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Abstract

A large number of learning algorithms, for example, spédistering, kernel Principal Compo-

nents Analysis and many manifold methods are based on estinedgenvalues and eigenfunctions
of operators defined by a similarity function or a kernelggivmpirical data. Thus for the analysis
of algorithms, it is an important problem to be able to assesgjuality of such approximations.

The contribution of our paper is two-fold:

1. We use a technique based on a concentration inequalityifoert spaces to provide new much
simplified proofs for a number of results in spectral appraadion.

2. Using these methods we provide several new results fonatitg spectral properties of the

graph Laplacian operator extending and strengthenindtsesom von Luxburg et al. (2008).

Keywords: spectral convergence, empirical operators, learningyiateoperators, perturbation
methods

1. Introduction

A broad variety of methods for machine learning and data analysis froncipainComponents
Analysis (PCA) to Kernel PCA, Laplacian-based spectral clusteridgm@amifold methods, rely on
estimating eigenvalues and eigenvectors of certain data-dependent malnigaany cases these
matrices can be interpreted as empirical versions of underlying integeedimps or closely related
objects, such as continuous Laplacian operators. Thus establishingatioms between empirical
operators and their continuous counterparts is essential to understdinelge algorithms. In this
paper, we propose a method for analyzing empirical operators bassmhoantration inequalities
in Hilbert spaces. This technique together with perturbation theory redidtgsaus to derive a
number of results on spectral convergence in an exceptionally simpléMeayote that the approach
using concentration inequalities in a Hilbert space has already beendpugeéul for analyzing
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RosAscq BELKIN AND DE VITO

supervised kernel algorithms, see De Vito et al. (2005b), Yao et &7j2@Bauer et al. (2007) and
Smale and Zhou (2007). Here we develop on this approach to provideikedeand comprehensive
study of perturbation results for empirical estimates of integral operadosgthas empirical graph
Laplacians.

In recent years several works started considering these conreeclioa first study of this prob-
lem appeared in Koltchinskii and Gr(2000) and Koltchinskii (1998), where the authors consider
integral operators defined by a kernel. In Koltchinskii and&3{R000) the authors study the rela-
tion between the spectrum of an integral operator with respect to a plitpdlstribution and its
(modified) empirical counterpart in the frameworklfstatistics. In particular they prove that the
¢, distance between the two (ordered) spectra goes to zero under thepéissuthat the kernel is
symmetric and square integrable. Moreover, under some stronger casditabes of convergence
and distributional limit theorems are obtained. The results are based orgaralitedue to Lidskii
and to Wielandt for finite dimensional matrices and the Marcinkiewicz law oflargmbers. In
Koltchinskii (1998) similar results were obtained for convergence ofrdigections and, using the
triangle inequality, for spectral projections. These investigations wereénceed in Mendelson and
Pajor (2005) and Mendelson and Pajor (2006), where it was showrutider the assumption that
the kernel is of positive type, the problem of eigenvalue convergesthgces to the study of how
the random operatCﬁZi'LlXi ® X; deviates from its averadé/X @ X]|, with respect to the operator
norm, whereX, Xy, ..., Xy are i.i.d¢, random vectors. The result is based on a symmetrization tech-
nique and on the control of a suitable Radamacher complexity.

The above studies are related to the problem of consistency of kerdet&idered in Shawe-
Taylor et al. (2002) and Shawe-Taylor et al. (2005) and refined ialdet al. (2004) and Zwald and
Blanchard (2006). In particular, Shawe-Taylor et al. (2002) aralv@hTaylor et al. (2005) study
the deviation of the sum of the all but the largkstigenvalues of the empirical matrix to its mean
using McDiarmid inequality. The above result is improved in Zwald et al. (R0d¥re fast rates
are provided by means of a localized Rademacher complexities apprdahesults in Zwald and
Blanchard (2006) are a development of the results in Koltchinskii (1998)ng a new perturba-
tion result the authors study directly the convergence of the whole stdbspanned by the firgt
eigenvectors and are able to show that only the gap betwednathek + 1 eigenvalue affects the
estimate. All the above results hold for symmetric, positive definite kernels.

A second related series of works considered convergence of thi baplacian in various set-
tings , see for example, Belkin (2003), Lafon (2004), Belkin and NiagD5), Hein et al. (2005),
Hein (2006), Singer (2006) and Girand Koltchinskii (2006). These papers discuss convergence
of the graph Laplacian directly to the Laplace-Beltrami operator. Corwergyof the normalized
graph Laplacian applied to a fixed smooth function on the manifold is discusbtein et al. (2005),
Singer (2006) and Lafon (2004). Results showing uniform convexgever some suitable class of
test functions are presented in Hein (2006) andé@ind Koltchinskii (2006). Finally, convergence
of eigenvalues and eigenfunctions for the case of the uniform distribwiég@shown in Belkin and
Niyogi (2007).

Unlike these works, where the kernel function is chosen adaptivelgrdiipg on the number
of points, we will be primarily interested in convergence of the graph Léglao its continuous
(population) counterpart for ixedweight function. Von Luxburg et al. (2004) study the conver-
gence of the second eigenvalue which is relevant in spectral clustenbtgms. These results are
extended in von Luxburg et al. (2008), where operators are defindue space of continuous func-
tions. The analysis is performed in the context of perturbation theory ia@aspaces and bounds
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on individual eigenfunctions are derived. The problem of out-ofyda extension is considered
via a Nystbm approximation argument. By working in Banach spaces the authorsohivenild
requirements for the weight function defining the graph Laplacian, atribe pf having to do a
fairly complicated analysis.

Our contribution is twofold. In the first part of the paper, we assume tleakemelK is sym-
metric and positive definite. We start considering the problem of outtopaextension of the
kernel matrix and discuss a singular value decomposition perspectivgsirdbid-like extensions.
More precisely, we show that a finite rank (extension) operator actingeReproducing Kernel
Hilbert space/ defined byK can be naturally associated with the empirical kernel matrix: the two
operators have same eigenvalues and related eigenvectors/eigemfsintlie kernel matrix and its
extension can be seen as compositions of suitable restriction and extepsramoos that are ex-
plicitly defined by the kernel. A similar result holds true for the asymptotic integrerator, whose
restriction to# is a Hilbert-Schmidt operator. We can use concentration inequalities foa-ope
tor valued random variables and perturbation results to derive coatientresults for eigenvalues
(taking into account the multiplicity), as well as for the sums of eigenvalueseter, using a per-
turbation result for spectral projections, we derive finite sample bofordbe deviation between
the spectral projection associated with fhlargest eigenvalues. We recover several known results
with simplified proofs, and derive new results.

In the second part of the paper, we study the convergence of the asgonoemalized graph
Laplacian to its continuous counterpart. To this aim we consider a fixedy@sitmmetric weight
function satisfying some smoothness conditions. These assumptions allovintredinice a suit-
able intermediate Reproducing Kernel Hilbert sp&fewhich is, in fact, a Sobolev space. We
describe explicitly restriction and extension operators and introduce arfinikeoperator with spec-
tral properties related to those of the graph Laplacian. Again we cortbigléaw of large numbers
for operator-valued random variables to derive concentration refsulesmpirical operators. We
study behavior of eigenvalues as well as the deviation of the corresgpagettral projections
with respect to the Hilbert-Schmidt norm. To obtain explicit estimates for spgrtpections we
generalize the perturbation result in Zwald and Blanchard (2006) tordtrahon-self-adjoint op-
erators. From a technical point the main difficulty in studying the asymmetrghgraplacian is
that we no longer assume the weight function to be positive definite so thatitheo longer a
natural Reproducing Kernel Hilbert space space associated with itisloabe we have to deal with
non-self-adjoint operators and the functional analysis becomes mangédv Comparing to von
Luxburg et al. (2008), we note that the RKHS replaces the Banach space of continuous func-
tions. Assuming some regularity assumption on the weight functions we céwitetkye Hilbert
space structure to obtain more explicit results. Among other things, weedsplicit convergence
rates for a large class of weight functions. Finally we note that for the oapositive definite
weight functions results similar to those presented here have been ingeyplgrderived by Smale
and Zhou (2009).

The paper is organized as follows. We start by introducing the negessdhematical objects
in Section 2. We recall some facts about the properties of linear openatditbert spaces, such
as their spectral theory and some perturbation results, and discuss coceattation inequalities
in Hilbert spaces. This technical summary section aims at making this pap&osgdined and
provide the reader with a (hopefully useful) overview of the needed toulgesults. In Section 3,
we study the spectral properties of kernel matrices generated frafomadata. We study concen-
tration of operators obtained by an out-of-sample extension using thelKerrction and obtain
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considerably simplified derivations of several existing results on ei§iggsand eigenfunctions.
We expect that these techniques will be useful in analyzing algorithmériregspectral conver-
gence. In fact, in Section 4, we apply these methods to prove convergéreigenvalues and
eigenvectors of the asymmetric graph Laplacian defined by a fixed weigttidn. We refine the
results in von Luxburg et al. (2008), which, to the best of our knowdedlgthe only other paper
considering this problem so far.

2. Notation and Preliminaries

In this section we will discuss various preliminary results necessary fduttreer development.

2.1 Operator Theory

We first recall some basic notions in operator theory (see, for exangug, 1993). In the following
we letA: # — H be a (linear) bounded operator, whefteis a complex (separable) Hilbert space
with scalar product(norm) (-,-) (||-|) and(ej);>1 a Hilbert basis in#{. We often use the notation
j > 1to denote a sequence or a sum from frteherep can be infinite. The set of bounded operators
on % is a Banach space with respect to the operator rjghir), ,, = [|All = sup _. [|Af]|. If Aisa
bounded operator, we I&¢ be its adjoint, which is a bounded operator wjt"|| = ||A]|.
A bounded operatoh is Hilbert-Schmidt ify j~1||Agj || < o for some (any) Hilbert basig;);>1.
The space of Hilbert-Schmidt operators is also a Hilbert space (a fachwiill be a key in our
development) endowed with the scalar prod{&B),,s = ¥ ; (Ag;,Be;) and we denote by-||ns
the corresponding norm. In particular, Hilbert-Schmidt operators argpaot.

A closely related notion is that of iace classoperator. We say that a bounded operator

is trace class, ifzjzl<\/A*Aej,ej> < o for some (any) Hilbert basig;);>1 (whereyvA*A'is the
square root of the positive operatitA defined by spectral theorem (see, for example, Lang, 1993).
In particular, T(A) = ¥ ;-1 (Agj, j) < « and T(A) is called the trace oA. The space of trace class

operators is a Banach space endowed with the no&irc = Tr(v/A*A). Trace class operators
are also Hilbert Schmidt (hence compact). The following inequalities relatdiffieeent operator
norms:

1Al < Allns < [[Allre.

It can also be shown that for any Hilbert-Schmidt operédtand bounded operat@&we have

IAB||Hs
IBAllHs

IA][1sIBII, (1)

<
< [IBII[IAlns.

Remark 1 If the context is clear we will simply denote the norm and the scalar proodt||
and(-,-) respectively. However, we will add a subscript when comparing normiferent spaces.
When A is a bounded operat#\|| always denotes the operator norm.

2.2 Spectral Theory for Compact Operators

Recall that the spectrum of a matikcan be defined as the set of eigenvalNesC, s.t. detK —
Al) =0, or, equivalently, such that — K does not have a (bounded) inverse. This definition can be

1. We choose the convention for which the scalar product is linear in tafgument.
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generalized to operators. LAt H — # be a bounded operator, we say that C belongs to the
spectrumo(A), if (A—Al) does not have a bounded inverse. For Aga(A), R(A) = (A—Al)~1
is theresolvent operatqmwhich is by definition a bounded operatorAlfs a compact operator, then
o(A) \ {0} consists of a countable family of isolated points with finite multipli¢giy| > [Ap| > - --
and eitheio(A) is finite or lim,_. A, = 0 (see, for example, Lang, 1993).
If the bounded operatdk is self-adjoint A = A*, analogous to a hermitian matrix in the finite-
dimensional case), the eigenvalues are real. Each eigervalgan associatezigenspacevhich
is the closed subspace of all eigenvectors with eigenvalu& key result, known as th8pectral
Theoremensures that .
A=3$ AP,
i; iPy

whereP, is theorthogonal projection operatoonto the eigenspace associated with Moreover,
it can be shown that the projectidy can be written explicitly in terms of the resolvent operator.
Specifically, we have the following remarkable equality:

1 -
P = 5rg [0 —A) oy,

where the integral can be taken over any closed simple rectifiable Eutv€ (with positive di-
rection) containing\ and no other eigenvalue. We note that while an integral of an operdtgeva
function may seem unfamiliar, it is defined along the same lines as an integmalartiinary real-
valued function. Despite the initial technicality, the above equation allowsafaimpler analysis
of eigenprojections than other seemingly more direct methods.

This analysis can be extended to operators, which are not self-adjadbtaim a decomposition
parallel to the Jordan canonical form for matrices. To avoid overloadittisgsection, we postpone
the precise technical statements for that case to the Appendix B.

Remark 2 Though in manifold and spectral learning we typically work with real valuedtions,
in this paper we will consider complex vector spaces to be able to use ceetuits from the
spectral theory of (possibly non self-adjoint) operators. Howevergiféproducing kernel and the
weight function are both real valued, as usually is the case in machineifegnve will show that
all functions of interest are real valued as well.

2.3 Reproducing Kernel Hilbert Space (RKHS)

Let X be a subset dRY. A Reproducing Kernel Hilbert spade a Hilbert space of functions
f : X — C, such that all the evaluation functionals are bounded, that is

f(x) <C|lf|| for some constar@,.

It can be shown that there is a unique conjugate symmetric positive defimitel kanctionK :
X x X — C, calledreproducing kernelassociated witt*/ and the following reproducing property
holds

f(X) = <f7KX>a

whereK, := K(-,X). Itis also well known (Aronszajn, 1950) that any conjugate symmetriitipes
definite kerneK uniquely defines a reproducing kernel Hilbert space whose repigliernel is
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K. We will assume that the kernel is continuous and bounded, and we set

K = supK(Xx, x).

XeX

As a consequence, the elementstbfare bounded continuous functions, the spates separable
and is compactly embedded ¢ X) with the compact-open topology (Aronszajn, 1950).

Remark 3 The set X can be taken to be any locally compact separable metric spddbaas-
sumption about continuity can be weakened. However, the above sattisigylify some technical
considerations, in particular in Sectioh2 where Sobolev spaces are considered.

2.4 Concentration Inequalities in Hilbert spaces

We recall that i€y, . .., &, are independent (real-valued) random variables with zero mean ehd su
that|| <C, i=1,...,n, then Hoeffding inequality ensures th&t> 0,

P[ iizi

If we sett = %22 then we can express the above inequality saying that with probability a(etst
confidence) - 2e7 T,

_ne?
>e| <2 2,

n CV2t
= ZLEi < : (2)
n.< Vvn
Similarly if &;,...,&, are zero mean independent random variables with values in a separable c
plex Hilbert space and such thiggi|| <C, i=1,...,n, then the same inequality holds with the

absolute value replaced by the norm in the Hilbert space, that is, the fofdyainnd

ii;Ei

holds true with probability at least-12e™" (Pinelis, 1992).

()

Cvar
E

Remark 4 In the cited reference the concentration inequa(Byis stated for real Hilbert spaces.
However, a complex Hilbert spackcan be viewed as a real vector space with the scalar product
givenby(f,g),. = ((f,9) 4 +(9, f)4) /2, sothal| f[[ . = | f| s Thislast equality implies th§8)
holds also for complex Hilbert spaces.

2.5 Perturbation Theory

First we recall some results on perturbation of eigenvalues and eigetioiust About eigenvalues,
we need to recall the notion ektended enumeratiaf discrete eigenvalues. We adapt the definition
of Kato (1987), which is given for an arbitrary self-adjoint operatoithe compact operators. Let
A: H — H be a compact operator, an extended enumeration is a sequence afmiera where
every nonzero eigenvalue &f appears as many times as its multiplicity and the other values (if
any) are zero. An enumeration is an extended numeration where any élgtigs sequence is an
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isolated eigenvalue with finite multiplicity. If the sequence is infinite, this last comdgiequivalent
to the fact that any element is nonzero.

The following result due to Kato (1987) is an extension to infinite dimensiopatadors of an
inequality due to Lidskii for finite rank operator.

Theorem 5 (Kato 1987) Let H be a separable Hilbert space with A, B self-adjoint compact op-
erators. Let(yj);j>1, be an enumeration of discrete eigenvalues of & then there exist extended
enumerationgf3j);j>1 and(a;);>1 of discrete eigenvalues of B and A respectively such that,

D OB —aj) < > aly)),

=21 =21

whereg@is any nonnegative convex function wii0) = 0.

By choosingp(t) = |t

P, p > 1, the above inequality becomes

> B —aP < |yl

21 121

Letting p= 2 and recalling thaB — All&s = ¥ ;-1 ly;|?, it follows that

S 18— i < [B-Als
=1

Moreover, since i« (¥ j=1|yj|P)Y/P = sup-1yj| = [[B—AJ|, we have that

sup|B; —aj| < [[B—A].
j>1

Given an integeN, let my be the sum of the multiplicities of the firbt nonzero top eigenvalues
of A, it is possible to prove that the sequenc¢es);~1 and(3j);>1 in the above proposition can be
chosen in such a way that

O1>022>...2>0p > 0] j > my,
BL>PB2>...>Bmy > Bj j>m.

However in general we need to consider extended enumerations, whinbtanecessarily decreas-
ing sequence, in order to take into account the kernel spacésaofl B, which are potentially
infinite dimensional vector spaces (also see the remark after Theoreddtanl987).

To control the spectral projections associated with one or more eigeswa@ireed the follow-
ing perturbation result due to Zwald and Blanchard (2006) (see alsor&@ime20 in Section 4.3).
Let Abe a positive compact operator such that the number of eigenvaluesitgir@ivenN € N, let
P{ be the orthogonal projection on the eigenvectors corresponding to thediginct eigenvalues
071 >...>dy andop.y1 the next one.

Proposition 6 Let A be a compact positive operator. Given an integer N, if B is anothmipact
positive operator such thaA — B|| < S then

2
PE_P{l<———|A-B
1P NH_GN_GNHII |
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where the integer D is such that the dimension of the rangefaé Rqual to the dimension of the
range of . If A and B are Hilbert-Schmidt, in the above bound the operator normbeareplaced
by the Hilbert-Schmidt norm.

We note that a bound on the projections associated with simple eigenvalues ithatidse corre-
sponding eigenvectors are close since,ahdv are taken to be normalized and such that) > 0,
then the following inequality holds

1Py PylIEs = 2(1— (u,v)?) > 2(1— (u,v)) = [|lu— V3.

3. Integral Operators Defined by a Reproducing Kernel

Let X be a subset dk¥ andK : X x X — C be a reproducing kernel satisfying the assumptions stated
in Section 2.3. Lep be a probability measure ok and denote by.?(X,p) the space of square
integrable (complex) functions with nor{if ||g =(f,f)p=Jx | f(x)|?dp(x). SinceK(x,x) <K by
assumption, the corresponding integral operator L?(X,p) — L2(X,p)

(Leh)0 = [ Kx9)T(5)dp(s)

is a bounded operator.

Suppose we are now given a set of pots (X, ...,X,) sampled i.i.d. according to. Many
problems in statistical data analysis and machine learning deal with the empeicel k x n-
matrix K given byKjj = %K(Xi,)(j). The question we want to discuss is to which extent we can
use the kernel matriK (and the corresponding eigenvalues, eigenvectors) to estimpatnd the
corresponding eigenvalues, eigenfunctions). Answering this qudstiomportant as it guarantees
that the computable empirical proxy is sufficiently close to the ideal infinite salmgte
The first difficulty in relating_x andK is that they operate on different spaces. By defawltis an
operator orl.?(X,p), while K is a finite dimensional matrix. To overcome this difficulty we #ét
be the RKHS associated withand define the operators,, Ty : H{ — # given by

Ty = [ (K Kdp(0), )
T = i.zl(,Kxi)Kxi. (5)

Note thafT,, is the integral operator with kernklwith range and domaif rather than in.?(X, p).
The reason for writing it in this seemingly complicated form is to make the paraitliel(®) clear.
To justify the “extension operator” in (5), consider the natural “restnictiperator? R, : H — C",
Rof = (f(x1),..., f(x)). Itis not hard to check that the adjoint opera®jr. C" — A can be written
asR(y1,...,¥n) = £ 511 ViKy. Indeed, we see that

(Ra(Y1,--+,¥n)s F)ar = ((Y1,- -+, ¥n), Raf)em
1

— ii_iyif(xi) = niiyKKm £) s,

2. Ry is also called sampling or evaluation operator. We prefer to call itrés&iction operatorsinceR,f is the
restriction of the functiorf : X — R to the set of point$xy,...,Xn}.
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whereC" is endowed with Intimes the canonical scalar product. Thus, we observelthatR;R,
is the composition of the restriction operator and its adjoint. On the other harnttianatrix
K we have thaK = R\R}, regarded as operator dl". Similarly, if R, denotes the inclusion
H o L2(X,p), Ty = R;/Rs andLg = RyR’ .

In the next subsection, we discuss a parallel with the Singular Value Dexsitiop for matrices
and show thal,, andLk have the same eigenvalues (possibly, up to some zero eigenvalues) and
the corresponding eigenfunctions are closely related. A similar relatiors hald,, andK. Thus
to establish a connection between the spectral propertigsasfdLy, it is sufficient to bound the
differenceT,, — Ty, which is done in the following theorem (De Vito et al., 2005b). While the
proof can be found in De Vito et al. (2005b), we provide it for complessrend to emphasize its
simplicity.

Theorem 7 The operators J; and T, are Hilbert-Schmidt. Under the above assumption with con-
fidencel —2e7 T
ITor = TallHs < ——=—

NG

Proof We introduce a sequenc¢g )’ ; of random variables in the Hilbert space of Hilbert-Schmidt
operators by

2v/2k\/T
=

&i = (- K) Ky = Ty
From (4) follows thaE (&;) = 0. By a direct computation we have thgt, Ky) Ky||3s = ||Kx[|* < K2.
Hence, using (4)] T4 |lns < K and

I&lus< 2k, i=1,...,n
From inequality (3) we have with probability-12e~"
V2T
\/ﬁ Y

which establishes the result. [ |

1 n
Hﬁ ZE‘HHS: [Tz — TallHs <
i=

As a direct consequence of Theorem 7 we obtain several concentiiagiqualities for eigenval-
ues and eigenfunctions. These results will be discussed in subsectiandtBey are based on an
interpretation of the Nystim extension in terms of Singular Value Decomposition of the empirical
operator and its mean, as explained in the following subsection.

3.1 Extension Operators

We will now briefly revisit the Nysiim extension and clarify some connections to the Singular
Value Decomposition (SVD) for operators. Recall that applying SVD po<am matrix A produces
a singular systentonsisting of singular (strictly positive) value(sfj)'j‘:1 with k being the rank of
A, vectors(u;j)iL, € C™ and(v,-)l'-o:1 € CP such that they form orthonormal bases@¥ and CP
respectively, and

A*AUJ' = 0OjUuj j = 1,...k

A'Ay; =0 j=k+1,....m

AAvi=ajv; j=1,...k

AAvj =0 i=k+1....p.
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It is not hard to see that the matrxcan be written aé = VZ1/2U*, whereU andV are matrices
obtained by "stackingl’'s andv’'s in the columns, and is ap x mmatrix having the singular values
o; on the firstk-entries on the diagonal (and zero outside), so that

Auj = ,/0}Vj j=1...k

Au; =0 j=k+1,....m
A'vj=,/0ju; j=1,...k
A'vj=0 j=k+1,....p,

which is the formulation we will use in this paper. The same formalism applies neorerglly to
operators and allows us to connect the spectral propertieg @ind T,, as well as the matrixX
and the operatof,. The basic idea is that each of these pairs (as shown in the previowssabs
corresponds to a singular system and thus share eigenvalues (up teesore@envalues) and have
eigenvectors related by a simple equation. Indeed the following resultecahthined considering
the SVD decomposition associated Wl (and Proposition 9 considering the SVD decomposition
associated withR,). The proof of the following proposition can be deduced from the results
De Vito et al. (2005b) and De Vito et al. (200%).

Proposition 8 The following facts hold true.

1. The operators k and T,, are positive, self-adjoint and trace class. In particular bottiLg )
ando (T, ) are contained irf0, K].

2. The spectra of . and T,, are the same, possibly up to the zeroo i a nonzero eigenvalue
and uv are the associated eigenfunctions @f and T,, (normalized to norni in L?(X, p)
and ) respectively, then

ux) = i'v(x) for p-almost all xe X,

VO
v(x) = \/%/)(K(x,s)u(s)dp(s) forall x € X.

3. The following decompositions hold:
Lkg = 3 0j(g,uj),u; geL?(X,p),
>1

T}[f = ZO’j<f,Vj>Vj fE,‘]'[,
121

where the eigenfunctior(sij) ;1 of Lx form an orthonormal basis dferLx - and the eigen-
functions(v;)j>1 of T,, form an orthonormal basis for kéF,)*.

If K is real-valued, both the familie@l;);>1 and (vj);>1 can be chosen as real valued functions.

3. In De Vito et al. (2005b) and De Vito et al. (2006) the results are stateckél kernels, however the proof does not
change ifK is complex valued. Moreover, K is real and_ is regarded as integral operator on the space of square
integrable complex functions, one can easily check that the eigenvaiuipesitive and, ifiis an eigenfunction with
eigenvaluas > 0, then the complex conjugaliés also an eigenfunction with the same eigenvalue, so that it is always
possible to choose all the eigenfunctions to be real valued.
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Note that the RKHSH does not depend on the measprédf the support of the measupeis only a
subset oX (e.g., a finite set of points or a submanifold), then functiorls’iiX, p) are only defined
on the support gp whereas functions iti{ are defined on the whole spaceisThe eigenfunctions
of Lx andT,, coincide (up-to a scaling factor) on the support of the measurey enanextensiof
of u outside of the support g§. Moreover, the extension/restriction operations preserve both the
normalization and orthogonality of the eigenfunctions. In a slightly diffecentext Coifman and
Lafon (2006) showed the connection between the Nystmethod and the set of eigenfunctions of
Lk, which are calledgeometric harmonicsThe main difference between our result and the cited
paper is that we consider all the eigenfunctions, whereas Coifman diad indroduce a threshold
on the spectrum to ensure stability since they do not consider a sampliregprec

An analogous result relates the matikixand the operatdr, .

Proposition 9 The following facts hold.

1. The operator Jis of finite rank, self-adjoint and positive, whereas the mafriis conjugate
symmetric and semi-positive definite. In particular the specwyi) has only finitely many
nonzero elements and is containedQrk|.

2. The spectra df and T, are the same up to the zero, thatagK ) \ {0} = o(Tn) \ {0}. More-
over, ifG is a nonzero eigenvalue adigv are the corresponding eigenvector and eigenfunction
of K and T, (normalized to norni in C" and #) respectively, then

= %(ﬂxl),...,vw)),

0 = L (lskd

where(' is the i-th component of the eigenvectar

3. The following decompositions hold:

Kw = we C",

M =~
(e}
~~
=
<
~
<

= |l
ol
(e}

T.f = j<f,\7j>}[\7j fE}[,

1

where k is the rank of K and both sums run over the nonzero eigenyéhessmily(d;);>1
is an orthonormal basis fdter{K }*- ¢ C" and the family(V;) ;1 of T, forms an orthonormal
basis for the spacker(T,)* C #, where

ker(Th) ={feH | f(x)=0Vi=1,...,n}.

If K is real-valued, both the familie@];);>1 and (V;);>1 can be chosen as real valued vectors and
functions, respectively.

4. However, the extension tsivial in the pointsx € X whereK(x,x) = 0, as it happens if the kernel is compactly
supported.
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Note that in this sectiohgk, T andT, are self-adjoint operators adl is a conjugate symmetric
matrix. If K is real, we can directly work with real Hilbert spaces. However sinceeres momplex
vector spaces in Section 4 for consistency we stated the above resutisniptex reproducing
kernels.

3.2 Bounds on Eigenvalues and Spectral Projections

Using Theorem 7, we are able to bound £halistance between the spectruni@fand the spectrum
of K.

Proposition 10 There exist an extended enumeration) ;-1 of discrete eigenvalues fokland an
extended enumeratidid;);>1 of discrete eigenvalues fét such that

with confidence greater thah—2e™". In particular sup [0} — Gj| < ij'%ﬁ.

Proof By Proposition 8, an extended enumeratjon) ;-1 of discrete eigenvalues fbk is also an
extended enumeratidi;);>1 of discrete eigenvalues fd,, and a similar relation holds fé¢ and
Tn by Proposition 9. Theorem 5 with= T, andB = T,, gives that

> (o] —6))% < || Tor —Tallis
=

for a suitable extended enumeratidiog)>1, (6;);>1 of discrete eigenvalues far andT;, respec-
tively. Theorem 7 provides us with the claimed bound. |

Theorem 4.2 and the following corollaries of Koltchinskii and &i{2000) provide the same con-
vergence rate (in expectation) under a different setting (the k&rnglonly symmetric, but with
some assumption on the decay of the eigenvaluésg bf

The following result can be deduced by Theorem 5 wite- 1 and Theorem 7, however a
simpler direct proof is given below.

Proposition 11 Under the assumption of Proposition 10 with confidehee2e !

2v/2k\/T

IJ;(GJ —Gj)| = [Tr(Ty) = Tr(Tn)| < N

Proof Note that
1 n
T = S Kex),  and Ty = [ Kexjdnk).
n.& X

Then we can define a sequerniégi_1" of real-valued random variables By= K (X, ;) — Tr(Ty).
ClearlyE[§i] = 0 and|§;| < 2k, i=1,...,n so that Hoeffding inequality (2) yields with confidence
1-2eT

iééi' =|Tr(Ty) = Tr(Tp)| < M\Z/Kﬁ\ﬁ
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From Proposition 6 and Theorem 7 we directly derive the probabilistic dhaam the eigen-
projections given by Zwald and Blanchard (2006)—their proof is basedounded difference
inequality for real random variables—see also De Vito et al. (2005a)theosake of simplicity, in
the following result we assume that the number of eigenvalukg o infinite.

Theorem 12 Given an integer N, let m be the sum of the multiplicities of the first N distinct-eigen
values of I, so that
012022 ...20m> Omyi,

and Ry be the orthogonal projection from?[X,p) onto the span of the corresponding eigenfunc-
tions. Let k be the rank df, and(; ..., 0k the eigenvectors corresponding to the nonzero eigen-
values oK in a decreasing order. Denote ..., 0 € H C L?(X,p) the corresponding Nysim
extension given by itehof Proposition9.

Givent > 0, if the number n of examples satisfies

. 128k2t
(Om—Om¢1)?’
then )
32K-T
(I —Py)V v —_— 6
zn J||p+1;+l||PNJ||p_( o ®)

with probability greater tharl — 2e™".

Proof Let (u;);>1 be an orthonormal family of eigenfunctionslaf with strictly positive eigenval-
ues. Without loss of generality, we can assumetihat ., uy, are the eigenfunctions with eigenval-
uesay,0z,...,0m. Let(vj)j>1 the corresponding family of eigenfunctions Df; given by Propo-
sition 8 and complete to an orthonormal basigiaf Complete also the family; ~. .,V to an other
orthonormal basis of{.

Apply Proposition 6 withA = T,, andB = T, by taking into account Theorem 7. With high
probability

8K?1 _ 8n—amu1

(Om—Omi1)2n — 2

T T2
[P —P¥gs <

I

where
m m
PU =% (£.v)) ) PT”ZZi<f,\71>y{\71
=1 =

and the last bound follows from the condition enin particular,Gm > Gy 1.
Since both(vi);>1 and(¥);>1 are orthonormal bases féf

IP™ PR = 5 [(PTvi —PTovi,0)),,[2

i,]>1
il 2 2
= Z ‘<VI7VJ>5-[‘ Zl‘<vl7vj>}[|
j=li>mt+1 J>m+1|
m
ZZ z |<VI7VJ y{’ + z Zl|<vlvvl>}[‘
J=li>m+1 j>mdi
T}[Vi;éo
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Since the sum onis with respect to the eigenfunctionsBf; with nonzero eigenvalue, the Mercer
theorem implies thafvi, V;) .- = (u,Vj),,. Finally, observe that

3 I 1),l7 = 1R
S )2 1w, P =0 - A3

i>m+1 i>m+1
Ty Vi#0 Lk ui#0

where we used that k&, C kerT,, so thatvj" € kerLg* with probability 1. |

The first term on the left side of inequality (6) is the projection of the veqtacs spanned by the
Nystrom extension of the first top eigenvectors of the empirical métronto the orthogonal of the
vector spacéVly spanned by the first top eigenfunctions of the integral opetatothe second term

is the projection of the vector space spanned by the Rgstxtensions of the other eigenvectors
of K onto My. Both differences are ih?(X,p) norm. A similar result is given in Zwald and
Blanchard (2006), however, the role of the Ngstrextensions is not considered—they study only
the operatord,, andT, (with our notation). Another result similar to ours is independently given
in Smale and Zhou (2009), where the authors considered a single eiggafuwith multiplicity 1.

4. Asymmetric Graph Laplacian

In this section we will consider the case of the so-called asymmetric normaliaptl gaplacian,
which is the identity matrix minus the transition matrix for the natural random walk graph.
In such a random walk, the probability of leaving a vertex along a giveye ésl proportional to
the weight of that edge. As before, we will be interested in a specific oflageaphs (matrices)
associated with data.

LetW: X x X — R be a symmetric continuous weight function such that

0<c<W(xs) <C xse X. (7)

Note that we will not requir&V to be positive definite, but positive.
A set of data point = (x1,...,X,) € X defines a weighted undirected graph with the weight
matrix W given byW;; = %W(xi,xj). The (asymmetric) normalized graph LaplaclanC" — C"
is ann x n matrix given by
L=1-D"1w,

where thedegreematrix D is diagonal with
1 n n
Dii = J;W(Xi,xj) = ;lwip

which is invertible sinc® > cl by (7).

As in the previous sectionX is a subset ofRY endowed with a probability measupeand
L?(X,p) is the space of square integrable complex functions with respect to

Let m(x) = [x W(x,s)dp(s) be thedegree functionbound (7) implies that the operatéyr :
L2(X,p) = L2(X,p)

Wi =109~ [ VEIE go(q),

x  m(x)
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is well defined and continuous. The fact thetis bounded away from zero is essential to control
the behavior of the degree functiom however it might be possible to replace this condition with
the requirement thah(x) > ¢, to consider localized weight functions.

We see that when a set= (xy,...,%,) € X is sampled i.i.d. according t, the matrixL is an
empirical version of the operatdr. We will view L as a perturbation di. due to finite sampling
and will extend the approach developed in this paper to relate their speipsrties. Note that
the methods described in the previous section are not directly applicable bettiigy sincaV is
not necessarily positive definite, so there is no RKHS associated with itedyer, even ifV is
positive definite]L involves division by a function, and may not be a map from the RKHS to itself.
To overcome this difficulty in our theoretical analysis, we will rely on an auxilRKHS # with
reproducing kerneK. Interestingly enough, this space will play no role from the algorithmic point
of view, but only enters the theoretical analysis.

To state the properties gf we define the following functions

Ke:X —C  Ky(t) =K(t,x),
We: X =R W(t) =W(t,x),

1n
M X —R ngﬁZlV\éq,
i=

wherem, is the empirical counterpart of the functiomand, in particulanm,(x;) = Dj;.

To proceed we need the following assumption, which postulates that theiokusc
Wy, Wi/m, W /m, belong to#. However it is important to note that fav sufficiently smooth (as we
expect it to be in most applications) these conditions can be satisfied bgingg6 to be a Sobolev
space of sufficiently high degree. This is made precise in the Section 4. A¢semption 2).

Assumption 1 Given a continuous weight function W satisfy{iy we assume there exists a RKHS
H with bounded continuous kernel K such that

1 1
V\&7 EV\AQ EV\& € }[
1
= <
| =Wl < C,
for all x € X.
Assumption 1 allows to define the following bounded operatoysA,, : H — H
1
Ao = [ Ko T Wkdp(),
Ly = |—Ay

and their empirical counterpaits,, A, : H — H

1n 1
Ay = Hizl('vKXaﬁ[ﬁ\Mm
L, = |—-An

Next result will show thafL,,, A, andLL have related eigenvalues and eigenfunctions and that
eigenvalues and eigenfunctions (eigenvectors)pf, andL are also closely related. In particular
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we will see in the following that to relate the spectral propertiek @hdL it suffices to control
the deviationA,, — A,. However, before doing this, we make the above statements precise in the

following subsection.

4.1 Extension Operators

In analogy to Section 3.1 we consider the relation between the operatorantéonstudy and their
extensions. We define the restriction oper&or # — C" and the extension operatéy : C" — H

as
Raf = (f(x1),.. f(xn)) feH,

En(yl, 7Yn Zyl | (ylv"'7yn) € (Cn'
Clearly the extension operator is no longer the adjoiiR,dbut the connection among the operators
L to L, andA, can still be clarified by means 8, andE,. Indeed it is easy to check that = EnR,

andD~ W = R,E,. Similarly the infinite sample restrictions and extension operators can bediefine
to relate the operatoiis, A, andL,,. The next proposition considers such a connection.

Proposition 13 The following facts hold true.

1. The operator 4 is Hilbert-Schmidt, the operatoiis andLL,, are bounded and have positive
eigenvalues.

2. Giveno € [0,+[, 0 € (L, ) if and only if1 — o € (A4 ), with the same eigenfunction.

3. The spectra di. andL,, are the same up to the eigenvallelf o # 1 is an eigenvalue and
u,v associated eigenfunctionslbfandL,, respectively, then

ux) = v(x) for almost all xe X,

v(x) = - 0/ th dp(t) for all x € X.

4. Finally the following decompositions hold

L = O'ij—l—Po, (8)
0j#1
Ly = |- 5 (1-0))Q+D, 9)
=1
O'j;él

where the projections QP; are the spectral projections df and L, associated with the
eigenvalueoj, Ry is the spectral projection di. associated with the eigenvaldgand D is a
quasi-nilpotent operator such therD = ker(l —LL,,) and QD = DQ; = Oforall j > 1.

Furthermore, all the eigenfunctions can be chosen as real-valued.
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The proof of the above result is long and quite technical and can be faukppendix A. Note that,
with respect to Proposition 9, neither the normalization nor the orthogonalityegepred by the
extension/restriction operations, so that we are free to normalizi the factor ¥(1— o), instead
of 1/4/1— o as in Proposition 8. One can easily show thatyif...,un, is a linearly independent
family of eigenfunctions ofl. with eigenvaluess,...,om # 1, then the extensiow,... vy is a
linearly independent family of eigenfunctions bf,, with eigenvaluesy,...,om # 1. Finally,
we stress that in item 4 both series converge in the strong operator topblmggver, though
Yi>1P =1—Py, itis not true thaty ;~, Q; converges td — Qo, whereQp is the spectral projection
of L, associated with the eigenvalue 1. This is the reason why we need to writecthrapiasition
of L, asin (9) instead of (8). An analogous result allows us to rélatel,, andA,.

Proposition 14 The following facts hold true.

1. The operator Ais Hilbert-Schmidt, the matrik and the operatok.,, have positive eigenval-
ues.

2. Giveno € [0,+[, 0 € o(Ly) if and only if1— o € o(An), with the same eigenfunction.

3. The spectra of andL,, are the same up to the eigenvalliemoreover ifG # 1 is an eigen-
value and thdi, V eigenvector and eigenfunctionlofandLLy, then

V(x) =

where(' is the i-th component of the eigenvectar

4. Finally the following decompositions hold

L = Za'jﬁj-l-lﬁo,
L, = Zajéj+60+f)a

where the prOJectlons QQP; are the spectral projections df and L, associated with the
elgenvalueJ,, Py and Qg are the spectral projections &f andL, associated with the eigen-
valuel, andD is a quasi-nilpotent operator such thegrD = ker(l — L) andQ,D DQJ
Oforall j with &j # 1.
The last decomposition is parallel to the Jordan canonical form for ggamnetric) matrices. No-
tice that, since the sum is finit§, j>1 Q; + Qo =1.

Gj#1

4.2 Graph Laplacian Convergence for Smooth Weight Functions

If the weight functionW is sufficiently differentiable, we can choose the RKKSto be a suitable
Sobolev space. For the sake of simplicity, we assumeXhsaita bounded open subset®f with a
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niceboundary’ Givens € N, the Sobolev spac#s = #5(X) is
H={f € L3(X,dx) | D*f € L3(X,dx) V|a| = s},

whereD®f is the (weak) derivative of with respect to the multi-indem = (ay,...,0q) € N9,

la| = a4 ---+ag andL?(X,dx) is the space of square integrable complex functions with respect
to the Lebesgue measure (Burenkov, 1998). The sgpéds a separable Hilbert space with respect
to the scalar product

(f.9) s = (f.Q2xan + > (D, D) 2(x ay) -

la|=s

LetC5(X) be the set of continuous bounded functions such that all the (startaiehtives of order
s exists and are continuous bounded functions. The Spgeé) is a Banach space with respect to
the norm

[ llcs = SupfOI] -+ > sud(DF)(x)].

|G\:SX€X

SinceX is bounded, it is clear th&j(X) C #*and|| f ||, < d|| f||cs, whered is a suitable constant
depending only ors. A sort of converse also holds, which will be crucial in our approase
Corollary 21 of Burenkov (1998). Létm € N such that —m > % then

H' CRX) [ fllep < d'l[ ]l (10)

whered’ is a constant depending only bandm.

From Eq (10) with = sandm= 0, we see that the Sobolev spaké, wheres= |d/2] + 1, is
a RKHS with a continuofsreal valued bounded kernigP.

We are ready to state our assumption on the weight function, which impliesnfesisun 1.

Assumption 2 We assume that WX x X — R is a positive, symmetric function such that
W(x,t)>c>0 vx,t e X, (11)
W e CH (X x X). (12)

As we will see, condition (12) quantifies the regularitydive need to use Sobolev spaces as RKHS
and, as usual, it critically depends on the dimension of the input spacalseeRemark 19 below.
By inspecting our proofs, (12) can be replaced by the more techninditemnW e #9+1(X x X).

As a consequence of Assumption 2, we are able to control the deviationfodm L.

Theorem 15 Under the conditions of Assumption 2, with confidehee2e * we have

T
Lo~ Lurlhs = Ay~ Aollus < €Y7, (13)

where||-||nsis the Hilbert-Schimdt norm of an operator in the Sobolev spd€avith s= [d/2] +1,
and C is a suitable constant.

5. The conditions, like quasi-resolved boundary open set, are vergitat and we refer to Burenkov (1998) for the
precise assumptions, see Section 4.3 of the cited reference.
6. The kerneKS® is continuous oiX x X since the embedding o into C,(X) is compact, see Schwartz (1964).
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To prove this result we need some preliminary lemmas. In the follo@imgll be a constant that
could change from one statement to the other. The first result showé&dhamption 2 implies
Assumption 1 with#f = #5 and that the multiplicative operators defined by the degree function, or
its empirical estimate, are bounded.

Lemma 16 There exists a suitable constantQ0 such that
1. forall x e X, Wi, :W, =Wy € H4 C 7% and || 2W 4= < C;
2. the multiplicative operators M, : 4 — % defined by
Mf =mf, Mnf =mnf, fea®
are bounded invertible operators satisfying

-1 -1
IM]5 555 M7 g5 g 1Ml s s 1M Lo s < C,s

||M - M”Hy{stg{s < CHm* m'1||}[d+1,
where||-||, <, iS the operator norm of an operator in the Sobolev spae

Proof LetC; = ||W”cg+1(xXX)- Givenx € X, clearlyW € CZ*1(X) and, by standard results of
differential calculus, botimandm, Cg“(X) with

||\M<||cg+1(x)a ||m||cg+1(x)a ||mang+1(x) <Ci.
Leibniz rule for the quotient with bound (11) gives thgind - € CetL(X) with

1 1
15 gl g < e

whereC; is independent both amand on the sampléx, . .., X,). Claim in item 1 is a consequence
of the fact that pointwise multiplication is a continuous bilinear magCfn*(X), andCi™(X) ¢
HIL C 75 with

[ 1l < Call llsgess < Call Fllgaa

We claim that ifg € C2*1(X) and f € #3, thengf € #°and

195155 < (10l 50 [ ] 575-
Indeed, Lemma 15 of Section 4 of Burenkov (1998) with- p, = 2, p1 = o, | =sandn=d
ensures that

19 F s < Ml 9llcsx) {1575
Eq. (10) withm=sandl =d+1>d/2+s=d/2+[d/2] + 1 provides us with the claimed bound.

The content of item 2. is a consequence of the above resultgwitim, my, n%, % andm—m,
respectively, satisfyingg|| ;a1 <Camax{Cy,C} = Cs.
The constan€ will be the maximum among the constafs [ |

Next lemma shows that the integral operator of kekllednd its empirical counterpart are Hilbert-
Schmidt operators and it bounds their difference.
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Lemma 17 The operators |y 4, Lw,n : #° — #* defined by

L = [ (Ko Whelp(0),

12 s
Lwn = = i;<., KXi>57.[s\M(17
are Hilbert-Schmidt. Furthermore, with confiderite 2e™*
VT
[Lw,sr — Lwnllns < C%.

for a suitable constant C.

Proof Note that||(-,Kg ), W [[Hs = [IKS [l s/s|[W [| s < Cy for a suitable constar@;, which is
finite by item 1 of Lemma 16 and the fact thé&tis bounded. Henckw n, Ly 4 are Hilbert Schmidt
operators or#{>. The random variable;)" ; defined byg; = (., KZ>ﬂSVWi — Lw, % taking value
in the Hilbert space of Hilbert-Schmidt operators, are zero mean anddbdurpplying (3) we
have with confidence 4 2e™*

VT

Ibw.s = Lwalls < €7, (14)
for a suitable constar@. |
We then consider multiplication operators defined by the degree functions.

Lemma 18 With confidencd —2e !

IM—M <cC

SIS

n||g{5,y{s

for a suitable constant C.

Proof Item 2 of Lemma 16 ensures thdd and M, are bounded operators ofs with
IM—=Mnll,s s < Cal[m—mq|5a:1.

The random variable&;);! ,, defined by§; =W, —me H9+1 are zero mean and bounded. Apply-
ing (3) we have with high probability

CovT
\/ﬁ )

so that the claim is proved with a suitable choiceGor |

[Im— |l ga-2 <

Remark 19 In the above lemma we need to controHm, in a suitable Hilbert space in order
to use Hoeffding inequality(3). Lemmal5 of Burenkov (1998) ensures th@l — Myl s IS
bounded by|m—my||cs(x). In order to control it with a Sobolev norm by means(@b), we need

to require that m- m, € #' with | > s4-d/2. Furthermore, the requirement tha{® is a RKHS
with continuous bounded kernel implies that §l/2 so that |> d. Hence a natural requirement on
the weight function is that We #' (X), which is closely related to Assumption 2 with the minimal

choice |I=d + 1.
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Finally, we can combine the above two lemmas to get the proof of Theorem 15.
Proof [Proof of Theorem 15] By Lemma 16, bot andM,, are invertible operators and

Ay = M_le,m An =M, L,
so that we can consider the following decomposition

A=Ay = Mylwn—M Ly (15)
= Myt =M YLy + My H(Lwn — L)
= M (M =Mp)M Ly +
+ My H(Lwn — L )-

By taking the Hilbert-Schmidt norm of the above expression and usingiti Xlwe bounds provided
by Lemma 16, we get

1A= Asrllis < C?IM — M|l s s [ILw sl s+ CllLwin — L s I Hs.

The concentration inequalities (17) and (18) give (13), possibly meidgfthe constart. |

In the next section we discuss the implications of the above result in termsoécation of
eigenvalues and spectral projections.

4.3 Bounds on Eigenvalues and Spectral Projections

Since the operators are no longer self-adjoint the perturbation resukgiim®3.2 cannot be used.
See Appendix B for a short review about spectral theory for compatinecessarily self-adjoint)
operators. The following theorem is an adaptation of results in Anseld@i&lL),Lcompare with
Theorem 4.21.

Theorem 20 Let A be a compact operator. Given a finite 8edf non-zero eigenvalues of A, et
be any simple rectifiable closed curve (having positive direction) Avitiside ando(A) \ /A outside.
Let P be the spectral projection associated withthat is,

_ 1 -1
P_2Tu./r()\—A) dA,

and define
&t =sud|A-A) 1.
Ael

Let B be another compact operator such that

52

A< =
1B=Al= iy an =

where/(I") is the length of ", then the following facts hold true.

1. The curvéd is a subset of the resolvent set of B enclosing a finitA eénon-zero eigenvalues
of B;
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2. Denoting byP the spectral projection of B associated withthen

(r) _[B-Al

P_P| < :
I = 21 60— ||B— A

3. The dimension of the range of P is equal to the dimension of the rariRje of

Moreover, if B- A is a Hilbert-Schmidt operator, then

5 (r) [B—Alns
P—P|lus < :
IP=Plns< o 5 A]

We postpone the proof of the above result to Appendix A.
We note that, ifA is self-adjoint, then the spectral theorem ensures that

0= min [A—al.
AeloeN

The above theorem together with the results obtained in the previous sdiiesnta derive several
results.

Proposition 21 If Assumption 2 holds, let be an eigenvalue df, o # 1, with multiplicity m. For
anye > 0andt > 0, there exists an integeprand a positive constant C such that, if the number of
examples is greater tharyywith probability greater tharl — 2e7 T,

1. there aredy, ..., G (possibly repeated) eigenvalues of the maltrigatisfying

|6i—o|<e foralli=1,...,m.

2. for any normalized eigenvectére C" of L with eigenvalues; for some i=1,...,m, there
exists an eigenfunction& 45 C L2(X, p) of L with eigenvalues, satisfying

N
ﬁv

wherev is the Nystdm extension of the vectdrgiven in itenB of Proposition14.

[0—ull,e < C

If L, is self-adjoint, then g > 4%2; provided that < ming gL, ) o'40 |0’ — 0.

Proof Theorem 15 gives that, with probability greater than2e™T,

Cl\ﬁ &
—Al < —A < < - 16
A0 —Agl] < [|An—Agyllns < N IR (16)
for all n > ng, where C; is a suitable constantng € N is such thatc\lff < %28 and

51 = sup..r||(A —As)~Y||. Under these conditions, we apply Theorem 20 wits A/, B = A,
andl ={A € C||A—(1—-o0)| =€}, so that/(I") = 2re. SinceA,, is compact and assumirggmall
enough, we have th#at = {1— o}.

Item 1 of Theorem 20 with Proposition 14 ensures lAkla:t{l —01,...,1—0m}, sothalg; —o| <€
foralli=1,...,m. Let nowd e C" be a normalized vector such thal = 6;( for somei =1,...,m.
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Proposition 14 ensures thais"an eigenfunction of\, with eigenvalue 1 &, so thatQv = ¥ where
Qis the spectral projection &, associated with\. Let Q be the spectral projection &, associ-
ated with 1- o and definas = QU € #5. By definition ofQ, A;;u = (1—o)u. SinceH® C L2(X,p),
Proposition 13 ensures thati = ou. Item 2 of Theorem 20 gives that

. Ao o A - o € 1A= Ayllns
(19— ull s = [|QI— Q| 55 < |Q = Qlls s 1Vl 55 < 19 55

33— ||An—AyllHs
< C C16+8£,
1-(o+¢) ~ & n

where we use (16), the fact thgh, — Ay/|| < % and

C 7}

. 1 1
V|| s < ——= SUp|— s = ~ <
s < g SO W = 12 < 2

with C;, being the constant in item 1 of Lemma 16.
If A, is self-adjoint, the spectral theorem ensures dhate, so thatng > 4%2;. [ |

Next we consider convergence of the spectral projections,pfand A, associated with the first
N-eigenvalues. For sake of simplicity, we assume that the cardinalday/f) is infinite.

Proposition 22 Consider the first N eigenvalues of,A There exist an integerprand a constant
C > 0, depending on N and(A,/), such that, with confidence— 2e and for any n> n,

Cvt

R

where R, Py are the eigenprojections corresponding to the first N eigenvaluesg,adrid D eigen-
values of 4, and D is such that the sum of the multiplicity of the first D eigenvaluesg of dgual
to the sum of the multiplicity of the first N eigenvalues gf A

IPn —Pollns <

Proof The proofis close to the one of the previous proposition. We apply Thed@ewithA= A/,
B = A, and the curvé equal to the boundary of the rectangle

{reC| < Oe(A) < [|All+2, [Dm(A)| <1},

ON + ON+1
2
whereay is theN-largest eigenvalue &, anday1 theN + 1-largest eigenvalue &,,. Clearly
[ encloses the firsN largest eigenvalues ok,;, but no other points ot(A). Defined ! =

sup.r|l(A — Ay) 71| andng € N such that

2
C1vT < 0 and Cuvt <1

Vg = 8t i(r)/2n N

whereC; is the constant in Theorem 15. As in the above corollary, with probabilitstgrehan
1-2e T foralln>ng

2

0
A A < Aan .
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The last inequality ensures that the largest eigenvaluég of smaller than % ||A,||, so that by
Theorem 20, the curvie encloses the firdD-eigenvalues oh,, whereD is equal to the sum of the

multiplicity of the firstN eigenvalues oA,,. The proof is finished letting = >*0)/2"c, . ]
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Appendix A. Some Proofs

We start giving the proof of Proposition 13.
Proof [ of Proposition 13]

We first need a preliminary fact. The functionis bounded from above and below by a positive
constant by (7), so that the measpig = mp, having densitymw.r.t. p, is equivalentto p. This
implies that the spacds?(X,p) andL?(X,pw) are the same vector space and the corresponding
norm are equivalent. In this proof, we regdtdas an operator frorh?(X,pw) into L2(X, pw),
observing that its eigenvalues and eigenfunctions are the same as thakigsand eigenfunctions
of L, viewed as an operator frol?(X, p) into L?(X, p)—however, functions that are orthogonal in
L?(X,pw) in general are not orthogonal it (X, p).

Note that the operatdk : H — L?(X,pw) defined byl f(x) = (f,Ky) is linear and Hilbert-
Schmidt since

IeliBs= 3 el = [ 3 (Kue)® dow
=1

=1
:/XK(x,x)m(x) dp(x) < K||M|e,

wherek = sup..x K(x,X). The operatoky, : L?(X,pw) — # defined by

ot = [ Wef(xdp(Y

is linear and bounded since, by Assumption 1

1 1 C
il < - < < — .
H/Xmef(X)dp(X)Hﬂ_/XHmVVxllﬂlf(X)\dp(X) <Clflle =< ZlIfllow
A direct computation shows that
Wik =Agr=1—=Ly,  0(Ay)=1-0(Ly)

and
Ikl =1-L, o(lkly) =1—0o(L).

7. Two measures are equivalent if they have the same null sets.
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Bothly Ik andiklyy, are Hilbert-Schmidt operators since they are composition of a boundeatope
and Hilbert-Schmidt operator. Moreover, etz 1 andv € # with v # 0 such thafL,v = ov.
Lettingu = Ikv, then

Lu= (I —Ikly)lkv=IkLyv=0u and lyu=Ilylkv=(1—0)v#DO0,

so thatu # 0 andu is an eigenfunction of. with eigenvalueo. Similarly we can prove that i # 1
andu € L2(X,p),u # 0 is such thafLu = ou, thenv = flol\’,*vu is different from zero and is an
eigenfunction ofL,, with eigenvalue.

We now show thal. is a positive operator ob?(X, py), so that bott. andL,, have positive
eigenvalues. Indeed, léte L?(X, pw),

[ 1seminem - [ ([ 55 9p(s) ) Tmidp(9

— 2// 2W X, S) — Z\N(X’S)f(x)@‘i"f(S)‘ZW(X,S)] do(9)dp(¥)
- E/X/XW(X’ 9)|f(x) — f(s)|*dp(s)dp(x) > 0,

where we used tha/(x,s) = W(s,x) > 0 andm(x) = [, W(x,s)dp(s). SinceW is real valued, it
follows that we can always choose the eigenfunctionk ak real valued, and, as a consequence,
the eigenfunctions dL,,.

Finally we prove that botfi. andLL,, admit a decomposition in terms of spectral projections—
we stress that the spectral projectioriLoi orthogonal irL?(X, pw ), but not inL?(X, p).
SinceL is a positive operator ob?(X,pw), it is self-adjoint, as well a&y;, hence the spectral

theorem gives
IKIJV = Z(l_cj)Pj
>

where for all j, P; : L2(X,pw) — L2(X,pw) is the spectral projection dfl\;, associated to the
eigenvalue - oj # 0. Moreover note thal; is also the spectral projection bfassociated to the
eigenvalueg; # 1. By definitionP; satisfies:

(L, f),,

P* = P theadjointisin?(X,pw),
Pi IDker(IKI\,*\,) = 0

Pi = I =Reny =1—P
%J er(lkly)

wherePery1;,) IS the projection on the kernel ttlyy, that is, the projectioR,. Moreover the sum
in the Iast equation converges in the strong operator topology. In partigalhave

|K|\7vpj = PjIKI\jﬁv = (1—O'j>Pj,
so that

L=1—Igly= cP,+P0
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LetQ; : H — H be defined by

1
Qj=1— jlk.-
Then from the properties of the projectlolﬂjswe have,
1 1
2 * * *
Qf = 7(1_0_j)zlij|K|WPj|K = 1=g, WPiPilk = Qi
1 1 S

Moreover,

1
Zl l 0] Z 1 Gj IWPJIK — IW Z IK — IWIK - IWPkerIKI* IK
1=

i>1 J i>1

so that
Z l 0] QJ"’IWPkerIKIW |K7

>

where again all the sums are to be intended as converging in the strorgasgepology. If we let
D= IJVPker(IKIJ\,)IK then

1 * * *
QiD= ﬁlijlﬂwpker(lmv) = lwPjPer(ikiz) =0,
—0j
and, similarlyDQ; = 0. By constructioro(D) = 0, that is,D is a quasi-nilpotent operator. Equa-
tion (9) is now clear as well as the fact that Kee ker(l —L,). [ |

Proof [Proof of Proposition 14] The proof is the same as the above proposkicegtacingp with
the empirical measurgy ! ; 3. u

Next we prove Theorem 20.
Proof [Proof of Theorem 20] We recall the following basic result. [Sand T two bounded
operators acting oft{ and definedC = | — ST. If ||C|| < 1, thenT has a bounded inverse and

T1l-s=0-c)lcs

where we note thafl —C||~* < HCH since||C|| < 1, see Proposition 1.2 of Anselone (1971).
Let A andB two compact operators. L&t be a compact subset of the resolvent sef@nd
define
& =sup|(A-A)"1,
Ael
which is finite sincd™ is compact and the resolvent operafdr- A) 1 is norm continuous (see, for
example, Anselone, 1971). Assume that

IB—Al <3,
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then foranyA e I’

A=A B-A) <A -A)B-Al <5 HB-Al <1

Hence we can apply the above result witk: (A —A)~1, T = (A — B), since
C=I-A-A"1A-B) =A-A"1B-A).
It follows that (A — B) has a bounded inverse and
A=B) (A=A T=(1-A-A)}B-A)IA-A) 1B-AN-A) L
In particular,l” is a subset of the resolvent set®and, ifB— Ais a Hilbert-Schmidt operator, so is
A-B)t-A-A"L

Let A be a finite set of non-zero eigenvalues. Cdbe any simple closed curve with inside
ando(A) \ A outside. LetP be the spectral projection associated witithen

_ L o at
P_zm/r()\ AL dh.

Applying the above result, it follows thditis a subset of the resolvent set®fand we letA be the
subset ob(B) insidel" andP the corresponding spectral projection, then

P—P= ziu'/r()‘_BV—O\—A)l dA
= 2:1L'[|/I'(I —A=AB-A)IA—A B-A)A-ATdA

It follows that
(r) 82B-Al 4 [B-=A|

P—P| < = :
| I'= %n 1-51B-A| 23— |B-A|
In particular if ||B—A|| < %{ <8, |[P—P|| <1 so that the dimension of the rangeRis

equal to the dimension of the rangeRflt follows thatA is not empty.

If B— Ais a Hilbert-Schmidt operator, we can replace the operator norm with therH8icbmidt
norm, and the corresponding inequality is a consequence of the fathéhidilbert-Schmidt oper-
ator are an ideal. |

Appendix B. Spectral Theorem for Non-self-adjoint Compact Ogerators

Let A: H — H be a compact operator. The spectra(@\) of A is defined as the set of complex
number such that the operatdr— Al) does not admit a bounded inverse, whereas the complement
of a(A) is called the resolvent set and denotedpl#). For anyA € p(A), R(\) = (A—Al)~Lis the
resolvent operator, which is by definition a bounded operator. Wél theamain results about the
spectrum of a compact operator (Kato, 1966)
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Proposition 23 The spectrum of a compact operator A is a countable compact sufdSetvith no
accumulation point different from zero, that is,

A\ {0} = {Ni [ 1> 1, N £A; ifi # j}

with limi_.. A;j = O if the cardinality ofo(A) is infinite. For any i> 1, A; is an eigenvalue of A, that
is, there exists a nonzero vectorruH such that Au= Aju. Letlj be a rectifiable closed simple
curve (with positive direction) enclosirg, but no other points ofi(A), then the operator defined
by
1
= [ A=A "td\
P = o Jp NI =A)d
satisfies
Py Py, = 0ij Py and (A=Ai)P\, =Dy, foralli,j > 1,

where B, is a nilpotent operator such that®, = D, P, = D,,. In particular the dimension of
the range of R is always finite.

We notice thatP, is a projection onto a finite dimensional spaég, which is left invariant by
A. A nonzero vectou belongs ta#, if and only if there exists an integen < dim#, such that
(A—X)"u=0, thatis,uis a generalized eigenvector Af However, ifA is symmetric, for ali > 1,
Ai € R, Py, is an orthogonal projection arigh, = 0 and it holds that

A= .ZlAiP)\i

where the series converges in operator norm. Moreovef,iff infinite dimensional) = 0 is always
in a(A), but it can be or not an eigenvalue/Af

If Abe a compact operator with(A) C [0, ||Al|], we introduce the following notation. Denoted
by pa the cardinality oio(A) \ {0} and given an integerd N < pa, letA; > A2 > ... Ay > 0 be the
firstN nonzero eigenvalues #f sorted in a decreasing way. We denotéfjthe spectral projection
onto all the generalized eigenvectors corresponding to the eigenvalues Ay. The range oP{
is a finite-dimensional vector space, whose dimension is the sum of theaitgstutiplicity of the
first N eigenvalues. Moreover

_<p o1t 1
p@_glaj_m/r(xl—A) oA

whererl is a rectifiable closed simple curve (with positive direction) encloding..,An, but no
other points o(A).
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