Positive operator valued measures covariant with respect to an irreducible representation

G. Cassinelli, E. De Vito ${ }^{\dagger}$ A. Toigo ${ }^{\ddagger}$

February 26, 2003

Abstract

Given an irreducible representation of a group G, we show that all the covariant positive operator valued measures based on G / Z, where Z is a central subgroup, are described by trace class, trace one positive operators.

1 Introduction

It is well known $[2,6]$ that, given a square-integrable representation π of a unimodular group G and a trace class, trace one positive operator T, the family of operators

$$
Q(X)=\int_{X} \pi(g) T \pi\left(g^{-1}\right) d \mu_{G}(g)
$$

defines a positive operator valued measure (POVM) on G covariant with respect to $\pi\left(\mu_{G}\right.$ is a Haar measure on G). In this paper, we prove that all the covariant POVMs are of the above form for some T. More precisely, we show this result for non-unimodular groups and for POVMs based on the quotient space G / Z, where Z is a central subgroup.

[^0]Let G be a locally compact second countable topological group and Z be a central closed subgroup. We denote by G / Z the quotient group and by $\dot{g} \in G / Z$ the equivalence class of $g \in G$. If $a \in G$ and $\dot{g} \in G / Z$, we let $a[\dot{g}]=\dot{a} \dot{g}$ be the natural action of a on the point \dot{g}.

Let $\mathcal{B}(G / Z)$ be the Borel σ-algebra of G / Z. We fix a left Haar measure $\mu_{G / Z}$ on G / Z. Moreover, we denote by Δ the modular function of G and of G/Z.

By representation we mean a strongly continuous unitary representation of G acting on a complex and separable Hilbert space, with scalar product $\langle\cdot, \cdot\rangle$ linear in the first argument.

Let (π, \mathcal{H}) be a representation of G. A positive operator valued measure Q defined on G / Z and such that

1. $Q(G / Z)=I$;
2. for all $X \in \mathcal{B}(G / Z)$,

$$
\pi(g) Q(X) \pi\left(g^{-1}\right)=Q(g[X]) \quad \forall g \in G
$$

is called π-covariant POVM on G / Z.
Given a representation (σ, \mathcal{K}) of Z, we denote by $\left(\lambda^{\sigma}, P^{\sigma}, \mathcal{H}^{\sigma}\right)$ the imprimitivity system unitarily induced by σ. We recall that \mathcal{H}^{σ} is the Hilbert space of (μ_{G}-equivalence classes of) functions $f: G \longrightarrow \mathcal{K}$ such that

1. f is weakly measurable;
2. for all $z \in Z$,

$$
f(g z)=\sigma\left(z^{-1}\right) f(g) \quad \forall g \in G ;
$$

3.

$$
\int_{G / Z}\|f(g)\|_{\mathcal{K}}^{2} \mathrm{~d} \mu_{G / Z}(\dot{g})<+\infty
$$

with scalar product

$$
\left\langle f_{1}, f_{2}\right\rangle_{\mathcal{H}^{\sigma}}=\int_{G / Z}\left\langle f_{1}(g), f_{2}(g)\right\rangle_{\mathcal{K}} \mathrm{d} \mu_{G / Z}(\dot{g}) .
$$

The representation λ^{σ} acts on \mathcal{H}^{σ} as

$$
\left(\lambda^{\sigma}(a) f\right)(g):=f\left(a^{-1} g\right) \quad g \in G
$$

for all $a \in G$. The projection valued measure P^{σ} is given by

$$
\left(P^{\sigma}(X) f\right)(g):=\chi_{X}(\dot{g}) f(g) \quad g \in G .
$$

for all $X \in \mathcal{B}(G / Z)$, where χ_{X} is the characteristic function of the set X.
We recall some basic properties of square integrable representations modulo a central subgroup. We refer to Ref. [1] for G unimodular and Z arbitrary and to Ref. [4] for G non-unimodular and $Z=\{e\}$. Combining these proofs, one obtains the following result.

Proposition 1 Let (π, \mathcal{H}) be an irreducible representation of G and γ be the character of Z such that

$$
\pi(z)=\gamma(z) I_{\mathcal{H}} \quad \forall z \in Z
$$

The following facts are equivalent:

1. there exists a vector $u \in \mathcal{H}$ such that

$$
\begin{equation*}
0<\int_{G / Z}\left|\langle u, \pi(g) u\rangle_{\mathcal{H}}\right|^{2} d \mu_{G / Z}(\dot{g})<+\infty \tag{1}
\end{equation*}
$$

2. (π, \mathcal{H}) is a subrepresentation of $\left(\lambda^{\gamma}, \mathcal{H}^{\gamma}\right)$.

If any of the above conditions is satisfied, there exists a selfadjoint injective positive operator C with dense range such that

$$
\pi(g) C=\Delta(g)^{-\frac{1}{2}} C \pi(g) \quad \forall g \in G
$$

and an isometry $\Sigma: \mathcal{H} \otimes \mathcal{H}^{*} \rightarrow \mathcal{H}^{\gamma}$ such that

1. for all $u \in \mathcal{H}$ and $v \in \operatorname{dom} C$

$$
\Sigma\left(u \otimes v^{*}\right)(g)=\langle u, \pi(g) C v\rangle_{\mathcal{H}} \quad g \in G,
$$

2. for all $g \in G$

$$
\Sigma\left(\pi(g) \otimes I_{\mathcal{H}^{*}}\right)=\lambda(g) \Sigma
$$

3. the range of Σ is the isotypic space of π in \mathcal{H}^{γ}.

If Eq. (1) is satisfied, (π, \mathcal{H}) is called square-integrable modulo Z. The square root of C is called formal degree of π (see Ref. [4]). In particular, when G is unimodular, C is a multiple of the identity.

2 Characterization of Q

We fix an irreducible representation (π, \mathcal{H}) of G and let γ be the character such that $\left.\pi\right|_{Z}=\gamma I_{\mathcal{H}}$. The following theorem characterizes all the POVM on G / Z covariant with respect to π in terms of positive trace one operators on \mathcal{H}.

Theorem 2 The irreducible representation π admits a covariant POVM based on G / Z if and only if π is square-integrable modulo Z.

In this case, let C be the square root of the formal degree of π. There exists a one-to-one correspondence between covariant POVMs Q on G / Z and positive trace one operators T on \mathcal{H} given by

$$
\begin{equation*}
\left\langle Q_{T}(X) v, u\right\rangle_{\mathcal{H}}=\int_{X}\left\langle T C \pi\left(g^{-1}\right) v, C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} d \mu_{G / Z}(\dot{g}) \tag{2}
\end{equation*}
$$

for all $u, v \in \operatorname{dom} C$ and $X \in \mathcal{B}(G / Z)$.
Proof. Let Q be a π-covariant POVM. According to the generalized imprimitivity theorem [3] there exists a representation (σ, \mathcal{K}) of Z and an isometry $W: \mathcal{H} \longrightarrow \mathcal{H}^{\sigma}$ intertwining π with λ^{σ} such that

$$
Q(X)=W^{*} P^{\sigma}(X) W
$$

for all $X \in \mathcal{B}(G / Z)$.
Define the following closed invariant subspace of \mathcal{K}

$$
\mathcal{K}_{\gamma}=\{v \in \mathcal{K} \mid \sigma(z) v=\gamma(z) v\} .
$$

Let σ_{1} and σ_{2} be the restrictions of σ to \mathcal{K}_{γ} and $\mathcal{K}_{\gamma}^{\perp}$ respectively. The induced imprimitivity system $\left(\lambda^{\sigma}, P^{\sigma}, \mathcal{H}^{\sigma}\right)$ decomposes into the orthogonal sum

$$
\mathcal{H}^{\sigma}=\mathcal{H}^{\sigma_{1}} \oplus \mathcal{H}^{\sigma_{2}} .
$$

If $f \in \mathcal{H}^{\sigma}$ and $z \in Z$, then

$$
\left(\lambda^{\sigma}(z) f\right)(g)=f\left(z^{-1} g\right)=f\left(g z^{-1}\right)=\sigma(z) f(g) \quad g \in G
$$

On the other hand, if $u \in \mathcal{H}$ and $z \in Z$, we have

$$
\left(\lambda^{\sigma}(z) W u\right)(g)=(W \pi(z) u)(g)=\gamma(z)(W u)(g) \quad g \in G .
$$

It follows that $(W u)(g) \in \mathcal{K}_{\gamma}$ for μ_{G}-almost every $g \in G$, that is, $W u \in \mathcal{H}^{\sigma_{1}}$. So it is not restrictive to assume that

$$
\sigma=\gamma I_{\mathcal{K}}
$$

for some Hilbert space \mathcal{K}. Clearly, we have

$$
\mathcal{H}^{\sigma}=\mathcal{H}^{\gamma} \otimes \mathcal{K}, \quad \lambda^{\sigma}=\lambda^{\gamma} \otimes I_{\mathcal{K}}
$$

In particular, π is a subrepresentation of λ^{γ}, hence it is square-integrable modulo Z.

Due to Prop. 1, the operator $W^{\prime}=\left(\Sigma^{*} \otimes I_{\mathcal{K}}\right) W$ is an isometry from \mathcal{H} to $\mathcal{H} \otimes \mathcal{H}^{*} \otimes \mathcal{K}$ such that

$$
W^{\prime} \pi(g)=\pi(g) \otimes I_{\mathcal{H}^{*} \otimes \mathcal{K}} \quad g \in G .
$$

Since π is irreducible, there is a unit vector $B \in \mathcal{H}^{*} \otimes \mathcal{K}$ such that

$$
W^{\prime} u=u \otimes B \quad \forall u \in \mathcal{H} .
$$

Let $\left(e_{i}\right)_{i \geq 1}$ be an orthonormal basis of \mathcal{H} such that $e_{i} \in \operatorname{dom} C$, then

$$
B=\sum e_{i}^{*} \otimes k_{i},
$$

where $k_{i} \in \mathcal{K}$ and $\sum_{i}\left\|k_{i}\right\|_{\mathcal{K}}^{2}=1$.
If $u \in \operatorname{dom} C$, one has that

$$
\begin{aligned}
(W u)(g) & =\left[\left(\Sigma \otimes I_{\mathcal{K}}\right)(u \otimes B)\right](g) \\
& =\sum_{i} \Sigma\left(u \otimes e_{i}^{*}\right)(g) \otimes k_{i} \\
& =\sum_{i}\left\langle u, \pi(g) C e_{i}\right\rangle_{\mathcal{H}} \otimes k_{i} \\
& =\sum_{i}\left\langle C \pi\left(g^{-1}\right) u, e_{i}\right\rangle_{\mathcal{H}} \otimes k_{i} \\
& =\sum_{i}\left(e_{i}^{*} \otimes k_{i}\right)\left(C \pi\left(g^{-1}\right) u\right),
\end{aligned}
$$

where the series converges in \mathcal{H}^{σ}. On the other hand, for all $g \in G$ the series $\sum_{i}\left(e_{i}^{*} \otimes k_{i}\right)\left(C \pi\left(g^{-1}\right) u\right)$ converges to $B C \pi\left(g^{-1}\right) u$, where we identify $\mathcal{H}^{*} \otimes \mathcal{K}$ with the space of Hilbert-Schmidt operators. By unicity of the limit

$$
(W u)(g)=B C \pi\left(g^{-1}\right) u \quad g \in G .
$$

If $u, v \in \operatorname{dom} C$, the corresponding covariant POVM is given by

$$
\begin{aligned}
\langle Q(X) v, u\rangle_{\mathcal{H}} & =\left\langle P^{\sigma}(X) W v, W u\right\rangle_{\mathcal{H}^{\sigma}} \\
& =\int_{G / Z} \chi_{X}(\dot{g})\left\langle B C \pi\left(g^{-1}\right) v, B C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} \mathrm{d} \mu_{G / Z}(\dot{g}) \\
& =\int_{X}\left\langle T C \pi\left(g^{-1}\right) v, C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} \mathrm{d} \mu_{G / Z}(\dot{g}),
\end{aligned}
$$

where

$$
T:=B^{*} B
$$

is a positive trace class trace one operator on \mathcal{H}.
Conversely, assume that π is square integrable and let T be a positive trace class trace one operator on \mathcal{H}. Then

$$
B:=\sqrt{T}
$$

is a (positive) operator belonging to $\mathcal{H}^{*} \otimes \mathcal{H}$ such that $B^{*} B=T$ and $\|B\|_{\mathcal{H}^{*} \otimes \mathcal{H}}=1$. The operator W defined by

$$
W v:=\left(\Sigma \otimes I_{\mathcal{H}}\right)(v \otimes B) \quad \forall v \in \mathcal{H}
$$

is an isometry intertwining (π, \mathcal{H}) with the representation $\left(\lambda^{\sigma}, \mathcal{H}^{\sigma}\right)$, where

$$
\sigma=\gamma I_{\mathcal{H}}
$$

Define Q_{T} by

$$
Q_{T}(X)=W^{*} P^{\sigma}(X) W \quad X \in \mathcal{B}(G / Z)
$$

With the same computation as above, one has that

$$
\left\langle Q_{T}(X) u, v\right\rangle_{\mathcal{H}}=\int_{X}\left\langle T C \pi\left(g^{-1}\right) v, C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} \mathrm{d} \mu_{G / Z}(\dot{g})
$$

for all $u, v \in \operatorname{dom} C$.
Finally, we show that the correspondence $T \longmapsto Q_{T}$ is injective. Let T_{1} and T_{2} be positive trace one operators on \mathcal{H}, with $Q_{T_{1}}=Q_{T_{2}}$. Set $T=T_{1}-T_{2}$. Since π is strongly continuous, for all $u, v \in \operatorname{dom} C$ the map

$$
\begin{aligned}
G / Z \ni \dot{g} \longmapsto & \left\langle T C \pi\left(g^{-1}\right) v, C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} \\
& =\Delta(\dot{g})^{-1}\left\langle T \pi\left(g^{-1}\right) C v, \pi\left(g^{-1}\right) C u\right\rangle_{\mathcal{H}} \in \mathbb{C}
\end{aligned}
$$

is continuous. Since
$\int_{X}\left\langle T C \pi\left(g^{-1}\right) v, C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} \mathrm{d} \mu_{G / Z}(\dot{g})=\left\langle\left[Q_{T_{1}}(X)-Q_{T_{2}}(X)\right] v, u\right\rangle_{\mathcal{H}}=0$
for all $X \in \mathcal{B}(G / Z)$, we have

$$
\left\langle T C \pi\left(g^{-1}\right) v, C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}}=0 \quad \forall \dot{g} \in G / Z
$$

In particular,

$$
\langle T C v, C u\rangle_{\mathcal{H}}=0,
$$

so that, since C has dense range, $T=0$.

Remark 3 Scutaru shows in Ref. [6] that there exists a one-to-one correspondence between positive trace one operators on \mathcal{H} and covariant POVMs Q based on G / Z with the property

$$
\begin{equation*}
\operatorname{tr} Q(K)<+\infty \tag{3}
\end{equation*}
$$

for all compact sets $K \subset G / Z$. Theorem 2 shows that every covariant POVM Q based on G / Z shares property (3).

Remark 4 If G is unimodular, then $K=\lambda I$, with $\lambda>0$, and one can normalize $\mu_{G / Z}$ so that $\lambda=1$. Hence,

$$
Q_{T}(X)=\int_{X} \pi(g) T \pi\left(g^{-1}\right) d \mu_{G / Z}(\dot{g}) \quad \forall X \in \mathcal{B}(G / Z)
$$

the integral being understood in the weak sense.
Remark 5 If $T=\eta^{*} \otimes \eta$, with $\eta \in \operatorname{dom} C$ and $\|\eta\|_{\mathcal{H}}=1$, we observe that

$$
\begin{aligned}
\left\langle Q_{T}(X) v, u\right\rangle_{\mathcal{H}} & =\int_{X}\left\langle C \pi\left(g^{-1}\right) v, \eta\right\rangle_{\mathcal{H}}\left\langle\eta, C \pi\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} d \mu_{G / Z}(\dot{g}) \\
& =\int_{X}\langle v, \pi(g) C \eta\rangle_{\mathcal{H}}\langle\pi(g) C \eta, u\rangle_{\mathcal{H}} d \mu_{G / Z}(\dot{g}) \\
& =\int_{X}\left(W_{C \eta} v\right)(g) \overline{\left(W_{C \eta} u\right)(g)} d \mu_{G / Z}(\dot{g})
\end{aligned}
$$

for all $u, v \in \operatorname{dom} C$, where $W_{C \eta}: \mathcal{H} \longrightarrow \mathcal{H}^{\gamma}$ is the wavelet operator associated to the vector $C \eta$. In particular,

$$
Q_{T}(X)=W_{C \eta}^{*} P^{\gamma}(X) W_{C \eta} .
$$

3 Two examples

3.1 The Heisenberg group

The Heisenberg group H is \mathbb{R}^{3} with composition law

$$
(p, q, t)\left(p^{\prime}, q^{\prime}, t^{\prime}\right)=\left(p+p^{\prime}, q+q^{\prime}, t+t^{\prime}+\frac{p q^{\prime}-q p^{\prime}}{2}\right) .
$$

The centre of H is

$$
Z=\{(0,0, t) \mid t \in \mathbb{R}\}
$$

and the quotient group G / Z is isomorphic to the Abelian group \mathbb{R}^{2}, with projection

$$
q(p, q, t)=(p, q) .
$$

The Heisenberg group is unimodular with Haar measure

$$
\mathrm{d} \mu_{G / Z}(p, q)=\frac{1}{2 \pi} \mathrm{~d} p \mathrm{~d} q .
$$

Given an infinite dimensional Hilbert space \mathcal{H} and an orthonormal basis $\left(e_{n}\right)_{n \geq 1}$, let a, a^{*} be the corresponding ladder operators. Define

$$
\begin{aligned}
Q & =\frac{1}{\sqrt{2}}\left(a+a^{*}\right) \\
P & =\frac{1}{\sqrt{2} i}\left(a-a^{*}\right)
\end{aligned}
$$

It is known $[2,5]$ that the representation

$$
\pi(p, q, t)=e^{i(t+p Q+q P)}
$$

is square-integrable modulo Z and $C=1$.
It follows from Theorem 2 that any π-covariant POVM Q based on \mathbb{R}^{2} is of the form

$$
Q(X)=\frac{1}{2 \pi} \int_{X} e^{i(p Q+q P)} T e^{-i(p Q+q P)} \mathrm{d} p \mathrm{~d} q \quad X \in \mathcal{B}\left(\mathbb{R}^{2}\right)
$$

for some positive trace one operator on \mathcal{H}. Up to our knowledge, the complete classification of the POVMs on \mathbb{R}^{2} covariant with respect to the Heisenberg group has been an open problem till now.

3.2 The $a x+b$ group

The $a x+b$ group is the semidirect product $G=\mathbb{R} \times^{\prime} \mathbb{R}_{+}$, where we regard \mathbb{R} as additive group and \mathbb{R}_{+}as multiplicative group. The composition law is

$$
(b, a)\left(b^{\prime}, a^{\prime}\right)=\left(b+a b^{\prime}, a a^{\prime}\right) .
$$

The group G is nonunimodular with left Haar measure

$$
\mathrm{d} \mu_{G}(b, a)=a^{-2} \mathrm{~d} b \mathrm{~d} a
$$

and modular function

$$
\Delta(b, a)=\frac{1}{a} .
$$

Let $\mathcal{H}=L^{2}((0,+\infty), \mathrm{d} x)$ and $\left(\pi^{+}, \mathcal{H}\right)$ be the representation of G given by

$$
\left[\pi^{+}(b, a) f\right](x)=a^{\frac{1}{2}} e^{2 \pi i b x} f(a x) \quad x \in(0,+\infty)
$$

It is known [5] that π is square-integrable, and the square root of its formal degree is

$$
(C f)(x)=\Delta(0, x)^{\frac{1}{2}} f(x)=x^{-\frac{1}{2}} f(x) \quad x \in(0,+\infty)
$$

acting on its natural domain.
By means of Theorem 2 every POVM based on G and covariant with respect to π^{+}is described by a positive trace one operator T according to Eq. 2. Explicitely, let $\left(e_{i}\right)_{i \geq 1}$ be an orthonormal basis of eigenvectors of T and $\lambda_{i} \geq 0$ be the corresponding eigenvalues. If $u \in L^{2}((0,+\infty), \mathrm{d} x)$ is such that $x^{-\frac{1}{2}} u \in L^{2}((0,+\infty), \mathrm{d} x)$, the π^{+}-covariant POVM corresponding to T is given by

$$
\begin{aligned}
\left\langle Q_{T}(X) u, u\right\rangle_{\mathcal{H}} & =\int_{X}\left\langle T C \pi^{+}\left(g^{-1}\right) u, C \pi^{+}\left(g^{-1}\right) u\right\rangle_{\mathcal{H}} \mathrm{d} \mu_{G}(g) \\
& =\int_{X} \sum_{i} \lambda_{i}\left|\left\langle C \pi^{+}\left(g^{-1}\right) u, e_{i}\right\rangle_{\mathcal{H}}\right|^{2} \mathrm{~d} \mu_{G}(g) \\
& =\sum_{i} \lambda_{i} \int_{X}\left|\int_{\mathbb{R}_{+}} x^{-\frac{1}{2}} a^{-\frac{1}{2}} e^{-\frac{2 \pi i b x}{a}} u\left(\frac{x}{a}\right) \overline{e_{i}(x)} \mathrm{d} x\right|^{2} a^{-2} \mathrm{~d} b \mathrm{~d} a .
\end{aligned}
$$

References

[1] A. Borel., Representations de groupes lacalment compact, Lecture Notes in Matematics, Vol. 276, Springer, Berlin (1972).
[2] G. Cassinelli, E. De Vito, P. Lahti and A. Levrero, "Phase space observables and isotypic spaces", J. Math. Phys. 41, 5883-5896 (2000).
[3] U. Cattaneo, "On Mackey's imprimitivity theorem", Comm. Math. Helvetici 54, 629-641 (1979).
[4] M. Duflo and C. C. Moore, "On the regular representation of a nonunimodular locally compact group", J. Funct. Anal. 21, 209-243 (1976).
[5] G. B. Folland, A Course in Abstract Armonic Analysis, CRC Press, Boca Raton, 1995.
[6] H. Scutaru, "Coherent states and induced representations", Lett. Math. Phys. 2, 101-107 (1977).

[^0]: *G. Cassinelli, Dipartimento di Fisica, Università di Genova, and I.N.F.N., Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy. e-mail: cassinelli@ge.infn.it
 ${ }^{\dagger}$ E. De Vito, Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, 41100 Modena, Italy, and I.N.F.N., Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy. e-mail: devito@unimo.it
 ${ }^{\ddagger}$ A. Toigo, Dipartimento di Fisica, Università di Genova, and I.N.F.N., Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy. e-mail: toigo@ge.infn.it

