi, but no other points of σ(A), then
the operator defined by

Pλi
=

1
2πi

∫
Γi

(λI −A)−1dλ

satisfies

Pλi
Pλj

= δijPλi
and (A− λi)Pλi

= Dλi
for all i, j ≥ 1,

where Dλi
is a nilpotent operator such that Pλi

Dλi
= Dλi

Pλi
= Dλi

. In particular the
dimension of the range of Pλi

is always finite.
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We notice that Pλi
is a projection onto a finite dimensional space Hλi

, which is left invariant
by T . A nonzero vector u belongs to Hλi

if and only if there exists an integer m ≤ dimHλi

such that (A − λ)mu = 0, that is, u is a generalized eigenvector of A. However, if A is
symmetric, for all i ≥ 1, λi ∈ R, Pλi

is an orthogonal projection and Dλi
= 0 and it holds

that
A =

∑
i≥1

λiPλi

where the series converges in operator norm. Moreover, if H is infinite dimensional, λ = 0
is always in σ(A), but it can be or not an eigenvalue of A.

If A be a compact operator with σ(A) ⊂ [0, ‖A‖], we introduce the following notation.
Denoted by pA the cardinality of σ(A) \ {0} and given an integer 1 ≤ N ≤ pA, let λ1 >
λ2 > . . . , λN > 0 be the first N nonzero eigenvalues of A, sorted in a decreasing way. We
denote by PAN the spectral projection onto all the generalized eigenvectors corresponding
to the eigenvalues λ1, . . . , λN . The range of PAN is a finite-dimensional vector space, whose
dimension is the sum of the algebraic multiplicity of the first N eigenvalues. Moreover

PAN =
N∑
j=1

Pλj
=

1
2πi

∫
Γ
(λI −A)−1dλ

where Γ is a rectifiable closed simple curve (with positive direction) enclosing λ1, . . . , λN ,
but no other points of σ(A).

References

Philip M. Anselone. Collectively compact operator approximation theory and applications to
integral equations. Prentice-Hall Inc., Englewood Cliffs, N. J., 1971. With an appendix
by Joel Davis, Prentice-Hall Series in Automatic Computation.

N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.

Frank Bauer, Sergei Pereverzev, and Lorenzo Rosasco. On regularization algorithms in
learning theory. J. Complexity, 23(1):52–72, 2007.

M. Belkin. Problems of Learning on Manifolds. PhD thesis, 2003.

Mikhail Belkin and Partha Niyogi. Convergence of laplacian eigenmaps. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems
19, pages 129–136. MIT Press, Cambridge, MA, 2007.

G Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel principal compo-
nent analysis. Machine Learning, 0885-6125 (Print) 1573-0565 (Online), 2006.

V.I. Burenkov. Sobolev spaces on domains. B. G. Teubuer, Stuttgart-Leipzig, 1998.

E. De Vito, L. Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone. Learning from
examples as an inverse problem. Journal of Machine Learning Research, 6:883–904, May
2005.

25



Rosasco, Belkin, De Vito

Ernesto De Vito, Lorenzo Rosasco, and Andrea Caponnetto. Discretization error analysis
for Tikhonov regularization. Anal. Appl. (Singap.), 4(1):81–99, 2006.

E. Gine’ and V. Koltchinskii. Empirical graph laplacian approximation of laplace-beltrami
operators: Large sample results. High Dimensional Probability, 51:238259, 2006.

M. Hein. Uniform convergence of adaptive graph-based regularization. pages 50–64, New
York, 2006. Springer.

M. Hein, J. Audibert, and U. von Luxburg. From graphs to manifolds - weak and strong
pointwise consistency of graph laplacians. pages 470–485, 2005. Student Paper Award.

T. Kato. Perturbation theory for linear operators. Springer, Berlin, 1966.

T. Kato. Variation of discrete spectra. Commun. Math. Phys., III:501–504, 1987.

V. Koltchinskii. Asymptotics of spectral projections of some random matrices approximat-
ing integral operators. Progress in Probabilty, 43, 1998.

V. Koltchinskii and E. Gine’. Random matrix approximation of spectra of integral op-
erators. Bernoulli, 6:113–167, 2000.

S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, 2004.

S. Lang. Real and Functional Analysis. Springer, New York, 1993.

Ulrike Von Luxburg, Olivier Bousquet, and Mikhail Belkin. On the convergence of spectral
clustering on random samples: the normalized case. In Proceedings of the 17th Annual
Conference on Learning Theory (COLT 2004, pages 457–471. Springer, 2004.

S. Mendelson and A. Pajor. Ellipsoid approximation with random vectors. pages 429–433,
New York, 2005. Springer.

S. Mendelson and A. Pajor. On singular values of matrices with independent rows. Bernoulli,
12(5):761–773, 2006.

I. Pinelis. An approach to inequalities for the distributions of infinite-dimensional martin-
gales. Probability in Banach Spaces, 8, Proceedings of the 8th International Conference,
pages 128–134, 1992.

J. Shawe-Taylor, N. Cristianini, and J. Kandola. On the concentration of spectral prop-
erties. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems 14, pages 511–517, Cambridge, MA, 2002. MIT Press.

John Shawe-Taylor, Chris Williams, Nello Cristianini, and Jaz Kandola. On
the eigenspectrum of the gram matrix and the generalisation error of kernel
pca. to appear in IEEE Transactions on Information Theory, 51, 2004. URL
http://eprints.ecs.soton.ac.uk/9779/.

A. Singer. From graph to manifold laplacian: The convergence rate. Appl. Comput. Harmon.
Anal.,, 21:128–134, 2006.

26



On Learning with Integral Operators

S. Smale and D.X. Zhou. Learning theory estimates via integral operators and their ap-
proximations. submitted, 2005. retrievable at http://www.tti-c.org/smale.html.

S. Smale and D.X. Zhou. Geometry of probability spaces. preprint, 2008. retrievable at
http://www.tti-c.org/smale.html.

Ulrike von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral cluster-
ing. Ann. Statist., 36(2):555–586, 2008.

Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning.
Constr. Approx., 26(2):289–315, 2007.

L. Zwald and G. Blanchard. On the convergence of eigenspaces in kernel principal compo-
nent analysis. In NIPS, 2006.

27


