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Abstract. We prove that the unitary affine Radon transform intertwines the quasi-
regular representation of a class of semidirect products, built by shearlet dilation groups
and translations, and the tensor product of a standard wavelet representation with a
wavelet-like representation. This yields a formula for shearlet coefficients that involves
only integral transforms applied to the affine Radon transform of the signal, thereby
opening new perspectives in the inversion of the Radon transform.

1. Introduction

The use of wavelets in signal analysis and computer vision has proved almost optimal for
one-dimensional signals in many ways, and the mathematics behind classical wavelets has
reached a high degree of elaboration. In higher dimensions, however, the picture is less
clear and this partially explains the huge class of representations that has been introduced
over the years to handle high dimensional problems, such as directional wavelets [1],
ridgelets [2], curvelets [3], wavelets with composite dilations [4], contourlets [5], shearlets
[6], reproducing groups of the symplectic group [7], Gabor ridge functions [7] and mocklets
[8] – to name a few.

Among them, shearlets stand out because of their ability to efficiently capture anisotropic
features, to provide optimal sparse representations, to detect singularities and to be stable
against noise, see [9] for an overview and a complete list of references. From the purely
mathematical perspective, their construction is based on the well-established theory of
square-integrable representations [10], just as wavelets are, and because of this many
powerful mathematical tools are available. As far as applications are concerned, their ef-
fectiveness has been tested primarily in image processing, where many efficient algorithms
have been designed using them (see [9, 11] and the website http://www.shearlab.org/

for further details and references).

Thus, in some sense, shearlets behave for high-dimensional signals as wavelets do for 1D-
signal, and it is therefore natural to try to understand if the many strong connections are
a consequence of some general mathematical principle.

The purpose of this paper is to address this issue, and to give a partial answer, showing
that the link between the shearlet transform and wavelets is the unitary Radon transform
in affine coordinates, because it actually intertwines the shearlet representation with a
tensor product of two wavelet representations. This fact can be exploited to show that
by carefully choosing the mother shearlet it is possible to obtain the classical shearlet
coefficients as a sequence of operations performed on the Radon transform of the signal,
namely a one-dimensional wavelet transform, with respect to the “sliding” coordinate
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that parametrizes all the hyperplanes parallel to a given one (for the two dimensional
case see Fig. 1), followed by a convolution operator with a scale-dependent filter in the
variables of the hyperplane. As the shearlet transform admits an inversion formula, it is
in principle possible to invert the Radon transform of a given signal by means of it and
the aforementioned operations.

For two-dimensional signals, our results, which have been announced in [12], can be
described as we now explain. In order to formulate them precisely, we recall the definition
of the three main ingredients, namely wavelets, shearlets and the Radon transform. The
wavelet group is R o R× with law (b, a)(b′, a′) = (b + ab′, aa′). The square integrable
wavelet representation W acts on L2(R) by

Wb,aψ(x) = |a|−1/2ψ
(x− b

a

)
and the wavelet transform, defined by Wψf(b, a) = 〈f, ψb,a〉, is a multiple of an isometry
from L2(R) to L2(R o R×) provided that ψ satisfies the Calderón condition, see (22)
below. Next, denote by S the (parabolic) shearlet group, namely R2 o (R o R×) with
multiplication

(b, s, a)(b′, s′, a′) = (b+NsAab
′, s+ |a|1/2s′, aa′)

where

Aa = a

[
1 0
0 |a|−1/2

]
, Ns =

[
1 −s
0 1

]
and where the vectors are understood as column vectors. The group S acts on L2(R2) via
the shearlet representation, namely

Sb,s,af (x) = |a|−3/4f(A−1
a N−1

s (x− b)).
The shearlet transform is then Sψf(b, s, a) = 〈f, Sb,s,aψ〉, and is a multiple of an isometry
provided that an admissibility condition on ψ is satisfied [13, 14], see (17) below. Finally,
the Radon transform in affine coordinates of a signal f ∈ L1(R2) is the function Rafff :
R2 → C defined by

Rafff(v, t) =

∫
R

f(t− vy, y) dy, (v, t) ∈ R2.

An important fact is that it is possible to define a version of Raff as a unitary map on
L2(R2). First, it is necessary to compose it with the Riesz-type operator I that we now
describe. Its natural domain is the dense subspace of L2(R2)

D =
{
g ∈ L2(R2) :

∫
R2

|ξ2| |ĝ(ξ1, ξ2)|2dξ1dξ2 < +∞
}
,

where ĝ denotes the Fourier transform of g. The densely defined, self-adjoint unbounded
operator I : D → L2(R2) is defined by

(̂Ig)(ξ1, ξ2) = |ξ2|
1
2 ĝ(ξ1, ξ2), (ξ1, ξ2) ∈ R2,

i.e. a Fourier multiplier in the second variable. It is not hard to show that for all f in
the dense subspace of L2(R2)

A =
{
f ∈ L1(Rd) ∩ L2(R2) :

∫
R2

|f̂(ξ1, ξ2)|2

|ξ1|
dξ1dξ2 < +∞

}
,
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the Radon transform Rafff belongs to D and that the map f 7−→ IRafff from A to
L2(R2) extends to a unitary map, denoted by Q, from L2(R2) onto itself.

In the two dimensional case our main formula reads now

QSb,s,af =
(
Ws,|a|1/2 ⊗ I

)
W(1,v)·b,aQf (1)

where the meaning of the dummy variable v is

W(1,v)·b,ag(v, t) = |a|−
1
2 g

(
v,
t− (1, v) · b

a

)
.

Our second most important result is the formula

Sψf(x, y, s, a) = |a|−
3
4

∫
R

Wχ1

(
Rafff(v, •)

)
(x+ vy, a)φ2

(v − s
|a|1/2

)
dv, (2)

provided that f ∈ L1(Rd) ∩ L2(Rd) and ψ is of the form

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2

(ξ2

ξ1

)
.

The 1D-wavelet χ1 and the 1D-filter φ2 are related to the shearlet admissible vector ψ by
the following relations

χ̂1(ξ1) = |ξ1|ψ̂1(ξ1) (3)

φ2(ξ2/ξ1) = ψ̂2(ξ2/ξ1). (4)

The first equality shows that 2πχ1 = Hψ′1 is the Hilbert transform H of the weak deriv-
ative of ψ1.

Equation (2) shows that for any signal f in L1(Rd)∩L2(Rd) the shearlet coefficients can be
computed by means of three classical trasforms. Indeed, in order to obtain Sψf(x, y, s, a)
one can:

a) compute the Radon transform Rafff(v, t) of the original signal f ;
b) apply the wavelet transform with respect to the variable t

G(v, b, a) =Wχ1

(
Rafff(v, ·)

)
(b, a), (5)

where χ1 is given by (3);
c) convolve the result with the scale-dependent filter

Φa(v) = φ2

(
− v

|a|1/2

)
,

where φ2 is given by (4) and the convolution is computed with respect to the variable
v, that is

Sψf(x, y, s, a) = (G(•, x+ • y, a) ∗ Φa) (s).

Finally, since S is a square-integrable representation, there is a reconstruction formula,
namely

f =

∫
S
Sψf(x, y, s, a) Sx,y,s,aψ

dxdydsda

|a|3
, (6)
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where the integral converges in the weak sense. Note that Sψf depends on f only through
its Radon transform Rafff , see (2). The above equation allows to reconstruct an unknown
signal f from its Radon transform by computing the shearlet coefficients by means of (6).

The fact that the Radon transform does play a prominent role in this circle of ideas is not
new. Indeed, it is known that ridgelets are constructed via wavelet analysis in the Radon
domain [15], Gabor frames are defined as the directionally-sensitive Radon transforms
[7], discrete shearlet frames are used to invert the Radon transform [16] and the Radon
transform is at the root of the proof that shearlets are able to detect the wavefront set of
a 2D signal [17].

Our contribution is to clarify this relation from the point of view of non-commutative
harmonic analysis. We are actually able to prove a rather general result, Theorem 3,
which generalizes (1) and holds for the class of groups that were introduced by Führ
[18, 19] and that are known as shearlet dilation groups.

The paper is organized as follows. In Section 2 we present in full detail all the various
ingredients, namely the groups, the representations, the Radon transform and the unitary
extensions that need to be defined. In Section 3 we state and prove the main results.

2. Preliminaries

2.1. Notation. We briefly introduce the notation. We set R× = R \ {0}. The Euclidean
norm of a vector v ∈ Rd is denoted by |v| and its scalar product with w ∈ Rd by v ·w. For
any p ∈ [1,+∞] we denote by Lp(Rd) the Banach space of functions f : Rd → C, which
are p-integrable with respect to the Lebesgue measure dx and, if p = 2, the corresponding
scalar product and norm are 〈·, ·〉 and ‖ · ‖, respectively. The Fourier trasform is denoted
by F both on L2(Rd) and on L1(Rd), where it is defined by

f̂(ξ) = Ff(ξ ) =

∫
Rd
f(x)e−2πi ξ·xdx, f ∈ L1(Rd).

If G is a locally compact group, we denote by L2(G) the Hilbert space of square-integrable
functions with respect to a left Haar measure on G. We denote the (real) general linear
group of size d × d by GL(d,R) and by T(d,R) the closed subgroup of unipotent upper
triangular matrices.

If H is a closed subgroup of GL(d,R), the semidirect product G = RdoH is the product
Rd ×H with group operation

(b1, h1)(b2, h2) = (b1 + h1[b2], h1h2),

where b1, b2 ∈ Rd, h1, h2 ∈ H and where h[b] is the natural linear action of the matrix h
on the column vector b.

2.2. Shearlet dilation groups. In this section we introduce the groups in which we are
interested. This family includes the groups introduced by Führ in [18, 19], and called
generalized shearlet dilation groups for the purpose of generalizing the standard shearlet
group introduced in [6, 20].

Definition 1. A shearlet dilation group H < GL(d,R) is a subgroup of the form H = SD,
where
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(i) S is a Lie subgroup of T(d,R) consisting of matrices of the form[
1 −ts
0 B(s)

]
with s ∈ Rd−1 and B : Rd−1 → T(d− 1,R) a smooth map;

(ii) D is the one-parameter subgroup of GL(d,R) consisting of the diagonal matrices

a diag(1, |a|λ1 , . . . , |a|λd−1) = a

[
1 0
0 Λ(a)

]
(7)

as a ranges in R×. Here (λ1, . . . , λd−1) is a fixed vector in Rd−1.

The group S is called the shearing sugroup of H and D is called the diagonal complement
or scaling subgroup of H.

Several observations are in order. First of all, if one requires the shearing subgroup S to
be Abelian, then one obtains the class introduced by Führ, with a slightly more general
definition. This has inspired Definition 1.

Since the map B is continuous, S is automatically connected, and hence by Theorem 3.6.2
in [21], it is closed and simply connected. By construction the elements of H are of the
form

hs,a = hs,1h0,a = a

[
1 −tsΛ(a)
0 B(s)Λ(a)

]
. (8)

Furthermore, since the diagonal matrices of GL(d,R) normalize T(d,R), then H is the
semidirect product of S and D.

Finally, the assumption that S is a subgroup normalized by D forces the maps B and Λ
to satisfy some equalities. Indeed, since[

1 −tu
0 B(u)

] [
1 −tv
0 B(v)

]
=

[
1 −t(v + tB(v)u)
0 B(u)B(v)

]
,

then S is a group if and only if

B(0) = Id−1 (9)

B(u)B(v) = B(v + tB(v)u) (10)

B(u)−1 = B(−tB(u)−1u) (11)

for every u, v ∈ Rd−1. Since[
1 0
0 Λ(a)

] [
1 −ts
0 B(s)

] [
1 0
0 Λ(a)−1

]
=

[
1 t(Λ(a)−1s)
0 Λ(a)B(s)Λ(a)−1

]
the compatibility of D with S is equivalent to asking for the following condition to hold
for all a 6= 0 and all s ∈ Rd−1:

Λ(a)B(s)Λ(a)−1 = B(Λ(a)−1s). (12)

It follows that H is diffeomorphic as a manifold to Rd−1×R×, so that we can identify the
element hs,a with the pair (s, a). With this identification the product law amounts to

(s, a)(s′, a′) =
(
Λ(a)−1s′ + tB(Λ(a)−1s′)s, aa′

)
. (13)
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We stress that, in general, S is not isomorphic as a Lie group to the additive Abelian
group Rd−1, unless S is the standard shearlet group introduced in [20], see the examples
below.

Remark. It should be clear that a slightly larger class would be obtained by allowing for
diagonal matrices of the form

sign(a) diag(|a|µ0 , |a|µ1 , . . . , |a|µd−1), a ∈ R×.

The case µ0 = 0, however, is uninteresting because any shearlet dilation group correspond-
ing to this choice never admits admissible vectors [19, 22]. But then a simple change of
variables permits to assume µ0 = 1, as we did, and to set λj = µj − 1.

Remark. In [19] the authors introduce the notion of shearlet dilation group by means
of structural properties and then prove that in the case when S is Abelian they can be
parametrized as in Definition 1.

We now give three examples. If S is Abelian a full characterization is provided in [19],
see also [22] for a connection with a suitable class of subgroups of the symplectic group.

Example (The standard shearlet group). A possible choice for B is the map B(s) = Id−1,
which satisfies all the above properties. In this case, s 7→ hs,1 defines a group isomorphism
between Rd−1 and the Abelian group S.

Clearly, any choice of the weights λ1, . . . , λd−1 is compatible with (12). In particular, if
we choose as D the group of matrices

Aa = a

[
1 0
0 |a|γ−1 Id−1

]
⇐⇒ Λ(a) = |a|γ−1 Id−1 a ∈ R×,

where γ ∈ R is a fixed parameter, then we obtain the d-dimensional shearlet group,
usually denoted Sγ, and, often, the parameter γ is chosen to be 1/d [20, 23].

Example (The Toeplitz shearlet group). Another important example arises when B(s)
is the Toeplitz matrix

B(s) = T (ŝ) =


1 −s1 −s2 . . . −sd−2

0 1 −s1 −s2
...

...
. . . . . . . . .

...
...

. . . 1 −s1

0 . . . . . . 0 1

 , (14)

where ŝ = t(s1, . . . , sd−2). It is easy to see that T (û)T (v̂) = T (û]v̂) where

(û]v̂)i := ui + vi +
∑
j+k=i

vjuk, i = 1, . . . d− 2

and that consequently all the equalities in (10) hold. This case corresponds to Toeplitz
shearlet groups (see [24]).

Not all dilation matrices as in (7) are compatible with (12). In [19] it is shown that

λk = kλ1, k = 2, . . . , d− 1 (15)

for any fixed λ1.
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Example (A non-Abelian shearlet dilation group). The matrices

g(u1, u2, u3) =


1 −u1 −u2 −u3

0 1 −u1 −u2 − 1
2
u2

1

0 0 1 0
0 0 0 1


as u = (u1, u2, u3) ranges in R3 give rise to a non-Abelian shearlet group S. Indeed, it is
easily checked that

g(u1, u2, u3)g(v1, v2, v3) = g(u1 + v1, u2 + v2 − u1v1, u3 + v3 − u1(v2 +
1

2
v2

1)),

a product which is not Abelian in the third coordinate. Evidently,

B(u) =

1 −u1 −u2 − 1
2
u2

1

0 1 0
0 0 1


is a smooth function of u. The group S is isomorphic to the standard Heisenberg group,
as is most clearly seen at the level of Lie algebra. Indeed, the Lie algebra of S is given by
the matrices

X(q, p, t) =


0 q p t
0 0 q p
0 0 0 0
0 0 0 0

 ,
because X3(q, p, t) = 0 and hence

exp(X(q, p, t)) = I4 +X(q, p, t) +
1

2
X2(q, p, t)

=


1 q p+ 1

2
q2 t+ 1

2
qp

0 1 q p
0 0 1 0
0 0 0 1


= g(−q,−(p+

1

2
q2),−(t+

1

2
qp)).

Further,
[X(q, p, t), X(q′, p′, t′)] = X(0, 0, qp′ − pq′)

exhibits the Lie algebra of S as the three dimensional Heisenberg Lie algebra. A straight-
forward calculation shows that for any choice of λ ∈ R the diagonal matrices

Λ(a) =

|a|λ |a|2λ
|a|3λ


normalize B(u) because Λ(a)B(u)Λ(a)−1 = B(Λ(a)−1u). Conversely, these are easily seen
to be the only rank-one dilations that normalize the matrices B(u). In conclusion, the
group D consisting of the matrices

a

[
1

Λ(a)

]
together with S give rise to the non-Abelian shearlet dilation group H = SD. It is
worth observing that the dilations in D are not the standard dilations of the Heisenberg
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group. Indeed, the Lie algebra of D consists of the diagonal matrices Aλ(τ) = diag(τ, (λ+
1)τ, (2λ+ 1)τ, (3λ+ 1)τ) and

[Aλ(τ), X(q, p, t)] = X(−λτq,−2λτp,−3λτt)

shows that these homogeneous dilations are not the standard dilations of the Heisenberg
Lie algebra (see [25], p. 620).

2.3. The shearlet representation and admissible vectors. From now on we fix a
group G = Rd oH where H is a shearlet group as in Definition 1 and we parametrize its
elements as (b, s, a). By (13) we get that a left Haar measure of H is

dh = |a|λD−1dsda

where λD = λ1 + . . .+ λd−1 and ds, da are the Lebesgue measures of Rd−1 and R×. As a
consequence, a left Haar measure on G is

dg = db
dh

| deths,a|
= |a|−(d+1)dbdsda

where db is the Lebesgue measure on Rd and the last equality holds true since

| deths,a| = |a|d+λD .

The quasi-regular representation of G on L2(Rd) is

Sb,s,af(x) = |a|−
d+λD

2 f(h−1
s,a(x− b)). (16)

The next result generalizes Theorem 4.12 in [19] to the case when S is not Abelian.

Theorem 2. The representation S is square-integrable and its admissible vectors ψ are
the elements of L2(Rd) satisfying

0 < Cψ =

∫
Rd

|Fψ(ξ)|2

|ξ1|d
dξ < +∞, (17)

where ξ = (ξ1, ξ
′) ∈ R× Rd−1.

We recall that a unitary representation π of G acting on a Hilbert space H is square inte-
grable if it is irreducible and if there exists a (non-zero) element ψ ∈ H, called admissible
vector, such that the associated voice transform, i.e. the linear map f 7→ 〈f, π(b, h)ψ〉,
takes values in L2(G) and in such case it is a multiple of an isometry, denoted by
Wψ : H → L2(G).

Proof of Theorem 2. The proof is an immediate consequence of the following result due
to Führ, see [26] and the references therein. The quasi-regular representation of Rd oH
is square integrable if and only if there exists a vector ξ0 ∈ Rd such that

(i) the dual orbit Oξ0 = {thξ0 ∈ Rd : h ∈ H} is open and it is of full measure,
(ii) the stabilizer Hξ0 = {h ∈ H : thξ0 = ξ0} is compact,

where saying that Oξ0 has full measure means that its complement has Lebsegue measure
zero. In such case, a vector ψ is admissible if and only if∫

H

|Fψ(thξ0)|2dh < +∞. (18)
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In our setting, with the choice ξ0 = (1, 0, . . . , 0) we have that

ths,aξ0 = th0,a
ths,1


1
0
. . .
0

 = a

[
1

Λ(a)s

]

so that Oξ0 = R× × Rd−1, which is of full measure, and Hξ0 is trivial. Hence S is square-
integrable.

To compute the admissible vectors, notice that by (18)∫
H

|Fψ(thξ0)|2dh =

∫
Rd−1×R×

|Fψ(aΛ(a)s, a)|2|a|λD−1dsda

=

∫
Rd−1×R×

|Fψ(ξ1, ξ
′)|2

|ξ1|d
dξ1dξ′

with the change of variables a = ξ1 and s = Λ(ξ1)−1ξ′/ξ1. �

Theorem 2 states the surprising fact that the admissibility condition is the same for all
generalized shearlet dilation groups. A canonical choice is to assume that

Fψ(ξ1, ξ
′) = Fψ1(ξ1)Fψ2(ξ′/ξ1) (19)

where ψ1 ∈ L2(R) satisfies ∫
R×

|Fψ1(ξ1)|2

|ξ1|
dξ1 < +∞. (20)

and ψ2 ∈ L2(Rd−1). However, other choices are available and, in particular, it is possible
to build shearlets with compact support in space [27]. We finally recall that, since the
representation S is square-integrable, we have the weakly-convergent reproducing formula
[28]

f =
1

Cψ

∫
G

Sψf(b, s, a)Sb,s,aψ
db ds da

|a|d+1
. (21)

2.4. Wavelet Transform. We recall that the one-dimensional affine group W is RoR×
endowed with the product

(b, a)(b′, a′) = (b+ ab′, aa′)

and left Haar measure |a|−2dbda. It acts on L2(R) by means of the square-integrable
representation

Wb,af(x) = |a|−
1
2f(

x− b
a

).

The corresponding wavelet transform is Wψ : L2(R)→ L2(W), given by

Wψf(b, a) = 〈f,Wb,aψ〉,
which is a multiple of an isometry provided that ψ ∈ L2(R) satisfies the admissibility
condition, namely the Calderón equation,

0 <

∫
R

|Fψ(ξ)|2

|ξ|
dξ < +∞ (22)

and, in such a case, ψ is called an admissible wavelet.
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2.5. The quasi-regular representation of H. Consider now the shearlet dilation group
H, with S and D its shearing and dilation subgroups, respectively (see Definition 1). As
mentioned above, we identify H with Rd−1 × R× as manifolds and sometimes denote by
(s, a) the element hs,a of H. Recall that by (13) the product law is then

(s, a)(s′, a′) = (Λ(a)−1s′ + tB(Λ(a)−1s′)s, aa′).

Observe that H acts naturally on Rd and its (right) dual action is

ths,a

[
v1

v

]
= a

[
v1

Λ(a)(tB(s)v − s)

]
.

This implies that H acts naturally on Pd−1 = (Rd \ {0})/ ∼ as well. By identifying Rd−1

with {(1, v) : v ∈ Rd−1}/ ∼ we get that H acts on Rd−1 as

ths,a.v = Λ(a)(tB(s)v − s).

Hence we can define the quasi-regular representation of H acting on L2(Rd−1) by means
of

Vs,af(v) = |a|
λD
2 f(Λ(a)(tB(s)v − s)),

where we recall that λD = λ1 + · · · + λd−1. In general, V is not irreducible, but we can
always define the voice transform associated to a fixed vector ψ ∈ L2(Rd−1), namely the
mapping Vψ : L2(Rd−1) −→ C(H) defined by

Vψf(s, a) = 〈f, Vs,aψ〉2,

where C(H) is the space of continuous functions on H.

Example (The standard shearlet group, continued). For the classical shearlet group Sγ
the shearlet representation on L2(Rd) becomes

Sγb,s,af(x) = |a|−
1+γ(d−1)

2 f(A−1
a S−1

s (x− b)), (23)

whereas the group H is the affine group Rd−1 o R× in dimension d − 1 and V is the
corresponding wavelet representation

Vs,af(v) = |a|
(d−1)(γ−1)

2 f

(
v − s
|a|1−γ

)
, (24)

which is not irreducible unless d = 2. Furthermore, the voice transform can be written as
convolution operator

Vψf(s, a) = |a|
(d−1)(γ−1)

2

∫
Rd−1

f(v)ψ

(
v − s
|a|1−γ

)
dv = f ∗Ψa(s)

where

Ψa(v) = |a|
(d−1)(γ−1)

2 ψ

(
− v

|a|1−γ

)
.



RADON TRANSFORM INTERTWINES SHEARLETS AND WAVELETS 11

2.6. The affine Radon transform. In this section we recall the definition and the
main properties of the Radon transform. Then we introduce the particular restriction of
the Radon transform in which we are interested, the so-called affine Radon transform,
obtained by parametrizing the space of hyperplanes by affine coordinates.

We first define the Radon transform on L1(Rd) by following the approach in [29], see
also [30] as a classical reference. Given f ∈ L1(Rd) its Radon transform is the function
Rf : (Rd \ {0})× R→ C defined by

Rf(n, t) =
1

|n|

∫
n·x=t

f(x) dm(x), (25)

where m is the Euclidean measure on the hyperplane

(n : t) := {x ∈ Rd : n · x = t} (26)

and the equality (25) holds for almost all (n, t) ∈ (Rd \{0})×R. We add some comments.
Definition (25) makes sense since, given n ∈ Rd \ {0} Fubini theorem gives that∫

Rd
|f(x)|dx =

∫
R

(∫
n·x=t

|f(x)|dm(x)

)
dt < +∞,

so that for almost all t ∈ R the integral
∫
n·x=t

|f(x)|dm(x) is finite and R(n, t) is well
defined.

Furthermore, each pair (n, t) ∈ (Rd \ {0}) × R defines the hyperplane (n : t) by means
of (26). Clearly, the correspondence between parameters (n, t) and hyperplanes is not
bijective. Indeed (n′, t′) and (n, t) determine the same hyperplane if and only if there
exists λ ∈ R× such that n′ = λn and t′ = λt and this equivalence relation motivates the
notation (n : t) for the hyperplane in (26). Because of the factor 1/|n| in (25), Rf is a
positively homogenous function of degree −1, i.e. for all λ ∈ R×

Rf(λn, λt) = |λ|−1Rf(n, t). (27)

This means that Rf is completely defined by choosing a representative (n, t) for each
hyperplane (n : t), i.e. by choosing a suitable system of coordinates on the affine Grass-
mannian

{hyperplanes of Rd} ' Pd−1 × R.
The canonical choice [30] is given by parametrizing Pd−1 with its two-fold covering Sd−1,
where Sd−1 is the unit sphere in Rd.

We are interested in another restriction of the Radon transform. For all v ∈ Rd−1 set
tn(v) = (1, tv).

Definition 3. Given f ∈ L1(Rd), the affine Radon transform of f is the function Rafff :
Rd−1 × R→ C given by

Rafff(v, t) = Rf(n(v), t)

=
1√

1 + |v|2

∫
n(v)·x=t

f(x)dm(x) =

∫
Rd−1

f(t− v · y, y)dy. (28)

Remark. The transform Raff is obtained from R by parametrizing the projective space
Pd−1 with affine coordinates. Indeed, the map (v, t) 7→ (n(v) : t) is a diffeomorphism of
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π0

x

y

0

n(v)

n(v) · (x, y) = t

(t, 0)

Figure 1. space of hyperplanes parametrized by affine coordinates (2-
dimensional case)

Rd−1 × R onto the open subset

U0 = {(n : t) : ∃λ ∈ R× s.t. λn ∈ π0},
where π0 = {n(v) : v ∈ Rd−1}. The complement of U0 is the set of horizontal hyperplanes,
those for which the normal vector has the first component equal to zero (see Figure 1 for
the 2-dimensional case). The set of pairs (v, t) such that (n(v) : t) 6∈ U0 is negligible, so
that Rafff completely defines Rf . In A we recall the relation between the affine Radon
transform and the usual Radon transform in polar coordinates.

The next proposition, whose proof can be found in [29], summarizes the behaviour of the
Radon transform under affine linear actions. The translation and dilation operators act
on a function f : Rd → C as

Tbf(x) = f(x− b), DAf(x) = | detA|−1f
(
A−1x

)
,

respectively, for b ∈ Rd and A ∈ GL(d,R). Both operators map each Lp(Rd) onto itself
and DA is normalized to be an isometry on L1(Rd).

Proposition 4. Given f ∈ L1(Rd), the following properties hold true:

(i) RTbf(n, t) = Rf(n, t− n · b), for all b ∈ Rd;
(ii) RDAf(n, t) = Rf(tAn, t), for all A ∈ GL(d,R).

We now state a crucial result in Radon transform theory in its standard version. Below
we prove two variations that are taylored to our setting but are also of some independent
interest.

Proposition 5 (Fourier slice theorem, 1). For any f ∈ L1(Rd)

F(Rf(n, ·))(τ) = Ff(τn).

for all n ∈ Rd \ {0} and all τ ∈ R.
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Here the Fourier transform on the right hand side is in Rd, whereas the operator F on
the left hand side is 1-dimensional and acts on the variabile t. We repeat this slight abuse
of notation in other formulas below.

In the next formulation, written for the affine Radon transform, the function f to which
Raff is applied is taken in L1(Rd) ∩ L2(Rd).

Proposition 6 (Fourier slice theorem, 2). Define ψ : Rd−1× (R\{0})→ Rd by ψ(v, τ) =
τn(v). For every f ∈ L1(Rd)∩L2(Rd) there exists a negligible set E ⊆ Rd−1 such that for
all v 6∈ E the function Rafff(v, ·) is in L2(R) and satisfies

Rafff(v, ·) = F−1[Ff ◦ ψ(v, ·)]. (29)

Proof. By Proposition 5 we know that for all v ∈ Rd−1 the affine Radon transform
Rafff(v, ·) is in L1(R) and satisfies

F(Rafff(v, ·))(τ) = Ff ◦ ψ(v, τ), τ ∈ R.
We start by proving that the function τ 7→ Ff ◦ ψ(v, τ) is in L2(R), that is∫

R
|Ff ◦ ψ(v, τ)|2dτ < +∞.

The map ψ : Rd−1 × (R \ {0}) → Rd, defined by ψ(v, τ) = τn(v), is a diffeomorphism
onto the open set V = {ξ ∈ Rd : ξ1 6= 0} with Jacobian Jψ(v, τ) = τ d−1. By hypothesis
we know that

‖f‖2
2 =

∫
Rd
|Ff(ξ)|2dξ =

∫
Rd−1

∫
R
|Ff ◦ ψ(v, τ)|2|τ |d−1dτdv < +∞,

so that there exists a negligible set E ⊆ Rd−1 such that

Cf :=

∫
R
|Ff ◦ ψ(v, τ)|2|τ |d−1dτ < +∞

for all v 6∈ E. Therefore, for all v 6∈ E it holds∫
R
|Ff ◦ ψ(v, τ)|2dτ =

∫
|τ |≤1

|Ff ◦ ψ(v, τ)|2dτ +

∫
|τ |>1

|τ |d−1

|τ |d−1
|Ff ◦ ψ(v, τ)|2dτ

≤ 2‖Ff‖∞ +

∫
R
|Ff ◦ ψ(v, τ)|2|τ |d−1dτ

≤ 2‖f‖2
1 + Cf < +∞.

Hence the function t 7→ Rafff(v, t) is in L1(Rd) ∩ L2(Rd) and (29) follows by the Fourier
inversion formula in L2(R). �

It is possible to extend the affine Radon transform Raff to L2(Rd) as a unitary map.
However, this raises some technical issues, that are addressed in the next section.

2.7. The unitary extension. Consider the subspace

D =
{
f ∈ L2(Rd−1 × R) :

∫
Rd−1×R

|τ |d−1 |Ff(ξ, τ)|2 dξdτ < +∞
}

of L2(Rd−1 × R) and define the operator I : D → L2(Rd−1 × R) by

FIf(ξ, τ) = |τ |
d−1
2 Ff(ξ, τ), (30)
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a Fourier multiplier with respect to the last variable. Since τ 7→ |τ | d−1
2 is a strictly positive

(almost everywhere) Borel function on R, the spectral theorem for unbounded operators,
see Theorem VIII.6 of [31], shows that D is dense and that I is a positive self-adjoint
injective operator.

Remark. The operator I is related to the inverse of the Riesz potential with exponent
(d− 1)/2 on L2(R). Indeed, if ψ2 ∈ L2(Rd−1) and if ψ1 ∈ L2(R) is such that∫

R
|τ |d−1|Fψ1(τ)|2 dτ < +∞,

then ψ2 ⊗ ψ1 ∈ D, because∫
Rd−1×R

|τ |d−1|F(ψ2 ⊗ ψ1)(ξ, τ)|2 dξdτ

=

∫
Rd−1

|Fψ2(ξ)|2 dξ

∫
R
|τ |d−1|Fψ1(τ)|2 dτ < +∞,

so that
I(ψ2 ⊗ ψ1) = ψ2 ⊗ I0ψ1,

where I0 is the inverse of the standard Riesz potential defined by

FI0ψ1(τ) = |τ |
d−1
2 Fψ1(τ). (31)

Furthermore, D is invariant under translations and dilations by matrices of the form

A =

[
A0 0
v a

]
, (32)

where A0 ∈ GL(d− 1,R), v ∈ Rd−1, a ∈ R×.

Lemma 7. For all b ∈ Rd and A as in (32) it holds

ITb = TbI, IDA = |a|−
d−1
2 DAI. (33)

Proof. The first of relations (33) is a consequence of the fact that FTbf(ξ, τ) = e−2πib·ξFf(ξ, τ)
for all f ∈ L2(Rd−1 × R). Precisely, for all f ∈ D we have that

FITbf(ξ, τ) = |τ |
d−1
2 FTbf(ξ, τ)

= |τ |
d−1
2 e−2πib·ξFf(ξ, τ)

= e−2πib·ξFIf(ξ, τ)

= FTbIf(ξ, τ),

whence ITb = TbI. The second follows from FDAf(ξ, τ) = Ff(tA(ξ, τ)). Indeed, for all
f ∈ D

FIDAf(ξ, τ) = |τ |
d−1
2 FDAf(ξ, τ)

= |τ |
d−1
2 Ff(tA(ξ, τ))

= |τ |
d−1
2 Ff(tA0ξ + τv, aτ)

= |τ |
d−1
2 |aτ |−

d−1
2 FIf(tA0ξ + τv, aτ)

= |a|−
d−1
2 FDAIf(ξ, τ).
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This proves (33). �

The space D becomes a pre-Hilbert space with respect to the scalar product

〈f, g〉D = 〈If, Ig〉2

=

∫
Rd−1×R

|τ |d−1F(f(v, ·))(τ)F(g(v, ·))(τ) dvdτ.
(34)

Furthermore,
||f ||2D = 〈f, f〉D = 〈If, If〉2 = ||If ||22,

for all f ∈ D. Hence I is an isometric operator from D, with the new scalar product (34),
to L2(Rd−1 × R). Since I is self-adjoint and injective, Ran(I) is dense in L2(Rd−1 × R).
Hence, by standard arguments, it extends uniquely to a unitary operator, denoted I ,
from the completion H of D onto L2(Rd−1 × R).

To extendRaff to L2(Rd) as a unitary operator, note that, by Proposition 5 with n = n(v),
the affine Radon transform of f ∈ L1(Rd) ∩ L2(Rd) belongs to L2(Rd−1 × R) if and only
if is finite the integral∫

Rd−1×R
|Rafff(v, t)|2dvdt =

∫
Rd−1

∫
R
|F(Rafff(v, ·))(τ)|2dτdv

=

∫
Rd−1×R

|Ff(τ, τv)|2dτdv

=

∫
Rd

|Ff(ξ)|2

|ξ1|d−1
dξ,

where ξ1 is the first component of the vector ξ ∈ Rd. Therefore requiring that Rafff
belongs to L2(Rd−1 × R) is equivalent to∫

Rd

|Ff(ξ)|2

|ξ1|d−1
dξ < +∞.

We denote by

A = {f ∈ L1(Rd) ∩ L2(Rd) :

∫
Rd

|Ff(ξ)|2

|ξ1|d−1
dξ < +∞},

which is dense in L2(Rd) since it contains the functions whose Fourier transform is smooth
and has compact support disjoint from the hyperplane ξ1 = 0. By definition of A,
Rafff ∈ L2(Rd−1 × R) for all f ∈ A.

We shall need a suitable formulation of the main result in Radon transform theory, namely
the following version of Theorem 4.1 in [30]. For the sake of completeness we include the
proof in B.

Theorem 8. The affine Radon transform extends to a unique unitary operator from
L2(Rd) onto H, denoted with R and, hence, Q = I R is a unitary operator from L2(Rd)
onto L2(Rd−1 × R).

As mentioned above, we need yet another generalization of the Fourier slice theorem
(Proposition 5). We think that it is perhaps known, but we could not locate it in the
literature. The proof is given in B.
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Proposition 9 (Fourier slice theorem, 3). For all f ∈ L2(Rd)

F(Qf(v, ·))(τ) = |τ |
d−1
2 Ff(τn(v)) (35)

for almost every (v, τ) ∈ Rd−1 × R.

3. The Intertwining Theorem and its consequences

3.1. The main Theorem. We recall that the group G is the semidirect product G =
Rd oH where H = SD is the shearlet dilation group, S is the shearing subgroup and D
the scaling subgroup of H, as in Definition 1. Each element in G is parametrized by a
triple (b, s, a) ∈ Rd × Rd−1 × R× and Sb,s,a is as in (16).

Theorem 10. The unitary operator Q intertwines the shearlet representation with the
tensor product of two unitary representations, precisely

QSb,s,af(v, t) = (Vs, a ⊗Wn(v)·b,a)Qf(v, t) (36)

for every f ∈ L2(Rd).

Proof. By density, it is enough to prove the equality on A. We shall use throughout
the fact that Rafff ∈ D for every f ∈ A and that D is invariant under all translations
and under the dilations described in (32). Since for all (b, s, a) ∈ G it holds (b, s, a) =
(b, 0, 1)(0, s, 1)(0, 0, a), it is sufficient to prove the equality for each of the three factors.
For f ∈ A and b ∈ Rd we have

RaffSb,0,1f(v, t) = RaffTbf(v, t)

= RTbf(n(v), t)

= Rf(n(v), t− n(v) · b)
= Rafff(v, t− n(v) · b)
= (I⊗Wn(v)·b,1)Rafff(v, t).

Since I commutes with translations, I⊗Wn(v)·b,1 = T(0,n(v)·b) implies

IRaffSb,0,1f(v, t) = I(I⊗Wn(v)·b,1)Rafff(v, t) = (I⊗Wn(v)·b,1)IRafff(v, t).

For f ∈ A and a ∈ R× we have

RaffS0,0,af(v, t) = |a|
d+λD

2 RaffDh0,af(v, t)

= |a|
d+λD

2 RDh0,af(n(v), t)

= |a|
d+λD

2 Rf(th0,an(v), t).

A direct calculation gives

th0,an(v) = a

[
1 0
0 Λ(a)

] [
1
v

]
= a

[
1

Λ(a)v

]
= an (Λ(a)v) .
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The behavior of the Radon transform under linear operations implies that

RaffS0,0,af(v, t) = |a|
d+λD

2 Rf
(
an (Λ(a)v) , a

t

a

)
= |a|

d+λD
2
−1Rafff

(
Λ(a)v,

t

a

)
= |a|

d−1
2 (V0, a ⊗W0,a)Rafff (v, t) .

Since

(V0, a ⊗W0,a) = |a|
3(1−λD)

2 DA,

where the matrix A is of the form

A =

[
Λ(a)−1 0

0 a

]
,

and because of the behavior of the operator I under dilations, we obtain

IRaffS0,0,af(v, t) = I|a|
d−1
2 (V0, a ⊗W0,a)Rafff(v, t)

= (V0, a ⊗W0,a)IRafff(v, t).

Finally, let s = t(s1, . . . , sd−1) ∈ Rd−1. Then

RaffS0,s,1f(v, t) = RaffDhs,1f(v, t)

= RDhs,1f(n(v), t) = Rf(ths,1n(v), t).

Since

ths,1n(v) =

[
1 0
−s tB(s)

] [
1
v

]
=

[
1

tB(s)v − s

]
= n

(
tB(s)v − s

)
,

by Proposition 4 we obtain the following string of equalities:

RaffS0,s,1f(v, t) = Rf
(
n
(
tB(s)v − s

)
, t
)

= Rafff
(
tB(s)v − s, t

)
= (Vs,1 ⊗ I)Rafff (v, t) .

Finally,

(Vs,1 ⊗ I) = |a|
3(1−λD)

2 T(−(tB(s))−1s,0)DA,

where

A =

[
tB(s)

−1
0

0 1

]
,

so that the behavior of I under dilations implies

IRaffS0,s,1f(v, t) = I(Vs,1 ⊗ I)Rafff(v, t)

= (Vs,1 ⊗ I)IRafff(v, t).

Therefore, by

IRaffSb,s,af = IRaffSb,0,1S0,s,1S0,0,af,

equation (36) follows applying the relations obtained above. �
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3.2. The admissibility conditions. In this subsection we discuss the admissibility con-
ditions and some of their consequences.

Our objective is to obtain an expression for the shearlet transform that makes use of
formula (36). To this end, we start by looking for natural conditions that guarantee
that ψ ∈ L2(Rd) is an admissible vector for the shearlet representation S, namely that it
satisfies (17).

Equation (36) suggests that a good choice for the admissible vector ψ is of the form

Qψ = φ2 ⊗ φ1

where φ1 ∈ L2(R), φ2 ∈ L2(Rd−1). If this is the case, then by (35) it follows that

φ2(v)Fφ1(τ) = |τ |
d−1
2 Fψ(τn(v))

so that Fψ factorizes as

Fψ(τ, τv) = Fψ1(τ)Fψ2(v), (37)

where we assume that ψ2 ∈ L2(Rd−1) and ψ1 ∈ L2(R). Equation (37) is the canonical
choice of admissible vectors given by (19). Furthermore,

Fφ1(τ) = |τ |
d−1
2 Fψ1(τ) φ2(v) = Fψ2(v),

so that the assumption that ψ2 ∈ L2(Rd−1) is automatically satisfied. Since φ1 ∈ L2(R),
then ∫

R
|τ |d−1|Fψ1(τ)|2 dτ < +∞.

This, together with the fact that ψ1 ∈ L2(R), implies that ψ1 belongs to the domain of
the differential operator I0 (see (31)). Therefore

φ1 = I0ψ1. (38)

With the choice (37) the admissibility condition (17) reduces to

0 <

∫
R

|Fψ1(τ)|2

|τ |
dτ < +∞.

From now on we fix ψ ∈ L2(Rd) of the form (37) with ψ1 ∈ L2(R) satisfying∫
R
|τ |d−1|Fψ1(τ)|2 dτ < +∞, 0 <

∫
R

|Fψ1(τ)|2

|τ |
dτ < +∞, (39)

and ψ2 ∈ L2(Rd−1).

Corollary 11. Under the assumptions (39), for every L2(Rd)

Sψf(b, s, a) = Vφ2 (Wφ1(Qf(v, t))(n(v) · b, a)) (s, a) (40)
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Proof. For all f ∈ L2(Rd) and (b, s, a) ∈ G
Sψf(b, s, a) = 〈f, Sb,s,aψ〉2
= 〈Qf,QSb,s,aψ〉2
= 〈Qf, (Vs,a ⊗Wn(·)·b,a)Qψ〉2
= 〈Qf, (Vs,a ⊗Wn(·)·b,a)(φ2 ⊗ φ1)〉2
= 〈Qf, Vs,aφ2 ⊗Wn(·)·b,aφ1〉2

=

∫
Rd−1×R

Qf(v, τ)Vs,aφ2(v)Wn(v)·b,aφ1(τ) dvdτ

=

∫
Rd−1

(∫
R
Qf(v, τ)Wn(v)·b,aφ1(τ) dτ

)
Vs,aφ2(v) dv

=

∫
Rd−1

Wφ1(Qf(v, •))(n(v) · b, a)Vs,aφ2(v) dv, (41)

where in the last equality we have used the fact that φ1 is an admissible wavelet. This is
true because by (38)∫

R

|Fφ1(τ)|2

|τ |
dτ =

∫
R

|FI0ψ1(τ)|2

|τ |
dτ

≤
∫

0<|τ |<1

|Fψ1(τ)|2

|τ |
dτ +

∫
|τ |≥1

|τ |d−1|Fψ1(τ)|2 dτ

≤
∫
R

|Fψ1(τ)|2

|τ |
dτ +

∫
R
|τ |d−1|Fψ1(τ)|2 dτ,

which are both finite. �

Equation (41) shows that the shearlet coefficients Sψf(b, s, a) can be computed in terms
of the unitary Radon transform Qf , which involves the pseudo-differential operator I and
it is difficult to compute numerically. However, if f ∈ L1(Rd) ∩ L2(Rd), there is yet a
different way to express the shearlet transform. To this end we need to choose ψ in such
a way that Qψ is in the domain of the operator I, that is, in such a way that∫

Rd−1×R
|τ |d−1|FQψ(v, τ)|2 dvdτ < +∞.

Assuming this and recalling that Qψ = Fψ2 ⊗ I0ψ1 we obtain∫
Rd−1×R

|τ |d−1|FQψ(v, τ)|2 dvdτ

=

∫
Rd−1×R

|τ |d−1|F(Fψ2 ⊗ I0ψ1)(v, τ)|2 dvdτ

=

∫
Rd−1

|Fψ2(v)|2 dv

∫
R
|τ |d−1|FI0ψ1(τ)|2 dτ

= ||ψ2||22
∫
R
|τ |2(d−1)|Fψ1(τ)|2 dτ.

This shows thatQψ is in the domain of I if and only if ψ1 satisfies the additional condition∫
R
|τ |2(d−1)|Fψ1(τ)|2 dτ < +∞. (42)
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In this case, by (38)

IQψ = I(φ2 ⊗ φ1) = φ2 ⊗ I0φ1.

Corollary 12. Under the assumptions (39) and (42),

Sψf(b, s, a) = |a|−
d−1
2 Vφ2

(
Wχ1(Rafff(v, t))(n(v) · b, a)

)
(s, a).

for all f ∈ L1(Rd) ∩ L2(Rd).

Proof. For all f ∈ L1(Rd) ∩ L2(Rd) and (b, s, a) ∈ G

Sψf(b, s, a) =

∫
Rd−1

(∫
R
Qf(v, τ)Wn(v)·b,aφ1(τ) dτ

)
Vs,aφ2(v) dv

=

∫
Rd−1

〈Qf(v, ·),Wn(v)·b,aφ1〉2Vs,aφ2(v) dv. (43)

Since f ∈ L1(Rd) ∩ L2(Rd), Proposition 6 and Proposition 9 imply that for almost all
v ∈ Rd−1, Rafff(v, ·) is in L2(R) and

F(Qf(v, ·))(τ) = |τ |
d−1
2 Ff(τ, τv) = |τ |

d−1
2 FRafff(v, ·)(τ).

Since F(Qf(v, ·)) ∈ L2(R) for almost all v ∈ Rd−1, the above equality implies that
Rafff(v, ·) is in the domain of I0 and, by definition of I0,

Qf(v, ·)(τ) = I0Rafff(v, ·).

By assumption φ1 is in the domain of I0 and the same property holds true for Wn(v)·b,aφ1.
Since I0 is self-adjoint, we get

〈Qf(v, ·),Wn(v)·b,aφ1〉2 = 〈Rafff(v, ·), I0Wn(v)·b,aφ1〉2
= |a|−

d−1
2 〈Rafff(v, ·),Wn(v)·b,aI0φ1〉2,

by taking into account that

I0Wn(·)·b,a = |a|−
d−1
2 Wn(·)·b,aI0.

Setting χ1 = I0φ1 = I2
0ψ1, i.e.

Fχ1(τ) = |τ |Fψ1(τ), (44)

from (43) we finally get

Sψf(b, s, a) = (45)

|a|
λD+1−d

2

∫
Rd−1

Wχ1(Rafff(v, ·))(n(v) · b, a)φ2 (Λ(a)(tB(s)v − s)) dv

Observe that we have used the fact that χ1 is an admissible wavelet, too, the proof is
analogous to the proof that ψ1 is such. As for (41) we can rewrite the above formula by
using the voice transform of H, i.e.

Sψf(b, s, a) = |a|−
d−1
2 Vφ2

(
Wχ1(Rafff(v, t))(n(v) · b, a)

)
(s, a).

�
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Observe that formulas (41) and (45) can be also written in terms of the polar Radon
transform using relation (51).

Equation (45) shows that for any signal f ∈ L1(Rd) ∩ L2(Rd) the shearlet coefficients
can be computed by means of three classical transforms: first compute the affine Radon
transform Rafff , then apply the wavelet transform to the last variable

G(v, b, a) =Wχ1(Rafff(v, ·))(n(v) · b, a),

where χ1 is given by (44), and, finally, “mock-convolve” with respect to the variable v

Sγψf(b, s, a) =

∫
Rd−1

G(v, b, a)Φa(s− tB(s)v) dv

with the scale-dependent filter

Φa(v) = φ2 (−Λ(a)v).

Note that the “mok-convolution” reduces to the standard convolution in Rd−1 when
B(t) = Id−1.

Notice that the shearlet coefficients Sγψf(b, s, a) depend on f only through its affine Radon

transform Rafff . Therefore Equation (21) allows to reconstruct any unknown signal f ∈
L1(Rd) ∩ L2(Rd) from its Radon transform by computing the shearlet coefficients by
means of (45). Finally, it is worth observing that this reconstruction does not involve the
differential operator I as applied to the signal. Hence, another interesting aspect of our
result is that it could open the way to new methods for inverting the Radon transform, a
very important issue in applications. Indeed, this result leads to an inversion formula for
the Radon transform based on the shearlet and the wavelet transforms.

Example (The standard shearlet group, continued). For the classical shearlet group Sγ,
(36) becomes

QSγb,s,af(v, t) = (Vs,a ⊗Wn(v)·b,a)Qf(v, t), (46)

where Sγb,s,a is given by (23) and Vs,a is the wavelet representation in dimension d − 1 as
in (24). Therefore in the case of the standard shearlet group Theorem 10 shows that the
unitary operator Q intertwines the shearlet representation Sγ with the tensor product of
two wavelet representations.

For a fixed admissible vector ψ ∈ L2(Rd) of the form (37) with ψ1 ∈ L2(R) satisfying (39)
and ψ2 ∈ L2(Rd−1), equation (41) becomes

Sγψf(b, s, a)

= |a|
(d−1)(γ−1)

2

∫
Rd−1

Wφ1(Qf(v, •))(n(v) · b, a)φ2

(
v − s
|a|1−γ

)
dv, (47)

for any f ∈ L2(Rd) and (b, s, a) ∈ G. Assuming that ψ1 satisfies the additional condition
(42), for any f ∈ L1(Rd) ∩ L2(Rd) and (b, s, a) ∈ G, equality (45) becomes

Sγψf(b, s, a)

= |a|
(d−1)(γ−2)

2

∫
Rd−1

Wχ1(Rafff(v, •))(n(v) · b, a)φ2

(
v − s
|a|1−γ

)
dv, (48)

where χ1 is the admissible vector defined by (44).
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For the sake of clarity we write the above equation for d = 2 and in terms of the Radon
transform in polar coordinates

Sγψf(x, y, s, a)

= |a|
γ−2
2

∫
R
Wχ1

(
Rpolf(arctan v,

•√
1 + v2

)

)
(x+ vy, a)φ2

( v − s
|a|1−γ

) dv√
1 + v2

,

where x, y, s ∈ R, a ∈ R× and f ∈ L1(Rd) ∩ L2(R2). As mentioned in the introduction,
χ1 = I2

0ψ1, see (38), so that the admissible 1D-wavelet χ1 is proportional to the Hilbert
transform H of the weak derivative of ψ1, which is the first factor of the shearlet admissible

vector ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1).
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Appendix A. The polar and the affine Radon transform

As mentioned in Section 2.6, the natural restriction of the Radon transform is the polar
Radon transformRpolf , which is obtained by restrictingRf to the closed subset Sd−1×R,
where Sd−1 is the unit sphere in Rd. Define Θd−1 = [0, π]d−2 × [0, 2π). For all θ ∈ Θd−1

we write inductively
tθ = (θ1,

tθ̂), θ1 ∈ [0, π], θ̂ ∈ Θd−2

and then we put
tη(θ) = (cos θ1, sin θ1

tη(θ̂)),

where η(θ̂) ∈ Sd−2 corresponds to the previous inductive step. Clearly, the map η :
Θd−1 → Sd−1 induces a parametrization of the unit sphere in Rd. Also, observe that the
map Θd−1 → Pd−1 given by (θ, t) 7→ (η(θ) : t) is a two-fold covering of Pd−1.

Definition 13. Take f ∈ L1(Rd). The polar Radon transform of f is the function Rpolf :
Θd−1 × R→ C defined by

Rpolf(θ, t) = Rf(η(θ), t) =

∫
η(θ)·x=t

f(x) dm(x). (49)

It is easy to find the relation between Rpol and Raff . Using the parametrization η of the
unit sphere, we can write any vector n(v) as n(v) =

√
1 + |v|2 η(θ). More precisely, there

exists tθ = (θ1,
tθ̂) ∈ Θd−1 such that

(1, tv) =
√

1 + |v|2(cos θ1, sin θ1
tη(θ̂)). (50)

Equality (50) holds if and only if

cos θ1 =
1√

1 + |v|2
, sin θ1η(θ̂) =

v√
1 + |v|2

.

It follows that

θ1 = arccos
( 1√

1 + |v|2
)
∈ [0,

π

2
), η(θ̂) =

v

|v|
,
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unless v = 0, in which case η(θ̂) can be any vector in Sd−2. Then, item (i) of Proposition 4
gives that

Rafff(v, t) =
1√

1 + |v|2
Rpolf

(
θ,

t√
1 + |v|2

)
(51)

and this is the relation that we need.

Appendix B. Other proofs

Proof of Theorem 8. For the reader’s convenience we adapt the proof of [30] to our con-
text. Recall that the map ψ : Rd−1 × (R \ {0}) → Rd, defined by ψ(v, τ) = τn(v), is a
diffeomorphism onto the open set V = {ξ ∈ Rd : ξ1 6= 0} with Jacobian JΦ(v, τ) = τ d−1.
Thus, the Plancherel theorem and the Fourier slice theorem give that for any f ∈ A

||f ||22 =

∫
V

|Ff(ξ)|2 dξ

=

∫
Rd−1×(R\{0})

|Ff(τn(v))|2|τ |d−1 dvdτ

=

∫
Rd−1×R

|F(Rafff(v, ·))(τ)|2|τ |d−1 dvdτ

= ||Rafff ||2D.

Thus, Rafff belongs to D for all f ∈ A and Raff is an isometric operator from A into D.
We want to prove that Raff : A → H has dense image in H. Since H is the completion of
D, it is enough to prove that Raff has dense image in D, that is (Ran(Raff))⊥ = {0} in D.
Take then ϕ ∈ D such that 〈ϕ,Rafff〉D = 0 for all f ∈ A. By the definition of the scalar
product on D and the Fourier slice theorem we have that

〈ϕ,Rafff〉D =

∫
Rd−1×R

|τ |d−1F(ϕ(v, ·))(τ)F(Rafff(v, ·))(τ) dvdτ

=

∫
Rd−1×R

|τ |d−1F(ϕ(v, ·))(τ)Ff(τn(v)) dvdτ

=

∫
Rd
F
(
ϕ
( ξ̃
ξ1

, ·
))

(ξ1)Ff(ξ)dξ,

where tξ = (ξ1,
tξ̃). Therefore, if 〈ϕ,Rafff〉D = 0 for all f ∈ A, then

F
(
ϕ
( ξ̃
ξ1

, ·
))

(ξ1) = 0

almost everywhere. However,

‖ϕ‖D =

∫
Rd−1×R

|τ |d−1|F(ϕ(v, ·))(τ)|2 dvdτ =

∫
Rd
|F
(
ϕ
( ξ̃
ξ1

, ·
))

(ξ1)|2 dξ

and hence ϕ = 0 in D. Therefore Raff : A → H has dense image in H and we can extend
it to a unique unitary operator R from L2(Rd) onto H. Hence, Q = I R is a unitary
operator from L2(Rd) onto L2(Rd−1 × R). �
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Proof of Proposition 9. We start by observing that (35) is true if f ∈ A, by the Fourier
slice theorem and by the definition of Q. Take now f ∈ L2(Rd). By density there exists
a sequence (fn)n ∈ A such that fn → f in L2(Rd). Since Q is unitary from L2(Rd) onto
L2(Rd−1 × R) and I⊗F is unitary from L2(Rd−1 × R) into itself, where I is the identity
operator, (I⊗F)Qfn → (I⊗F)Qf in L2(Rd−1 × R). Since fn ∈ A, for almost every
(v, τ) ∈ Rd−1 × R

(I⊗F)Qfn(v, τ) = (I⊗F)IRafffn(v, τ)

= |τ |
d−1
2 (I⊗F)Rafffn(v, τ)

= |τ |
d−1
2 Ffn(τn(v)).

So that, passing to a subsequence if necessary,

|τ |
d−1
2 Ffn(τn(v))→ (I⊗F)Qf(v, τ)

for almost every (v, τ) ∈ Rd−1 × R. Therefore for almost every (v, τ) ∈ Rd−1 × R,

(I⊗F)Qf(v, τ) = lim
n→+∞

|τ |
d−1
2 Ffn(τn(v)) = |τ |

d−1
2 Ff(τn(v)),

where the last equality holds true using a subsequence if necessary. �
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