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QUANTUM HOMODYNE TOMOGRAPHY AS AN INFORMATIONALLY

COMPLETE POSITIVE OPERATOR VALUED MEASURE

PAOLO ALBINI, ERNESTO DE VITO, AND ALESSANDRO TOIGO

Abstract. We define a positive operator valued measure E on [0, 2π] × R describing the measurement
of randomly sampled quadratures in quantum homodyne tomography, and we study its probabilistic
properties. Moreover, we give a mathematical analysis of the relation between the description of a state
in terms of E and the description provided by its Wigner transform.

Quantum homodyne tomography; positive operator valued measures; Wigner function.

1. Introduction

Quantum homodyne tomography [1, 2, 3, 4] allows to determine the state of a single mode radiation
field by repeated measurements of the quadrature observables Xθ, the phases θ being chosen randomly
in T = [0, 2π]. This can be seen as a consequence of the fact [5] that, for a large class of observables O,
there exists an associated function fO : T × R → R such that

(1) tr [Oρ] =

∫ 2π

0

[
∫

R

fO(θ, x)dνρ
θ (x)

]

dθ

2π
,

where νρ
θ is the probability distribution of outcomes obtained for the quadrature Xθ measured on the

state ρ and dθ/2π is the uniform probability distribution on T. Actual reconstrunction schemes are
strictly related to a statistical interpetation of formulas of this kind. Indeed, quantum tomography
experiments output a n-uple {(Θi, Xi)}n

i=1 of pairs in T × R, each one of which represents the outcome
Xi of a measurement of the quadrature observable corresponding to the randomly picked phase Θi. If
one assumes such pairs to be samples from a random variable on T × R distributed accordingly to a
probability measure µρ such that

(2) dµρ(θ, x) = dνρ
θ (x)

dθ

2π
,

one can use the experimental outcomes to estimate integrals such as (1) (see Ref. [2] and references
therein), for example by replacing dµρ with its empirical estimate 1

n

∑n
i=1 δ(Θi,Xi).

The above reconstruction formula, although very popular, is not the only scheme used for tomograph-
ical state estimation: other ones are known which don’t rely on it [2]. The hypotesis that experimental
results are distributed accordingly to (2) lies however under both every proposed reconstruction algo-
rithm and its statistical analysis [1, 2, 3, 6, 7]. Actually, although given for granted in the cited literature,
well-definiteness of a joint probability distribution such as µρ in (2) is a priori not trivial. In the first part
of our paper we prove well defineteness of µρ by showing there exists a positive operator valued measure
(POVM) E on T × R such that

µρ(Z) = tr[E(Z)ρ] for any Borel subset Z of T × R.

According to the physical meaning of µρ, the POVM E is the generalized observable associated with the
quantum homodyne tomography experimental setup. In particular, we show that µρ has density pρ(θ, x)
with respect to the Lebesgue measure on T×R, its support is always an unbounded set, and the mapping
ρ 7→ µρ is injective (i. e. E is informationally complete). The intertwining property Xθ = eiθNXe−iθN ,
where N is the number operator and X is the position operator, turns out to be crucial for the definition
of E (or, equivalently, for the definition of µρ). We remark that the introduction of a POVM for the
homodyne tomography measurement process is already present in physical literature (see section 2.3.2
in Ref. [2]), but it is grounded on a formal construction. We provide here an alternative, rigorous
formulation.

In their seminal paper on quantum homodyne tomography [4], Vogel and Risken argued that the the
Radon transform of W (ρ), where W (ρ) is the Wigner function associated to ρ, is precisely the proba-
bility density function pρ generated by the homodyne tomography measurement, so that the following
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commutative diagram holds:

States on H
W

uujjjjjjjjjjjjjjj
p·

**UUUUUUUUUUUUUUUUU

Wigner functions on R2
Radon transform // probability densities on T × R

The suggested estimation procedure, applied also in the first homodyne tomography experiments, is then
based on the inversion of the Radon transform by means of classical techniques in medical tomography.
However, the derivation of this fact is once again rather formal, and never given a rigorous basis in the
literature on the subject: in the second part of the paper, we will thus address the problems that arise
in looking at such formulation of quantum tomography from a rigorous point of view. First of all, we
will recall that in order for the Radon transform to be well-defined, we need the Wigner function W (ρ)
to be integrable on R2. Then we will show that the support of W (ρ) can never be bounded. This is a
potential problem, since the estimation techniques used in classical tomography are explicitly devised for
compactly supported objects. One can however by-pass the problem and still give an inverse for the Radon
transform if he assumes that the Wigner function under observation is a Schwartz function on R

2. This is
precisely what happens in most homodyne tomography experiments, where the states under observation
are linear combinations of coherent or number states. In Section 4 we show that this assumption on the
Wigner function is equivalent to suppose that ρ has a kernel which is a Schwartz function on R2 (since
ρ is an Hilbert-Schmidt operator, ρ is an integral operator whose kernel is a function on R2). Under this
assumption on ρ we prove that the Radon transform of W (ρ) is pρ and the inversion formula holds true.

2. Preliminaries and notations

In this section, we will introduce the notations and give a very brief description of the mathematical
structure of quantum homodyne tomography.

2.1. Notations. Let H be a complex, separable Hilbert space with norm ‖·‖ and scalar product 〈· , ·〉
linear in the second entry. Denote by L(H) the Banach space of the bounded operators on H with uniform
norm ‖·‖L. Let I1(H) be the Banach space of the trace class operators on H with trace class norm ‖·‖1,
and let S(H) be the convex subset of positive trace one elements in I1(H). Finally, let I2(H) be the

Hilbert-Schmidt operators on H, with norm ‖A‖2 = [tr [A∗A]]1/2. We recall that the elements of S(H)
are the states of the quantum system whose associated Hilbert space is H.

Suppose Ω is a Hausdorff locally compact second countable topological space. Let B(Ω) be the Borel
σ-algebra of Ω. We recall the following definition of positive operator valued measure.

definition 1. A positive operator valued measure (POVM) on Ω with values in H is a map E : B(Ω) −→
L(H) such that

(i) E(A) ≥ 0 for all A ∈ B(Ω);
(ii) E(Ω) = I;
(iii) if {Ai}i∈I is a denumerable sequence of pairwise disjoint sets in B(Ω), then

E(∪iAi) =
∑

i
E(Ai),

where the sum converges in the weak (or, equivalently, ultraweak or strong) topology of L(H).

E is a projection valued measure (PVM) if E(A)2 = E(A) for all A ∈ B(Ω).

If E is a POVM and T ∈ I1(H), we define

µT
E(A) = tr [E(A)T ] ∀A ∈ B(Ω).

Then, µT
E is a bounded complex measure on Ω. If ρ ∈ S(H), µρ

E is actually a probability measure on
Ω, and µρ

E(A) is the probability of obtaining a result in A when performing a measurement of E on the
state ρ.

2.2. The mathematics of quantum homodyne tomography. The physical system of quantum
homodyne tomography is a single radiation mode of the electromagnetic field. The associated Hilbert
space is H = L2 (R). Let

A =
{

p(x) e−
x2

2 | p is a polinomial,
}
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which is a dense subspace of H. As usual, we denote by X and P the position and momentum operators,
respectively. Their action on A is explicitly given by

(Xf)(x) = xf(x) and (Pf)(x) = −i
df

dx
(x).

Letting T = [0, 2π], for any θ ∈ T the corresponding quadrature is the self-adjoint operator Xθ on L2 (R),
whose action on A is

Xθ = cos θX + sin θP.

If x, y ∈ R, and x = r cos θ, y = r sin θ, we have
[

eirXθf
]

(z) =
[

ei(xX+yP )f
]

(z) = ei( xy
2

+xz)f(z + y)

for all f ∈ L2 (R).
We denote by Πθ the PVM on R associated to Xθ by spectral theorem. In particular, Π(A) := Π0(A)

is just multiplication in L2 (R) by the characteristic function 1A of A, while Ππ
2
(A) = F∗Π(A)F , where

F is the Fourier transform

(3) Ff =
1√
2π

∫

R

e−ixyf(y)dy f ∈ L1 ∩ L2(R).

The number operator is the essentially self-adjoint operator N whose action on A is

N =
1

2

(

X2 + P 2 − 1
)

.

For all θ ∈ T, we let V (θ) = eiθN . Since the spectrum of N is N, the map θ → V (θ) is a unitary
continuous representation of T acting on L2 (R), where we regard T as a topological abelian group with
addition modulo 2π. The number representation V intertwines the quadratures Xθ, in the sense that

Xθ = V (θ)XV (θ)∗

for all θ ∈ T, and

Πθ(A) = V (θ)Π(A)V (θ)∗

for all θ ∈ T and A ∈ B(R).
Finally, given ρ ∈ S(H) and θ ∈ T, we denote by νρ

θ the probability distribution on R of the outcomes
of the quadrature Xθ measured on the state ρ, namely

(4) νρ
θ (A) = tr [ρΠθ(A)] = tr [ρV (θ)Π(A)V (θ)∗] ∀A ∈ B(R).

3. Main results

In this section, we will describe explicitly the POVM which intervenes in homodyne tomography and
the associated probability distributions on states.

The first result studies some properties of the family of probability measures νρ
θ defined by (4). In its

proof and in the statement of some of the following results, we will make use of the concept of section
through some θ ∈ T of a Borel set B ∈ B(T × R), defined as follows:

Bθ = {x ∈ R|(θ, x) ∈ B}.
Proposition 1. Given ρ ∈ S(H) and θ ∈ T

(i) the probability measure νρ
θ has density pρ

θ ∈ L1 (R) with respect to the Lebesgue measure on R;

(ii) the map θ 7→ νρ
θ (Bθ) is measurable for any B ∈ B(T × R).

Proof. If A ∈ B(R) has zero Lebesgue measure, then Π(A)f = 1Af = 0 for all f ∈ L2 (R). Therefore,
νρ

θ (A) = tr [ρV (θ)Π(A)V (θ)∗] = 0. Thus, the first claim follows.
If {en}n∈N is a Hilbert basis of H, then

tr
[

ρV (θ)Π(Bθ)V (θ)∗
]

=
∑

n

〈

en , V (θ)∗ρV (θ)Π(Bθ)en

〉

=
∑

n

∑

m

〈en , V (θ)∗ρV (θ)em〉
〈

em , Π(Bθ)en

〉

.

Since the map θ 7→ 〈en , V (θ)∗ρV (θ)em〉 is continuous and the map θ 7→
〈

em , Π(Bθ)en

〉

=
∫

1B(θ, x)en(x)em(x)dx

is measurable by Fubini theorem, measurability of θ 7→ tr
[

ρV (θ)Π(Bθ)V (θ)∗
]

follows. �

Next theorem shows the existence of a POVM associated to quantum homodyne tomography. This
theorem should be compared with the formal derivation of E given in Ref. [2] (see eq. (2.34) therein).
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Theorem 1. There exists a unique positive operator valued measure E on T × R acting in L2 (R) such
that

(5) tr [ρE(B)] =

∫

T

νρ
θ (Bθ)

dθ

2π

for all ρ ∈ S(H) and B ∈ B(T × R).

Proof. Eq. (4) suggests to define the POVM as

E(B) =

∫

T

V (θ)Π(Bθ)V (θ)∗
dθ

2π
.

To prove that the above definition is correct, we first show that the map θ 7→ V (θ)Π(Bθ)V (θ)∗ is dθ
2π -

ultraweakly integrable for all Borel subsets B of T × R, and then we prove that B 7→ E(B) is a POVM.
Now, given B ∈ B(T × R) and ρ ∈ S(H), the map θ 7→ tr

[

ρV (θ)Π(Bθ)V (θ)∗
]

is measurable by the
previous proposition, and

∣

∣tr
[

ρV (θ)Π(Bθ)V (θ)∗
]∣

∣ ≤ ‖ρ‖1

∥

∥Π(Bθ)
∥

∥

L
≤ 1 ∀θ ∈ T.

Therefore, it is dθ
2π -integrable. This shows that θ 7→ V (θ)Π(Bθ)V (θ)∗ is dθ

2π -ultraweakly integrable.

Suppose T ∈ I1(H). Then T =
∑3

k=0 ikTk, with Tk ≥ 0 and ‖T0‖1 + ‖T2‖1 = ‖T1‖1 + ‖T3‖1 ≤ ‖T ‖1.
Setting ρk = Tk/ ‖Tk‖1 (with 0/0 = 0), we see that

∣

∣

∣

∣

∫

T

tr
[

TV (θ)Π(Bθ)V (θ)∗
] dθ

2π

∣

∣

∣

∣

≤
3

∑

k=0

‖Tk‖1

∫

T

∣

∣tr
[

ρkV (θ)Π(Bθ)V (θ)∗
]
∣

∣

dθ

2π

≤
3

∑

k=0

‖Tk‖1 ≤ 2 ‖T ‖1 .

This shows the existence of E(B) ∈ L(H). Clearly, E(B) ≥ 0, and E(T × R) = I.
If {Bn}n∈N is a monotone increasing family of elements in B(T × R), with Bn ↑ B, then, for all θ,

tr
[

ρV (θ)Π(Bθ
n)V (θ)∗

]

= νρ
θ (Bθ

n) ↑ νρ
θ (Bθ) = tr

[

ρV (θ)Π(Bθ)V (θ)∗
]

.

By dominated convergence theorem
∫

T

tr
[

ρV (θ)Π(Bθ
n)V (θ)∗

] dθ

2π
↑

∫

T

tr
[

ρV (θ)Π(Bθ)V (θ)∗
] dθ

2π
,

and ultraweak σ-additivity of E follows. �

We let µρ = tr [E(·)ρ] be the probability distribution on T × R associated to a measurement of E
performed on the state ρ. By definition (5) it follows that

(6) µρ(B) =

∫

T

νρ
θ (Bθ)

dθ

2π

as wanted. The following theorem gives some properties of µρ.

Theorem 2. Let ρ ∈ S(H).

(i) The measure µρ has density with respect to dθ
2π dx. We denote such density by pρ.

(ii) For dθ
2π -almost all θ, pρ(θ, x) = pρ

θ(x) for dx-almost all x.

(iii) The marginal probability distribution induced by µρ on T is the Haar measure dθ
2π , and the condi-

tional probability distribution induced by µρ on R is νρ
θ for dθ

2π -almost all θ.

Proof. (i) If B ∈ B(T × R) is a dθ
2π dx-null set, then Bθ is dx-null for dθ

2π -almost all θ by Fubini

theorem, so, for such θ’s, νρ
θ (Bθ) = 0. Therefore, µρ(B) = 0 by (6), thus showing that µρ has

density with respect to dθ
2π dx.

(ii) If Z ∈ B(T), A ∈ B(R), we have
∫

Z

dθ

2π

∫

A

pρ(θ, x)dx = µρ(Z × A) =

∫

Z

νρ
θ (A)

dθ

2π
.

This holds for all Z, implying that there exists a dθ
2π -null set NA ∈ B(T) such that pρ(θ, ·) is

dx-integrable with
∫

A

pρ(θ, x)dx = νρ
θ (A)

for all θ /∈ NA.
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Let {An}n∈N be a sequence in B(R) with the following property: if µ1, µ2 are positive measures
on R such that µ1(An) = µ2(An) for all n, then µ1 = µ2 (such sequence exists since R is second
countable by Theorems C §5 and A §13 in Ref. [8]). Let N = ∪nNAn

. Then N is dθ
2π -null, and,

if θ /∈ N , pρ(θ, ·) is integrable with
∫

An

pρ(θ, x)dx =

∫

An

pρ
θ(x)dx ∀n.

This implies that, if θ /∈ N , pρ(θ, x) = pρ
θ(x) for dx-almost all x.

(iii) This is just (6).
�

Remark 1. As a consequence of item (iii) in the above proposition, a well known result on conditional
probability distribution ensures that, if φ is a µρ-integrable function, then φ(θ, ·) is νρ

θ -integrable for
dθ
2π -almost all θ, the map θ 7→

∫

R
φ(θ, x)dνρ

θ (x) is dθ
2π -integrable, and

∫

T×R

φ(θ, x)dµρ(θ, x) =

∫

T

[
∫

R

φ(θ, x)dνρ
θ (x)

]

dθ

2π
.

By Theorem 2, E is the POVM associated to the measurement of a quadrature Xθ chosen randomly
from T with uniform probability dθ

2π .
The next corollary shows that the probability distribution µρ can not have compact support for any

ρ ∈ S(H).

Corollary 1. For all R > 0, we have
∫

T

∫

|x|>R

pρ(θ, x)dx
dθ

2π
> 0.

Proof. With AR = {x ∈ R | |x| > R}, we have
∫

T

∫

|x|>R

pρ(θ, x)dx
dθ

2π
= µρ(T × AR) =

∫

T

tr [ρV (θ)Π(AR)V (θ)∗]
dθ

2π

= tr [ρ′Π(AR)] ,

with ρ′ =
∫

T
V (θ)∗ρV (θ) dθ

2π . ρ′ is a trace one positive operator. Since it commutes with the representation

V of T, it is diagonal in the number basis {en}n∈N of L2 (R). Since 〈en , Π(AR)en〉 > 0 for all n, the
claim follows. �

As a consequence, the map ρ 7→ pρ from S(H) to the set P (T×R) of probability densities in L1 (T × R)
is not surjective. The next corollary shows that it is actually injective, i. e. the POVM E is informationally
complete [9].

Corollary 2. If ρ, σ ∈ S(H) and ρ 6= σ, then µρ 6= µσ.

Proof. If ρ, σ ∈ S(H), then µρ = µσ if and only if pρ = pσ (in L1 (T × R)), which amounts to say that
pρ

θ = pσ
θ (in L1 (R)) for dθ

2π -almost all θ. This is in turn equivalent to νρ
θ = νσ

θ for dθ
2π -almost all θ. For

r ∈ R and θ ∈ T, we have by spectral theorem
∫

R

eirxdνρ
θ (x) =

∫

R

eirxtr [ρΠθ(dx)] = tr
[

ρeirXθ
]

=
√

2π [V (ρ)](r cos θ, r sin θ),

where

[V (ρ)](x, y) =
1√
2π

tr
[

ρei(xX+yP )
]

.

Since the map V : I1(H) −→ C(R2) is injective (see for example Ref. [10]), injectivity of the map ρ 7→ µρ

follows. �

4. The Radon transform of the Wigner function and Radon reconstruction formula

In the previous section, by means of the POVM E defined in Theorem 1 we estabilished a convex
injective correspondence ρ 7→ pρ between states and the set of probability densities on T × R. However,
no explicit formula relating ρ to the function pρ was given, due to the fact that, if ρ does not have a
simple expression in terms of the number basis, the expression tr [V (θ)∗ρV (θ)Π(A)] can not be explicitly
computed.

In this section, we will show that, if the state ρ is sufficiently regular, pρ can indeed be evaluated, being
in fact the Radon transform of the Wigner function W (ρ) of ρ. This is a very well known fact in quantum
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tomography, going back to the seminal paper of Vogel and Risken [4]. However, no attention has never
been paid in the literature to the fact that performing the Radon transform of W (ρ) makes sense only
for a restricted class of states, namely for those ρ ∈ S(H) such that W (ρ) ∈ L1

(

R2
)

. This constraint
becomes even more stringent when one considers the inverse formula reconstructing ρ (or, better, W (ρ))
from its associated probability density pρ. We will see that, in order to derive mathematically consistent
formulas both for pρ and the reconstruction of W (ρ), one needs to assume that the state belongs to the
set of Schwartz functions on R2. This seems a rather strong limitation, as the very natural attempt to
extend the Radon transform and Radon reconstruction to the whole set S(H) by means of distribution
theory fails in the quantum context (Remark 2). Our main reference to the results below is Ref. [11].

If T ∈ I1(H), we introduce the bounded continuous function V (T ) on R2, given by

(7) [V (T )](x, y) =
1√
2π

tr
[

Tei(xX+yP )
]

.

It is well known (see for example Ref. [10]) that V (T ) ∈ L2
(

R2
)

, and V uniquely extends to a unitary

operator V : I2(H) −→ L2
(

R
2
)

. The Wigner transform of A ∈ I2(H) is just (up to a constant) the
Fourier transform of V (A), i. e.

(8) W (A) =
1√
2π

F2V (A),

where F2 = F ⊗ F on L2
(

R2
)

= L2 (R) ⊗ L2 (R), with F defined in (3).

If f ∈ L1
(

R2
)

, the Radon transform of f is the complex function Rf ∈ L1 (T × R) given by

(9) Rf(θ, r) =

∫ +∞

−∞

f(r cos θ − t sin θ, r sin θ + t cos θ)dt

dθ
2π dr-almost everywhere.

We have the following fact.

Proposition 2. If W (ρ) ∈ L1
(

R2
)

, then

(10) [RW (ρ)](θ, r) = pρ(θ, r)

for dθ
2π dr-almost all (θ, r).

Proof. Let γ : T × R −→ R
2 be the map

γ(θ, r) = (r cos θ, r sin θ) .

We have

[V (ρ) ◦ γ](θ, r) =
1√
2π

tr
[

ρeirXθ
]

=
1√
2π

∫ +∞

−∞

eirtpρ
θ(t)dt =

[

F−1pρ
θ

]

(r)

by spectral theorem. On the other hand,

[F−1
2 W (ρ) ◦ γ](θ, r) =

1

2π

∫ +∞

−∞

∫ +∞

−∞

ei(xr cos θ+yr sin θ)[W (ρ)](x, y)dxdy

=
1

2π

∫ π

0

∫ +∞

−∞

eitr(cos φ cos θ+sin φ sin θ)[W (ρ)](t cosφ, t sin φ)|t|dt
dφ

2π

=
1

2π

∫ π

0

∫ +∞

−∞

eitr cos(φ−θ)[W (ρ)](t cos φ, t sin φ)|t|dt
dφ

2π

=
1

2π

∫ π

0

∫ +∞

−∞

eitr cos φ[W (ρ)](t cos(φ + θ), t sin(φ + θ))|t|dt
dφ

2π

=
1

2π

∫ +∞

−∞

∫ +∞

−∞

eirx[W (ρ)](x cos θ − y sin θ, y cos θ + x sin θ)dxdy

=
1

2π

∫ +∞

−∞

eirx[RW (ρ)](θ, x)dx

=
1√
2π

[

F−1[RW (ρ)](θ, ·)
]

(r).

By injectivity of Fourier transform, the claim then follows by comparison. �

Corollary 3. The support of W (ρ) is an unbounded subset of R2 for all ρ ∈ S(H).
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Proof. Suppose by contradiction that W (ρ) = 0 almost everywhere outside the disk DR of radius R in
R2. Then W (ρ) ∈ L1

(

R2
)

, and so [RW (ρ)](θ, r) = pρ(θ, r) by the above proposition. We have

∫ 2π

0

∫

|r|>R

|RW (ρ)(θ, r)|dr
dθ

2π
≤

∫ 2π

0

∫∫

R2\DR

|W (ρ)(r cos θ − t sin θ, r sin θ + t cos θ)|drdt
dθ

2π

=

∫ 2π

0

∫∫

R2\DR

|W (ρ)(r, t)|drdt
dθ

2π
= 0,

which contradicts Corollary 1. �

The first formal derivation of (10) is contained in Ref. [4], without the assumption W (ρ) ∈ L1
(

R2
)

.

We stress that if W (ρ) /∈ L1
(

R2
)

, then (10) does not make sense, and the only possible definition of pρ

is by means of item 1 in Theorem 2.
If we denote by S1(H) the subset of states ρ ∈ S(H) such that W (ρ) ∈ L1

(

R
2
)

, then we have
estabilished the following diagram

S1(H)

W

zzuuuuuuuuu
p·

%%KKKKKKKKKK

L1
(

R2
) R // P (T × R)

Now we turn to the problem of reconstructing W (ρ) given pρ. If W (ρ) ∈ S(R2), the space of Schwartz
functions on R2, Radon inversion formula is applicable, and we can obtain W (ρ) from pρ in a rather
explicit way. Before stating Radon inversion theorem, according to Ref. [11] we need to introduce the set
SH(P2) of functions φ : T × R −→ C such that

(i) φ ∈ C∞(T × R);

(ii) supθ, r

∣

∣

∣

(

1 + |r|k
)

∂l

∂rl
∂m

∂θm φ(θ, r)
∣

∣

∣
< ∞;

(iii) φ(θ, r) = φ(2π − θ,−r) for all θ, r;

(iv) for each k ∈ N,
∫ +∞

−∞
φ(θ, r)rkdr is a homogeneous polynomial in sin θ, cos θ of degree k.

It is shown in Ref. [11] that Rf ∈ SH(P2) if f ∈ S(R2), and the map R : S(R2) −→ SH(P2) is one-to-one
and onto. Thus, in our case W (ρ) ∈ S(R2) is equivalent pρ ∈ SH(P2) by Proposition 2.

The next theorem is a restatement of Theorem 3.6 in Ref. [11] (see also Ref. [4] for a formal derivation
of (11)). We stress that the hypothesis W (ρ) ∈ S(R2) (or, equivalently, pρ ∈ SH(P2)) is needed in order
to give meaning to (12) and to define the integral in (13).

Theorem 3. Suppose W (ρ) ∈ S(R2). Then

(11) W (ρ) =
1

4π2
R#[Λpρ]

where

(12) Λpρ(θ, r) =

√

π

2
[Ft[|t|] ∗ pρ(θ, ·)] (r) = PV

[
∫ +∞

−∞

1

r − t

∂pρ(θ, t)

∂t
dt

]

and

(13) R#f(x, y) =

∫ 2π

0

f(θ, x cos θ + y sin θ)
dθ

2π
∀f ∈ C∞(T × R)

(in (12), the Fourier transform of |t| and the convolution are interpreted in the sense of tempered distri-
butions, and PV is the Cauchy principal value of the integral).

We devote the rest of this section to find the subset of states ρ ∈ S(H) such that W (ρ) ∈ S(R2),
i. e. to which both Radon transform (10) and Radon reconstruction formula (11) are applicable.

Each T ∈ I1(H), being a Hilbert-Schmidt operator on L2 (R), is an integral operator, whose kernel
KT is in L2

(

R
2
)

. We have the following fact.

Proposition 3. Suppose K ∈ S(R2). Then the integral operator LK with kernel K is in I1(H), and its
trace is

(14) tr [LK ] =

∫ +∞

−∞

K(x, x)dx.
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Moreover, LK ∈ S(H) if and only if K is positive semidefinite1 and
∫ +∞

−∞
K(x, x)dx = 1.

Proof. Let I = (−π, π), and let Φ : L2 (R) −→ L2 (I) be the following unitary operator

Φf(y) = (1 + tan2 y)1/2f(tan y).

Φ intertwines LK with the integral operator LK̃ on L2 (I) with kernel

K̃(y1, y2) = (1 + tan2 y1)
1/2K(tan y1, tan y2)(1 + tan2 y2)

1/2 y1, y2 ∈ (−π, π).

Since K̃ extends to a C∞-function on I × I by setting K̃ = 0 in the frontier of I × I, by Lemma 10.11
in Ref. [12] LK̃ is a trace class operator on L2 (I), whose trace is given by

tr [LK̃ ] =

∫ π

−π

K̃(y, y)dy =

∫ +∞

−∞

K(x, x)dx.

Since LK = Φ−1LK̃Φ, eq. (14) follows.
It is easy to check that, if K is positive semidefinite, then the integral operator LK is positive.

Conversely, suppose LK is a positive operator. Fix a Dirac sequence {fn}n∈N, and let gn =
∑N

i=1 cif
xi
n ,

where fxi
n (x) = fn(x − xi). We have

0 ≤ 〈gn , LKgn〉 =

N
∑

i,j=1

cicj

∫ +∞

−∞

∫ +∞

−∞

fn(x − xj)K(x, y)fn(y − xi)dxdy

−→
n→∞

N
∑

i,j=1

cicjK(xj , xi),

from which positive definiteness of K follows. The last claim in the statement is thus clear. �

We introduce the following linear subspace of I1(H)

IS
1 (H) =

{

T ∈ I1(H) | KT ∈ S(R2)
}

,

and define

SS(H) = S(H) ∩ IS
1 (H).

If T ∈ IS
1 (H), we can explicitly evaluate the trace in (7) and the Fourier transform in (8) defining V (T )

and W (T ) respectively. We find

[V (T )](x, y) = F−1
t [KT (t + y/2, t− y/2)] (x)

[W (T )](x, y) =
1√
2π

Ft [KT (x + t/2, x − t/2)] (y),

where we denoted by Ft the Fourier transform with respect to the variable t. The second formula proves
the next proposition.

Proposition 4. W : IS
1 (H) −→ S(R2) is a bijection.

Restricting to states in SS(H), we have thus arrived at the following diagram.

SS(H)

W

zzvv
vv

vv
vv

v
p·

$$IIIIIIIII

S(R2)
R // SH(P2)

1

4π2 R#Λ

oo

Remark 2. Unfortunately, one can not use the definition of Radon transform of distributions to extend
(10) to whole L2

(

R2
)

, or reconstruction formula (11) to a larger set than SS(H). In fact, as explained in §5
of Ref. [11], the distributional Radon transform can be defined only as a map R : E ′(T×R) −→ E ′(T×R),
E ′(T × R) being the set of compactly supported distributions on T × R. Corollary 3 then prevents us
from giving any distributional sense to (10). Similarly, eq. (11) has no distributional analogue, as the
reconstruction formula T = 1

4π2 R#[ΛRT ] (Theorem 5.5 in Ref. [11]) again holds only for compactly
supported distributions T .

1We recall that a function K : R2 −→ C is positive semidefinite if
PN

i,j=1
cicjK(xj , xi) ≥ 0 for all N ∈ N, c1, c2 . . . cN ⊂

C and x1, x2 . . . xN ⊂ R.
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Remark 3. Being able to exhibit an explicit inversion formula of the Radon transform only for Wigner
functions which are Schwartz class does not imply a failure of quantum tomographical methods in re-
constructing states with weaker regularity properties, as the associated POVM remains informationally
complete on the whole of S(H), as we have shown in the first part of this paper. In fact, mainly in order
to address issues of numerical stability, actual reconstruction methods usually do not involve 1

4π2 R#Λ
directly, but some approximated technique involving regularizations; proofs of consistency are available
[1] for some of these regularized estimators which holds on the whole of quantum state space.
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