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Scale Invariant and Noise Robust
Interest Points with Shearlets

Miguel A. Duval-Poo, Nicoletta Noceti, Francesca Odone, and Ernesto De Vito

Abstract—Shearlets are a relatively new directional multi-scale
framework for signal analysis, which have been shown effective
to enhance signal discontinuities such as edges and corners at
multiple scales even in the presence of a large quantity of noise.
In this work we consider blob-like features in the shearlets
framework. We derive a measure which is very effective for blob
detection and, based on this measure, we propose a blob detector
and a keypoint description, whose combination outperforms the
state-of-the-art algorithms with noisy and compressed images.
We also demonstrate that the measure satisfies the perfect scale
invariance property in the continuous case. We evaluate the
robustness of our algorithm to different types of noise, including
blur, compression artifacts, and Gaussian noise. Furthermore, we
carry on a comparative analysis on benchmark data, referring
in particular to tolerance to noise and image compression.

Index Terms—Shearlets, multi-scale image analysis, scale se-
lection, image features, blob detection, keypoint description.

I. INTRODUCTION

FEATURE detection consists in the extraction of per-
ceptually interesting low-level features over an image,

in preparation of higher level processing tasks. In the last
decade a considerable amount of work has been devoted to
the design of effective and efficient local feature detectors able
to associate scale and orientation information with a given
interesting point. Scale-space theory has been one of the main
sources of inspiration for this line of research, providing an
effective framework for detecting features at multiple scales
and for devising scale invariant image descriptors.

In this work we refer in particular to blob features, image
regions which are approximately uniform. In early works
the Laplacian of the Gaussian (LoG) operator has been pro-
posed as a way of enhancing blob-like structures [1]. Later,
difference of Gaussians (DoG) has been introduced as an
efficient approximation of the Laplacian [2], while the Hessian
determinant [1] was suggested as an alternative operator with
a higher sensitivity and better invariance properties. Later on,
computationally efficient variants have also been devised [3],
[4]. Since feature detection often precedes feature matching,
local features need to be associated with an appropriate de-
scriptor. For a reliable feature matching, it is important to iden-
tify a descriptor able to deal with geometric transformations,
illumination changes, and the presence of noise. Therefore
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over the years there has been a lot of work in devising feature
descriptors able to address different types of variations [2],
[3], [5]–[8]. It should be noticed how, in this context, much
effort has been devoted to reducing the computational cost —
it is worth mentioning the well known SIFT [2] and SURF [3]
feature descriptors, obtained from scale-normalized derivatives
in a scale-space representation based on image pyramids to
speed up computation. Recently, binary descriptors such as
BRIEF [9], BRISK [10], FREAK [11] lead to more compact
and fast to compute representations, to the price of a higher
sensitivity to image transformations. In this framework, the
challange of noisy data have seldom been considered (see, the
recent paper [12]), while it appears to be an important issue
when dealing compressed images and video frames taken by
moving or low resolution cameras.

The effects of noise are a central issue in wavelet analysis
and, unsurprisingly, image feature detection at multiple scales
has also been addressed in the context of wavelet theory [13]–
[19]. Indeed, this framework allows for a natural derivation
of the feature scale [13], [19] and for the design of perfect
scale-invariant measurements [20], but it also guarantees an
optimal sparse representation robust to the presence of noise
[21]. Wavelets may be seen as a generalization of scale-
space , since the scale-space representation is equivalent to
wavelet representation for the specific choice of a mother
wavelet equals to the derivative of the Gaussian [13]. In other
words, the expressive power of wavelets is greater, indeed, by
choosing a different mother wavelet one may enhance different
specific features.

While for 1D signals, wavelets and space-scale theory are
the canonical multi-scale representations, for 2D signals there
is a large class of representations with a further sensitivity to
directional information, useful to deal with rotation invariance
— here it is worth mentioning directional wavelets [22], con-
tourlets [23], complex wavelets [24], ridgelets [25], curvelets
[26], and shearlets [27].

In this paper we focus on shearlets representation and we
show how the use of shearlet coefficients may enhance blob
structures in an image providing [28]:

a) A clear definition of these interest points;
b) A good localization in image space;
c) A local image structure with a rich directional informa-

tion content;
d) A stable procedure with a high degree of repeatability

against noise and deformations;
e) The capability of detecting other interesting points, like

edges and corners, with a different choice of the gener-
ating function [29];
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f) An automatic scale selection with a scale invariant de-
scriptor.

Indeed, shearlets enjoy different interesting properties which
are meaningful to feature detection and description:

1) As in the space-scale approach, the filters give rise to a
coarse-to-fine multi-scale representation, but for shear-
lets two consecutive scales are related by an anisotropic
dilation with ratio 1/

√
2 and this anisotropy is the

key property to have (optimal) sparse representation for
natural images [30]. Among the multi-scale represen-
tations, only shearlets and curvelets ensure this kind of
optimality, so that shearlets are appealing in applications
dealing with signal compression.

2) The shearlet coefficients directly encode directional in-
formation, unlike scale-space representations and tra-
ditional wavelets where one could derive directional
information only as a post-processing, for example by
computing the ratio between the partial derivatives.

3) Shearlets provide an optimal sparse representation for
two-dimensional signals having singularity along curves
[30]. On the contrary, the coefficients of the noise are
uniformly distributed over all the components. Hence, an
accurate processing of the shearlet coefficients ensures
both a sparse representation stable under compression
and an effective denoising without adding artifacts [31].

4) The rotational invariance of the representation is given
by a shearing which preserves the rectangular lattice of
the digital image, so that a faithful digital implementa-
tion is easy to obtain.

5) In contrast to the scale-space approaches, with shearlets
we have a large choice of admissible templates allowing
to tune the shearlet transform to specific applications,
e.g, the Gaussian derivative to locate edges or corners
as in [29], [32], or the Mexican hat to analyze blob
structures or ridge points.

6) Shearlets also appear to have a potential in providing
meaningful descriptions, although this capability has not
been largely explored so far (see, for instance, [33],
[34]).

In this paper, first, we provide an analysis of perfect scale
invariance properties in the continuous case, similar to the
study carried out by Lindberg for the scale-space [35]. Then,
we derive a discretized formulation of the problem, obtaining
a discrete measure which will be the main building block
of our algorithms. This measure, obtained by summing up
coefficients over all the shearing, is naturally isotropic, but we
can easily recover the directional information by looking at the
single coefficient. By the property of shearlets highlighted in
item 3) above the measure is stable with respect to noise and
compression. We confirm this theoretical issue by reporting
an analysis of the stability of the measure to different types
of signal perturbations, including Gaussian noise, image blur,
JPEG compression.

Next, we propose an algorithm for detecting and describing
blob-like features. The main peculiarity of our approach is in
the fact it fully exploits the expressive power of the shearlet
transform. Indeed, each detected feature is associated with

a scale, an orientation, and a position, directly related with
the dilation, the shearing and the translation provided by the
underlying transformation. In the description phase we also use
shearlets coefficients, orienting the contributions with respect
to the estimated feature orientation. We underline how all
the steps of our procedure are based on the same image
transformation. In this sense the procedure is elegant and clean
and has a potential in computational efficiency.

We present an experimental assessment on benchmark data
where we show that the proposed method outperforms the
state-of-the-art algorithms with noisy and compressed images.
We also present a further experiment on a larger set of images,
where we underline the appropriateness of the method to
address image matching at different compression and noise
levels. In this specific aspect resides one of the main con-
tribution of our work from the application standpoint: the
sparsity properties of the shearlet transform are very appropri-
ate to deal with noise and compression artefacts. With other
kind of transformations, like viewpoint and scale changes,
our procedure has a performance comparable with classical
feature extraction techniques. As for the computational cost,
it is also comparable, in the order of magnitude, to classical
methods such as SIFT, but admittedly not good as the one of
appropriately designed binary detectors.

The paper is organized as follows. In Section II we review
the shearlet transform. Section III provides an analysis of
scale selection in multi-scale image representations also in the
presence of signal perturbations and the theoretical justifica-
tions of scale invariance for feature detection by shearlets.
In Section IV we propose the shearlet-based blob detection
algorithm, while the descriptor is introduced in Section V.
Section VI reports an experimental analysis of the proposed
blob detector and descriptor following the Oxford evaluation
procedure. In Section VII we evaluate the proposed methods
for image matching at different compression and noise levels.
Section VIII is left to a final discussion.

II. A REVIEW OF THE SHEARLET TRANSFORM

A shearlet is generated by the dilation, shearing and trans-
lation of a function ψ ∈ L2(R2), called the mother shearlet,
in the following way

ψa,s,t(x) = a−3/4ψ(A−1a S−1s (x− t)) (1)

where t ∈ R2 is a translation, Aa is a dilation matrix and Ss
a shearing matrix defined respectively by

Aa =

(
a 0
0
√
a

)
Ss =

(
1 s
0 1

)
, (2)

with a ∈ R+ and s ∈ R. The anisotropic dilation Aa controls
the scale of the shearlets, by applying a different dilation factor
along the two axes. The shearing matrix Ss, not expansive,
determines the orientation of the shearlets. The normalization
factor a−3/4 ensures that ‖ψa,s,t‖ = ‖ψ‖, where ‖ψ‖ is the
norm in L2(R2). The shearlet transform SH(f) of a signal
f ∈ L2(R2) is defined by

SH(f)(a, s, t) = 〈f, ψa,s,t〉 (3)
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Fig. 1. Support of the shearlets ψ̂a,s,t (in the frequency domain) for different
values of a and s.

where 〈f, ψa,s,t〉 is the scalar product in L2(R2).
In the classical setting the mother shearlet ψ is assumed to

factorize in the Fourier domain as

ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2(
ω2

ω1
) (4)

where ψ̂ is the Fourier transform of ψ, ψ1 is a one dimensional
wavelet and ψ̂2 is any non-zero square-integrable function.

With the choice of Eq. (4) the shearlet definition in the
frequency domain (see Fig. 1) becomes

ψ̂a,s,t(ω1, ω2) = a3/4ψ̂1(aω1)ψ̂2

(
ω2 + sω1√

aω1

)
e−2πi(ω1,ω2)·t.

(5)
As a consequence of the Plancherel formula, Eq. (3) can be
rewritten as

SH(f)(a, s, t1, t2) = a3/4
∫
R̂2

f̂(ω1, ω2)ψ̂1(aω1)

× ψ̂2

(
ω2 + sω1√

aω1

)
e2πiξ(t1ω1+t2ω2)dω1dω2. (6)

A different approach is proposed in [36] where the mother
shearlet is of the form ψ1(x1)ψ2(x2), where ψ1 is a one di-
mensional wavelet and ψ2 is a scaling function. This property
allows to have compact support shearlets in the space domain.
However, as noted in [37], “ The property [of (4)] does indeed
not only improve the frame bounds of the associated system,
but also improves the directional selectivity significantly”.
To overcome this problem, in [37] the mother shearlet is
multiplied by a suitable 2D fan filter in order to approximate
the property (4). For sake of simplicity, in this short review we
consider only classical shearlets — the ones we have adopted
in our work.

A. Cone-adapted Shearlets

A major limitation of the shearlets defined in the previous
section is the directional bias of shearlet elements associated
with large shearing parameters. To deal with this problem
[30] introduces the notion of cone-adapted shearlets whose
construction is based on a partition of the Fourier into two

cones and a square centered around the origin. The two conic
regions are defined as

Ch = {(ω1, ω2) ∈ R2 : |ω2/ω1| ≤ 1, |ω1| > 1} (7)

Cv = {(ω1, ω2) ∈ R2 : |ω1/ω2| ≤ 1, |ω2| > 1}. (8)

A shearlet ψ suitable for the horizontal cone is

ψ̂h(ω1, ω2) = ψ̂1(ω1)ψ̂2

(
ω2

ω1

)
χCh(ω1, ω2). (9)

where χCh(ω) is equal to 1 for ω ∈ Ch and 0 outside. Likewise
the shearlet for the vertical cone is defined by interchanging
the roles of ω1 and ω2.
The square region is the low-frequency part

{(ω1, ω2) ∈ R2 : |ω1|, |ω2| ≤ 1}. (10)

Since the interest points of an image are associated with high
frequencies, for space reason we do not consider the low-
frequency contribution, see [30] for further details.

B. Digital Shearlets

Digital shearlet systems are defined by sampling continuous
shearlet systems on a discrete subset of the space of parameters
R+×R3 and by sampling the signal on a grid. In the literature
there are many different discretization schemes, see [37], [38]
and reference therein. In this work we adopt the Fast Finite
Shearlet Transform (FFST) [39] which performs the entire
shearlet construction in the Fourier domain. It is possible
to choose as ψ1 wavelets whose analytic form is given in
the Fourier domain, whereas in [32] and [37] are restricted
to wavelets associated with multiresolution analysis. In this
scheme, the signal is discretized on a square grid of size N ,
which is independent on the dilation and shearing parameter,
whereas the scaling, shear and translation parameters are
discretized as

aj = 2−j , j = 0, . . . , j0 − 1, (11)

sj,i = i2−j/2, −b2j/2c ≤ i ≤ b2j/2c, (12)

tm =
(m1

N
,
m2

N

)
, m ∈ I (13)

where j0 is the number of considered scales and I =
{(m1,m2) : m1,m2 = 0, . . . , N − 1}. With respect to the
original implementation we use a dyadic scale 2−j instead of
4−j to reduce the difference among two consecutive scales,
which is consistent with the discretization lattice in [37].

With these notations the shearlet system becomes

ψx
j,i,m(x) = ψx

aj ,sj,i,tm(x) (14)

where x = h or x = v and the discrete shearlet transform of
a digital image I is

SH(I)(j, x, i,m) = 〈I, ψx
j,i,m〉 (15)

where j = 0, . . . , j0−1, x = h, v, |i| ≤ b2j/2c, m ∈ I. Based
on the Plancherel formula 〈f, g〉 = 1

N2 〈f̂ , ĝ〉, the discrete
shearlet transform can be computed by applying the 2D Fast
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Fig. 2. A visualization, in the Fourier domain for scale j = 2, of the
shearing indices i on the horizontal and vertical cone (gray and white areas
respectively), the complete ordering of index k, and the associated angles θk .

Fourier Transform (fft) and its inverse (ifft). For example,
for the horizontal cone SH(I)(j,h, i,m) is given by

2−
3j
4 ifft(ψ̂1(2−jω1)ψ̂2(2j/2

ω2

ω1
+ i)fft(I))(m). (16)

We conclude by observing, the computational complexity of
the FFST is O(N2 logN), i.e. the computational complexity
of the 2D Fast Fourier Transform. A more detailed analysis
can be found in [29].

C. Shearing and Orientation

As we can notice, all the shearing associated with a scale j
are distributed along the two vertical and horizontal cones x.
For the sake of clarity, in order to provide a simple access to a
specific shearing at a scale j, we introduce an index k (similar
to [39]) which replaces the shearing parameter i and the cone
parameters x = {h, v} and simplifies the notation. For each
scale j, the index k iterates counter-clockwise the shearlets in
the Fourier domain. It starts in the horizontal cone for each
i = −1, . . . ,−b2j/2c starting from i = 0. Then, it continues
iterating the vertical cone for i = −b2j/2c + 1, . . . , b2j/2c.
Once the vertical cone is completed, it starts on the remaining
of the horizontal cone, i = b2j/2c−1, . . . , 1. Fig. 2 illustrates
the relationship between the original index i and k. Hence,
from now on, we will consider the following formulation of
the discrete shearlet transform

SH(I)(j, k,m) = SH(I)(j, x, i,m), k = 0, . . . , 4b2j/2c−1,

where 4b2j/2c is the total number of shearlets for a scale j.
Now, we may associate an orientation θk with each index

k:
θk = π

(
1− k

4b2j/2c

)
. (17)

III. SCALE SELECTION WITH SHEARLETS

Multi-scale frameworks, like scale-space, wavelets and
shearlets, represent image structures at multiple scales and are
thus appropriate for detecting structures or features with dif-
ferent spatial extent. They may also be effective in estimating
an appropriate scale to a given detected feature, useful for
further tasks such as matching or recognition. According to
Lindeberg [40], the formal definition of scale selection refers

to the estimation of characteristic scales in image data and the
automatic selection of locally appropriate scales in a scale-
space representation.

A particularly useful methodology for computing estimates
of characteristic scales is by detecting local extrema over
scales of differential expressions in terms of γ-normalized
derivatives [1]. Following this approach, it can be shown that
different types of scale invariant feature detectors can be used
for different types of visual features, like blobs, corners, etc.
Furthermore, the scale levels obtained from the scale selection
can be used for computing image descriptors.

Detected feature points are considered scale invariant if
the points are preserved under scaling transformations and the
selected scale levels are transformed in accordance with the
amount of scaling [1]. In addition, perfect scale invariance is
considered when the extrema over scales are equal.

In this section, we start from the continuous setting and
first discuss scale invariance properties reviewing Lindeberg
approach in the framework of space-scale theory [1]. Then,
we show how shearlet coefficients can also detect the correct
scale while providing directional information. In the second
part of the section we discuss how we can obtain a measure
of scale invariance in the discrete setting.

A. Scale Invariance in the Continuous Setting

When a signal is subject to a scale-space smoothing, the
spatial derivatives on the smoothed data are expected to
decrease. This is a well-known property of the scale-space
representation, according to which the amplitude of its spatial
derivatives decreases with scale. To obtain a multi-scale signal
representation whose amplitude is independent on the scale
Lindeberg proposed a γ-normalized derivative operator [1].
In this section, we will show that shearlets share a similar
behaviour, but they directly encode the directional information.
We observe how a similar analysis could be carried out
considering directional wavelets [22], which are not included
in our study but will be taken into account in future works.

1) Scale-space: In this section we briefly recall the main
properties of scale-space theory for two dimensional signals
developed by Lindeberg [1].

In the scale-space theory, the filters are given by the family
of 2D-Gaussian kernels

ga(x) =
1

2πa2
e−

x2

2a2 x ∈ R2 (18)

parametrised by the scale a ∈ R+. Each signal f is mapped
to its scale-space transform by convolution with ga

L[f ](a, z) = ga ∗ f(az) =

∫
R2

ga(y)f(az − y)dy (19)

where z = x/a is the “scale invariant” space variable. In the
original paper [1] the scale is t = a2 and a more general
rescaling is considered (as for example z = x/tγ/2). This
representation has two main properties, which are at the root
of the theory and are usually referred to as perfect scale
invariance. First, the representation L[f ] is invariant under
dilations, i.e. if fα(x) = f(x/α) with α ∈ R+, then

L[fα](a, z) = L[f ](α−1a, z). (20)
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Furthermore, for 2D sinusoidal signals

f(x1, x2) = cos(αx1) cos(βx2), (21)

the corresponding transform is able to detect the scale by
applying a suitable differential operator

D = P (
∂

∂z1
,
∂

∂z2
) (22)

where P is a given polynomial in two variables. Indeed, define
the quantity

LD,max(a) = max
z∈R2

|DL[f ](z, a)|, (23)

since
L[f ](a, z) = e−

a2(α2+β2)
2 f(az), (24)

then
LD,max(a) = P (aα, aβ)e−

a2

2 (α2+β2). (25)

For example, if D = ∂2

∂z21
+ ∂2

∂z22
is the z-Laplacian, then

LD,max(a) = a2(α2 + β2)e−
a2

2 (α2+β2), (26)

which takes its maximum at a∗ = 1/
√
α2 + β2 with value

independent on the scale. Hence, the extrema of the scale-
space representation across the scale a allows to detect the
scale 1/

√
α2 + β2 of the signal. However, to extract the

ratio β/α associated with the directional information there
is the need to compute other quantities as the determinant of
the Hessian [28]. In the next section we show that shearlets
have essentially the same behaviour, but the transform directly
detects both the parameters α and β.

2) Shearlets: Since the dilation matrix defining the shear-
lets is not isotropic, we can not expect that the shearlet
transform itself is invariant under (isotropic) scale changes.
However, we will show how a related quantity has the perfect
scale invariance property, as demonstrated by the following
result, whose proof can be found in the appendix.

Theorem. The cumulative shearlet transform

B[f ](a, z) = a−5/4
∫
R
SH(f)(a, s, az)ds, (27)

with a ∈ R+ and z ∈ R2, is scale invariant, i.e. for all f ∈
L2(R2)

B[fα](a, z) = B[f ](α−1a, z). (28)

Furthermore, if f is the sinusoidal signal given by (21), then

B[f ](a, z) = ψ2(0)ψ̂1(
aα

2π
)f(az), (29)

provided that ψ1 is even.

As we did for scale-space, if f is the 2D sinusoidal signal
as in (21) a simple calculation shows that the maximum of the
modulus over z is

Bmax[f ](a) = |ψ2(0)| |ψ̂1(
aα

2π
)|. (30)

By choosing ψ̂1 as the 1D-Mexican hat wavelet

ψ̂1(ω) = ω2e−2π
2ω2

, (31)
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Fig. 3. The plot of (a) Lmax(t) Eq. (25) and (b) Bmax[f ](a) Eq. (32) as
function of scale for 2D sinusoidal signals at different frequencies α and β.

we can rewrite Eq. (30) as

Bmax[f ](a) =
|ψ2(0)|

4π2
(aα)2e−

(aα)2

2 , (32)

which shares the same behaviour of Lmax[f ], but the maxi-
mum of Bmax[f ] is now at a∗ = 1/α. Hence, for shearlets the
selected scale a∗ only depends on the frequency α, as shown
in Fig. 3. However, if we consider the shearlet coefficient, a
computation as above shows that

max
t∈R2
|SH(f)(a, s, t)| = a3/4|ψ̂1(

aα

2π
)||ψ̂2(

s+ βα−1√
a

)|, (33)

provided that both ψ1 and ψ2 are even. Since ψ̂2 is a bump
function, fixed the scale a, the shearlet coefficients have a
maximun around an interval centered at s = −β/α. If ψ̂2 is
a Gaussian bump and Ψ1 is as in (31)

a−3/4 max
t∈R2
|SH(f)(a, s, t)| = C(aα)2e−

(aα)2

2 e−
(s+βα−1)2

2a .

(34)
Fig. 3 presents the actual plots of Eq. (25) for the scale-

space and Eq. (32) for shearlets at different combinations of
the frequencies parameters α and β. In the plots on the left,
the frequencies α and β are equally increased by a factor of 2
(isotropic structures), while on the right, α is increased by a
step equal to 0.5 and β = 2α (anisotropic structures). As we
can observe, the plots associated with both transformations are
capable to produce perfect scale invariance for the two types
of frequency combinations in the sinusoidal function f .

Finally, we stress that the choice of ψ1 and ψ2 influences
the type of local features that are enhanced by the shearlet
transform. Thus, in order to detect blob features, as suggested
by Equation (31) we selected ψ1 as the Mexican hat wavelet
and ψ2 as a smooth function with compact support whose
analytic form is given in [39].
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(a) 2D Gaussian functions with different σx, σy
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Fig. 4. Scale decomposition of the synthetic images in (a) at their center point (color-coded) by using the (b) Laplacian of Gaussian, and (c) shearlet B
measure.

B. Scale Invariance in the Discrete Setting
In the previous section, we defined a scale invariant shearlet

transform in the continuous setting. Now, let us formally define
the discrete counterpart of Eq. (27), which we call the B
measure.

Definition. The B measure is the scale-normalized sum of
the discrete shearlet transform coefficients across the shearing
parameter,

B(m, j) =
2

5j
4

Cj

∑
k

SH(I)(j, k,m), (35)

where j, k,m are the discretized scaling, shearing and trans-
lation parameters.

Comparing with Eq. (27), the normalization factor Cj takes
into account that for each scale j there is a different number
of orientations.

We now briefly discuss the concept of perfect scale in-
variance on a discrete synthetic signal. Fig. 4 (a) shows two
2D Gaussian functions with different σx, σy and with an
orientation of π/4. The σy has a step of 1/3 while σx = σy/3,
thus producing an elliptical structure at different scales. In the
rest of Fig. 4, we computed the scales at the center point of
each image with the following configurations. For scale-space,
we used the scale-normalized Laplacian of Gaussian (LoG).
For shearlets we plotted the B measure where ψ1 was chosen
to be the 2-nd derivative of the Gaussian. By analyzing Fig. 4,
we can observe that, by performing direct calculations, perfect
scale-invariance still holds for the two discussed frameworks
on syntectic images.

Fig. 5 (top) illustrates instead the behavior of LoG and B
across scales for different key points of a real image. We
consider in particular five locations corresponding to blob
structures of different size and one texturized region. It is
easy to observe in both cases that although there is no perfect
scale invariance, the peaks are clearly visible and their position
reflect the different spatial extents of the corresponding image
structures. Notice that the two scale parameters j and σ have
an inverse relationship with respect to the image structures,
thus plots are to be read accordingly.

C. Stability with respect to noise
It is well known that wavelets provide an optimal sparse

representation of 1D signals having local discontinuities [41]

in which the noise can be efficiently reduced by thresholding
the coefficients [21]. However, in the 2D case they fail to
provide a comparable efficiency. For images with singularities,
an optimally sparse representation is provided instead by
shearlets [42], [43] and the thresholding procedure (or one of
its variants) gives an outperforming denoising/deconvolution
algorithm as shown in many papers, see [27], [44]–[46].

Given the scale j and the location m, the measure B(m, j)
defined by (35) is the sum of the shearlet coefficients over
the orientations k – with only a few significant shearing
contributions. Blobs correspond to high values of B, so that it
is quite natural to expect that the local maxima of B are very
stable under noise and blurring.

Indeed, by the linearity of the shearlet coefficients, clearly
B = Bf + Bγ , where the first term is the contribution of
the signal and the second term of the random noise vector γ.
Based on Lemma 1 of [44], we claim that the expected mean
E[|Bγ(m, j)|2] only depends on the scale j.

This intuition is confirmed by some illustrative experiments.
Fig. 5 (bottom) shows the behavior of LoG and B for different
color-coded points on the same (top) image corrupted by Gaus-
sian noise and JPEG compression. Fig. 6 reports the effect
on B of adding increasing Gaussian noise to the image. The
perturbation starts affecting the smallest flower which soon
becomes indistinguishable from a texture or noisy pattern.
Instead the three larger flowers continue to be visible at coarser
scales and the scale invariance property still holds for them,
although the value of the peaks tend to decrease. This can
also be observed in Fig. 7, where we show the behavior of
B with an increasing amount of noise. The left plot refers to
Gaussian noise, the other plots describe the situations where
Gaussian blur is added (here notice how larger structures decay
more slowly), images have a reduced contrast factor obtained
by computing a weighted average with a constant average
gray image, and the signals are compressed with JPEG2000
algorithm (notice here the negligible effect on the measure).
Finally, Fig. 8 illustrates the effect of imposing large amounts
of different perturbations. The results are coherent with what
we previously observed: (i) different compression algorithms
do not effect the behavior of B, (ii) image blur produces
effects that depend on the size of the observed structures, (iii)
a low contrast reduces the magnitude of peaks, but retains
scale invariance.
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IV. BLOB DETECTION WITH SHEARLETS

In this section we deal with the problem of automatically
detecting blobs and describe our Shearlet Blob Detector (SBD)
algorithm.

Similarly to the method proposed by Lowe to extract
DoG features [2], our approach consists of different steps
of measures, computation and refinement. In the reminder of

the section we detail the three steps of the blob detection
algorithm. Fig. 9 shows the intermediate steps results on a
sample image.

A. Accurate feature point localization

A location m at a certain scale j is recognized as a candidate
keypoint if the function B(m, j), computed over a spatial
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3 × 3 × 3 (2D space × scales) neighborhood centered on m
assumes a local extremum (maximum or minimum) in it and
its value is above a threshold.

(m̄, j̄) = arg maxmin
m,j

local B(m, j). (36)

Then, the local extrema of the B function are interpolated
in space and scale with the Brown and Lowe method [47] to
reduce the effect of considering a limited number of scales.
The outcome of this step is a set of feature points with their
associated scales.

Notice that since the B measure is isotropic, only rotation-
ally invariant features will be detected.

B. Edge responses elimination

The function B has strong responses along edges, especially
at fine scales. Therefore, in order to increase stability of the
detected points, we need to eliminate the feature points that
have high edge responses.

Given a point m at scale j, to evaluate how spread out are
the corresponding orientation responses with respect to the
predominant orientation response we introduce the following
measure

1

4b2j/2c
∑
k

(SH(I)(j, k,m)− SH(I)(j, kmax,m))
2
, (37)

where 4b2j/2c is the total number of shearings for scale j,
and kmax is the shearing with largest shearlet response,

kmax = arg max
k
|SH(I)(j, k,m)|. (38)

High values of (37) correspond to situations where kmax is
the only orientation with strong support, that is, m is an edge
or close to an edge point. Conversely, the value of (37) starts
decreasing when the point m has more than one, or none,
predominant orientations. The second case corresponds to blob
points. Therefore, points m with a high edge response may be
rejected by an appropriate thresholding.

C. Accurate orientation assignment

In this step an orientation is assigned to each feature point.
This is an important step in view of the computation of rotation
invariant local feature descriptors. By means of the shearlet
transform, the predominant orientation at a point m and scale
j is easily obtained by finding the index kmax given by
Equation (38). However, the orientation estimation at coarse
scales may have low accuracy since for small j a few shearings
are employed. The effects can be attenuated by finding the
extremum of an interpolated parabola for the following three
points:

[θkmax−1,SH(I)(j, kmax − 1,m)] (39)
[θkmax

,SH(I)(j, kmax,m)] (40)
[θkmax+1,SH(I)(j, kmax + 1,m)], (41)

where θk is the angle associated with the shearing k, as in
Eq. (17).

Fig. 10 reports examples of output of our blob detector
on a variety of scenarios. For all images, blobs have been
detected using a shearlet transform with 8 scales, and a rather
permissive threshold for edge points elimination. The circles
indicating the presence of blobs have a radius proportional to
the estimated optimal scale. As observed, such estimates are
very close to the effective spatial extent of image structures.

V. FEATURE DESCRIPTION WITH SHEARLETS

In this section we propose a local feature descriptor based
on the shearlet transform, the Shearlet Local Description
algorithm (SLD).

The idea behind our descriptor is to encode the shearlet co-
efficients computed from the SBD, and thus complete the full
detection-description pipeline with a single main computation,
the shearlet transform in this case.

Given a feature F = (m1,m2, j, θ), where m = (m1,m2)
is its location, j its estimated scale and θ its predominant
orientation, our descriptor encodes the shearlet coefficients
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Fig. 9. The different steps of the shearlet blob detector algorithm. Left: feature point localization; Centre: edge response elimination; Right: orientation
assignment

Fig. 10. Qualitative results of our blob detector on different scenarios.

information from a square region centered on (m1,m2), scaled
with respect to j and rotated according to θ (Fig. 12).

A. Shearings with common orientations

Since in our representation different scales are associated
with different amount of shearings, we first need to fix
a common number of shearings across scales, in order to
obtain descriptions of equal size from keypoints at different
scales. Moving towards finer scales, there is an inclusion
relation between the corresponding range of shearings, thus
the orientations associated with the shearings at coarser scales
are also available at fine scales, see Fig. 11.

Let O be a set of orientations that can be associated with
the shearings of all the employed scales. The cardinality of
the set is |O| = c, where c is the only parameter1 of this
method and will influence the size of the descriptor. By default,
O = {180◦, 135◦, 90◦, 45} since these are the orientations
associated with the four shearlets of the coarser scales j = 0, 1.

We refer to Sj as the sequence of all 4b2j/2c shearings for
scale j, and to SOj as the sequence of shearings in scale j
with respect to the common orientations O. Fig. 11 shows an
example. For scale j = 2, S2 is composed by all the shearlets
(white and grey), while SO2 is only composed by the gray
shearlets. Notice that for j = 1, SO1 is equal to S1.

B. Spatial sampling

We sample a regular grid of 24 points per side around
(m1,m2) with a sampling step of p = 2j0−j , i.e. the inverse

1Notice that c must be a power of 2 to be coherent with the number of
shearlets on a scale.

Fig. 11. Visualization of the orientations at scales j = 1, 2 and O =
{180◦, 135◦, 90◦, 45}. In gray: sequence of common orientations SO

j . In
white: orientations Sj . (see text).

shearlet continuous scale of the feature, covering a length of
24p.

We divide the regular grid in 16 overlapped subregions of
size 9p × 9p (hence including 81 shearlet coefficients). We
refer to each subregion using the centroid (thick red points in
Fig. 12 (b)), which may be described by its relative position
with respect to the local keypoint reference system. More
formally, the subregions can be referred to as {Ge,f} where
e, f ∈ {±1,±2}. Notice that the overlap allows us to cope
with small spatial keypoint shifts.

C. Region rotation

In order to gain rotation invariance, we compute the actual
descriptor on a region which is rotated according to the
keypoint main orientation θ. To this purpose, we perform a
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Fig. 12. Illustration of the change of coordinates for rotation invariance and
the scaled and orientated shearlet sampled points used for the construction of
the SLD descriptor.

change of reference system (see Fig. 12),(
x
y

)
= p ·

(
cos θ − sin θ
sin θ cos θ

)(
u
v

)
+

(
m1

m2

)
. (42)

To maintain the rotation invariance, the shearing parameter k
also has to be aligned according to θ. To this purpose, we
perform a circular shift following the shearing indexing ik
described on Section II-C,

t(k) = (ik ± nθ) mod |Sj | (43)

where nθ = bθ|Sj |/πe is the number of shifts required to
align with respect to θ.

D. Descriptor construction
The SLD descriptor concatenates statistics on shearlets co-

efficients in each subregion. We start by describing a subregion
Ge,f of scale j and shearing k by a 2-D vector µ(e, f, j, k)

µ(e, f, j, k) =

(∑
(u,v)∈Ge,f Mj(u, v, k)g(u, v, 2.5s),∑
(u,v)∈Ge,f |Mj(u, v, k)| g(u, v, 2.5s)

)
.

(44)
where

Mj(u, v, k) = SH(I)(j, t(k), (x, y)) (45)

and g is a 2D Gaussian filter with σ = 2.5p. Then, within
the subregion, we concatenate µ(e, f, j, k) for each shearing
k ∈ SOj following the order induced by the circular shift: let
us denote it as µ(e, f, j) ∈ R2×c.

Remark: The rotation invariance can be improved by per-
forming a weighted sum over the shearing neighbourhoods
of the sampled point, instead of sampling directly into the
shearlet coefficient. That is,

Mj(u, v, k) =

|Sj/2|∑
r=−|Sj/2|

SH(I)(j, t(k + r), (x, y))g(r, σ)

(46)
where g in this case is a 1D Gaussian with σ = |Sj |/5. This
way small misalignments in the orientation can be overcome.
However, the drawback is the additional computation.

Next, the contribution of each subregion is weighted using
a Gaussian with σ = 1.5. and then concatenated to build the
descriptor µ ∈ R2×c×16 as

µ = [µ(e, f, j)g(e, f, 1.5)]e,f∈{±1,±2} (47)

where we do not report the dependence on j as it refers to
the fixed estimated scale. Both Gaussian weighting increase
robustness towards geometric deformations and localization
errors [3].

E. Descriptor normalization

Finally, in order to gain invariance to linear contrast
changes, we normalized the descriptor to a unit vector, using
the `2 normalization,

SLD(F ) = µ/‖µ‖2. (48)

VI. METHOD ASSESSMENT ON BENCHMARKS

In this section we provide an experimental assessment of
our shearlet-based method for blob detection and description
with respect to a standard benchmark. Our goal is to show
the method is comparable with state of the art approaches on
a variety of transformations. For the sake of replicability, our
evaluation follows the Mikolajczyk’s protocol and image se-
quences2 implemented on VLBechmarks [48]. Each sequence
includes 6 images of natural textured scenes with increasing
geometric and photometric transformations.

A. Detection Evaluation

We evaluate the detection performances using the repeata-
bility score (RS) [49], i.e. the ratio of the number of corre-
spondences and the number of detected features. We compare
the proposed Shearlet Blob Detector (SBD) with SIFT [2],
Harris-Laplace [50], Hessian-Laplace [50], SURF [3] and
BRISK [10] feature detectors. As for SIFT, Harris-Laplace and
Hessian-Laplace we relied on the implementations provided
with the VLBechmarks, while for SURF and BRISK, we
adopted the implementation available in MATLAB. For a fair
comparison, we adjust the thresholds of the detectors so that
the number of detected keypoints is similar in the first image
of the sequences. As for the number of scales, in the case
of the SBD we considered a Shearlet decomposition with 7
scales, while in the other methods we set the default number
of octaves.

Fig. 13 summarizes the obtained results and shows how
our detector is appropriate under general circumstances, while
there is no method which is clearly and uniformly superior to
the others.

B. Descriptor Evaluation

The Shearlet Local Descriptor (SLD) is evaluated using
recall (number of correct matches / number of correspon-
dences) vs 1-precision (number of false matches / number of
matches) curves obtained by matching pairs of images (1st

and 4th) from each sequence (as in [5]). As a comparative
evaluation, we also report the results obtained using SIFT,
SURF and LIOP [8] descriptors, along with the recent BRISK
and FREAK [11] (implementation available in MATLAB).
For all the descriptors we employed their default parameters
included our SLD, for which we set c = 4. Our default choice

2http://www.robots.ox.ac.uk/∼vgg/research/affine/
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Fig. 13. Comparison of multi-scale feature detection using repeatability scores (40% overlap error) with respect to viewpoint change (a) and (b), scale change
(c) and (d), image blur (e) and (f), light change (g), and image compression (h).

represents a compromise between computational efficiency
and quality of the results. As for matching strategy, we used
a threshold-based approach – where two detected blobs are
matched if the distance between their descriptors is below a
threshold – which is known to be indicative of the distribution
of the descriptors in the space [5]. We employed the Euclidean
distance for SLD, SIFT, SURF and LIOP, while we compare
BRISK and FREAK (binary descriptors) using the Hamming
distance. In order to maintain an unbiased comparison, we
evaluate all the descriptors in combination with the DoG
feature detector (the one usually coupled with SIFT) using
the default parameters for all the image sequences. We now
discuss the obtained results, reported in Fig. 14.

Here again, we do not observe a clear superiority of a
method over the others. It should be noticed how our SLD
behaves consistently well in the presence of blur, compression
effects, illumination changes. This is explicable in terms of the
properties of shearlets which provide us with an optimal sparse
representation for natural images.

C. Computational Performance Evaluation
The computational cost of the proposed algorithm heavily

depends on the computation of the shearlet transform [51].
More efficient implementations than FFST are today available
[27], [52]. In this work we consider FFST as it allows us to
change modularly the mother wavelet ψ1 to design different
feature detection algorithms.

Table I shows a comparison of the computational perfor-
mances of different detectors and descriptors on the first image

TABLE I
COMPUTATIONAL PERFORMANCES (DETECTION AND DESCRIPTION) ON

THE FIRST GRAFFITI SEQUENCE IMAGE. TIME IN MS.

Detector Keypoints Time Descriptor Time Total

DoG 1583 113 SIFT 202 315
Harris-Lapl. 1458 630 LIOP 102 732
Hessian-Lapl. 1432 226 LIOP 100 326
Fast Hess 1537 66 SURF 48 114
BRISK 1246 39 BRISK 13 52
SBD 1586 1903 SLD 147 2050
SBD* 1538 526 SLD 126 652

of the Graffiti sequence (of size 640x800). The experiments
ware carried on a 8 core Intel i7-2600 CPU using MATLAB
2016a on Ubuntu 16.04.

As a proof of concept on the potential for significant
improvements, we reimplemented the FFST by approximating
the shearlet transform with a boundary on the maximum
number of shears at fine scales. A similar approach is also
followed by other shearlet transform implementations [27],
[52]. To this purpose we tested the new implementation which
is reported in the table as SBD*. As Table I shows, this new
implementation is 3 times faster that the initial one.

Since the process of computing the shearlet transform has
an intrinsically parallel nature, further implementations can
benefit from the use of a GPU, as shown in [51] for image
denoising.
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Fig. 14. Comparison of feature descriptors using Precision-Recall curves with
respect to viewpoint change (a), scale change (b), image blur (c) and (d), light
change (e), and image compression (f).

VII. EXPERIMENTS ON NOISY IMAGES

Copydays dataset: In this section we report the core
experimental analysis of our method, where we highlight the
superiority of Shearlet representations in the presence of noise.
We consider the INRIA Copydays dataset3, which contains 157
natural images that are progressively compressed, from 3 (very
low quality) to 75 (typical web quality) quality factor (QF).
For the evaluation in noisy environments, the images were also
progressively corrupted with Gaussian noise.

We compare our full pipeline (SBD+SLD) with SIFT and
SURF methods (DoG+SIFT and fastHessian+SURF, respec-
tively), along with the DoG+LIOP detector-descriptor combi-
nation. For the evaluation, we consider the Matching Score
(MS) [49] which is the ratio between the number of correct
matches and the number of detected features. For a visual
impression of the overall performances, average values are

3The datasets is available at https://lear.inrialpes.fr/∼jegou/data.php
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(b) Gaussian noise corruption

Fig. 15. Comparison of blob detectors with their respective descriptor on the
INRIA Copydays dataset. Left: matching score against amount of compression
(a) and noise corruption (b). Right: recall vs 1-precision curve between
untransformed and 15 QF compressed (a) and 13 dB of SNR noise corrupted
images.

reported. Fig. 15 (left) shows the comparison, where the
matching superiority of our approach can be appreciated in
both JPEG compression (a) and noise corruption (b).

As a further evidence, we also provide the recall vs 1-
precision curve (see Fig. 15, right) obtained when matching
the (untransformed) images with the compressed instances (15
quality factor) in (a) and noisy instances (13 dB of Signal
to Noise Ratio) in (b). Note that our approach consistently
outperforms the competitors.

The results we obtained are in good agreement with the
theoretical intuition that shearlets are an appropriate choice
in particular when dealing with noisy and compressed signals
and with the empirical evidence provided in Section III.

Object recognition: In a last set of experiments we consider
a collection of data (30 image pairs of 11 object instances)
acquired in-house by a wearable device meant to recognize
objects in real time. In the experiments we considered image
pairs taken from a video sequence, where at least one image
is affected by a significant amount of motion blur and out of
focus (see Fig. 16). Notice that these effects are quite common
in real video processing applications.

Fig. 17 reports precision-recall curves obtained on average
on all the pairs, following the same protocol of previous
experiments. The advantage of the Shearlet representation is
apparent. The quality of the detected features can be also
appreciated in Fig. 18
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Fig. 16. Sample image pairs showing different levels of noise
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Fig. 17. Comparison of blob detectors with their respective descriptor on
object recognition data (recall vs 1-precision curve).

Fig. 18. An example of feature matching using (SBD+SLD).

VIII. CONCLUSIONS

In this paper we considered the shearlet representation as
a multi-scale framework for the detection and the description
of scale-invariant interest points tolerant to the effect of noise.
We first provided a comparative analysis of scale invariance
in the scale-space and shearlets domains in the continuous
case — following the reasoning proposed by Lindeberg [28].
Then, we considered a discrete setting where we discussed
scale invariance and tolerance to noise. Also, we addressed
the problem of detecting and describing blob-like features and
proposed a Shearlet Blob Detector (SBD) algorithm and a
Shearlet Local Descriptor (SLD) algorithm, which we exper-
imentally assessed by a thorough evaluation on a benchmark
dataset. Our algorithm compared favorably with the state of

the art, showing a very good tolerance to blur, illumination
variations and compression in particular. We also considered
two experiments on noisy images: a first one a larger dataset of
images affected by different degrees of noise or compression
degradation, a second one on images acquired by a moving
camera mounted on a wearable device where the images
included out of focus and motion blur effects. We observed
how our shearlet-based pipeline provided superior results to
SIFT, SURF, and LIOP.

In future works different shearlet transform alternatives
will be worth investigating. In particular, compactly supported
shearlets in the space domain [36] have been recently shown
to have nice properties for edge detection [53] since they
could allow us to capture effectively the spatial locality of
image features. Since our proposed methods follows exactly
the theoretical conceptual path of shearlets, another future
work will be to provide a more efficient implementation of our
methods based on approximation strategies and optimizations
as in [2], [3].
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APPENDIX

Proof of Theorem III-A2

Proof. Let SH(f)(a, s, t1, t2) be the continuous shearlet
transform of f given by (6). With the change of variables
ω1 = ξ and ω2 = vξ whose Jacobian is∣∣∣∣∂(ω1, ω2)

∂(ξ, v)

∣∣∣∣ =

∣∣∣∣det

[
1 0
v ξ

]∣∣∣∣ = |ξ| (49)

Eq. (6) can be rewritten as

SH(f)(a, s, t1, t2) = a3/4

×
∫
R

{
ψ̂2

(
v − s√
a

)[∫
R̂
f̂(ξ, vξ)ψ̂1(aξ)e2πiξ(t1+vt2)|ξ|dξ

]}
dv

where the inner integral

I(a, s, t1, t2, v) =

∫
R̂
f̂(ξ, vξ)ψ̂1(aξ)e2πiξ(t1+vt2)|ξ|dξ (50)

is independent on s. Now, by recalling the definition of B[f ]
given by (27) and by interchanging the integrals over v and s
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we obtain,

B[f ](a, z1, z2) =

a−1/2
∫
R̂

{
I(a, s, az1, az2, v)

∫
R
ψ̂2

(
v − s√
a

)
ds

}
dv. (51)

The change of variable w = v−s√
a

gives∫
R
ψ̂2

(
v − s√
a

)
ds =

√
a

∫
R
ψ̂2(w)dw =

√
aψ2(0) 6= 0,

(52)
since ψ̂ is a bump function. Next, by plugging Eq. (52) into
Eq. (51) we obtain

B[f ](a, z1, z2) =

ψ2(0)

∫
R

[∫
R̂
f̂(ξ, vξ)ψ̂1(aξ)e2πiaξ(z1+vz2)|ξ|dξ

]
dv. (53)

Givenα > 0, let now fα be the isotropic dilation of f , then
Since f̂α(ω1, ω2) = α2f̂(αω1, αω2), we obtain

B[fα](a, z1, z2) =

ψ2(0)

∫
R

[∫
R̂
α2f̂(αξ, vαξ)ψ̂1(aξ)e2πiaξ(z1+vz2)|ξ|dξ

]
dv.

(54)

Next, the change of variable ξ′ = αξ in the inner integral
gives

B[fα](a, z1, z2) = ψ2(0) (55)∫
R

[∫
R̂
αf̂(ξ′, vξ′)ψ̂1(aα−1ξ′)e2πiξ

′α−1a(z1+vz2)|α−1ξ′|dξ′
]
dv

= B[f ](α−1a, z1, z2).

If f is given by (21), its Fourier transform is the sum of four
Dirac delta at (±α,±β)/2π. Taking into account that ψ1 is
even, from (53) we get

B[f ](a, z) = ψ2(0)ψ̂1(
aα

2π
)f(az) (56)
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