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Abstract

In this paper we show that a large class of regularization methods designed for solving
ill-posed inverse problems gives rise to novel learning algorithms. All these algorithms
are consistent kernel methods which can be easily implemented. The intuition behind our
approach is that, by looking at regularization from a filter function perspective, filtering out
undesired components of the target function ensures stability with respect to the random
sampling thereby inducing good generalization properties. We present a formal derivation
of the methods under study by recalling that learning can be written as the inversion of a
linear embedding equation given a stochastic discretization. Consistency as well as finite
sample bounds are derived for both regression and classification.
Keywords: Statistical Learning, Inverse Problems, Regularization theory, Consistency,
Kernel Methods.

1. Introduction

In the context of learning the term regularization refers to techniques allowing to avoid
over-fitting. Typically, regularization boils down to a Lagrangian formulation of an appro-
priate constrained minimization problem - e.g. Tikhonov regularization, ridge regression or
regularized least squares. In the context of inverse problems regularization is formally de-
fined and leads to algorithms for determining approximate solutions to ill-posed problems
solutions which are stable with respect to noise (see for example Tikhonov and Arsenin
(1977), Engl et al. (1996), Bertero and Boccacci (1998) and references therein).
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In this paper, by restricting the focus on the quadratic loss function and hypothesis
spaces which are reproducing kernel Hilbert spaces we follow (De Vito et al., 2005b) and we
cast the problem of learning in a functional analytical framework which is ideal to exploit the
connection with the theory of inverse problems. We show that a large class of regularization
schemes typically used in the context of inverse problems gives rise to consistent kernel
methods. We prove finite sample bounds for both regression and classification. We also
provide an intuition of the way such algorithms work from a filter function point of view.
Since we work with the square loss function, we need to solve a (possibly ill-conditioned)
matrix inversion problem. Filtering out the components corresponding to small singular
values allows us to stabilize the problem from a numerical point view. In order to understand
the filter effect on generalization we have to look at the population case, when the probability
underlying the problem is known. In this limit case we have to invert a linear operator and
the filter allows us to find a stable solution with respect to perturbations on the problem.
The picture is then clear since the sample case can be seen as a perturbation (due to
random discretization) of the population case: the true probability measure is replaced
by the empirical measure on the sample. Unlike the inverse problem setting, in learning
stability is meant with respect to perturbations on the problem due to the random sampling
(see Rakhlin et al. (2005) and reference therein for different notions of stability).

The remarkable fact of our analysis is that we can treat most of the linear methods
for ill-posed inverse problems in a unified framework. We describe a set of simple suffi-
cient conditions allowing an easy proof that algorithms for inverse problems are consistent
learning algorithms. As a by-product of this analysis, we find that these algorithms have
different properties from both the theoretical and the algorithmic point of view. The price
we pay for our generality is that for the two algorithms already studied (see Smale and
Zhou (2005), Caponnetto and De Vito (2005) for Tikhonov regularization and Yao et al.
(2005) for gradient descent learning) the bounds we find do not match the best available
bounds. In a follow-up paper (Bauer et al., 2005) a more technical analysis, based on the
same techniques considered here, is given and the best available bounds recovered as special
cases.

The idea to exploit regularization algorithms for ill-posed problems in function approx-
imation problem is well known. Indeed, in a deterministic setting (the inputs are fixed and
the noise deterministic), interpolation and approximation are standard ill-posed problems
(see for example Bertero et al. (1985, 1988) for a review). In the context of statistics the fo-
cus was mostly on Tikhonov regularization, also called ridge regression (Hastie et al., 2001)
or regularized (penalized) least squares (Wahba, 1990). In this setting the input points are
either fixed or sampled and the noise is a random variable. Several results are available
(see for example Györfi et al. (1996)) but the probabilistic analysis is usually done in ex-
pectation. Some results for general regularization schemes are given in Loubes and Ludena
(2004) though for fixed inputs. In machine learning the idea to use regularization goes back
to Poggio and Girosi (1992) and the connection between large margin kernel methods such
as Support Vector Machines and regularization is well known (see Vapnik (1998), Evgeniou
et al. (2000) and reference therein). Again ideas coming from inverse problems regarded
mostly the use of Tikhonov regularization and were extended to several error measures other
then the quadratic loss function. Concerning this latter loss function a theoretical analysis
can be found in Smale and Zhou (2005) and Caponnetto and De Vito (2005). The gradient
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descent learning algorithm in Yao et al. (2005) can be seen as an instance of Landweber
iteration (Engl et al., 1996) and is related to the boosting algorithm, called L2 boost in
Bühlmann and Yu (2002). For other iterative methods some partial results, which do not
take into account the random sampling, are presented in Ong and Canu (2004), where
promising experiments on real and simulated data are also presented.

In this paper we build up on the connections between the theory of learning and the
theory of inverse problems (De Vito et al., 2005b,a). The interplay between ill-posedeness,
stability and generalization is indeed not new to learning (see Poggio and Girosi (1992),
Evgeniou et al. (2000), Bousquet and Elisseeff (2002), Mukherjee et al. (2004), Poggio et al.
(2004)).

The plan of the paper is the following. In Section 2, after describing the main idea of
learning in reproducing kernel Hilbert spaces, we describe the considered class of regulariza-
tion algorithms from a filter function perspective. In Section 3 we give a more formal and
abstract characterization of regularization as well as several examples of algorithms. The
main theoretical results are also presented and discussed whereas the proofs can be found
in Section 5. In Section 4 we discuss in depth the connection between learning ad inverse
problems. Finally, we end with some comments and the main open issues on this subject.

2. Regularization in Reproducing Kernel Hilbert Spaces

We start giving a brief account of learning from examples (see Vapnik (1998), Cucker and
Smale (2002b), Evgeniou et al. (2000), Bousquet et al. (2004) and references therein). The
focus is on the regression problem and the quadratic loss function though we will recall
how some results for classification can be derived. The problem of (supervised) learning
can be thought as the problem of finding an unknown input-output relation on the basis
of a finite number of input-output instances (the examples). Ideally one would like to find
a rule to predict the output once a new input is given, that is to be able to generalize.
To allow modeling the uncertainty in the learning process the problem is formalized in a
probabilistic setting.

The input space X is a closed subset in IRd, the output space is Y = [−M,M ] for
regression (Y = {−1, 1} for classification) and the sample space is simply Z = X × Y .
We model the input-output relation endowing Z with a probability measure ρ(x, y) =
ρ(y|x)ρX(x), where ρX is the marginal distribution on X and ρ(y|x) is the conditional
distribution of y given x. In this setting what is given is a training set z = (x,y) =
{(x1, y1), · · · , (xn, yn)} drawn i.i.d. according to ρ and the goal is to find an algorithm
z → fz such that the function fz(x) is a good estimate of the output y. The quality of an
estimator fz is assessed by its the expected error

E(fz) =
∫

X×Y
(y − fz(x))2dρ(x, y),

which can be interpreted as the average error on all the possible input-output pairs. Clearly
we would like to find an estimator with small expected error. The minimizer of the expected
error over the space L2(X, ρX) of square integrable functions with respect to ρX becomes
the regression function

fρ(x) =
∫

Y
y dρ(y|x).
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Moreover we recall that for f ∈ L2(X, ρX) we can write

E(f) = ‖f − fρ‖2
ρ + E(fρ) (1)

so that we can restate the problem as that of approximating the regression function in the
norm ‖·‖ρ = ‖·‖L2(X,ρX). Moreover since fz is a random variable we need some probabilistic
analysis and more precisely we are interested into a worst case analysis through finite sample
bounds such that

P [ E(fz)− E(fρ) > ε] ≤ η(ε, n) ∀ε > 0, n ∈ IN.

where η(ε, n) does not depend on ρ and limn→+∞ η(ε, n) = 0.
From the so called ”no free lunch” theorem (Devroye et al., 1996) is well-known that we
cannot derive this kind of results without furtherly restricting the class of possible problems.
A usual way to put restrictions on the possible probability measures is assuming fρ belonging
to some compact set often characterized in terms of some smoothness or approximation
properties (see for example the discussion in DeVore et al. (2004)). In this paper we do
this relating the problem to the approximation schemes we consider, that is regularization
in reproducing kernel Hilbert spaces. We devote the rest of this section to illustrate the
class of approximation schemes we are going to analyze and discuss a fairly natural way to
impose condition on the regression function fρ.

2.1 Learning the Regression Function via Regularization: Filter Function
Perspective

The algorithms we consider look for an estimator in an hypotheses space H which is a
reproducing kernel Hilbert space (RKHS) on the set X (Aronszajn, 1950). This means that
H is a Hilbert space of functions f : X → IR such that, for all x ∈ X, there is a function
Kx ∈ H satisfying the following reproducing property

f(x) = 〈f,Kx〉H f ∈ H

where 〈·, ·〉H is the scalar product in H. The RKHS H is uniquely characterized by its kernel
K : X ×X → IR, K(t, x) = Kx(t), which is symmetric and positive definite. For technical
reasons, we assume that the kernel is measurable and bounded

sup
x∈X

√
K(x, x) ≤ κ, (2)

so that H is a subspace of L2(X, ρX) (however, in general, H is not closed in L2(X, ρX)).
Moreover we require H to be dense in L2(X, ρX) so that

inf
f∈H

E(f) = inf
f∈L2(X,ρX)

E(f) = E(fρ).

(however, we do not require that fρ ∈ H). This assumption simplifies the exposition and
can be relaxed replacing fρ with its projection on the closure of H in L2(X, ρX).

A classic and yet effective algorithm is regularized least-squares algorithm (RLSA). A
family of estimators is found solving the regularized least square problem

min
f∈H

{Ez(f) + λ ‖f‖2
H} (3)
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where λ is a positive parameter and

Ez(f) =
1
n

n∑
i=1

(yi − f(xi))2 (4)

is the empirical error. The final estimator is defined providing the above scheme with a
parameter choice λn = λ(n, z) so that fz = fλn

z . Understanding the way such an algorithm
works allows to develop different regularization schemes. A possible interpretation relates
the the penalty ‖f‖2

H to the complexity of the solution. Choosing λ > 0 we restrict the
possible solution in a certain ball in the RKHS and the radius of of the ball is related to
complexity measure such as covering numbers (Cucker and Smale, 2002b) or Rademacher
complexities on such a spaces (Mendelson, 2003). This way of reasoning looks at the RLSA
as an approximate implementation of Structural Risk Minimization Vapnik (1998). To
avoid over-fitting, i.e. the solution grows in complexity to describe the training set and
becomes unable to generalize, we put a constraints on the complexity of the solution. The
regularization parameter λ should be chosen in such a way that the empirical error and the
complexity of the solution are balanced out.

Another point of view is that of considering the penalty term as a smoothness term
which enforces stability of the solution. Here stability has to be thought with respect to the
random sampling of the data. This point of view is mostly adopted in the regularization
of ill-posed inverse problems where anyway usually only output noise and deterministic
sampling is considered. Anyway this point of view is not new to learning theory since the
connection between stability and generalization was considered in Bousquet and Elisseeff
(2002), Mukherjee et al. (2004), Poggio et al. (2004). As we restrict our analysis to the
quadratic loss function we can have some interesting insight. Motivated but recent results on
the connection between learning and inverse problems we now try to explain why smoothness
is also important for generalization in learning.

Indeed the regularized least-squares algorithm can be seen as implementing a low pass
filter on the expansion of the regression function on suitable basis. We recall that the
representer theorem Kimeldorf and Wahba (1970) ensures that the solution of problem (3)
can be written as

fλ
z =

n∑
i=1

αK(x, xi) with α = (K + nλI)−1y, (5)

where K is the kernel matrix (K)ij = K(xi, xj). From the explicit form of the coefficients we
see that as λ > 0 we are numerically stabilizing a matrix inversion problem which is possibly
ill-conditioned (that is numerically unstable). This is important from the algorithmic point
of view, but it is also crucial to ensure the generalization properties of the estimator. For
the population version of (3)

min
f∈H

{E(f) + λ ‖f‖2
H}, (6)

the representer theorem (see for example Cucker and Smale (2002a)) gives the explicit form
of the solution as

fλ = (LK + λI)−1LKfρ
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where LK is the integral operator of kernel K acting in L2(X, ρX)

(LKf)(t) =
∫

K
K(t, x)f(x)dρX(x).

and we considered fλ as a function in L2(X, ρX). Since the kernel is bounded, symmetric
and positive definite, LK is a positive compact operator1 and the spectral theorem ensures
the existence of a basis of eigenfunctions LKui = σiui with σi ≥ 0. Then we can rewrite
the solution of the above problem as

fλ =
∞∑
i=1

σi

σi + λ
〈fρ, ui〉ρ ui.

From the latter expression we see that the effect of regularization is that of a low pass filter
which select the components of the regression function corresponding to large eigenvalues.
If we slightly perturb ρ, the operator LK and fρ change, however the filter ensures that
corresponding solution fλ is close to fρ provided that the perturbation is small and the
parameter λ is suitable chosen. The idea is that we can look to the sample case exactly
as a perturbation on the problem due to random sampling. In this case we think of y and
K as perturbation of fρ and LK respectively. The low pass filter is then a way to ensure
stability. This intuition is derived in a more formal way in Section 4 looking at learning in
RKHS as an inverse problem.

For regularized least squares algorithm the filter function is gλ(σ) = 1
σ+λ but it is natural

to extend this approach to other regularization gλ. Each of them defines a corresponding
algorithm by means of

fλ
z =

n∑
i=1

αiK(x, xi) with α =
1
n

gλ(
K
n

)y (7)

and again the the final estimator is defined providing the above scheme with a parameter
choice λn = λ(n, z) so that fz = fλn

z . Clearly not all the functions gλ are admissible and
we give a characterization of regularization in the next section.

Here we note that the filter function point of view suggests a natural way to describe
regularity of the regression function. Indeed since fρ ∈ L2(X, ρX) we can consider the
expansion on the eigensystem of LK to write

fρ =
∞∑
i=1

〈fρ, ui〉ρ ui

and clearly
∞∑
i=1

〈fρ, ui〉2ρ < ∞, (8)

that is, the Fourier coefficients of fρ with respect to the basis have to go sufficiently fast to
zero. A natural way to enforce some more regularity on fρ is assuming something more on

1. This fact is trivial if X is compact, otherwise see Carmeli et al. (2005).
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how fast the Fourier coefficients go to zero. The easier way to do this is to replace (8) with

∞∑
i=1

〈fρ, ui〉2ρ
σr

i

< ∞

where {σi} are the eigenvalues of LK and r > 0. In other words we assume that

fρ ∈ Ωr,R = {f ∈ L2(X, ρX) : f = Lr
Kv, ‖v‖ρ ≤ R}. (9)

Such a condition was first used in the context of learning in Cucker and Smale (2002b) but
as noted in De Vito et al. (2005b,a) is a slightly generalization of the classical regularity
condition in ill-posed inverse problems, namely Hölder source condition (Engl et al., 1996).
For r = 1/2 it amounts to assume that the regression function can be seen as as function in
the RKHS. In general it depends on the marginal measure ρX . The bigger is the smoothness
parameter r the easier it is to approximate fρ. Intuitively the faster the Fourier coefficients
go to zero less information has to be recovered and the fewer examples are needed.

In the following section first, we study under which conditions on gλ(σ) we can define
sensible learning algorithms and discuss several examples. Then we state and discuss finite
sample bounds as well as consistency for such a class of algorithms.

3. Regularization Algorithms for Learning

We now present the class of regularization algorithms we are going to study. Regularization
is essentially defined according to what is usual done for ill-posed inverse problems. The
main difference is that we require an extra condition, namely a Lipschitz condition, which
enables us to show that the obtained learning algorithms are stable.

Definition 1 (Regularization) We say that a family gλ : [0, κ2] → IR, 0 < λ ≤ κ2, is
regularization if the following conditions hold

1. There exists a constant D such that

sup
0<σ≤κ2

|σgλ(σ)| ≤ D (10)

2. There exists a constant B such that

sup
0<σ≤κ2

|gλ(σ)| ≤ B

λ
(11)

3. There is a constant ν > 0, namely he qualification of the regularization gλ such that

sup
0<σ≤κ2

|1− gλ(σ)σ|σν ≤ γνλ
ν , ∀ 0 < ν ≤ ν (12)

where the constant γν > 0 does not depend on λ.
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4. The following Lipschitz condition holds

|(gλ(σ)− gλ(σ′))| ≤ L

λµ
|σ − σ′| (13)

where L is a constant independent to λ and µ a positive coefficient.

Let us briefly discuss such conditions. The first three conditions are standard in theory of
inverse problems (Engl et al., 1996) whereas the last one is added to deal with the learning
setting. The first two conditions are of technical nature, however the constants B and D
will enter in the form of the bounds. Basically they ensure that the obtained algorithm can
be seen as family of linear continuous maps, parameterized by the regularization parameter
λ. The third condition ensures that the solution of the population problem

fλ = gλ(LK)LKfρ

converges to fρ when λ goes to zero. In other words this ensures that the bias (approx-
imation error) goes to zero as λ goes to zero. Moreover it is also sufficient to derive the
corresponding convergence rate if fρ satisfies some a priori condition like (9). The meaning
of the qualification will be apparent from Theorem 9. Here we just mention the fact that
methods with finite qualification cannot fully exploit the possible regularity of the solution
and the results no longer improve beyond a certain regularity level.
The fourth condition is quite natural since it ensures stability with respect to perturbations
of the operator LK and in practice we can only have approximation of LK based on the
training set. Indeed Theorem 8.1 in Birman and Solomyak (2003) ensures that Condition
13 implies

‖gλ(B1)− gλ(B2)‖ ≤
L

λµ
‖B1 −B2‖

where B1, B2 belongs to the Banach space of normal operators endowed with the uniform
norm and have spectrum in [0, κ2]. The exponent µ will essentially determine the rate of
convergence of each algorithm.

3.1 Some Examples of Regularization Algorithms and Semiiterative
Regularization

In this Section we describe several algorithms satisfying the above definition. For details on
the derivation of the various conditions we refer to Engl et al. (1996) whereas the Lipschitz
constant can be directly evaluated as the maximum of the first derivative of gλ.

Tikhonov Regularization
We start our discussion reviewing Tikhonov regularization. In this case the regularization
is gλ(σ) = 1

σ+λ so that (10) and (11) hold with B = D = 1. Condition (12) is verified with
γν = 1 for 0 < ν ≤ 1 and hence the qualification equals to 1. A straightforward computation
shows that (13) holds with L = 1 and µ = 2. The algorithm amount to a matrix inversion
problem as can be seen from (5).

Landweber Iteration
Landweber iteration is characterized by

gt(σ) = τ
t−1∑
i=0

(1− τσ)i
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where we identify λ = t−1, t ∈ IN and take τ = 1/κ2. In this case we have B = D = 1 and
the qualification is infinite since (12) holds with γν = 1 if 0 < ν ≤ 1 and γν = νν otherwise.
A simple computation shows that L = 1 and ν = 2. As shown in Yao et al. (2005) this
method corresponds to empirical risk minimization via gradient descent and τ determines
the step-size. Early stopping of the iterative procedure allows to avoid over-fitting so that
the iteration number plays the role of the regularization parameter. In Yao et al. (2005)
the fixed step-size τ = 1/κ2 was shown to be the best choice among the variable step-size
τ = 1

κ2(t+1)θ , with θ ∈ [0, 1). This suggests that τ does not play any role for regularization.
From the algorithmic point of view we can rewrite the algorithm as the following iterative
map

αi = αi−1 +
τ

n
(y −Kαi−1), i = 1, . . . , t

setting α0 = 0.
Semiiterative Regularization and the ν-method

An interesting class of algorithms are the so called semiiterative regularization or accelerated
Landweber iteration. This class of methods can be seen as a generalization of Landweber
iteration where the regularization is now

gt(σ) = pt(σ)

with pt polynomial of degree t − 1. In this case we can identify λ = t−2, t ∈ IN and we
assume κ = 1 for simplicity. We have B = 2 and D = 1 and a directly application of Markov
inequality for polynomial of degree t shows L = 4 and µ = 4. The qualification of this class
of method is usually finite. An example which turns out to be particularly interesting is
the so called ν −method. We refer to Engl et al. (1996) for a derivation of this method. In
the ν −method the qualification is ν (fixed) with γν = c for some positive constant c. The
algorithm amounts to solving, for α0 = 0, the following map

αi = αi−1 + ui(αi−1 − αi−2) +
ωi

n
(y −Kαi−1), i = 1, . . . , t

where

ui =
(i− 1)(2i− 3)(2i + 2ν − 1)

(i + 2ν − 1)(2i + 4ν − 1)(2i + 2ν − 3)

ωi = 4
(2i + 2ν − 1)(i + ν − 1)
(i + 2ν − 1)(2i + 4ν − 1)

t > 1.

The interest of this method lies in the fact that since the regularization parameter here is
λ = t−2 we just need the square root of the number of iterations needed by Landweber
iteration. In inverse problems this method proved to be extremely fast and is often used as
valid alternative to conjugate gradient (see Engl et al. (1996), Chapter 6 for details).

Iterated Tikhonov
As we have seen while discussing Tikhonov regularization such method has finite qualifica-
tion and this reflects in the impossibility to exploit the regularity of the solution beyond
a certain regularity level. To overcome this problems the following regularization can be
considered

gλ,t(σ) =
(σ + λ)t − σt

λ(σ + λ)t
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In this case we have D = 1 and B = t and the qualification of the method is now t with
γν = 1. A direct computation shows that L = t(2κ)t−1 and µ = 2t. The algorithm is
described by the following iterative map

(K + nλI)αi = y + nλαi−1 i = 1, . . . , t

choosing α0 = 0. It is easy to see that for t = 1 we simply recover the standard Tikhonov
regularization but as we let t > 0 we improve the qualification of the method. Moreover
we note that by fixing λ we can think of the above algorithms as an iterative regularization
with t regularization parameter.

3.2 Finite Sample Bounds for Regression and Classification

In this section we fix a regularization scheme gλ as in Definition 1 and we define the family
of algorithms

fλ
z =

n∑
i=1

αiK(x, xi) with α =
1
n

gλ(
K
n

)y (14)

parametrized by 0 < λ ≤ min{1, κ}. Recalling that κ2 = supx∈X K(x, x) and M = sup |y|,
the following result holds.

Theorem 2 (Finite Sample Bounds) Suppose that fρ ∈ Ωr,R and r is smaller or equal
than the qualification of gλ. If we let β = max{1, 2µ} and choose

λn = n
− 1

2r+β (15)

then for 0 < η ≤ 1 the following inequality holds with probability at least 1− η

E(fλn
z )− E(fρ) ≤ log

4
η
(2C2

1 + 2γ2
rR2)n−

2r
2r+β (16)

where C1 = 4
√

2κM
(√

DB + κ
5
2 L

)
.

We postpone the proof to Section 5 and add some remarks and corollaries.
For essentially all the methods discussed in Section 3 we have µ = 2, so that our analysis

give a bound of order n−
2r

2r+4 . For example if we just know that fρ ∈ H then r = 1/2 and we
have a bound of order n−1/5, clearly if r and the qualification of the method are sufficiently
big the rate can be close to 1/n. For some regularization algorithms better results than
the those presented here are available. For example for Tikhonov regularization bounds
of order n−

2r
2r+1 where proved in Smale and Zhou (2005) and improved in Caponnetto and

De Vito (2005) if more information on the structure of the kernel is available. Anyway since
this method has finite qualification the results does not improve if r > 1. For Landweber
iteration bounds of order n−

2r
2r+3 , r > 0, where proved in Yao et al. (2005). These results

require ad hoc proofs for each algorithm. Here we trade-off generality with the quality of the
rates. Our main goal is not finding the best achievable bounds but giving a set of sufficient
conditions which allows to derive finite sample bounds for a broad class of algorithms with a
relatively simple proof. Up-to our knowledge iterated Tikhonov regularization as well as the
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class of semiiterative methods are not used in learning. We also note that the above result
shows a data independent choice of the regularization parameter. As usual such a choice
requires the knowledge of the regularity of the solution so that a data dependent choice
would be preferable. In practice selection of the regularization parameter minimizing some
validation or cross validation error can be considered.

Consistency for the class of considered algorithms easily follows as a corollary.

Corollary 3 (Consistency) Under the same assumptions of Theorem 2 let M(Ωr,R) the
set of all Borel probability measure on Z such that fρ ∈ Ωr,R. then

lim
τ→∞

lim sup
n→∞

sup
ρ∈M(Ωr,R)

P
[
E(fλn

z )− E(fρ) > τn
− 2r

2r+β

]
= 0.

The above results have a direct application if we consider classification, that is Y =
{−1, 1} (Bousquet et al., 2004). In this case we consider signfλ

z as our decision rule and
the error measures is usually the misclassification risk defined as

R(f) = P [ (x, y) ∈ X × Y : signf(x) 6= y] ,

whose minimizer is the Bayes rule signfρ (Devroye et al., 1996). A straightforward result
can be obtained recalling that the following relation between the risk and the expected error
(with respect to the square loss)

R(f)−R(fρ) ≤
√
E(f)− E(fρ).

see (Bartlett et al., 2003). Anyway such a result can be improved if some more information
on the problem is available. To this aim it is interesting to consider Tsybakov noise condition

P [ x ∈ X : |fρ(x)| ≤ L] ≤ BqL
q, ∀L ∈ [0, 1], (17)

where q ∈ [0,∞] (Tsybakov, 2004). The meaning of such a condition is better understood
noting that fρ(x) = 2ρ(1|x)− 1 so that if q goes to ∞ the problem is separable (realizable
setting). In this case the following comparison result is available

R(f)−R(fρ) ≤ 4cα (E(f)− E(fρ))
1

2−α (18)

with α = q
q+1 and cα = Bq +1, see Bartlett et al. (2003) or Yao et al. (2005). The following

corollary is straightforward.

Corollary 4 (Bayes Consistency) Under the same assumptions of Theorem 2 assume
that Tsybakov noise condition holds. If we choose λn according to (15) and use signfλn

z as
our decision rule then the following bound holds with probability at least 1− η

R(fλn
z )−R(fρ) ≤ C(H, η, ρ)n−

2r
(2r+β)(2−α)

where C(H, η, ρ) = 4cα(log 4
η (2C2

1 +2γ2
rR2))

1
2−α with cα as in (18) and C1 given in Theorem

2.
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4. Regularization Operators, an Inverse Problems Perspective

In this section we clarify the role of the regularization looking at learning algorithm as an
inverse problem as showed in De Vito et al. (2005b). For backgrounds and details on inverse
problems we refer to (Tikhonov and Arsenin, 1977, Engl et al., 1996, Bertero and Boccacci,
1998).

In the framework of learning, if an hypothesis space H is given, the ideal estimator is
the solution of the minimization problem

inf
f∈H

E(f) = inf
f∈H

‖IKf − fρ‖2
ρ + E(fρ). (19)

The above equality is a consequence of (1) and we have stressed the fact that f is an element
ofH, but its relevant norm is the norm in L2(X, ρX), writing explicitly the inclusion operator
IK : H → L2(X, ρX). We notice that the action of IK is trivial since it maps f into itself,
but the norm changes from ‖·‖H to ‖·‖ρ.
It follows that (19) is equivalent to the least square problem associated to the linear inverse
problem

IKf = fρ. (20)

In a similar way, given a training set z = (x,y), we have that

min
f∈H

1
n

n∑
i=1

(f(xi)− yi)2 = min
f∈H

‖Sxf − y‖2
n , (21)

where ‖·‖n is 1/n times the euclidean norm in IRn and Sx : H → IRn is the sampling
operator

(Sxf)i = f(xi).

Again we can see that empirical risk minimization is the least square problem associated to
the linear inverse problem

Sxf = y (22)

(here we recover the problem of approximating a function from finite data, that is finding
f such that f(xi) = yi with i = 1, .., n).

A simple calculation shows that the least square solutions of (19) and (21) are solutions
of the following linear equations

I∗KIKf = I∗Kfρ (23)

and
S∗xSxf = S∗xy. (24)

Notice that in the above formulation I∗KIK and S∗xSx are operators fromH toH, whereas
I∗Kfρ and S∗xy are elements of H. Moreover, if the number n of data goes to infinity, as
a consequence of the law of large numbers, S∗xSx and Sxy converge to I∗KIK and I∗Kfρ,
respectively (see Lemma 5 below). However, since I∗KIK is a compact operator, in general
the (Moore-Penrose) inverse of I∗KIK is not continuous and, hence, the solution of (24) does
not converge to the solution of (23), which is simply fρ in the present framework (under
the assumption that H is dense in L2(X, ρX)).

12
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The key idea of inverse problems is to regularize (23) by considering a family of regu-
larized solutions

gλ(I∗KIK)I∗Kfρ (25)

depending of a positive parameter λ in such a way that

1. gλ(σ) is bounded for σ in [0, κ2], so the spectral theorem ensures that gλ(I∗KIK) is
bounded, too;

2. gλ(σ) approximates the function 1
σ as λ goes to 0, that is, gλ(I∗KIK) is a family of

operators approximating the inverse of I∗KIK when λ goes to 0. This allows recovering
the exact solution fρ in the limit.

Moreover in learning we also require gλ(σ) to be a Lipschitz function of σ, so that the
discretized solution

gλ(S∗xSx)S∗xy

converges to gλ(I∗KIK)I∗Kfρ for n going to infinity and given λ. Within this setting the final
step of the regularization procedure is the choice of the regularization parameter λ = λn as
a function of n so that gλn(S∗xSx)S∗xy converges to fρ.

We end the section with a remark about the notion of convergence we are interested
into. Usually in the framework of inverse problems the convergence is considered with
respect to the norm in H (reconstruction error), so that it is necessary to require the
existence of at least a solution of (23), namely the Moore-Penrose solution. In learning
theory we are interested into convergence in L2(X, ρX)-norm (residual), hence we do not
require the existence of the Moore-Penrose solution, which in our context is equivalent to
the assumption that fρ ∈ H. Moreover, since both Sx and y are random variables, the
convergence has to be understood in probability or in expectation.

5. Error Estimates and Proof of the Main Result

In this section we prove the main results of the paper stated in Section 3. The idea is
to show that error of the estimator, for a fixed value of the regularization parameter, can
be suitably decomposed in a probabilistic term, sample error, and a deterministic term,
approximation error. If explicit bounds on the two terms are available we can find the value
of the regularization parameter which solve the bias-variance trade-off, that is the value
of λ balancing out the sample and approximation errors. Most of this section is devoted
to prove such bounds. Before actually proving such results it is convenient to define some
operators on the RKHS H.

5.1 Sampling and Covariance Operators

We recall that the main intuition behind the considered class of algorithm is that they
ensure stability with respect to the random sampling. In particular we regarded the sample
case, that is y and K, as a perturbation of the population case, that is of fρ and LK . To
give a formal proof to the above intuition we would like to give a quantitative measure of the
discrepancy between the sample and population case. Rather than comparing K and LK

it is useful to define the following operators. For details we refer to Carmeli et al. (2005).

13
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We let IK : H → L2(X, ρX) be the inclusion operator, which is continuous by (2), I∗K :
L2(X, ρX) → H the adjoint operator and T := I∗KIK : H → H the covariance operator. It
can be proved that LK = IKI∗K and

T =
∫

X
〈·,Kx〉HKxdρX(x).

Since the kernel is bounded and positive definite, both LK and T are trace class positive
operator and there is a sequence of vectors (ei)i≥1 in H and a sequence of numbers (σi)i≥1

(possibly finite) such that

Tf =
∑
i=1

σi 〈f, ei〉H ei 〈ei, ej〉H = δij

∑
i

σi ≤ κ2 σi+1 ≥ σi > 0

for all f ∈ H and, letting ui = 1√
σi

ei ∈ L2(X, ρX)

LKf =
n∑

i=1

σi 〈f, ui〉ρ ui 〈ui, uj〉ρ = δij .

In particular, ‖LK‖L(L2(X,ρX)) = ‖T‖L(H) ≤
∑

i σi ≤ κ2.
Let now x = (xi)n

i=1 with xi ∈ X, we define the sampling operator Sx : H → IRn as

(Sxf)i = f(xi) = 〈f,Kxi〉H i = 1, . . . , n,

where the norm ‖·‖n in IRn is 1/n times the euclidean norm, and the empirical covariance
operator Tx : H → H as Tx := S∗xSx. It can be proved that

Tx :=
1
n

n∑
i=1

〈·,Kxi〉HKxi .

and SxS∗x = 1/nK. Clearly Tx is a positive operator with finite rank (hence it is a trace
class operator) and ‖Tx‖L(H) ≤ κ2.

The above operators allow to write fλ and fλ
z in a suitable form, that is,

fλ = gλ(T )I∗Kfρ fλ
z = gλ(Tx)S∗xy. (26)

where both fλ and fλ
z are regarded as elements of H.

Now we can look at Tx and S∗xy as approximation of T and I∗Kfρ respectively. The advantage
is that we are now dealing with operators acting on H and functions in H which can be
more easily compared.

To prove the main error estimates in next Section we recall some facts. Due to the
assumption that H is dense, the best model f †H exists if and only if fρ is an element of H, so
that IKfH = fρ. Moreover it is easy to see that we can relate the norm in H and L2(X, ρX)
by means of the operator T . For f ∈ H we can write explicitly the embedding operator IK

to get
‖IKf‖ρ =

∥∥∥√Tf
∥∥∥
H

. (27)
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This fact can be easily proved recalling that the inclusion operator is continuous and hence
admits a polar decomposition IK = U

√
T , where U is a partial isometry (Rudin, 1991).

Finally for sake of completeness we show how (7) and (26) are related. To this aim
we recall that by polar decomposition the following equalities hold Sx =

√
1/nKU∗x, S∗x =

Ux

√
1/nK and clearly Tx = Ux1/nKU∗x. Then we can write

fλ
z = gλ(Tx)S∗xy = Uxgλ(

1
n
K)

√
1
n
Ky (28)

where we used U∗xUx is the identity on the range of K. From the above formula we imme-
diately see that fλ

z is an element of the range of Ux, which is the linear span of the vectors
Kxi . Hence fλ

z =
∑n

i=1 αiKxi and, if we apply the sampling operator on both sides of (28),
we get

Sxfλ
z = Sx

n∑
i=1

αiKxi = Kα

where α denotes the vector of the coefficients and

SxUxgλ(
1
n
K)

√
1
n
Ky =

√
1
n
Kgλ(

1
n
K)

√
1
n
Ky.

Then the following equality holds

Kα =
1
n
Kgλ(

1
n
K)y.

5.2 Approximation and Sample Error

We can now derive the error estimates which are the key to the prove of Theorem 2. The
bias-variance problem follows considering, for fixed λ, the following error decomposition√

E(fλ
z )− E(fρ) ≤

∥∥∥fλ
z − fλ

∥∥∥
ρ
+

∥∥∥fλ − fρ

∥∥∥
ρ

(29)

where we used (1) and triangle inequality. In this case one term
∥∥fλ

z − fλ
∥∥

ρ
accounts for the

presence of a perturbation (sample or estimation error) whereas the other term
∥∥fλ − fρ

∥∥
ρ

accounts for the fact that, though considering the unperturbed problem, we are limiting
the approximation property of our algorithm by fixing λ (approximation error).

If the best in the model f †H exists besides the expected error we can also consider the
error measured with respect to the norm in the RKHS H. This can be interesting since
convergence in H-norm implies point-wise convergence and moreover by choosing different
kernels we might get convergence in different norms (for example Sobolev norms). In this
case the decomposition is simply∥∥∥fλ

z − f †H

∥∥∥
H
≤

∥∥∥fλ
z − fλ

∥∥∥
H

+
∥∥∥fλ − f †H

∥∥∥
H

.

We first consider the estimation error. Our approach is divided into two steps. Recall-
ing (26) we prove analytically that that the difference fλ− fλ

z can be expressed in terms of
the perturbation measures T − Tx and I∗Kfρ − S∗xy. Then we need to to give probabilistic
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estimates for such perturbation measures. For the latter we make use of the following result
from De Vito et al. (2005a) based on concentration of Hilbert space valued random variables
(Pinelis and Sakhanenko, 1985).

Lemma 5 Let κ = supx∈X ‖Kx‖H, M = supy∈Y |y|. For n ∈ IN and 0 < η ≤ 1 the
following inequalities hold with probability at least 1− η

‖I∗Kfρ − S∗xy‖H ≤ δ1(n, η), δ1(n, η) =
2
√

2κM√
n

√
log

4
η

‖T − Tx‖L(H) ≤ δ2(n, η), δ2(n, η) =
2
√

2κ2

√
n

√
log

4
η
. (30)

We are now ready to derive our estimates for the sample error. The following result is a
natural generalization of Theorem 1 in De Vito et al. (2005b) (see also Theorems 4.2 in
Engl et al. (1996)).

Theorem 6 (Estimation Error) Let gλ as in Definition 1 and fλ
z , fλ as defined in (26),

with 0 < λ ≤ 1. Moreover recall κ2 = supx∈X K(x, x) and M = sup |y|. Then for n ∈ IN
and 0 < η ≤ 1 the following inequality holds with probability at least 1− η∥∥∥fλ

z − fλ
∥∥∥

ρ
≤ C1

1
λθ
√

n

√
log

4
η

(31)

where C1 = 4
√

2κM
(√

DB + κ
5
2 L

)
and θ = max{1/2, µ}.

Moreover with probability at least 1− η∥∥∥fλ
z − fλ

∥∥∥
H
≤ C2

1
λγ
√

n
log

4
η

(32)

where C2 = 4
√

2κM
(
B + κ2L

)
and γ = max{1, µ}.

Proof The prove of the two bounds is essentially the same. We consider the following
decomposition

fλ
z − fλ = gλ(Tx)S∗xy − gλ(T )I∗Kfρ (33)

= (gλ(Tx)− gλ(T ))S∗xy + gλ(T )(S∗xy − I∗Kfρ).

The bound in the H-norm follows from triangle inequality, in fact from Conditions (11) and
(13) and spectral theorem (Lang, 1993) we get∥∥∥fλ

z − fλ
∥∥∥
H
≤ κML

λµ
‖T − Tx‖+

B

λ
‖S∗xy − I∗Kfρ‖H (34)

where we used ‖S∗xy‖H = ‖1/n
∑n

i=1 kxiyi‖H ≤ κM .
For the bound on the expected error we recall that using (27) we can write∥∥∥fλ

z − fλ
∥∥∥

ρ
=

∥∥∥√T (fλ
z − fλ)

∥∥∥
H
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where we omit writing explicitly IK . Moreover we have that∥∥∥√Tgλ(T )
∥∥∥
L(H)

≤
√

BD

λ

in fact Conditions (10), (11) and spectral theorem ensure that ∀f ∈ H∥∥∥√Tgλ(T )f
∥∥∥2

H
=

=
〈√

Tgλ(T )f,
√

Tgλ(T )f
〉

= 〈gλ(T )f, Tgλ(T )f〉H

≤ ‖gλ(T )f‖H ‖Tgλ(T )f‖H ≤ B

λ
D ‖f‖2

H .

The following estimate for the sample error follows∥∥∥fλ
z − fλ

∥∥∥
ρ
≤ κ2ML

λµ
‖T − Tx‖+

√
DB√
λ

‖S∗xy − I∗Kfρ‖H (35)

where we used
√

T ≤ κ. To finish the proof we simply have to plug the probabilistic esti-
mates of Lemma 5 into (34) and (35).

Remark 7 The condition λ < 1 is considered only to simplify the results and can be replaced
by λ < a for some positive constant a that would eventually appear in the bound.

Remark 8 Inspecting the proof of the above theorem we see that the set of ”good” training
sets such that the above bound holds does not depend on λ so that the bound still holds if we
take λ = λ(z). This might be helpful while looking for a data-dependent parameter choice.

Next theorem consider the approximation error. It can be proved by means of minor
modification from standard results in inverse problem. In fact its proof can be directly
derived from Theorem 4.3 in Engl et al. (1996).

Theorem 9 (Approximation Error) Let gλ as in Definition 1, fλ as defined in (26). If
fρ ∈ Ωr,R and r is smaller then the qualification of gλ then∥∥∥fλ − fρ

∥∥∥
ρ
≤ γrRλr. (36)

If r > 1/2, then f †H exists and ∥∥∥fλ − f †H

∥∥∥
H
≤ γcRλc (37)

where c = r − 1/2.
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Proof We recall that
E(fλ)− E(fρ) =

∥∥∥fρ − IKfλ
∥∥∥2

ρ
,

where we wrote explicitly the embedding operator IK since fλ belongs to H, and we also
recall the following useful inequality

gλ(I∗KIK)I∗K = I∗Kgλ(IKI∗K).

Since fρ ∈ Ωr,R (and LK = IKI∗K) we can write

‖fρ − IKfλ‖ρ = ‖fρ − IKgλ(I∗KIK)I∗Kfρ‖ = ‖(I − LKgλ(LK))Lr
Ku‖ . (38)

Then Condition(12) ensures that the inequality∥∥∥fλ − fρ

∥∥∥
ρ
≤ γrλ

r

holds true if r is smaller or equal then the qualification of gλ.
Finally (37) can be proved recalling that each bounded operator admits a polar decom-

position A = U |A|, where U is a partial isometry and |A| is the positive square root of
A∗A (Rudin, 1991). If we let I∗K = U(IKI∗K)

1
2 be the polar decomposition of I∗K , then for

r > 1/2

fρ = (IKI∗K)rφ = (IKI∗K)1/2(IKI∗K)cφ = (IKI∗K)1/2U∗U(IKI∗K)cU∗Uφ = IK(T )cUφ,

where c = r − 1/2. It follows that Pfρ ∈ Im(IK), so that f †H exists and since Pfρ = IKf †H
clearly fH = (T )cUφ. Now we can mimic the proof of the first bound and using Tf †H = I∗Kfρ

we can write

f †H − fλ = (I − gλ(I∗KIK)T )f †H = (I − gλ(I∗KIK)T )(T )cUφ

If we take the norm of the above expression Condition (12) in Def.(1) and spectral theorem
ensures that ∥∥∥f †H − fλ

∥∥∥
H
≤ γcλ

cR

where we used the fact that ‖Uφ‖H = ‖φ‖ρ since U is a partial isometry.

The proof of Theorem 2 and the corollaries are straightforward.
Proof [Finite sample bounds] We simply plug the above estimates into the following in-
equality

E(fλ
z )− E(fρ) ≤ 2

∥∥∥fλ
z − fλ

∥∥∥2

ρ
+ 2

∥∥∥fλ − fρ

∥∥∥2

ρ
.

The proof follows taking the value of λ balancing out the two terms that is the value such
that

λ2r =
1

λβn

where β = max{1, 2µ}.
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Remark 10 Clearly we can easily get a similar results for the estimates in H. Interestingly
it turns out that the parameter choice does not change.

Finally we can prove consistency.
Proof [Consistency] We let τ = (2C2

1 + 2γ2
r ) log 4

η and solve with respect to η to get

ητ = 4e
− τ

2C2
1+2γ2

r .

Then we know from Theorem 2 that

P
[
E(fλn

z )− E(fρ) > τn
2r

2r+β

]
≤ ητ

and clearly
lim sup

n→∞
sup

ρ∈M(Ωr,R)
P

[
E(fλn

z )− E(fρ) > τn
2r

2r+β

]
≤ ητ .

The theorem is proved since ητ → 0 as τ →∞.

6. Conclusions

In this paper we build upon the mathematical relation between inverse problems and learn-
ing theory. It is well known that Tikhonov regularization can be profitably used for learning
and enjoys good theoretical properties. In our analysis we show that a large number of al-
gorithms well known to the inverse problems community can be casted in the learning
framework. All these algorithms are kernel methods easy to implement and their theoret-
ical properties can be derived by adapting standard results of regularization theory. Our
analysis confirms the deep connection between learning and inverse problems.

Current work concentrates on assessing strengths and weaknesses of these new learning
algorithms in real applications. From a more theoretical viewpoint we aim to improve
the probabilistic bounds (Bauer et al., 2005). Finally, we are studying the extension of
the presented analysis to the case of other regularization principles like sparsity enhancing
regularization and regularization with differential operators.
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